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Abstract

We study four-point functions of critical percolation in two dimensions, and more gen-
erally of the Potts model. We propose an exact ansatz for the spectrum: an infinite, dis-
crete and non-diagonal combination of representations of the Virasoro algebra. Based
on this ansatz, we compute four-point functions using a numerical conformal bootstrap
approach. The results agree with Monte-Carlo computations of connectivities of random
clusters.
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1 Introduction

Critical percolation in two dimensions has a local conformal invariance [1–3], and can there-
fore be studied using the methods of two-dimensional conformal field theory. In particular,
critical percolation has a Virasoro symmetry algebra with the central charge c = 0. While this
particular value of the central charge gives rise to remarkable algebraic structures [4, 5], one
should also remember that critical percolation is the q → 1 limit of the Potts model in the
random cluster formulation [6], where the number q is related to the central charge by

c = 1− 6
�

β −
1
β

�2

, q = 4cos2πβ2 . (1)

Some interesting observables of the Potts model are actually smooth as functions of q. These
include the fractal dimensions of clusters and cluster boundaries [7], and the three-point con-
nectivities of clusters [8]. So we will investigate critical percolation by studying smooth ob-
servables of the Potts model.

While three-point connectivities are interesting, the real test of one’s understanding of the
model comes with four-point connectivities. This is because conformal invariance reduces
three-point functions to mere numbers, while four-point functions still depend non-trivially
on a conformal cross-ratio. As a result, three-point functions cannot tell whether the involved
fields are physical or not. In contrast, a four-point function encodes (part of) the spectrum of
the model, and studying its limit when two points coincide can tell us what the ground state
is, whether the spectrum is discrete or continuous, etc. The study of a boundary four-point
function that obeys a second-order differential equation has led to Cardy’s formula for the
crossing probability in critical percolation [1]. Here we will study bulk four-point functions
that do not obey any nontrivial differential equations.

Let us consider the random cluster formulation of the Potts model [6]. In this formulation,
we draw graphs on a finite part of the square lattice Z2. A graph is a collection of bonds
between neighbouring sites: each edge of the lattice either has a bond, or no bond. According
to these bonds, the lattice is split into a disjoint union of connected clusters. The probability
of a graph G is defined as

Probability(G ) = q# clustersp# bonds(1− p)# edges without bond . (2)

The model becomes conformally invariant when the bond probability p takes the critical value
pc =

p
qp

q+1 – the value at which the probability that there exists a percolating cluster jumps
from 0 to 1, in the limit of infinite lattice size. Then the probability that two points z1, z2
belong to the same cluster behaves as [9]

P(z1, z2)∝ |z1 − z2|
−4∆

(0, 1
2 ) , (3)

where the critical exponent ∆(0, 1
2 )

is a function of q. This function is a special case of

∆(r,s) =
c − 1
24

+
1
4

�

rβ −
s
β

�2

, (4)

where the variables c and β are defined in terms of q by eq. (1). The values of ∆(0, 1
2 )

in
a number of interesting cases, including critical percolation, are given in Table 1. The four
basic four-point cluster connectivities that generalize P(z1, z2) to configurations of four points
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Related model q c ∆(0, 1
2 )

Uniform spanning tree 0 −2 0

Critical percolation 1 0 5
96

Ising model 2 1
2

1
16

Tricritical Ising model 3+
p

5
2

7
10

21
320

Three-state Potts model 3 4
5

1
15

Tricritical three-state Potts model 2+
p

2 25
28

15
224

Four-state Potts model 4 1 1
16

Table 1: Values of q, c, and∆(0, 1
2 )

in a number of special cases. The ambiguities in the relation

(1) between c and q are lifted by assuming 1
2 ≤ β

2 ≤ 1.

z1, z2, z3, z4 are [10]

P0({zi}) = Probability(z1, z2, z3, z4 are all in the same cluster) , (5)

P1({zi}) = Probability(z1, z2 and z3, z4 are in two different clusters) , (6)

P2({zi}) = Probability(z1, z3 and z2, z4 are in two different clusters) , (7)

P3({zi}) = Probability(z1, z4 and z2, z3 are in two different clusters) . (8)

The functions P1, P2 and P3 are related to one another by permutations of their arguments,

P1(z1, z2, z3, z4) = P2(z1, z3, z2, z4) = P3(z1, z3, z4, z2) . (9)

Moreover, global conformal symmetry implies

Pσ

�§

azi + b
czi + d

ª�

=
4
∏

i=1

|czi + d|
4∆
(0, 1

2 ) · Pσ({zi}), (σ = 0, 1,2, 3) . (10)

Since the group of global conformal transformations z → az+b
cz+d is three-dimensional, it deter-

mines the dependence of Pσ({zi}) on only three of its four variables. The remaining fourth
variable, which is invariant under these transformations, is the cross-ratio

z =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

. (11)

This is why four-point functions encode much more information than two- and three-point
functions.

We interpret the four-point connectivities Pσ as four-point functions of conformal primary
fields that all have dimensions ∆ = ∆̄ = ∆(0, 1

2 )
. Assuming local conformal symmetry, such

four-point functions are combinations of Virasoro conformal blocks F (k)∆ ({zi}),

R=
∑

(∆,∆̄)∈S (k)
D(k)
∆,∆̄
F (k)∆ ({zi})F

(k)
∆̄
({z̄i}), (k ∈ {s, t, u}) . (12)

The index k labels a channel, such that each formula for R is an expansion around a given
geometrical limit. (See Table 2.) Each term in the sum is the contribution of a primary state of
left and right dimensions ∆ and ∆̄, plus its descendent states. The equality of the expressions

3
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channel limit
s z1→ z2
t z1→ z4
u z1→ z3

Table 2: The three channels and the corresponding limits.

for R in the s, t and u channels is a constraint on the spectrums S (k) and on the structure con-
stants D(k)

∆,∆̄
, called crossing symmetry. The conformal bootstrap approach consists in solving

this constraint. (Consistency of the theory on a torus would lead to the further constraint of
modular invariance, which however applies to the complete spectrum of the theory, and does
not constrain our OPE spectrums S (k).)

In two-dimensional theories such as Virasoro minimal models, the spectrums are known,
and finite. The crossing symmetry equations can then be solved exactly, resulting in analytic
expressions for the structure constants [11]. On the other hand, in higher-dimensional theories
such as the three-dimensional Ising model, only some qualitative features of the spectrums are
known. Crossing symmetry can then be used for numerically estimating a few of the infinitely
many dimensions (∆, ∆̄), and the associated structure constants [12,13]. Here we will follow
the intermediate approach of numerically estimating a few structure constants, based on exact
guesses for the spectrums.

2 Conformal bootstrap approach

2.1 Spectrums

What do we know on the spectrums S (k) that should correspond to four-point functions such
as the connectivities Pσ? First of all, in the limit z1 → z2, the connectivity P0 must reduce
to the probability that z2, z3, z4 are in the same cluster. It follows that the leading state of
the corresponding spectrum, i.e. the state with the lowest total dimension ∆+ ∆̄, again has
conformal dimensions∆= ∆̄=∆(0, 1

2 )
. Moreover, conformal symmetry and single-valuedness

of correlation functions only allow states with half-integer spins [11],

∆− ∆̄ ∈
1
2
Z . (13)

In particular, primary states such that ∆ = ∆̄ are called diagonal, and a spectrums where all
primary states are diagonal is called diagonal too. Now, if we call “even spin” a spectrum
where all primary states have even spins ∆− ∆̄ ∈ 2Z, then

a four-point function that has the same spectrum and structure constants in two
channels, also has the same in the third channel, if and only if the spectrum is even
spin.

(See Appendix A.2.) Our four-point function P0 is invariant under permutations, and therefore
has the same even spin spectrum in all channels. On the other hand, P1, P2 and P3 are not
invariant under all permutations, for instance P2 should have the same spectrum and structure
constants in the s- and t-channels, but not in the u-channel. Therefore, the s- and t-channel
spectrum of P2 cannot be even spin, and in particular cannot be diagonal.

Let us look for spectrums where all dimensions ∆, ∆̄ are of the type ∆(r,s) (4) with (r, s) ∈
Z × 1

2Z. For generic values of the central charge, the condition (13) then determines ∆̄ in
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Spectrum Leading state Even spin?

S2Z,Z+ 1
2

(∆(0, 1
2 )

,∆(0, 1
2 )
) No

S2Z,Z (∆(0,0),∆(0,0)) Yes

Table 3: Two ansätze for the spectrums of four-point function.

terms of∆, namely∆=∆(r,s)⇒ ∆̄=∆(r,−s), so that∆− ∆̄= −rs. Our ansätze for spectrums
will therefore be of the type

SX ,Y =
�

(∆(r,s),∆(r,−s))
	

r∈X ,s∈Y with X ⊂ Z, Y ⊂
1
2
Z . (14)

Spectrums of this type have been considered in [14], the most natural example being SZ,Z.
The total dimension of a state in such a spectrum is

∆(r,s) +∆(r,−s) =
c − 1
12

+
1
2

�

r2β2 +
s2

β2

�

. (15)

We assume that the real part of the total dimension is bounded from below. Unless the sets X
and Y are both finite, this implies ℜβ2 > 0, i.e.

ℜc < 13 ⇔ q /∈ (4,∞) . (16)

The leading state of SX ,Y , i.e. the state whose total dimension has the lowest real part, then
has low values of r, s. We point out that there is no reason to assume that the values of c or
of conformal dimensions are real. Such assumptions would be necessary if we hoped to build
unitary theories, but unitary theories cannot exist for generic values of c < 1 [11].

We are now ready to introduce our two main ansätze, see Table 3. Our main motivation
for S2Z,Z+ 1

2
is that it has the desired leading state. An additional motivation for both ansätze

is that for q = 4, these spectrums are known to occur in four-point functions of the type of Pσ.
Such four-point functions have indeed been computed in the Ashkin–Teller model, of which
the four-state Potts model is a special case [15]. Moreover, the dimensions∆(0,Z+ 1

2 )
correspond

to the magnetic series identified in [16–18], and the spectrum S2Z,Z+ 1
2

appear in the partition
functions discussed in [19].

2.2 Structure constants

Let us assume that we have the same known spectrum S (s) = S (t) = S in the s- and t-
channels, with the same unknown structure constants D(s)

∆,∆̄
= D(t)

∆,∆̄
= D∆,∆̄. Let us determine

these structure constants using the crossing symmetry equation
∑

(∆,∆̄)∈S

D∆,∆̄

�

F (s)∆ ({zi})F
(s)
∆̄
({z̄i})−F

(t)
∆ ({zi})F

(t)
∆̄
({z̄i})

�

= 0 . (17)

This sum typically converges fast when the total dimension∆+∆̄ increases. So let us truncate
the spectrum, and consider the subspectrum S (N) made of the N states with the lowest total
dimensions. Normalizing the leading state structure constant to one, we determine the remain-
ing N−1 structure constants of S (N) by randomly choosing N−1 values of the positions {zi}.
We call the spectrum consistent if the resulting structure constants are independent from the

5
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(r, s) (∆, ∆̄) D∆,∆̄(24) c∆,∆̄(24)
�

0, 1
2

� � 5
96 , 5

96

�

1.0000000000 0
�

−2, 1
2

� �39
32 , 7

32

�

0.0385548052 1.3× 10−8
�

2, 1
2

� � 7
32 , 39

32

�

0.0385548052 1.3× 10−8
�

0, 3
2

� �77
96 , 77

96

�

−0.0212806512 4.1× 10−8
�

−2, 3
2

� �95
32 , − 1

32

�

0.0004525024 1.2× 10−7
�

2, 3
2

� �

− 1
32 , 95

32

�

0.0004525024 1.2× 10−7
�

0, 5
2

� �221
96 , 221

96

�

−0.0000356379 2.5× 10−6
�

−4, 1
2

� �119
32 , 55

32

�

−0.0000029746 1.2× 10−5
�

4, 1
2

� �55
32 , 119

32

�

−0.0000029746 1.2× 10−5

Table 4: The first 9 states in the spectrum S2Z,Z+ 1
2

at c = 0, together with the values of their
conformal dimensions, of their structure constants, and of the coefficients of variation when
the spectrum is truncated to N = 24 states. The coefficient of variation gives a rough estimate
of the precision of our determination of the corresponding structure constant.

choice of {zi} in the limit N →∞. In practice, we randomly choose 10 values of {zi}, and
compute the mean D∆,∆̄(N) and coefficient of variation c∆,∆̄(N) of each structure constant.
The structure constants D∆,∆̄ are then D∆,∆̄ = lim

N→∞
D∆,∆̄(N). For consistent spectrums, we

find c∆,∆̄(N ∼ 20)< 10−5 for the first few structure constants. The precision of our conformal
bootstrap has been evaluated also by testing it with the generalized minimal model correla-
tion functions whose structure constants are known and given by Dotsenko-Fateev Coulomb
gas integrals [20]. For inconsistent spectrums, we typically find c∆,∆̄(N)> 10−2 for all N and
all structure constants.

2.3 Results

For all values of c that obey (16), we find that the spectrum S2Z,Z+ 1
2

is consistent. See Table 4
for the case c = 0. It takes a few minutes to compute these structure constants on a standard
desktop computer. Then it takes a fraction of a second to compute the value of the four-point
function at any given value of the positions {zi}. See the corresponding Jupyter notebooks on
GitHub for more details. And see Appendix B for numerical bootstrap results with other values
of N or of the number of choices of {zi}.

The consistency of S2Z,Z+ 1
2

allows us to define, and numerically compute, four-point func-
tions that have the same symmetries as the four-point connectivities P1, P2 and P3, and that
we call R1, R2 and R3. These four-point functions are related to one another by permutations
of {zi}. By definition, each one of these four-point functions has the spectrum S2Z,Z+ 1

2
in two

channels, while its spectrum S0 in the third channel is a priori unknown. (See Table 2.3.)
In the case c = 1, we have S0 = S2Z,Z [15]. Generalizing this to c 6= 1 raises the issue that
conformal blocks have poles at the values ∆ = ∆(r,s) with (r, s) ∈ 2N∗ ×N∗. As we explain in
Appendix A.3, there is a natural regularization of these poles, at the price of allowing diagonal
states with dimensions ∆ = ∆̄ = ∆(r,−s). With this regularization, we however find that the
spectrum S2Z,Z is inconsistent. And this result seems independent from the regularization,
whose influence is numerically rather small.

6
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s t u

R1 S0 S2Z,Z+ 1
2

S2Z,Z+ 1
2

R2 S2Z,Z+ 1
2

S2Z,Z+ 1
2

S0

R3 S2Z,Z+ 1
2

S0 S2Z,Z+ 1
2

Table 5: Spectrums of R1, R2 and R3 in each of the three channels.

3 Comparison with Monte-Carlo calculations

3.1 Monte-Carlo calculations

We study the Potts model on a square domain of Z2, with L2 sites and periodic boundary
conditions. Thanks to global conformal symmetry (10), we can restrict the four points to be
of the type (z1, z2, z3, z4) = (0,`, i`,` z−1

z+i ), where z is the cross-ratio (11). Writing z = ρeiθ ,
we want to study the dependence of four-point functions on ρ at fixed θ .

Fixing θ makes it impossible that all four points belong to the lattice, i.e. have integer
coordinates zi ∈ Z+ iZ. Let us explain how we deal with this problem. We consider the 15
values of ρ such that ℜ z−1

z−i ∈ {
1
16 , · · · , 15

16}. Assuming ` to be a multiple of 16 then ensures
that all our coordinates are integer, except ℑz4. So we compute our four-point function at the
two nearest integers [ℑz4] and [ℑz4] + 1, and evaluate it at ℑz4 by assuming that it behaves
linearly as a function of ℑz4.

We therefore obtain four-point functions that depend not only on {zi}, but also on two
extra geometric parameters ` and L. These extra dependences take the form

P`,Lσ ({zi}) = `
−8∆

(0, 1
2 )Pσ({zi})

�

1+ b1

�

`

L

�ν

+ b2

�

`

L

�2ν

+ · · ·
�

×
h

1+
c1

`
+

c2

`2
+ · · ·

i

, (18)

which involves small distance corrections as powers of 1
` , and finite size corrections as powers

of
�

`
L

�ν
, where ν = 2

3
β2

2β2−1 is the correlation length exponent. Fitting our numerical results

for P`,Lσ ({zi}) allows us to determine the coefficients bk, ck, and the sought after four-point
function Pσ({zi}). The fits are done with a least-square Levenberg-Marquardt algorithm, using
47 values of `, and allowing coefficients bk, ck for k ≤ 4.

In practice, the probabilities P`,Lσ ({zi}) are evaluated on N = 105 independent configura-
tions on a lattice of linear size L = 8192. (We checked that finite size corrections are negligible
for this value of L, i.e. |P(L = 8192)− P(L = 2048)|/P(L = 8192) < 10−3). For each config-
uration, we actually make L2 measurements of P`,Lσ ({zi}), by varying the origin z1 = 0 of our
four-point configuration over the whole lattice. So P`,Lσ ({zi}) is actually an average over about
N L2 ∼ 1013 measurements. Testing how well the resulting four-point function Pσ({zi}) obeys
global conformal symmety (10) allows us to estimate the relative error to O(10−3).

In the case q = 1 of percolation, the Potts model is particularly easy to simulate, as the
graph probability (2) does not depend on the number of clusters. Simulating the Potts model
for q 6= 1 is more involved [21,22]. In this article we present results for 1≤ q ≤ 3.

3.2 Comparison

We find that R1, R2, R3 are linear combinations of P0, P1, P2, P3 of the type

Rσ = λ (P0 +µPσ) , (σ = 1,2, 3) , (19)
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q λ δλ µ δµ

1.0 0.9563 2.8× 10−4 −2.0 0.01
1.25 0.9426 1.7× 10−4 −3.32 0.06
1.5 0.9281 3.9× 10−5 −5.95 0.07
1.75 0.9142 2.7× 10−4 −13.85 0.28
2.25 0.8881 2.5× 10−4 9.05 0.48
2.5 0.8722 2.8× 10−4 4.46 0.51
2.75 0.8555 6.1× 10−4 3.48 0.76
3.0 0.8391 3.4× 10−4 2.0 0.67

Table 6: Values of the coefficients λ and µ, together with the estimated errors, as functions of
q.

where λ and µ are q-dependent coefficients. (See Table 3.2.) The term µPσ is typically quite
small compared to the term P0, which explains why the error δµ is quite large. At q = 2,
λ is smooth but µ diverges. This divergence is an artefact of our normalization assumption
D∆

(0, 1
2 )

,∆
(0, 1

2 )
= 1: this structure constant actually goes to zero relative to other structure con-

stants in the limit q→ 2.
With these values of λ and µ, let us plot the values of R3 from the conformal bootstrap

analysis of Section 2 (with dots), and from Monte-Carlo calculations of the right-hand side of
(19) (with crosses). Using global conformal symmetry, we can reduce R3({zi}) to a function
of the cross-ratio z = ρeiθ , that we plot in Figure 1. We find a good agreement between
Monte-Carlo and conformal bootstrap results, with small errors. (See Figure 3.2.) The λ and
µ parameters are determined by imposing that the difference remains close to zero for all
values of ρ.

3.3 Interpretation

Inspired by the known results at c = 1 [15], let us propose a tentative interpretation of the
functions Pσ, Rσ as four-point functions of conformal fields.

Let V+, V− be two primary fields with the same dimensions ∆ = ∆̄ = ∆(0, 1
2 )

, that are
related by a Z2 symmetry. The spectrum S2Z,Z+ 1

2
controls the operator product expansion of

V−V+, while the unknown spectrum S0 controls V−V− and V+V+. The two-point functions are
〈V+V−〉= 0 and 〈V−(z1)V−(z2)〉= 〈V+(z1)V+(z2)〉 ∝ P(z1, z2), where P(z1, z2) is the two-point
connectivity (3). Correspondingly, a state with dimensions ∆ = ∆̄ = 0 should appear in S0,
whereas there is no such state in S2Z,Z+ 1

2
. The functions R1, R2 and R3 are the four-point

functions

R1 = 〈V−V−V+V+〉= 〈V+V+V−V−〉 , (20)

R2 = 〈V−V+V−V+〉= 〈V+V−V+V−〉 , (21)

R3 = 〈V−V+V+V−〉= 〈V+V−V−V+〉 . (22)

Four-point functions such as 〈V−V−V−V+〉 vanish. We define

R0 = 〈V−V−V−V−〉= 〈V+V+V+V+〉 , (23)

a permutation-symmetric four-point function whose spectrum is S0 in all channels, such that

R0 = λ (P0 +µP1 +µP2 +µP3) . (24)
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0 0.2 0.4 0.6 0.8 1 1.2

1

1.1

1.2

ρ

ρ
2∆
(0

,1 2
) R

3

�

ρ
eiθ

,0
,∞

,1
�

q = 1

θ = 0
θ = π

6
θ = π

4
θ = π

3

0 0.2 0.4 0.6 0.8

1

1.1

1.2

1.3

ρ

ρ
2∆
(0

,1 2
) R

3

�

ρ
eiθ

,0
,∞

,1
�

θ = 0

q = 1
q = 1.5
q = 2.5
q = 3.0

Figure 1: R3 vs. ρ for c = 0 and θ = 0,π/6,π/4,π/3, and for θ = 0 and q ∈ {1, 1.5,2.5,3}.
Crosses correspond to the Monte-Carlo simulations. The dotted lines show the bootstrap solu-
tion, obtained by truncating the spectrum at N = 6 states and the expansion of the conformal
blocks at level L = 10.
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0 0.2 0.4 0.6 0.8 1 1.2

−1

0

1

·10−3

ρ

ρ
2∆
(0

,1 2
) R

3

�

ρ
eiθ

,0
,∞

,1
�

q = 1

θ = 0
θ = π

6
θ = π

4
θ = π

3

0 0.2 0.4 0.6 0.8

0

1

2
·10−3

ρ

ρ
2∆
(0

,1 2
) R

3

�

ρ
eiθ

,0
,∞

,1
�

θ = 0

q = 1
q = 1.5
q = 2.5
q = 3.0

Figure 2: Differences between Monte-Carlo and numerical bootstrap calculations, with the
error bars of the Monte-Carlo simulations. In all cases the difference is of the order of 10−3 or
less, while the results themselves are of order 1.
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R P0 P1 P2 P3 R0 R1 R2 R3

∆ ∆(0, 1
2 )

≤ 0 >∆(0, 1
2 )

>∆(0, 1
2 )

≤ 0 ≤ 0 ∆(0, 1
2 )

∆(0, 1
2 )

(27)

Table 7: Critical exponents ∆ of Pσ and Rσ in the limit z1 → z2, such that these quantities

behave as |z1 − z2|
2∆−4∆

(0, 1
2 ) .

We can then write expressions for Pσ in terms of the fields V±, in particular

P0 =
1

4λ

¬

(V− + iV+)(V− + iV+)(V− + iV+)(V− + iV+)
¶

, (25)

P1 =
1

4λµ

¬

(V− + V+)(V− + V+)(V− − V+)(V− − V+)
¶

. (26)

Our interpretation is consistent with the behaviour of Pσ and Rσ in the limit z2 → z1 for
0 ≤ c ≤ 1. (See Table 7.) We infer the behaviour of Pσ from our Monte-Carlo results, the
behaviour of R1, R2, R3 from our conformal bootstrap results, and the behaviour of R0 from
the observation that it involves the same operator product V−V− as R1.

Notice that the fields V± are strongly reminiscent of the couple of magnetic fields discussed
in [8], which were argued to be at the origin of a factor

p
2 in three-point connectivities [8,23].

4 Conclusion

Our conformal bootstrap results allow us to compute three linear combinations R1, R2, R3 of the
four connectivities Pσ. Determining the missing combination amounts to finding the spectrum
S0 of R1 in the s-channel. Our guesses for this spectrum, including the expression S0 = S2Z,Z
that is valid at c = 1, have so far been wrong. Since R1 can be computed with very good
accuracy, it should however be possible to determine S0 numerically. In particular it would be
interesting to find out whether the leading state’s total conformal dimension is 0, as expected
on general statistical physics ground, or 2∆(0,0) =

c−1
12 , as in S2Z,Z, or something else.

From the four-point functions R1, R2 and R3, it is possible to deduce three-point structure
constants, whose interpretation in the Potts model remains to be found. Three-point connec-
tivities of clusters are known to be related to structure constants of the Liouville conformal
field theory with c ≤ 1 [8, 23–25], but that theory has a continuous, diagonal spectrum [26]
which is very different from the discrete, non-diagonal spectrum S2Z,Z+ 1

2
that we found. Nev-

ertheless, both spectrums have an important feature in common: they are built from Verma
modules of the Virasoro algebra, that is from representations where the Virasoro generator
L0 is diagonalizable. Our four-point functions therefore join the three-point connectivities on
the list of non-trivial observables in bulk critical percolation that have no logarithmic features.
This contrasts with other observables that involve Virasoro modules where L0 is not diagonal-
izable [5,27,28].

The four-point functions that we computed are defined for any complex values of the num-
ber of states q, although the relation between (1) between c and q is ambiguous. The com-
plicated dependence on q opens the possibility of nontrivial phenomenons, including special
behaviour at q = 2 and q = 3 where the Potts model is related to Virasoro and W3 minimal
models respectively [23], and the duality β → 1

β of conformal field theory.
In the case c = 0, it was very recently proposed that a four-point function of fields of

dimension∆(0, 1
2 )

has a Coulomb gas integral representation [29]. The corresponding spectrum
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would contain only one diagonal field of dimension ∆(2,0) =
5
8 , and the four-point function

would be symmetric under permutations. Such a four-point function however cannot be a
linear combination of the connectivities Pσ, given what we know of their asymptotic behaviour
(7).

We have investigated certain four-point functions of fields with dimensions ∆ = ∆̄ =
∆(0, 1

2 )
, but our methods could be generalized to other four-point functions. To begin with,

there exist several different interesting fields with these dimensions, including our fields V+
and V−, and the leading field in their operator product expansion. The case c = 1 suggests
that there are more [15]. Moreover, we found that the spectrum S2Z+1,Z is consistent, which
suggests the existence of yet more fields of this type. And of course, nothing prevents the
investigation of fields with other dimensions.
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A Conformal blocks

In this Appendix we collect some useful properties of Virasoro conformal blocks. The conformal
blocks that we need appear in four-point functions of fields with conformal dimension ∆(0, 1

2 )
.

There are some simplifications in this case, but the properties that we will discuss can be
generalized to four fields with arbitrary dimensions. See the review article [11] for more
explanations on Virasoro conformal blocks.

Using global conformal symmetry, we can set (z1, z2, z3, z4) = (z, 0,∞, 1), and we call
F (k)∆ (z) =F

(k)
∆ (z, 0,∞, 1) the resulting conformal blocks.

A.1 Zamolodchikov’s recursive formula

Conformal blocks can be numerically computed using the formula

F (s)∆ (z) = (16q)∆−
c−1
24 (z(1− z))−

c−1
24 −

1
8β2 θ3(q)

− c−1
6 −

1
β2 H∆(q) , (28)

where the elliptic nome q and function θ3(q) are given by

q = exp−π
F(1

2 , 1
2 , 1, 1− z)

F(1
2 , 1

2 , 1, z)
, θ3(q) =

∑

n∈Z
qn2

, (29)

and the factor H∆(q) obeys the recursion relation

H∆(q) = 1+
∞
∑

r,s=1

(16q)rs

∆−∆(r,s)
Rr,sH∆(r,−s)

(q) . (30)

The coefficients Rr,s are defined by

Rr,s =
r odd

0 , (31)

Rr,s =
r even

−21−4rsP(0,0)P(r,s)

r
∏

r ′=1−r

s
∏

s′=1−s

P(−1)r
′+1

(r ′,s′) , (32)
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where P(r,s) =
1
2

�

rβ − s
β

�

, and the factor P(0,0) = 0 is actually meant to cancel with the same
factor from the denominator. Notice that for c = 1 we have Rr,s = 0 and H∆(q) = 1.

The recursion relation determines H∆(q) by giving its poles and residues as a function of
∆. In general four-point blocks, poles appear when∆ take the values∆=∆(r,s) with r, s ∈ N∗,
that correspond to reducible Verma modules. However, in our particular four-point blocks,
poles with odd r have vanishing residues.

A.2 Crossing symmetry and even spin spectrums

Let us justify the property of even spin spectrums that is invoked in Section 2.1. This discussion
is inspired from Section 7 of [30]. To begin with, let us write t- and u-channel conformal blocks
in terms of s-channel conformal blocks. The different channels are related by permutations of
{zi}, and this implies

F (t)∆ (z) =F
(s)
∆ (1− z), F (u)∆ (z) = z−2∆F (s)∆ (

1
z ) . (33)

Assuming that our spectrum and structure constants obey the s− t crossing symmetry equation
(17), the agreement with the u-channel becomes equivalent to

∑

(∆,∆̄)∈S

D∆,∆̄

�

F (s)∆ (z)F
(s)
∆̄
(z̄)− |z − 1|

−4∆
(0, 1

2 )F (s)∆ (
z

z−1)F
(s)
∆̄
( z̄

z̄−1)
�

= 0 . (34)

Using the identities

q( z
z−1) = −q, θ3(−q) = (z − 1)

1
4θ3(q), H∆(−q) = H∆(q) , (35)

the agreement with the u-channel becomes
∑

(∆,∆̄)∈S

D∆,∆̄

�

1− (−1)∆−∆̄
�

F (s)∆ (z)F
(s)
∆̄
(z̄) = 0 . (36)

This vanishes if and only if all spins ∆− ∆̄ in the spectrum S are even. Therefore, this even
spin condition is necessary and sufficient for our four-point function to be symmetric under all
permutations of {zi}, in other words to have the same spectrum and structure constants in the
u-channel as in the s- and t-channels.

A.3 Logarithmic regularization

In order to regularize a conformal block at its pole ∆ = ∆(r,s), we might be tempted to take
the residue,

Res
∆=∆(r,s)

F (s)∆ (z) = Rr,sF
(s)
∆(r,−s)

(z) . (37)

However, the resulting conformal block would behave as O(z
∆(r,−s)−2∆

(0, 1
2 )) near z = 0, whereas

we are looking for a regularization that behaves as O(z
∆(r,s)−2∆

(0, 1
2 )). So we multiply the block

with the factor ∆−∆(r,s) and then send ∆ not to ∆(r,s), but to ∆(r,s) +
�

0 1
0 0

�

. The elements of

the resulting matrix include not only Res
∆=∆(r,s)

F (s)∆ (z), but also the regularized block that would

be obtained by using the recipe

lim
∆→∆(r,s)

1
∆−∆(r,s)

= log(16q) , (38)

in eq. (30). Using this regularization implies that we must also allow a contribution of
F (s)∆(r,−s)

(z) with an unknown coefficient.
This regularization has an algebraic interpretation in terms of representations of the Vira-

soro algebra where the Virasoro generator L0 is not diagonalizable.
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(r, s) (∆, ∆̄) D∆,∆̄(6) c∆,∆̄(6)
�

0, 1
2

� � 5
96 , 5

96

�

1.0000000000 0
�

−2, 1
2

� �39
32 , 7

32

�

0.0391621873 0.0123
�

2, 1
2

� � 7
32 , 39

32

�

0.0391621873 0.0123
�

0, 3
2

� �77
96 , 77

96

�

−0.0223661625 0.0377
�

−2, 3
2

� �95
32 , − 1

32

�

0.0004107222 0.0979
�

2, 3
2

� �

− 1
32 , 95

32

�

0.0004107222 0.0979

Table 8: Truncating the spectrum S2Z,Z+ 1
2

to N = 6 states at c = 0.

(r, s) (∆, ∆̄) D∆,∆̄(13) c∆,∆̄(13)
�

0, 1
2

� � 5
96 , 5

96

�

1.0000000000 0
�

−2, 1
2

� �39
32 , 7

32

�

0.0385548455 5× 10−7
�

2, 1
2

� � 7
32 , 39

32

�

0.0385548455 5× 10−7
�

0, 3
2

� �77
96 , 77

96

�

−0.0212807204 1.7× 10−6
�

−2, 3
2

� �95
32 , − 1

32

�

0.000452499 3.7× 10−6
�

2, 3
2

� �

− 1
32 , 95

32

�

0.000452499 3.7× 10−6
�

0, 5
2

� �221
96 , 221

96

�

−0.0000356329 9.8× 10−5
�

−4, 1
2

� �119
32 , 55

32

�

−0.0000029756 6× 10−4
�

4, 1
2

� �55
32 , 119

32

�

−0.0000029756 6× 10−4

Table 9: Truncating the spectrum S2Z,Z+ 1
2

to N = 13 states at c = 0, while showing the results
for the first 9 states only.

B More numerical conformal boostrap results

In order to show that our numerical conformal bootstrap method converges towards the an-
nounced results, let us vary N and the number of choices of positions {zi}, in the case of the
spectrum S2Z,Z+ 1

2
at the central charge c = 0. The cases N = 6 (Table 8), N = 13 (Table 9)

and N = 24 (Table 4) show that given state, the coefficient of variation quickly decreases as
N increases. On the other hand, varying the number of choices of the points {zi} does not
significantly change the coefficients of variation, see Table 4 (10 choices) and Table 10 (20
choices).
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