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Abstract

We employ tensor network methods for the study of the seniority quantum number –
defined as the number of unpaired electrons in a many-body wave function – in molecu-
lar systems. Seniority-zero methods recently emerged as promising candidates to treat
strong static correlations in molecular systems, but are prone to deficiencies related to
dynamical correlation and dispersion. We systematically resolve these deficiencies by in-
creasing the allowed seniority number using tensor network methods. In particular, we
investigate the number of unpaired electrons needed to correctly describe the binding
of the neon and nitrogen dimer and the D6h symmetry of benzene.
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1 Introduction

The quantum mechanical characterization of molecular systems is highly nontrivial due to its
many-body character. The need for approximate methods arises for all but the smallest problems.
When choosing a suitable approximate method, a consideration has to be made between the
accuracy and the complexity of the method. The well-known Hartree-Fock (HF) method provides
a mean-field solution for molecular systems rather cheaply. The deficit between the exact ground
state energy and the approximate Hartree-Fock energy is an important quantity in quantum
chemistry and is called the correlation energy. Often, the distinction between strong (static
and nondynamical) and weak (dynamical) correlation is made [1–4]. Although both strong
and weak correlations are electronic by nature, they have a different origin; the latter results
mainly from the dynamical short-range correlations of electrons, whereas static correlation
originates from near-degeneracies of several rivaling electron configurations. Many approximate
methods often only excel in capturing one type of correlation. For example, the complete
active space self consistent field method (CASSCF) [5,6] and density matrix renormalization
group (DMRG) [7–9] are capable of capturing strong correlations within a chosen active
space, while coupled cluster (CC) [2, 10] and perturbative methods [11] are more suitable
for dynamical correlations. In an effort to capture both types of correlation, combinations of
these methods have also been developed such as CASPT2 (CAS with perturbation theory up to
second order) [12,13], DMRG-CASPT2 [14,15], DMRG-NEVPT2 (DMRG with second-order N-
electron valence state perturbation theory) [16], p-DMRG [17], MRCC (multireference coupled
cluster) [18–20] and DMRG-TCC (DMRG-tailored coupled cluster) [21–23].

The majority of contemporary electronic structure methods start from a reference state,
typically the single-reference HF ground state, and systematically build in correlations by
considering elementary excitations from this reference. The conventional approach is to
consider particle-hole (ph) excitations from the HF ground state, as is common in CC [2] or
truncated configuration interaction (CI) methods [1]. This way, it is possible to construct a
hierarchy of multiple n-ph excitations which are assumed to be decreasing in importance with
increasing n. Although tailor-made for dynamical correlations, e.g. in CC theory, it is impractical
for static (or non-dynamical) correlation. It was recently observed [24] that the seniority scheme
is much better suited to capture static correlations associated with the entanglement structure
of single-bond breaking processes. Defined as the number of unpaired electrons in a Slater
determinant, the seniority quantum number organizes the Hilbert space by the amount of broken
closed-shell singlet pairs with respect to a set of (doubly degenerate) spin orbitals. For molecular
systems dominated by singlet-pairs bond structures, it was shown that most of the strong static
correlation in a system can already be captured in the subspace spanned by all determinants
with zero seniority (no unpaired electrons) [24–30]. Although this tremendously reduces
the dimension of the Hilbert space at hand, finding the exact doubly occupied configuration
interaction (DOCI) wave function is still an exponentially scaling problem. At first glance, the
seniority scheme seems only marginally more manageable than the full problem. Interestingly,
the antisymmetric product of one-reference orbital geminals (AP1roG) [28,31–33], also known
as pair-coupled cluster doubles (pCCD) [34–37], appears to provide a reliable approximation
to the DOCI ground state energy for a wide range of molecular systems [36] while staying
computationally tractable at a mean-field scaling computational cost [28,38].

Notwithstanding its salient features, there remain several challenges that need to be over-
come in order to make the AP1roG wave function quantitatively accurate. The outstanding
challenges, which are shared by all methods expressed in the seniority scheme, are (i) the
incorporation of dynamical correlation and (ii) the choice of a preferential orbital set, also
referred to as the orbital optimization (OO) problem. Another challenge (iii) is the apparent
lack of London dispersion correlations in the seniority-zero methods which are crucial to model
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large-size molecular systems.
The lack of dynamical correlation in the zero seniority wave functions is well illustrated

by the poor description of the correlation energy of the Ne atom, as well as the near-constant
parallelity error in the bond dissociation curve of the nitrogen dimer [28,39,40]. Dynamical
correlation is generally encoded in a set of Slater Determinants with a few ph excitations
from the HF reference state. Consequently, methods targeting these excitations, such as
(multi-reference) perturbation theory [39,41], linearized CC [35,42], extended random phase
approximiation (ERPA) [43] or selected configuration interaction (CI) [44], are very well
equipped to capture those correlations. However, systematic generalizations of these methods in
order to include dynamical correlation from higher-order ph excitations prove either technically
and computationally demanding, or break the size consistency of the reference AP1roG wave
function.

The concept of paired orbitals is dependent on the choice of the basis orbitals [45]. Current
optimization methods unfortunately result into a single unique set of spin orbitals, which
can lead to nonphysical symmetry breaking effects in resonating bond structures, such as the
aromatic structures in benzene [33], or incorrect characterizations of covalent triplet-bond
couplings, such as in the nitrogen dimer [46].

Regardless the correct description of the static correlations associated with bond-dissociation
processes, seniority-zero methods have recently been identified as essentially free from London
dispersion energy [47], which is remarkable given that 2-electron systems are exactly described
by (orbital optimized) seniority-zero methods, capturing the non-covalent Lennard-Jones 1/R6

behavior of the dispersion energy in the large R→∞ separation limit of the hydrogen dimer.
In order to obtain a global understanding of the deficiencies of the seniority-zero methods,

it is quintessential to include all possible broken-pair excitations from higher seniority sectors
in a systematic way. Higher seniority subspaces have been studied in the past years using CI
approaches, [24,29,34,48,49], or energy renormalization group (ERG) approaches [50]. The
limiting factor of these methods is the pernicious computational scaling whenever no truncation
in the Slater determinants is considered. While dynamical correlation is typically included
with just a few ph excitations from the HF reference state, corresponding to low-seniority
quantum states, it is not clear at present how many broken pairs are needed to restore the
correct symmetries or include London dispersion. As a result, there is a need for an analytic
method that can assess seniority non-zero contributions in a systematic way at a favorable
computational scaling.

In this paper, we use the concept of seniority in junction with tensor network states. In
contrast to many other quantum many-body methods, tensor network states consider the whole
collection of Slater determinants, and approximate the exact quantum states by restricting
the amount of entanglement between local degrees of freedom. Tensor network states are
capable of encoding local symmetries of quantum states [51]; therefore they provide a good
framework to investigate broken pair excitations, as seniority can be related to the irrep label
of the su(2) quasi-spin algebra [52]. In practice, the idea is to perform DMRG in a subspace of
the Hilbert space up to a fixed global seniority quantum number, and increase the seniority
quantum number until full convergence of the correlation energy is obtained. This procedure
will be explained in detail in Section 2. In the proceeding sections, we will present results for
the nitrogen dimer (Section 3.1), benzene (Section 3.2) and the neon dimer (Section 3.3), to
discuss higher-seniority properties of dynamical correlation, symmetry breaking/restoration
and dispersion respectively.
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2 Methodology

2.1 Tensor networks

Pioneered by Steve White in 1992 [7,8], tensor networks have proven to be a natural language
for the entanglement in strongly correlated many body systems. In the tensor network state,
each tensor represents a ‘local’ physical degree of freedom. By connecting them in a network,
correlations between the different physical degrees of freedom can be encoded through their
virtual degrees of freedom. The exact layout of the network influences the entanglement
structure that can be represented; it is easier to correlate physical degrees of freedom that are
close in the network.

First and foremost, these tensor network methods have established themselves in the field
of condensed matter physics as a wide range of successful tensor networks have been developed
for numerous problems. Some notable examples are matrix product states (MPS) [7,8,53–55],
projected entangled pair states (PEPS) [56] and the multiscale entanglement renormalization
ansatz (MERA) [57]. They all provide, in their own way, an efficient representation of certain
entanglement structures.

In quantum chemistry, tensor networks have also proven their worth in the study of
molecules with strong correlations [9, 58–67]. Quantum chemists don’t traditionally study
molecules in a Hilbert space built from completely local basis functions (e.g. a grid in three
dimensions), but atomic orbital basis sets such as Gaussian-type or Slater-type orbitals are
used. These sets give electrons the right flexibility needed for chemistry while the basis size is
kept small. On the flip side, the loss of locality in the basis functions makes a suitable network
for the entanglement between the physical degrees of freedom less straightforward than for
most condensed matter problems. Furthermore, in an atomic orbital basis set, the long range
two-body coulomb interactions in the Hamiltonian become four-point interactions. The loss
of locality and the need for an efficient evaluation of the Hamiltonian has ensured that the
most simple networks are still the most preferred ones. The density matrix renormalization
group (DMRG) is, by far, the most popular tensor network method in quantum chemistry
and corresponds with the optimization of the linear MPS. Another option for a simple tensor
network is the three-legged tree tensor network state (T3NS) [68,69]. It is a subclass of the
more general tree tensor networks (TTNS) [65–67] and was recently introduced by some of us.
In this paper, we use these two networks for the study of several chemical systems in restricted
seniority subspaces. In the next sections we explain the implementation of restricted seniority
for the case of DMRG. However, the ideas are readily adaptable to T3NS and were implemented
for both cases in our in-house T3NS-code [70].

2.2 Seniority and tensor networks

The non relativistic quantum chemical Hamiltonian to study is given by

H =
∑

i j

t i j

∑

σ

c†
iσc jσ +

1
2

∑

i jkl

Vi jkl

∑

στ

c†
iσc†

jτclτckσ , (1)

where i, j, k and l are the indices of the orbitals and σ and τ index the spin of the electrons.
This Hamiltonian showcases several symmetries, e.g. the particle conservation and total spin
symmetry of the electrons. These symmetries can be easily exploited in tensor networks by
writing the different tensors in an invariant form under group action of the symmetry [62,69,
71–78]. Although the seniority is not a symmetry of the quantum chemical Hamiltonian, it is
still possible to apply the same idea. In this case, we write each tensor in the network in an
invariant form for the seniority. For example, the tensors of rank three present in the MPS can
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be made invariant by imposing the following restriction for the tensor elements:

Ta,b,c = 0, if νa + νb 6= νc , (2)

or graphically

a

b

cT = 0, if νa + νb 6= νc , (3)

where a, b and c denote the (physical or virtual) degrees of freedom of T and νa, νb and νc are
their respective seniority numbers which is well-defined; each state in the degrees of freedom
a, b, and c are eigenstates of the seniority operator. In this example, the seniority number of
the first two degrees of freedom of the tensor sum up to the seniority number of the third one.
This reflects the fact that seniority is an additive feature, as unpaired electrons from different
orbitals all contribute to the total seniority of the state. It is clear that this restriction implies
a kind of flow for the seniority number in the network which is indicated in Eq. (3) by the
directed edges. An example of an MPS wave function built from three of these invariant tensors
with the flow indicated is given by

|Ψ〉=
∑

α,β ,a,b,c, f

Avac,a,αBα,b,βCβ ,c, f |abc〉 (4)

=
∑

a,b,c, f
vac

a

α β f
A B C

b c
|abc〉 (5)

=
∑

f

|φ f 〉 , (6)

where

|φ f 〉=
∑

a,b,c
vac

a

α β f
A B C

b c
|abc〉 . (7)

The physical degrees of freedom (the occupancies of the spatial orbitals) are denoted by a, b
and c in this example and have a seniority ν ∈ {0, 1}. α and β are virtual degrees of freedom.
The vacuum state enters the MPS at the leftmost degree of freedom (vac) and has a seniority
ν= 0. The final degree of freedom f represents different parts of the total wave function |Ψ〉.
The restriction on the tensors given in Eq. (3) ensures that each part |φ f 〉 given by Eq. (7) has a
well-defined seniority number, i.e. each Slater determinant |abc〉 with a non-zero contribution
for a particular |φ f 〉 has the same seniority number. We can also easily ensure that each |φ f 〉
has a unique seniority number by summing any |φ f 〉 states with matching seniority numbers.
This results in an orthogonal set of |φ f 〉 (but not orthonormal). The graphical depiction implies
for each connected edge a summation over its corresponding indices; the summation over α
and β are implied in Eq. (5). This graphical notation is widely used in the tensor network
language [51,56,69,79–81].

The only difference with implementing a U(1)-symmetry of the system, e.g. particle conser-
vation or conservation of the spin projection, is the needed summation over the states of the
final edge f in Eq. (5). This is necessary as the seniority is not a conserved quantum number.
Eigenstates of the Hamiltonian are not necessarily eigenstates of the seniority operator and the
target state can be a linear combination of Slater determinants with different seniority numbers.
To target such a state, the final states at edge f are a set of eigenstates of the seniority operator
which combine to the targeted state when summed. In contrast, for a conserved quantity of
the system such as the particle conservation, there is only one state |φ f 〉 needed.
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The set of possible seniority numbers for the wave function is

Ω=

�

n ∈ N :
n mod 2= Ntot mod 2

�

�N↑ − N↓
�

�≤ n≤min (Ntot, 2k− Ntot)

�

, (8)

with k the number of spatial orbitals, N↑ (N↓) the number of electrons with spin up (down)
and Ntot the total number of electrons. For every renormalized state in the last edge, we have
ν f ∈ Ω. By restricting ν f to a subset S, i.e. ν f ∈ S ⊆ Ω, ground states in seniority-restricted
subspaces can be targeted. The weight of each seniority subspace for the total wave function
can be readily calculated as |cν f

|2 = 〈φ f |φ f 〉.
In a similar fashion, one could also use other non-conserved quantum numbers than the

seniority. For example we could use the excitation number with respect to the Hartree Fock
wave function. By only allowing Slater determinants with a certain amount of excitations,
tensor networks can be used as an approximate configuration interaction (CI) solver with
arbitrary allowed excitation levels.

2.2.1 Suboptimal decomposition

When using a wave function ansatz as shown in Eq. (5), we impose a restriction on the left
renormalized states at each splitting of the network. Due to the fact that a vacuum state enters
in the left most edge (vac) and all tensors used are invariant under the seniority operator, the
left renormalized states need to have a well defined seniority number. This restriction does not
hold for the right renormalized states since multiple states with different seniority exit at the
right most edge f .

This restriction results in the need of a possibly larger bond dimension than when discarding
seniority. We illustrate this using a wave function with three electrons in three spatial orbitals:

|Ψ〉= 1p
2
[|↑,↓〉 ⊗ |↑〉+ |−,↑↓〉 ⊗ |↑〉] (9)

=
1p
2
[|↑,↓〉+ |−,↑↓〉]⊗ |↑〉 . (10)

In Eq. (10), the Schmidt decomposition for a partitioning between the first two and the last
orbital is given. At this partitioning only a virtual bond dimension of one is needed to represent
the state. However, when we impose that the left states, i.e. the states in the first two orbitals,
of the decomposition should also be eigenstates of the seniority operator, the needed bond
dimension at this partitioning increases to two, confer Eq. (9).

2.3 DOCI and tensor networks

Restricting the calculation to configurations with ν= 0, i.e. all electrons are paired, is easily
done with the aforementioned method. However, it is more efficient to directly implement the
quantum chemical Hamiltonian projected on the DOCI-subspace where only paired electrons
are allowed. The DOCI-Hamiltonian is given by

HDOCI = 2
∑

i

t iini +
∑

i j

�

2Vi ji j − Vi j ji

�

nin j +
∑

i 6= j

Vii j j b
†
i b j , (11)

where b†
i and bi are the bosonic pair creation and annihilation operators and ni is the pair

number operator at orbital i. They are given by

b†
i = c†

i↑c
†
i↓ , bi = ci↓ci↑ (12)
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and
ni = b†

i bi . (13)

This Hamiltonian only scales quadratically with the number of orbitals in contrast with the
quartic scaling of the full Hamiltonian. TNS calculations in the DOCI subspace can be performed
with a lower polynomial scaling, as stated in Table 1 for the DMRG and T3NS.

Table 1: Resource requirements for DMRG and T3NS with renormalized operators for
the full quantum chemical Hamiltonian (Eq. (1)) or the DOCI Hamiltonian (Eq. (11))
without orbital optimization for k spatial orbitals. The maximal virtual bond dimension
is denoted by D.

CPU time Memory

QC-DMRG: O
�

k4D2 + k3D3
�

O
�

k3D2
�

DOCI-DMRG: O
�

k2D3
�

O
�

k2D2
�

QC-T3NS: O
�

k4D2 + k3D4
�

O
�

k3D2 + kD3
�

DOCI-T3NS: O
�

k2D4
�

O
�

k2D2 + kD3
�

We find that DOCI ground state wave functions have in general lower entanglement than
their corresponding full configuration interaction (FCI) ground state wave function; accurate
results for DOCI can be obtained with a much lower bond dimension. The synergy between the
lower polynomial scaling and the lower bond dimension needed, makes DOCI-TNS very fast
and a good option for initializing tensor network calculations in the FCI space. For example,
DOCI calculations without orbital optimization with 162 electron pairs and 261 spatial orbitals
can be executed in a several minutes on a common laptop [82].

Not only DOCI-TNS but also general seniority-restricted tensor network calculations can
provide interesting approximations from a computational viewpoint, although they have the
same polynomial scaling as unrestricted calculations. They can converge faster than the latter
due to the lower entanglement present in the wave function; hence a lower bond dimension is
needed. This is generally the case for ν≤ 2 and (to a lesser extent) ν≤ 4 calculations.1

In contrast, using high seniorities will result in a loss of efficiency when compared to
seniority-unrestricted tensor network calculations due to the extra bookkeeping needed and
the suboptimal Schmidt decomposition (see Section 2.2.1). Especially the latter is detrimental
as the sought-after wave function at high seniority calculations is similarly entangled as the
exact solution, but the tensor network ansatz can not capture it as efficiently as the equivalent
unrestricted ansatz. As such, these types of calculations primarily provide a means to analyze
the need for broken pairs in chemical systems. They should not necessarily be viewed as an
efficient way to approximate the FCI solution. The presented tensor network method allows
to investigate the number of broken pairs needed for recovering a qualitative correct picture
when one attempts to correct existing seniority-zero methods.

3 Applications

We discuss some calculations with the seniority-restricted tensor network code. As these
calculations are orbital dependent, several types of orbitals are considered. The effect of
allowing progressively more broken pairs is also studied within each orbital set. In Section 3.1
and Section 3.3, the dissociation of the nitrogen and neon dimer are considered, respectively.

1Bear in mind that, while these calculations converge faster, they do not converge to the FCI limit.
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Section 3.2 discusses the benzene molecule, a system demonstrating artificial D6h symmetry
breaking in the seniority-zero subspace [33].

Coupled cluster natural orbitals and Löwdin orthogonalized atomic orbitals are obtained
with PySCF [83–85]. DOCI-optimized orbitals are generated through an in-house DOSCF
code and were carefully checked to correspond to the lowest possible DOCI energy, i.e. the
global minimum [46]. The seniority-restricted tensor network calculations were executed
with our own T3NS-code [70]. All seniority-restricted tensor network calculations are MPS
calculations. We exploit the spin symmetry and the reported bond dimensions for the tensor
networks are reduced bond dimensions; renormalized states belonging to the same multiplet
are represented by one reduced renormalized state, thus reducing the needed bond dimension.
Seniority-restricted tensor network calculations are, just as regular tensor network calculations,
not exact; the accuracy can be controlled by the bond dimension. The following calculations
use a large enough bond dimension to ensure quantitatively accurate potential energy surfaces.

3.1 Nitrogen dimer

Characterized by a triple bond breaking, the nitrogen dimer is a much visited test case for
new quantum chemical methods, and has already been investigated as such in the seniority
framework by Bytautas et al. [24] using an active space in the cc-pVDZ basis with D2h-symmetry
adapted MOs. Here, we study the nitrogen dimer in a cc-pVDZ basis set with all electrons
correlated, however the DMRG results are qualitatively similar to the results in [24]. Seniority-
restricted spin-adapted DMRG with a reduced bond dimension up to a 1000 is used to optimize
the ground state in the different subspaces. The allowed seniority increases from 0 (DOCI) up to
10 for the largest calculations, allowing 5 electron pairs to be broken. In Fig. 1, the dissociation
curves are given for calculations within the different seniority subspaces. Calculations were
performed for canonical orbitals (Fig. 1a), DOCI-optimized orbitals (Fig. 1b) and CCSD natural
orbitals (Fig. 1c). Although the DOCI-optimized orbitals are optimized for the seniority-zero
subspace specifically they also perform better in higher seniority subspaces, albeit marginally.
Eventually for ν≤ 8 and onward, all orbital sets give quasi-FCI energies.

In Ref. [32], it is shown that the seniority-two sector decouples from the seniority-two-
plus-zero sector up to first order for DOCI-optimized orbitals; only a small correction should
occur due to the introduction of single broken pairs in this orbital set. Putting this first order
decoupling to the test, we notice indeed a small energy correction for the DOCI-optimized
orbitals, smaller than for canonical orbitals. In Fig. 2, the weights of the different seniority
subspaces are plotted for the ground state in both canonical and DOCI-optimized orbitals. It is
yet another illustration that for DOCI-optimized orbitals (Fig. 2b) the seniority-two subspace is
less important than for canonical orbitals (Fig. 2a). However, a first order decoupling is not
an exact one; there are other orbital sets possible which give even smaller energy corrections.
This is illustrated by the natural orbitals (Fig. 1c) which give even smaller energy corrections
when allowing single broken pairs in this system.

As a last observation we note that the largest change in energy occurs when including the
seniority-four subspace, and this for all orbital sets in Fig. 1. This trend was also noticed in
Ref. [24] for the nitrogen dimer in nonlocal orbitals. When including up to seniority four the
energies are close to converged around the binding distance for increasing seniority numbers;
however, the binding energy itself is still overestimated due to missing dynamical correlation at
the dissociation (values are given in Table 2 for both canonical and DOCI-optimized orbitals).

Intuitively, we would expect a much larger error when excluding the seniority-six subspace
as Hund’s rule dictates dissociation to two nitrogen atoms with each three unpaired electrons.
However, seniority and pairing is an orbital-dependent concept [46]; we need to keep in mind
that Hund’s rule applies to a nitrogen atom with orbitals localized around that atom. To study
the interpretation of Hund’s rule in non-local orbitals, we consider a toy model of two sets
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Figure 1: Dissociation curves at different seniority subspaces for the nitrogen dimer.
Results for canonical orbitals (a), DOCI-optimized orbitals (b) and CCSD natural
orbitals (c) are given. For (c), only results where CCSD converged are plotted.

of three orbitals (px , py , pz) and (p′x , p′y , p′z). Each set of orbitals mimics the local p-orbitals
of each nitrogen atom which are singly occupied and couple together to a S = 3/2 state, as
dictated by Hund’s rule. Our tensor network calculations target over the whole dissociation
curve a singlet state for the dimer, so the two toy-nitrogen atoms should couple as [3/2, 3/2]0.
Mimicking non-local orbitals, we rotate the orbitals pairwise as follows:

π1 = px cosθ + p′x sinθ , π∗1 = −px sinθ + p′x cosθ

π2 = py cosθ + p′y sinθ , π∗2 = −py sinθ + p′y cosθ

σ = pz cosθ + p′z sinθ , σ∗ = −pz sinθ + p′z cosθ .

In Fig. 3, the weights of the different seniority sectors is given for the [3/2, 3/2]0 coupled toy
wave function in function of the rotation angle θ . As can be seen in this model seniority-six
is actually of no importance when working with delocalized orbitals (θ = π/4). Instead, the
correct dissociation can be described with only seniority-zero-plus-four and both seniorities
equally important.
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Figure 2: Weights of the different seniority subspaces for the ground state wave
function of the nitrogen dimer. Results for canonical orbitals (a), DOCI-optimized
orbitals (b) and Löwdin orthogonalized atomic orbitals (c) are given.

Both canonical orbitals and the DOCI-optimized orbitals are delocalized for the 2p-orbitals
in this system. This dominating importance of the seniority zero and four for the wave function
at dissociation is very clear in Fig. 2a and Fig. 2b. The other seniority sectors have very small
contributions in comparison. As an illustration, we also included calculations with Löwdin
orthogonalized atomic orbitals in Fig. 2c. As these orbitals are localized, it corresponds with
θ = 0 in Fig. 3. These orbitals do give rise to a very important seniority-six subspace at
dissociation, as predicted by Hund’s rule. Evenmore, all seniority sectors smaller than six
express a superexponential decay.

3.2 Benzene

In this section, the in-plane distortion of benzene is studied. The exact nature of the distortion
is given in the inset in Fig. 4 and is characterized by the angle θ . At θ = 60° the D6h symmetric
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Table 2: Binding energies in mEh for seniority-restricted calculations in both canonical
and DOCI-optimized orbitals.

ν= 0 ν≤ 2 ν≤ 4 ν≤ 6 ν≤ 8 ν≤ 10
canonical 424 382 377 338 322 322

DOCI-optimized 383 405 367 333 321 321

0
π
12

π
6

π
4

π
3

5π
12

π
2

θ [rad]

0.0

0.2

0.4

0.6

0.8

1.0

|c ν
|2

ν= 0

ν= 2

ν= 4

ν= 6

Figure 3: Toy model of two nitrogen atoms with both S = 3/2 respecting Hund’s rule.
The two atoms couple together to a singlet. The figure represents the weights of the
different seniority sectors for local (0,π/2), delocalized (π/4) orbitals and everything
in between.

equilibrium structure geometry of benzene is obtained. At other angles, the distortion introduces
alternating shorter and longer carbon-carbon bonds. For this system Boguslawski et al. [33]
showed that benzene (θ = 60°) is not the equilibrium structure within the seniority-zero
subspace; an artificial symmetry breaking occurs when allowing orbital optimization. In this
paper we use the experimental geometry of benzene [86,87] and distort the angle while keeping
the atomic distances to the center of mass intact; we did not perform a geometry optimization
while distorting the angle.

We use DOCI-optimized orbitals in the STO-6G basis set to study this artificial symmetry
breaking with all electrons correlated. We chose STO-6G as the distortion angle of the minimal
energy DOCI structure is particularly large for this basis set. The tensor network calculations
are executed with a reduced bond dimension of 1000.

In Fig. 4 the results for the ground state in the different seniority subspaces are given. In
accordance with Boguslawski et al. [33], we notice that, indeed, the ground state is not found at
θ = 60° in the seniority zero subspace. When the breaking of one pair is allowed in this orbital
set, the correction is rather small and the correct symmetry is not restored; as expected due to
the aforementioned first order decoupling of the seniority-zero and seniority-two subspace in
these orbitals.

When including progressively higher seniorities, the stable configuration moves closer to
the expected D6h symmetric benzene. The potential energy surface enjoys a large qualitative
correction when including the seniority-four subspace in the calculations. However the predicted
most stable configuration is still off by 0.59°. The inclusion of seniority-six further improves
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Figure 4: Benzene in a STO-6G basis set for different distortion angles. The minimal
energies and the corresponding distortion angles for increasing seniority subspaces
are given in the inset. A graphical depiction of the in-plane distortion of the aromatic
ring in benzene is also shown.

57.0 57.5 58.0 58.5 59.0 59.5 60.0
θ

10−4

10−3

10−2

10−1

100

|c ν
|2

|cν=0|2
|cν=2|2

|cν=4|2
|cν=6|2

|cν=8|2

Figure 5: Weights of the different seniority subspaces for the ground state wave
function of the in-plane distorted benzene in DOCI-optimized orbitals.

the quality of the potential energy surface, but only at seniority-eight the correct symmetry
seems to be recovered, at least up to the resolution of our performed calculations. At this point,
the results become very close to the full seniority results. In Fig. 5, the weights of the different
seniority sectors in the ground state during distortion are also given. These weights do not
express the large changes as were seen during dissociation of the nitrogen dimer in Fig. 2. This
is quite expected as the bond breaking of the nitrogen dimer is a far more outspoken change
than the small benzene distortions in this section.
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3.3 Neon dimer

The neon dimer, constituted by just two noble gas atoms, is very weakly bound. Although
the electrons do not form covalent bonds between the two atoms, it expresses some bonding
character due to weak dispersion forces. In Ref. [88], an empirically fitted potential curve
results in a binding energy of −134µEh and a binding distance of 3.091Å.

As the binding of the neon dimer is rather weak and due to dynamical correlations, it will
be very sensitive to the chosen basis set size. For an accurate description of the potential energy
curve, a large basis set should be chosen and basis set superposition errors (BSSE) should be
taken into account appropriately [89]. A clear example of the importance of BSSE-corrections is
the dissociation curve on the Hartree-Fock level. At this level of theory no binding is expected as
the Hartree-Fock solution is dispersion-free. However, when using small basis sets, one would
find a binding neon dimer at the Hartree-Fock level if one neglects to correct the BSSE [89].

We study the neon dimer in the aug-cc-pVDZ basis; it was found that this basis set has
a favorable tradeoff between mitigating BSSE and numerical stability issues of larger basis
sets. Calculations with different seniority sectors are executed while using DOCI-optimized
orbitals with a frozen 1s core. Reduced bond dimensions up to 800 are used for the DMRG
calculations. As the aug-cc-pVDZ basis is a rather small basis for capturing dispersion forces,
appropriately removing BSSE is important. This is done by using the Boys and Bernardi
counterpoise correction [90].

ν E(R= 5Å)[Ha]
= 0 −257.141
≤ 2 −257.159
≤ 4 −257.409
≤ 6 −257.412
full −257.419

3.0 3.5 4.0 4.5 5.0

R [Å]

−200

−100

0

100

200

∆
E
[µ

H
a]

Figure 6: Dissociation curves for the neon dimer without BSSE-correction. The
energies at large separation distances is given in the inset.

In Fig. 6 the raw uncorrected results are given for the different calculations. For all seniority
calculations the neon dimer seems to be bound. However, for seniority-zero and seniority-
two-plus-zero is is very weakly bound; only for ν≤ 4 calculations and higher the neon dimer
bounds qualitatively corresponding with the full seniority case. For the counterpoise correction,
equivalent calculations as for the dimer are executed but where one neon atom is replaced by
a chargeless, electronless ghost atom. This way, we can approximately correct for the extra
stabilization each neon monomer experiences by the extra added basis functions of the other
monomer. The BSSE-corrected dissociation energy for the dimer at distance r is then given by

Edissoc(r) = ENe−Ne(r)− ENe−ghost(r)− Eghost−Ne(r) . (14)

The same level of theory should be used for these ghost calculations as for the original
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calculation. This poses a difficulty since the seniority restricted calculations are not size
consistent; Edissoc(r →∞) does not tend to zero as is desired. Assume we have executed a
dimer calculation with ν≤ 4, using ghost calculations with the same ν≤ 4 will over-correct,
while ghost calculations at the lower ν≤ 2 will under-correct. We try to solve this problem by
both over- and under-correcting and shift both curves to 0 in the dissociation limit. Results
for these BSSE-corrections are given for different seniority sectors in Fig. 7 with the grayed
area indicating where the exact BSSE-correction is expected to be. From Fig. 7a and Fig. 7b,
it seems that the weak bound present in Fig. 6 for ν= 0 and ν≤ 2 practically or completely
disappears when taking BSSE-corrections into account. When correcting ν ≤ 4 calculations,
the over-corrected dissociation underestimates the dissociation energy a bit with respect to the
BSSE-corrected full-seniority tensor network calculations (which approximate FCI) while the
under-corrected dissociation overestimates the dissociation energy, as can be expected.

It seems thus that calculations with seniority-zero and seniority-two do not model the
needed dispersion and at least seniority-four is needed. Taking into account that the DOCI-
optimized orbitals are localized on separate Neon atoms for larger separations, this suggests
the breaking of at least one electron pair at each Ne atom is needed, inducing polarization
effects in each atom which give rise to the dispersion energy.

Finally, we notice that the full-seniority dissociation energy with BSSE-correction is a factor
of three smaller than empirical measurements and the bond length is overestimated. This is
quite normal when studying dynamical correlations in small basis sets. The limited basis set
does not allow all the needed flexibility for the stabilization of the dimer.

4 Conclusion

In this paper, the concept of seniority is joined with tensor network methods. By using seniority-
invariant tensors in a tensor network, we can force all the renormalized states in the virtual
bonds to be eigenstates of the seniority operator. This allows for arbitrary seniority-restricted
calculations. For DOCI (doubly occupied configuration interaction) calculations, we can im-
mediately implement the DOCI-projected quantum chemical Hamiltonian in Eq. (11). This
results in a very fast tensor network calculation, partly because of the simpler Hamiltonian,
partly because the correlations in the seniority-zero subspace for molecular systems are easily
captured by tensor networks; even for very large systems, a bond dimension of less than 100
suffices for energies within chemical accuracy of the exact DOCI energy.

The seniority-restricted tensor network method opens up novel ways for efficient approxi-
mate DOCI algorithms with orbital optimization. As one-body and two-body reduced density
matrices are easily extracted from the TNS, one could alternate between DOCI-TNS calcula-
tions and orbital optimizations by using e.g. Newton-Raphson based algorithms [5] or Jacobi
rotations [91, 92]. As in Ref. [93], one could also intertwine the orbital optimization with
the tensor network calculation itself. Instead of lowering the entanglement, one could now
optimize for the DOCI energy or perform a seniority zero-plus-two calculation and minimize
the seniority two contribution by orbital rotations. A proxy for decoupling the seniority-zero
and seniority-two subspaces has been previously done in Ref. [32].

Several systems are studied within different seniority subspaces. For the dissociation of
the nitrogen dimer, only a quantitative dissociation curve can be obtained when at least two
pairs are allowed to be broken. This can be theoretically explained due to Hund’s rule. The
in-plane distortion of benzene and its artificial D6h symmetry breaking in the seniority-zero
subspace [33] is also studied. A large correction of the artificial symmetry breaking occurs when
including seniority-four, however up to eight unpaired electrons are needed for a complete
restoration of the correct benzene point group symmetry in the used basis set. Finally, also the
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Figure 7: Dissociation curves for the neon dimer with and without BSSE correction for
different seniority subspaces. When BSSE-correction is performed, the used seniority
subspace for the ghost atom calculation is given in brackets in the legend. The
dissociation curve for a full-seniority calculation with full BSSE-correction is also
shown in each subfigure. Results are shown for ν = 0 (a), ν ≤ 2 (b) and ν ≤ 4 (c)
subspace calculations.

dissociation of the neon dimer is considered. At the seniority-zero level of theory the neon
dimer is non-binding; DOCI does not capture the dispersion forces needed for the weak binding
characteristic of neon. Only at seniority-four and onward, the dispersion forces are adequately
picked up.

For all systems, the seniority-two subspace has only a small contribution to the total
wave function when using DOCI-optimized orbitals; as expected by the theoretical first order
decoupling between seniority-zero and seniority-two subspaces in these types of orbitals [32].
However, a first order decoupling is not an exact decoupling and other orbital sets can be found
which attribute even less importance to the seniority-two subspace. An example of this is given
by the natural orbitals of the nitrogen dimer in Fig. 1c.
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