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Abstract

We explain how to compute correlation functions at zero temperature within the frame-
work of the quantum version of the Separation of Variables (SoV) in the case of a simple
model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic) boundary
conditions. We first detail all steps of our method in the case of anti-periodic boundary
conditions. The model can be solved in the SoV framework by introducing inhomo-
geneity parameters. The action of local operators on the eigenstates are then naturally
expressed in terms of multiple sums over these inhomogeneity parameters. We explain
how to transform these sums over inhomogeneity parameters into multiple contour in-
tegrals. Evaluating these multiple integrals by the residues of the poles outside the in-
tegration contours, we rewrite this action as a sum involving the roots of the Baxter
polynomial plus a contribution of the poles at infinity. We show that the contribution of
the poles at infinity vanishes in the thermodynamic limit, and that we recover in this limit
for the zero-temperature correlation functions the multiple integral representation that
had been previously obtained through the study of the periodic case by Bethe Ansatz or
through the study of the infinite volume model by the q-vertex operator approach. We
finally show that the method can easily be generalized to the case of a more general
non-diagonal twist: the corresponding weights of the different terms for the correla-
tion functions in finite volume are then modified, but we recover in the thermodynamic
limit the same multiple integral representation than in the periodic or anti-periodic case,
hence proving the independence of the thermodynamic limit of the correlation functions
with respect to the particular form of the boundary twist.

Copyright G. Niccoli et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 22-07-2020
Accepted 30-12-2020
Published 12-01-2021

Check for
updates

doi:10.21468/SciPostPhys.10.1.006

Contents

1 Introduction 2

2 The anti-periodic XXX model 6

3 Diagonalization of the transfer matrix by separation of variables 7

1

https://scipost.org
https://scipost.org/SciPostPhys.10.1.006
mailto:giuliano.niccoli@ens-lyon.fr
mailto:veronique.terras@universite-paris-saclay.fr
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.10.1.006&amp;domain=pdf&amp;date_stamp=2021-01-12
https://doi.org/10.21468/SciPostPhys.10.1.006


SciPost Phys. 10, 006 (2021)

4 Description of the ground state 11

5 Finite-size correlation functions 14
5.1 Left action on separate states 16
5.2 Multiple sum representation for the correlation functions in finite volume 22

6 Infinite-size correlation functions of the anti-periodic XXX chain 24
6.1 Vanishing and non-vanishing terms in the thermodynamic limit 24
6.2 Multiple integral representation for the correlation functions in the thermody-

namic limit 28

7 Correlation functions of the XXX chain with a non-diagonal twist 29
7.1 Diagonalisation of the transfer matrix by the SoV method 30
7.2 Action on a separate state 33
7.3 Correlation functions 36

8 Conclusion 39

A On elementary blocks for similar transfer matrices 40

References 41

1 Introduction

In this paper we introduce an approach to compute the correlation functions of the quantum
integrable lattice models that can be solved in the framework of the quantum Separation of
Variables (SoV) method [1–6]. We develop here our approach in the case of a very simple
model: the XXX Heisenberg spin-1/2 chain with quasi-periodic boundary conditions.

While outstanding successes have been achieved concerning the exact determination of the
spectrum of quantum integrable systems, the exact computation of the correlation functions
still remains a substantially more complicated problem. In fact, nowadays, exact results for
correlation functions are available only for a very restricted set of quantum integrable models.

In the framework of the Quantum Inverse Scattering Method (QISM) and of the alge-
braic version of the Bethe Ansatz (ABA) [7–16], computations of zero-temperature correlation
functions of some quantum integrable models, like the Heisenberg XXZ spin-1/2 chain with
periodic boundary conditions, have been developed in [17–23]. Unlike previous methods
based on the q-deformed KZ equations (the massless regime) and on the Baxter corner trans-
fer matrix and q-vertex operator techniques (the massive regime) [24–28], the ABA approach
can be directly applied to finite chains in a constant magnetic field. Note that the approach
of [17–23] relies mainly on three essential ingredients: i. the expression of local operators in
terms of the elements of the quantum monodromy matrix (solution of the quantum inverse
problem) [17,18,29], which enables one to compute their action on the Bethe states by means
of the Yang-Baxter commutation relations, ii. the use of a compact determinant representa-
tion for the scalar products of the so-called Bethe states in terms of the Bethe roots (Slavnov’s
scalar product formula) [30] and iii. a precise description of the configuration of Bethe roots
for the ground state, given in the thermodynamic limit in terms of a density function solu-
tion of an integral equation on an interval of the real axis [31–33]. Further developments of
this ABA approach also led to the numerical computation of dynamical structure factors [34]
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(quantities that are directly accessible experimentally through neutron scattering [35]) and
to the analytical asymptotic study at long distances of the two-point or multi-point functions
in the thermodynamic limit [36–45]. Correlation functions can also be computed in the tem-
perature case by the use of the so-called Quantum Transfer Matrix tools [46–51]. Let us also
mention the existence of an alternative algebraic approach to correlation functions, in relation
with a hidden Grassmann structure [52–60]. See also some subsequent papers on correlation
functions [61,62].

Let us however stress that these results have essentially been obtained for very simple
models such as the XXZ spin chain or the quantum non-linear Schrödinger model with periodic
boundary conditions. For more complicated integrable models or different type of boundary
conditions, the situation may become much more cumbersome. On the one hand, it may
happen that some physically interesting integrable models are not directly solvable by ABA,
as for instance the open XXZ spin chain with general1 boundary magnetic fields. In that case,
other methods have to be used to construct the transfer matrix eigenstates, but they are still
under development in what concerns the computation of correlation functions2. On the other
hand, even for models for which standard ABA is in principle applicable and for which the
spectrum and eigenstates are known, the generalization of one of the above outlined essential
ingredients for the computation of correlation functions is often missing. In particular, the
obtention of a generalization of the Slavnov’s formula [30] for the scalar products of Bethe
states, and more generally of a similar determinant representation for the matrix elements
of local operators, as in [17], may be a very difficult problem if the combinatorial structure
of the Bethe states is too involved. This is for instance the case in the XYZ model, for which
first results about scalar products within ABA were obtained only very recently in [73] (but
for which the obtention of a compact formula for matrix elements of local operators in finite
volume remains an open problem3), using the fact that the scalar products of on-shell/off-shell
Bethe vectors can be characterized as solutions to a system of linear equations, as initially
proposed in [76]. This is also the case for models based on higher rank algebras, see for
instance the works [77–85].

For quantum integrable models in the QISM framework, the limitation of the range of
applicability of the ordinary ABA can be notably overcome by the use of SoV, which appears
to have a much wider range of applicability. In fact, the latter approach has by now been
systematically developed for rank one integrable quantum models [86–116] and more recently
widely extended even to higher rank cases in [117–124], see also [6,88,125,126] for previous
developments. Moreover, the use of SoV has several other advantages, notably the fact that
the completeness of the transfer matrix spectrum is a built-in feature. Another advantage with
respect to the ABA approach concerns the fact that scalar products of separate states4 can be
generically expressed in the form of determinants, at least for rank one models5, [100, 102–

1For z-oriented boundary magnetic fields, the model is solvable by ordinary Bethe Ansatz or by the q-vertex
operator approach, and there exist exact representations for the correlation functions [27,28,63,64].

2Here we are referring not only to the Separation of Variables — the subject of the present article — but also to an
interesting modification of the Bethe Ansatz (the so-called modified algebraic Bethe Ansatz), introduced in [65–68]
and developed further in [69–71] in what concerns the computations of scalar products of Bethe states, a first step
towards correlation functions. Let us also mention in this context the so-called off-diagonal Bethe Ansatz which was
proposed to describe the spectrum of models without U(1) symmetry [72] (the corresponding eigenstates being
anyway constructed through SoV).

3Note however that some integral representations for the correlation functions could be obtained in this case
in [74,75] by means of the q-vertex operator approach directly in the infinite volume limit.

4A class of states with factorized wave-functions in the SoV basis, which notably includes the eigenstates of the
transfer matrix.

5Determinant formulae for scalar products of separate states have also emerged recently in [127] for the higher
rank gl(3) case, under special choices of the conserved charges generating the SoV bases. Let us also mention the
interesting and recent papers [128, 129], also dealing with the computations of higher rank scalar products in a
related SoV framework.
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108, 111, 116]. Nevertheless, despite the impressive range of applicability of SoV, a general
approach to correlation functions is so far missing within this approach. In fact, there are only
very few results on correlation functions deduced by the use of SoV, see for example [86].

In fact, the main difficulties for the computation of physical quantities such as correlation
functions in the SoV approach come from the fact that, for the method to apply, one has to de-
form the model by inhomogeneity parameters. The spectrum and eigenstates of the deformed
model, as well as the determinant representations for the scalar products of separate states,
are then characterized in terms of these inhomogeneity parameters. Coming back to the origi-
nal physical model, i.e. having a description of the spectrum and a representation of the scalar
products in which the homogeneous limit can be taken naturally, may not be an easy task. At
the level of the spectrum, it usually means that one should transform the discrete SoV descrip-
tion into a more conventional one, for instance in terms of Q-functions solving TQ-equations
of Baxter’s type [130]. This may sometimes be simply done by polynomial interpolation, as in
the case of the quasi-periodic XXX model [113, 117], but the situation may be more compli-
cated if the resulting Q-function (i.e. the corresponding eigenvalues of the Q-operator) have
no longer the same functional form as the usual functions of the model, as for instance in the
anti-periodic XXZ case (see [131] for the construction of the Q-operator and [110] for a proof
of the equivalence with the SoV description of the spectrum), in the quasi-periodic XYZ case
(see [111,112]), or in the case of open chains with general boundary fields, where only incom-
plete results could be obtained so far [109,132]. Note that this difficulty may be overcome, as
initially suggested in the context of the so-called off-diagonal Bethe Ansatz [72], by the con-
sideration of TQ-equations with an additional term (called inhomogenous TQ-equations6) so
that the Q-function is still a (usual, trigonometric, elliptic. . . ) polynomial and that its equiva-
lence with the SoV description of the spectrum can still easily be proven by mere polynomial
interpolation (see for instance [109] for a proof of such a reformulation in the open XXZ chain
with completely general boundary fields). This presents the clear advantage of providing a de-
scription of the spectrum in cases in which such a description in terms of a usual TQ-equation
is still unknown, as in [109]. However, the disadvantage is that the presence of the inhomo-
geneous term complicates a priori drastically the analysis of the Bethe roots configurations,
of their behavior in the thermodynamic limit and of the control of the finite-size corrections
(see nevertheless [133] for a numerical investigation of these Bethe roots in a particular case
for which a comparison with solutions of usual Bethe equations is possible). As for the scalar
products, they could be transformed into determinants of Slavnov’s type7 in [113] in the XXX
case (see also [115, 134] for open spin chains with some constraints on the boundary), but
one should mention that the generalization of these transformations to the anti-periodic XXZ
case is already not so obvious [135]. One should also mention that an explicit computation
of the correlation functions as was done through other approaches in [17,24] implies several
other non-trivial steps (computation of the multiple action of a product of local operators on
eigenstates, analyzing the obtained formulas in the thermodynamic limit. . . ) that have not
been tackled so far within the SoV approach, even in a simple model such as the XXX spin
chain.

This is the purpose of the present article to fill this gap: we explain here how to compute
the correlation functions within the SoV approach, hence showing that it is possible to fully
overcome the intrinsic difficulty of the approach related to the apparent omnipresence of the
inhomogeneity parameters. Our method demands as pre-requirements the transfer matrix
complete spectrum characterization (for instance in terms of Q-functions solving a Baxter TQ-

6Let us mention here that such inhomogeneous TQ-equations also appear naturally in the context of the modified
algebraic Bethe Ansatz [65–71,133].

7i.e. into determinants which have similar forms as the one obtained in [30], with in particular rows and
columns labelled by the roots of the corresponding Q-function (and no longer by the inhomogeneity parameters
as those obtained naturally by SoV).
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equation), suitable determinant representations for the scalar products of the separate states,
and the reconstruction of the local operators in the SoV representation. We develop here our
method in the case of the XXX spin chain, but we expect it to be adaptable to other models for
which the three aforementioned pre-requirements are fulfilled.

The main steps of our method can be summarized as follows. We first compute the action
of products of local operators on the transfer matrix eigenstates by using their reconstruction
in terms of the SoV representation. This results in multiple sums of separate states over the
spectrum of the separate variables. The latter being expressed in terms of the inhomogeneity
parameters of the model, we need to reformulate these multiple sums into a more convenient
form. To this aim, we transform them into multiple contour integrals that we can evaluate
by their residues at the poles outside the integration contours, as a sum involving the roots
of the corresponding Baxter polynomial (the "Bethe roots") plus further possible contributions
like poles at infinity. Hence the correlation functions at zero-temperature, or more precisely
their elementary building blocks (i.e. the mean values of any product of local operators in
the ground state) can be rewritten as a sum over scalar products of particular separate states.
Using the determinant formula for these scalar products and the thermodynamic distribution
of the ground state Bethe roots, we can analyze the thermodynamic behavior of each term
of the sum, showing that many of them actually vanish in the thermodynamic limit. The
non-vanishing terms can then be rewritten in the form of multiple integrals in this limit, as
in [17,24].

As already mentioned, we implement our approach here by considering one of the sim-
plest models solvable by SoV: the XXX spin 1/2 chain with twisted (quasi-periodic) boundary
conditions. For clarity, we choose to detail all steps of the methods in the specific case of anti-
periodic boundary conditions, given by the twist matrix σx . In the last part of the paper, we
explain how all these steps can be generalized in the case of a generic (non-diagonal) twist
matrix K . We explicitly show that the thermodynamic limit of the zero-temperature correla-
tion functions is invariant with respect to these quasi-periodic boundary conditions, i.e. with
respect to the specific form of the twist matrix K , hence coinciding, in agreement with physical
expectations, with the results obtained in the periodic case by Bethe Ansatz [17] or through
the study of the infinite volume model by the q-vertex operator approach [24].

Let us stress here that these results are interesting in their own, and not only for the method
that we have developed. As already mentioned, this provides an explicit derivation, from ex-
act computations on the finite lattice, of the fact that the correlation functions in the ther-
modynamic limit do not depend on the boundary conditions that we impose — at least for
quasi-periodic chains. Moreover, one has to point out that, contrary to what happens for the
form factors of a single local operator [113], the elementary building blocks for the correlation
functions that we have computed here cannot in general be simply deduced from the corre-
sponding ABA results by using the GL(2) symmetry of the model. Indeed, taken a non-diagonal
twist K which is diagonalizable, then the GL(2) symmetry only implies that the transfer matrix
associated to the non-diagonal twist is similar to that of the diagonal one. While this similarity
relation allows one to compute the spectrum of one transfer matrix in terms of the other one,
it does not lead to non-trivial relations between their elementary blocks. More precisely, an
elementary block of size m for the original transfer matrix with non-diagonal twist is trans-
formed into a sum of up to 4m elementary blocks for the similar transfer matrix with diagonal
twist. Some of these elementary blocks can be shown to be zero on the basis of the symmetry
of the diagonal model, but nevertheless in general one still need to consider a huge sum of
elementary blocks if one pretends to use ABA methods, see appendix A.

The paper is organized as follows. After briefly introducing the anti-periodic XXX spin 1/2
chain in section 2, we recall the SoV solution of this model in section 3, and we more specifi-
cally describe the ground state of the model in section 4. In section 5, we explain how to com-
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pute the correlation functions, or more precisely their elementary building blocks (or in other
words the density matrix elements of a segment of length m), for the finite size chain. More
precisely, we derive the multiple actions of local operators on the transfer matrix eigenstates,
which enables us to express the correlation functions as multiple sums over scalar products of
some separate states. We recall the explicit determinant representation for these scalar prod-
ucts. In section 6, we consider the thermodynamic limit of the previous multiple sums for the
correlation functions in the ground state. We show that many terms of these sums vanish in
the thermodynamic limit, and characterize the terms that remain finite in this limit. We hence
recover, in this limit, the same selection rules as for the elementary building blocks of the pe-
riodic chain, and the same multiple integral representations for the non-vanishing terms. In
section 7, we explain how all this procedure can be adapted to the case of a more general
non-diagonal boundary twist K , and show that it produces the same result for the elementary
building blocks of the correlation functions in the thermodynamic limit, hence proving the
independence of these thermodynamic limit expressions with respect to the particular form of
the boundary twist K . Finally, in appendix A, we make some comments about the transfor-
mation of the elementary building blocks for the correlation functions with respect to GL(2)
gauge transformations.

2 The anti-periodic XXX model

Let us consider the XXX Heisenberg chain of spin 1/2,

H =
N
∑

n=1

�

σx
nσ

x
n+1 +σ

y
nσ

y
n+1 +σ

z
nσ

z
n+1 − 1

�

. (1)

Here and in the following, σa
n, a = x , y, z, stand for the Pauli matrices at site n, acting on

the local quantum spin space Vn ' C2. We moreover impose twisted boundary conditions.
For simplicity, we shall mainly focus, until section 6, on the case of anti-periodic boundary
conditions with twist matrix σx ,

σa
N+1 = σ

x
1 σ

a
1σ

x
1 , a = x , y, z, (2)

but in section 7 we shall also extend our study to the case of a more general twist matrix K .
The monodromy matrix of the inhomogeneous version of the XXX spin-1/2 chain is defined

as

T0(λ) = R0N (λ− ξN ) . . . R01(λ− ξ1) =

�

A(λ) B(λ)
C(λ) D(λ)

�

[0]
, (3)

where λ is the so-called spectral parameters, ξ1, . . . ,ξN are inhomogeneity parameters, and
where R(λ) is the R-matrix of the model. The latter is of the form

R(λ) =







λ+η 0 0 0
0 λ η 0
0 η λ 0
0 0 0 λ+η






, (4)

where η is an arbitrary non-zero complex parameter. The transfer matrix of the model with
anti-periodic boundary conditions is

T (λ) = tr0

�

σx
0 T0(λ)

�

= B(λ) + C(λ) . (5)
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It is a polynomial in λ of degree N − 1, which moreover satisfies the symmetries

[S x ,T (λ)] = 0, S x =
N
∑

n=1

σx
n , (6)

[Γ x ,T (λ)] = 0 Γ x =
N
⊗

n=1
σx

n = (−i)N exp
�

iπ
2

S x
�

. (7)

In the homogeneous limit ξn → η/2, n = 1, . . . , N , the Hamiltonian (1) of the XXX spin 1/2
chain with anti-periodic boundary conditions is recovered in terms of a logarithmic derivative
of the anti-periodic transfer matrix (5) as

H = 2ηT (λ)−1 d
dλ

T (λ)
�

�

�

�

λ=η/2
− 2N . (8)

The quantum determinant, which is a central element of the Yang-Baxter algebra, can be ex-
pressed as

detqT (λ) = a(λ) d(λ−η) = A(λ)D(λ−η)− B(λ)C(λ−η)
= D(λ)A(λ−η)− C(λ)B(λ−η), (9)

with

a(λ) =
N
∏

n=1

(λ− ξn +η), d(λ) =
N
∏

n=1

(λ− ξn) . (10)

3 Diagonalization of the transfer matrix by separation of variables

The diagonalization of the anti-periodic transfer matrix (5) was performed in [3,4] by separa-
tion of variables. Here we briefly recall the main results of this construction (see also [113]).

Let us suppose that the inhomogeneity parameters ξ1, . . . ,ξN are generic, or at least that
they satisfy the condition

ξa 6= ξb ± hη for h ∈ {0, 1}, ∀a 6= b . (11)

Then, there exist a basis8 {|h 〉,h = (h1, . . . , hN ) ∈ {0,1}N} of H and a basis
{〈h |,h= (h1, . . . , hN ) ∈ {0,1}N} of H∗ such that

D(λ) |h 〉= dh(λ) |h 〉=
N
∏

n=1

(λ− ξ(hn)
n ) |h 〉 , (12)

C(λ) |h 〉=
N
∑

a=1

δha ,1 d(ξ(1)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b

|T−a h 〉 , (13)

B(λ) |h 〉= −
N
∑

a=1

δha ,0 a(ξ(0)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b

|T+a h 〉 , (14)

8The explicit form of the SoV basis does not play any role in the computation of the correlation functions; so,
we omit it and we refer to [113] for its explicit form.
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and

〈h |D(λ) = dh(λ) 〈h |=
N
∏

n=1

(λ− ξ(hn)
n ) 〈h | , (15)

〈h |C(λ) =
N
∑

a=1

δha ,0 d(ξ(1)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b

〈T+a h | , (16)

〈h |B(λ) = −
N
∑

a=1

δha ,1 a(ξ(0)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b

〈T−a h | . (17)

Here we have set

ξ(hn)
n = ξn − hnη for hn ∈ {0,1} , (18)

dh(λ) =
N
∏

n=1

(λ− ξ(hn)
n ) , (19)

and
T±a (h1, . . . , hN ) = (h1, . . . , ha ± 1, . . . , hN ) . (20)

To determine the action of A(λ) on |h 〉 and on 〈h |, one can use the quantum determinant
relation (9). By using the first line of (9) and (12)-(14) we obtain:

A(λ) |h 〉=
detq T (λ) + B(λ)C(λ−η)

dh(λ−η)
|h 〉

=
detq T (λ)

dh(λ−η)
|h 〉+

B(λ)
dh(λ−η)

N
∑

a=1

δha ,1 d(ξ(1)a )
∏

6̀=a

λ−η− ξ(h`)
`

ξ
(ha)
a − ξ(h`)

`

|T−a h 〉

=
detq T (λ)

dh(λ−η)
|h 〉 −

1
dh(λ−η)

N
∑

a=1

δha ,1 d(ξ(1)a )
∏

6̀=a

λ−η− ξ(h`)
`

ξ
(1)
a − ξ

(h`)
`

×
N
∑

b=1

δ(T−a h)b ,0 a(ξ(0)b )
∏

6̀=b

λ− ξ((T
−
a h)`)

`

ξ
(0)
b − ξ

((T−a h)`)
`

|T+b T−a h 〉 , (21)

and by using the second line of (9) and (15)-(17):

〈h |A(λ) = 〈h |
detq T (λ+η) + C(λ+η)B(λ)

dh(λ+η)

= 〈h |
detq T (λ+η)

dh(λ+η)
+

N
∑

a=1

δha ,0 d(ξ(1)a )
∏

6̀=a

λ+η− ξ(h`)
`

ξ
(ha)
a − ξ(h`)

`

〈T+a h |
B(λ)

dh(λ+η)

= 〈h |
detq T (λ+η)

dh(λ+η)
−

1
dh(λ+η)

N
∑

a=1

δha ,0 d(ξ(1)a )
∏

6̀=a

λ+η− ξ(h`)
`

ξ
(0)
a − ξ

(h`)
`

×
N
∑

b=1

δ(T+a h)b ,1 a(ξ(0)b )
∏

6̀=b

λ− ξ((T
+
a h)`)

`

ξ
(1)
b − ξ

((T+a h)`)
`

〈T−b T+a h | . (22)

We have

〈h |k 〉=
δh,k

V (ξ(h1)
1 , . . . ,ξ(hN )

N )
, (23)
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where, for any n-tuple (x1, . . . , xn), V (x1, . . . , xn) denotes the Vandermonde determinant

V (x1, . . . , xn) =
n
∏

i, j=1
i< j

(x j − x i) . (24)

The eigenvalues τ(λ) of the transfer matrix (5) are characterized by the fact that they are
entire functions of λ which can be written in the form

τ(λ) =
−a(λ)Q(λ−η) + d(λ)Q(λ+η)

Q(λ)
, (25)

in terms of a polynomial Q(λ) of the form

Q(λ) =
R
∏

j=1

(λ−λ j), R≤ N , (26)

for some set of roots λ1, . . . ,λR such that λa 6= ξb, ∀a ∈ {1, . . . , R}, ∀b ∈ {1, . . . , N}. For a
given eigenvalue τ(λ) of the transfer matrix, the polynomial Q satisfying these conditions is
unique, and will therefore sometimes be denoted by Qτ. The corresponding left and right
eigenstates of (5) with eigenvalue τ(λ) are obtained in terms of Qτ as the states of the form

〈Qτ |=
∑

h∈{0,1}N

N
∏

n=1

Qτ(ξ
(hn)
n ) V (ξ(h1)

1 , . . . ,ξ(hN )
N ) 〈h | , (27)

|Qτ 〉=
∑

h∈{0,1}N

N
∏

n=1

�

�

−
a(ξn)

d(ξn −η)

�hn

Qτ(ξ
(hn)
n )

�

V (ξ(h1)
1 , . . . ,ξ(hN )

N ) |h 〉

=
∑

h∈{0,1}N

N
∏

n=1

Qτ(ξ
(hn)
n ) V (ξ(1−h1)

1 , . . . ,ξ(1−hN )
N ) |h 〉 . (28)

Hence, the eigenvalues and eigenstates of the anti-periodic transfer matrix can be character-
ized in terms of the (admissible) solutions of the Bethe equations for the roots λ1, . . . ,λR of
Q(λ), imposing that the quantity (25) is entire:

aQ(λ j) = 1, j = 1, . . . , R , (29)

where

aQ(λ) =
d(λ)
a(λ)

Q(λ+η)
Q(λ−η)

. (30)

Moreover, the eigenstates (27)-(28) can be written in the form of generalized Bethe states9 as

〈Qτ |= (−1)RN 〈1 |
R
∏

k=1

D(λk) , (31)

|Qτ 〉= (−1)RN
R
∏

k=1

D(λk)|1 〉 , (32)

9i.e. states that have a similar form as the Bethe states obtained though ABA, in that they are given by the
multiple action, on some particular state (hence playing the role of a reference state), of some operator entry of
the monodromy matrix evaluated at the Bethe roots.
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where

〈1 |=
∑

h∈{0,1}N
V (ξ(h1)

1 , . . . ,ξ(hN )
N ) 〈h | , (33)

|1 〉=
∑

h∈{0,1}N
V (ξ(1−h1)

1 , . . . ,ξ(1−hN )
N ) |h 〉 , (34)

are eigenvectors of the transfer matrix (5) with eigenvalue −a(λ)+d(λ). Note that the eigen-
states (31)-(32) can alternatively be written in the form

〈Qτ |= (−1)N

R
∏

k=1
d(λk)

N−R
∏

k=1
d(bλk)

∑

h

N
∏

n=1

�

(−1)hn bQ(ξ(hn)
n )

�

V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | (35)

= (−1)RN

R
∏

k=1
d(λk)

N−R
∏

k=1
d(bλk)

〈1alt |
N−R
∏

k=1

D(bλk) , (36)

|Qτ 〉= (−1)N

R
∏

k=1
d(λk)

N−R
∏

k=1
d(bλk)

∑

h

N
∏

n=1

�

(−1)hn bQ(ξ(hn)
n )

�

V (ξ(1−h1)
1 , . . . ,ξ(1−hN )

N ) |h 〉 (37)

= (−1)RN

R
∏

k=1
d(λk)

N−R
∏

k=1
d(bλk)

N−R
∏

k=1

D(bλk) |1alt 〉 , (38)

where

〈1alt |=
∑

h∈{0,1}N

N
∏

n=1

(−1)hn V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | , (39)

|1alt 〉=
∑

h∈{0,1}N

N
∏

n=1

(−1)hn V (ξ(1−h1)
1 , . . . ,ξ(1−hN )

N ) |h 〉 , (40)

are eigenvectors of (5) with eigenvalue a(λ)− d(λ), and where

bQ(λ)≡ bQτ(λ) =
N−R
∏

j=1

(λ− bλ j) , (41)

is the unique (up to normalization) polynomial solution with degree no more than N of the
TQ-equation with opposite signs:

τ(λ) bQ(λ) = a(λ) bQ(λ−η)− d(λ) bQ(λ+η) . (42)

Equivalently, bQτ(λ) = Q−τ(λ) can be seen as the solution of (25) associated with the eigen-
value −τ(λ) of the transfer matrix, or ei πηλbQτ(λ) can be seen as the second (independent)
solution of the TQ-equation (25) associated with the eigenvalue τ(λ). The two polynomials
Q(λ)≡Qτ(λ) and bQ(λ)≡ bQτ(λ) =Q−τ(λ) satisfy the quantum wronskian relation:

ŴQ,bQ(λ) = d(λ) , (43)

10
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where

ŴQ,bQ(λ) =
1
2

�

Q(λ) bQ(λ−η) + bQ(λ)Q(λ−η)
�

. (44)

This means in particular that, if Q(λ)≡Qτ(λ) has degree R, then bQ(λ)≡ bQτ(λ) =Q−τ(λ) has
indeed degree N − R.

Note that the expressions (25), (26), (29), (31)-(32) and (36), (38), (41), (42) are now
suitable for the consideration of the homogeneous limit ξ1, . . . ,ξN → η/2 (provided that the
homogeneous limit of the states 〈1 |, |1 〉 and 〈1alt |, |1alt 〉 is well defined). In this limit,
one recovers the physical model (1) and the states 〈Ψτ | (31), (36) and |Ψτ 〉 (32), (38) are
eigenstates of the Hamiltonian with eigenvalue Eτ which can be expressed either in terms of
the roots of Qτ or of the roots of bQτ:

Eτ =
R
∑

a=1

2η2

(λa −η/2)(λa +η/2)
=

N−R
∑

a=1

2η2

(bλa −η/2)(bλa +η/2)
. (45)

Remark 1. Since, if τ(λ) is an eigenvalue of the transfer matrix T (λ), −τ(λ) is also an eigen-
value (which is different from the previous one10), the spectrum of the Hamiltonian (1) ob-
tained from (8) is doubly degenerated, with energy given in terms of the roots of Qτ(λ) or of
bQτ(λ) =Q−τ(λ) as in (45).

Remark 2. From the quantum wronskian relation (43)-(44), one can derive several relations
between the roots λ j , j = 1, . . . , R of Q(λ) ≡ Qτ(λ) and the roots bλ j , j = 1, . . . , N − R of
bQ(λ)≡ bQτ(λ) =Q−τ(λ). In particular, we have the sum rule:

N
∑

n=1

(ξn −η/2) =
R
∑

j=1

λ j +
N−R
∑

j=1

bλ j . (46)

Remark 3. The eigenstates |Qτ 〉 of the anti-periodic transfer matrix are also eigenstates of the
symmetry operators S x (6) and Γ x (7):

S x |Qτ 〉= (N − 2R) |Qτ 〉, Γ x |Qτ 〉= (−1)R |Qτ 〉 . (47)

4 Description of the ground state

Let us now discuss the description of the ground state of the anti-periodic XXX chain (1) in
terms of the solution of the Bethe equations (29).

We now consider the homogeneous limit ξ1, . . . ,ξN → η/2, and we set for convenience
η= −i. The Bethe equations (29) then take the form

�

i/2−λ j

i/2+λ j

�N R
∏

k=1

i +λ j −λk

i −λ j +λk
= (−1)N−R, j = 1, . . . , R, (48)

and the energy (45) associated with a configuration of Bethe roots {λ j}1≤ j≤R is

E({λ j}1≤ j≤R) =
R
∑

a=1

ε(λa), with ε(λ) = −
2

λ2 + 1/4
. (49)

We can show similarly as in [136] that the complex roots appear by pairs z, z̄ for a solution
with much more real roots than complex roots11.

10Note that τ(λ) cannot be identically zero (even in the homogeneous limit) due to the fact that it satisfies the
relations τ(ξn)τ(ξn −η) = −a(ξn) d(ξn −η) 6= 0.

11i.e. where the number of real roots is more than twice the number of complex roots.
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For real roots λ j , it is convenient, as in the periodic case, to rewrite the Bethe equations
(48) in logarithmic form:

bξQ(λ j) =
2n j − N + R

N
π, n j ∈ Z , (50)

where bξQ(λ) is the counting function associated with a configuration of Bethe roots Q,

bξQ(λ) =
i
N

log
�

(−1)N−R aQ(λ)
�

= p(λ) +
1
N

R
∑

k=1

θ (λ−λk) , (51)

with

p(λ) = i log
�

i/2+λ
i/2−λ

�

, p′(λ) =
1

λ2 + 1/4
(52)

θ (λ) = i log
�

i −λ
i +λ

�

, θ ′(λ) = −
2

λ2 + 1
. (53)

Note that these Bethe equations are completely similar in their form to the ones that we have in
the periodic case, the only difference being in the sign in the right hand side of (48). Hence the
analysis of the solution is similar, except that this difference of sign will result in a difference
in the allowed set of quantum numbers in the right hand side of (50).

Remark 4. We have however a crucial difference here with the periodic case: the SoV approach
gives us the completeness of the corresponding Bethe states (at least if we slightly deform
the model by inhomogeneity parameters), contrary to the periodic case for which Bethe states
gives only su(2) highest weight vectors. Moreover, we need here a priori to consider all degrees
R ≤ N of Q, and not only R ≤ N

2 as in the periodic case. Let us nevertheless remark that we
can in fact avoid considering solutions of the Bethe equations "beyond the equator" (i.e. with
R> N

2 ): we can indeed choose to construct the eigenstates associated with polynomials Q with
degree R > N

2 by (36)-(38), i.e. by means of the polynomial bQ which in that case has degree
N − R< N

2 .

As in the periodic case, we expect that, in the large N limit, the low-energy states will be
given by solutions {λ} ≡ {λ1, . . . ,λR} of the Bethe equations with an infinite number of real
roots (of order N/2) and a finite number of complex roots. Let us also suppose that, for such
states, the real Bethe roots have a continuous distribution in the thermodynamic limit:

1
N(λ j+1 −λ j)

∼
N→∞

ρ(λ j), if λ j ,λ j+1 ∈ R , (54)

so that we suppose we can, in the leading order in the thermodynamic limit, replace the sums
by integrals (see [33] for a proof in the periodic case):

1
N

R
∑

k=1

f (λk) −→N→+∞

∫ ∞

−∞
f (λ)ρ(λ) dλ , (55)

for any sufficiently regular function f . The function ρ(λ) is therefore solution of the integral
equation

2πρ(λ)−
∫ ∞

−∞
θ ′(λ−µ)ρ(µ) dµ= p′(λ) , (56)

which is the same integral equation as in the periodic case and therefore admits the same
solution:

ρ(λ) =
1

2 cosh(πλ)
. (57)
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Note that we have

bξ′Q(λ) =
i
N

a′Q(λ)

aQ(λ)
−→

N→∞
2πρ(λ) . (58)

The function p (resp. θ) is holomorphic in a band of width i (resp. 2i) around the real
axis. p and θ (and hence bξ) are odd functions of λ. Moreover,

p(λ) −→
ℜ(λ)→±∞

±π , if |ℑ(λ)|<
1
2

, (59)

θ (λ) −→
ℜ(λ)→±∞

∓π, if |ℑ(λ)|< 1 , (60)

so that, if all roots are close roots (i.e. such that |ℑ(λk)|< 1, k = 1, . . . , R),

bξ(λ) −→
λ→±∞

±
N − R

N
π, for λ ∈ R . (61)

Hence, if we suppose that the counting function is an increasing function and if all roots are
close roots, the allowed set of quantum numbers n j in (50) would be

n j ∈ {1, . . . , N − R− 1} , (62)

which means in particular that we could have at most N − R− 1 real Bethe roots in a sector
with R Bethe roots.

The question is whether the counting function is indeed an increasing function. This should
be true on any compact interval of the real axis and for N large enough due to (58). However,
nothing assures us it is true on the whole real axis, which is non-compact. To clarify this point,
let us evaluate the derivative of the counting function at large values of ±λ:

bξ′(λ) =
1

1+ 1/4
+

1
N

R
∑

k=1

1
(λ−λk)2 + 1

=
N − 2R

Nλ2
−

4
Nλ3

R
∑

k=1

λk +O(1/λ4) . (63)

Hence, if N − 2R > 0, the counting function is indeed strictly increasing at large λ. This
does not prove that it is increasing on the whole real axis but at least it does not contradict
this hypothesis.

On the contrary, if N −2R< 0, the counting function is strictly decreasing at large λ. This
means that the restriction (62) is certainly not valid in that case, since both limiting values in
(61) can in fact be reached for finite values of λ and therefore should be included in the set
of allowed integers. Hence, we have (at least) N −R+1 possible vacancies on the real axis in
that case.

In the particular case N = 2R for N even, the sign of bξ′(λ) is given by the sign of the sum
of Bethe roots:

bξ′(λ)

¨

< 0 if
∑

λk > 0

> 0 if
∑

λk < 0
when λ→ +∞, (64)

bξ′(λ)

¨

> 0 if
∑

λk > 0

< 0 if
∑

λk < 0
when λ→−∞. (65)

Hence, in that case (provided that
∑

λk 6= 0), one of the limiting value in (61) can be reached
for finite λ. It means that we have (at least) N/2 possible vacancies on the real axis. It is
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therefore natural to expect that, for N even, the ground state of the model is given by a state
with exactly R = N/2 real roots, as in the periodic and the diagonal twist cases12. Note that,
from Remark 1, the ground state is doubly degenerated. We have indeed two such states
related to Q and bQ with the same numbers of roots λ1, . . . ,λN/2 and bλ1, . . . , bλN/2, and the sum
rule (46) imposes moreover that

N/2
∑

k=1

λk = −
N/2
∑

k=1

bλk , (66)

in the homogeneous limit. Hence we expect these two states to have adjacent sets of quantum
numbers shifted by one with respect to each other.

For N odd, instead, we expect that the two degenerate ground states are in the two different
sectors R= N−1

2 and R= N+1
2 . In the sector R= N−1

2 , there are indeed from our previous study
(at least) N−1

2 possible vacancies on the real axis. Hence, there exists a solution in that sector
with only real roots λ1, . . . ,λ N−1

2
which should be the ground state. In the sector R= N+1

2 , we

have a state with the same energy, which correspond to a polynomial bQ with N −R= N−1
2 real

roots bλ1, . . . , bλ N−1
2

which solve exactly the same set of equations as λ1, . . . ,λ N−1
2

.

Remark 5. It is natural to expect that the ground states in the sector N
2 (for N even) or N−1

2
(for N odd) have no hole in their distribution of Bethe roots. However, this hypothesis is
not essential for our purpose (computation of the correlation functions in the thermodynamic
limit): we essentially build our study on the replacement of sums by integrals as in (55), and
the holes contribute only to sub-leading orders to (55). In fact, it is neither essential for our
purpose to know the precise sector R of the ground state, since the replacement (55) remains
valid for all states given by R real roots with R of order N/2 in the thermodynamic limit. Hence
we do not have to distinguish further between even and odd N .

As in the periodic case [17], it is also convenient to consider the inhomogeneous deforma-
tion of the ground state when we introduce inhomogeneity parameters ξ1, . . . ,ξN in the model
as in (3). For the previous analysis to remain valid, we may for instance restrict ourselves to
the consideration of inhomogeneity parameters ξ1, . . . ,ξN such that ℑ(ξn) = η/2 = −i/2,
1≤ n≤ N . In that case, we have to define

ptot(λ) =
1
N

N
∑

n=1

p(λ− ξn +η/2) , (67)

and it leads to the inhomogeneous density

ρtot(λ) =
1
N

N
∑

n=1

ρ(λ− ξn +η/2) , (68)

solution of the integral equation

2πρtot(λ)−
∫ ∞

−∞
θ ′(λ−µ)ρtot(µ) dµ= p′tot(λ) . (69)

5 Finite-size correlation functions

In this section we explain how to compute the correlation functions, or more precisely the
elementary buildings blocks of these correlation functions13 in the model in finite volume

12This hypothesis is supported by the fact that the Bethe equations (48) coincide with the Bethe equations of the
σz-twisted case [113], a case that can be obtained by a continuous variation of the twist from the periodic case.

13These are also called the matrix elements of the density matrix of a chain segment of length m.
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starting from the SoV solution presented in Section 3. In particular, given |Qτ 〉 an eigenstate
of the anti-periodic transfer matrix, we consider matrix elements of the form

Fn,n+m−1(τ,ε) =
〈Qτ |

∏m
j=1 E

ε2 j−1,ε2 j

n+ j−1 |Qτ 〉

〈Qτ |Qτ 〉
, (70)

for any ε ≡ (ε1,ε2, . . . ,ε2m) ∈ {1, 2}2m. Here Eε1,ε2 , ε1,ε2 ∈ {1,2}, stands for the 2 × 2
elementary matrix with matrix elements (Eε1,ε2)i, j = δi,ε1

δ j,ε2
. We explain how to compute

the matrix elements (70) in a convenient form for the consideration of the homogeneous limit,
and also for the consideration of the thermodynamic limit which will be taken in the next
section.

As in the periodic case [19], we use the solution of the quantum inverse problem [17,18]
to reconstruct the elementary matrices acting on the n-th site of the chain as some elements
of the monodromy matrix dressed by a product of anti-periodic transfer matrices evaluated at
the inhomogeneity parameters. It is indeed easy to show that [103,111]:

Proposition 5.1. Let Eε1,ε2
n ∈ End Vn, (ε1,ε2) ∈ {1,2}2, be an elementary matrix acting on the

n-th site of the chain. Then

Eε1,ε2
n =

n−1
∏

k=1

T (ξk) ·
�

σx T (ξn)
�

ε2,ε1
·

n
∏

k=1

[T (ξk)]
−1

=
n−1
∏

k=1

T (ξk) · [T (ξn)]3−ε2,ε1
·

n
∏

k=1

[T (ξk)]
−1 . (71)

Hence, the mean value on an eigenstate (27) of a product of such elementary operators at
adjacent sites is given by

〈Qτ |
m
∏

j=1

E
ε2 j−1,ε2 j

n+ j−1 |Qτ 〉=

∏n−1
k=1τ(ξk)

∏n+m−1
k=1 τ(ξk)

× 〈Qτ | T3−ε2n,ε2n−1
(ξn) . . . T3−ε2(n+m−1),ε2(n+m−1)−1

(ξn+m) |Qτ 〉 , (72)

so that, to have access to the correlation functions, it is enough to compute the generic action
of a product of elements of the monodromy matrix on an eigenstate and take the resulting
scalar product.

Note that, as in the periodic case [19], the only effect of a translation on the chain is a
numerical factor given by a product of the corresponding transfer matrix eigenvalues so that,
for simplicity, we shall for now on restrict our study to matrix elements of the form

Fm(τ,ε)≡ F1,m(τ,ε) =
〈Qτ |

∏m
j=1 E

ε2 j−1,ε2 j

j |Qτ 〉

〈Qτ |Qτ 〉
(73)

=
〈Qτ | T3−ε2,ε1

(ξ1) . . . T3−ε2m,ε2m−1
(ξm) |Qτ 〉

∏m
k=1τ(ξk) 〈Qτ |Qτ 〉

. (74)

Let us also remark that, due to the fact that each eigenstate |Qτ 〉 of the anti-periodic transfer
matrix is also an eigenstate of the operator Γ x = ⊗N

n=1σ
x
n (see (47)), one has the following

relation between elementary blocks:

Fm(τ,ε) =
〈Qτ | Γ x

∏m
j=1 E

ε2 j−1,ε2 j

j Γ x |Qτ 〉

〈Qτ |Qτ 〉
=
〈Qτ |

∏m
j=1 E

3−ε2 j−1,3−ε2 j

j |Qτ 〉

〈Qτ |Qτ 〉
= Fm(τ, 3− ε) , (75)

in which the 2m-tuple 3 − ε is defined in terms of the 2m-tuple
ε≡ (ε1, . . . ,ε2m) as 3− ε≡ (3− ε1, . . . , 3− ε2m).
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5.1 Left action on separate states

In this section we compute the generic action of a product of matrix elements of the mon-
odromy matrix on a left separate state 〈Q | of the form

〈Q |=
∑

h∈{0,1}N

N
∏

n=1

Q(ξ(hn)
n ) V (ξ(h1)

1 , . . . ,ξ(hN )
N ) 〈h | , (76)

where Q(λ) =
∏R

k=1(λ − qk) is a polynomial of degree R ≤ N (not necessarily a solution of
the TQ-equation (25)). Our starting point is the action of the monodromy matrix elements
D(λ), C(λ), B(λ) (15)-(17) and A(λ) (22) on the left SoV basis.

Remark 6. Instead of computing the action on a state of the form (76) using (15)-(17) and
(22), we could alternatively try to compute the multiple action of a product of transfer matrix
elements directly on a Bethe-type state of the form (31) using the Yang-Baxter commutation
relations, in the spirit of what is done for model solvable by Bethe Ansatz [19]. However,
the fact that the transfer matrix eigenstates can be re-expressed as Bethe-type states involving
the multiple action of an element of the monodromy matrix as in (31)-(32) is not completely
general in the SoV approach, but rather a specificity of models for which the Q-functions have
the same functional form as the transfer matrix eigenfunctions of the model: for instance, it is
not true in the anti-periodic XXZ model, for which the Q-functions have a double periodicity
with respect to the transfer matrix eigenfunctions of the model [110,131]. So as to remain as
general as possible, it is therefore better to start directly from (76) and (15)-(17), (22).

For our purpose, since we need ultimately to evaluate this action only at the inhomogeneity
parameters (see (71)), it is in fact more convenient to consider instead of Tε,ε′(λ) the operators
T̄ε,ε′(λ) defined as

T̄ε,ε′(λ) =

¨

D−1(λ+η)C(λ+η)B(λ) if (ε,ε′) = (1, 1),
Tε,ε′(λ) otherwise.

(77)

Indeed, since detq T (ξi +η) = 0, it follows from (9) that

T̄ε,ε′(ξi) = Tε,ε′(ξi) ∀i ∈ {1, . . . , N}, ∀ε,ε′ ∈ {1, 2} , (78)

so that the formula (71) can be written in terms of the matrix elements T̄ε,ε′ instead of Tε,ε′ .
Note that (77) is well defined as soon as λ /∈ {ξi − η,ξi − 2η | i = 1, . . . , N} since D(λ) is
invertible for any λ 6= ξi ,ξi −η, i = 1, . . . N . The action of Ā(λ) ≡ T̄1,1(λ) on a SoV state 〈h |
is then slightly simpler than the action of A(λ) (22).

It is easy to compute the action of the operators T̄ε,ε′(λ) on the separate state (76). We
obtain

〈Q |D(λ) =
∑

h

dh(λ)
N
∏

n=1

Q(ξ(hn)
n )V (ξ(h1)

1 , . . . ,ξ(hN )
N ) 〈h | , (79)

〈Q |B(λ) = −
N
∑

b=1

a(ξb)
∑

h

δhb ,1

N
∏

n=1

Q(ξ(hn)
n )

N
∏

n=1
n6=b

λ− ξ(hn)
n

ξ
(1)
b − ξ

(hn)
n

V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈T−b h |

= −
N
∑

b=1

a(ξb)
λ− ξb

Q(ξb −η)
Q(ξb)

∑

h

δhb ,0
dh(λ)

∏N
n=1 Q(ξ(hn)

n )
∏

n6=b(ξb − ξ
(hn)
n )

× V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | , (80)
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〈Q |C(λ) =
N
∑

b=1

d(ξ(1)b )
∑

h

δhb ,0

N
∏

n=1

Q(ξ(hn)
n )

N
∏

n=1
n6=b

λ− ξ(hn)
n

ξb − ξ
(hn)
n

V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈T+b h |

=
N
∑

b=1

d(ξ(1)b )

λ− ξ(1)b

Q(ξb)
Q(ξb −η)

∑

h

δhb ,1
dh(λ)

∏N
n=1 Q(ξ(hn)

n )
∏

n6=b(ξb − ξ
(hn)
n )

× V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | , (81)

and a similar (although more involved) expression can be obtained for the action of Ā(λ) on
〈Q |.

It is obviously possible, from these formulas, to compute the multiple action of any string of
operators T̄ε2,ε1

(λ1) T̄ε4,ε3
(λ2) . . . T̄ε2m,ε2m−1

(λm) on the state 〈Q | as a multiple sum over choices
of inhomogeneity parameters along the chain, but such an expression would not be convenient
for the consideration of the homogeneous limit. We therefore now explain how to write this
action in terms of a multiple contour integral that we can transform into a more convenient
form for the consideration of the homogeneous limit. In fact, one can show the following
result:

Proposition 5.1. Let λ be a generic parameter. The left action of the operator
T̄ε2,ε1

(λ), ε1,ε2 ∈ {1, 2}, on a generic separate state 〈Q | of the form (76) can be written as
the following sum of contour integrals:

〈Q | T̄ε2,ε1
(λ) =

∑

h

dh(λ)
N
∏

n=1

Q(ξ(hn)
n )

�

−
∮

Γ2

dz2

2πi (λ− z2)
a(z2)
dh(z2)

Q(z2 −η)
Q(z2)

�2−ε2

×

�

∮

Γ1

dz1

2πi (λ− z1)
d(z1)
dh(z1)

Q(z1 +η)
Q(z1)

�2−ε1 � z1 − z2

z1 − z2 +η

�(2−ε1)(2−ε2)

× V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | , (82)

in which the contour Γ2 surrounds counterclockwise the points ξn, 1≤ n≤ N, and no other poles
in the integrand, whereas the contour Γ1 surrounds counterclockwise the points ξn−η, 1≤ n≤ N,
the point z2 −η if ε2 = 1, and no other poles in the integrand.

Similarly, for generic parameters λ1, . . . ,λm, the multiple action of a product of operators
T̄ε2,ε1

(λ1) T̄ε4,ε3
(λ2) . . . T̄ε2m,ε2m−1

(λm), εi ∈ {1, 2}, 1 ≤ i ≤ 2m, on a generic separate state 〈Q |
of the form (76) can be written as the following sum of contour integrals:

〈Q | T̄ε2,ε1
(λ1) T̄ε4,ε3

(λ2) . . . T̄ε2m,ε2m−1
(λm) =

∑

h

m
∏

j=1

dh(λ j)
N
∏

n=1

Q(ξ(hn)
n )

×
1
∏

j=m





 

−
∮

Γ2 j

dz2 j

2πi (λ j − z2 j)

a(z2 j)

dh(z2 j)

Q(z2 j −η)
Q(z2 j)

j−1
∏

k=1

z2 j −λk −η
z2 j −λk

!2−ε2 j

×

 

∮

Γ2 j−1

dz2 j−1

2πi (λ j − z2 j−1)

d(z2 j−1)

dh(z2 j−1)

Q(z2 j−1 +η)

Q(z2 j−1)

j−1
∏

k=1

z2 j−1 −λk +η

z2 j−1 −λk

!2−ε2 j−1




×
∏

1≤ j<k≤2m

�

z j − zk

z j − zk + (−1)kη

�(2−ε j)(2−εk)

V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | , (83)

in which the contours Γ2 j surround counterclockwise the points ξn, 1≤ n≤ N, the points z2k−1+η,
k > j, and no other poles in the integrand, whereas the contours Γ2 j−1 surround counterclockwise
the points ξn −η, 1≤ n≤ N, the points z2k −η, k ≥ j, and no other poles in the integrand.
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Proof. The expression (82) clearly coincides with (79) in the case (ε2,ε1) = (2,2).
Let us now consider the action (80) of T̄1,2(λ) = B(λ) on 〈Q |. The idea is to see the sum

as the development of an integral around a contour by the residue theorem, which leads to
the identity

〈Q |B(λ) = −
∮

Γ ({ξn}n=1→N )

dz
2πi

a(z)
λ− z

Q(z −η)
Q(z)

×
∑

h

dh(λ)
dh(z)

N
∏

n=1

Q(ξ(hn)
n ) V (ξ(h1)

1 , . . . ,ξ(hN )
N ) 〈h | , (84)

where the contour Γ ({ξn}n=1→N ) surrounds counterclockwise the points ξn, 1 ≤ n ≤ N , and
no other pole of the integrand. This result coincides with (82) for (ε2,ε1) = (1,2).

We can proceed similarly for the action of T̄2,1(λ) = C(λ), rewriting (81) as an integral
around a contour by the residue theorem, which leads to the identity

〈Q |C(λ) =
∮

Γ ({ξn−η}n=1→N )

dz
2πi

d(z)
λ− z

Q(z +η)
Q(z)

×
∑

h

dh(λ)
dh(z)

N
∏

n=1

Q(ξ(hn)
n ) V (ξ(h1)

1 , . . . ,ξ(hN )
N ) 〈h | , (85)

with Γ ({ξn − η}n=1→N ) surrounding counterclockwise the points ξn − η, 1 ≤ n ≤ N , and no
other pole of the integrand. This result coincides with (82) for (ε2,ε1) = (2,1).

Finally, let us consider the action of T̄1,1(λ) = Ā(λ) on 〈Q |, which is the more involved
one, as it requires to compute the successive action of D−1(λ+η), C(λ+η) and B(λ) on the
state 〈Q |. Using (15) and (16), one can write

〈Q | Ā(λ) =
N
∑

b=1

d(ξb −η)
λ− ξb +η

Q(ξb)
Q(ξb −η)

∑

h

δhb ,1

N
∏

n=1

Q(ξ(hn)
n )

×
V (ξ(h1)

1 , . . . ,ξ(hN )
n )

∏

6̀=b(ξ
(1)
b − ξ

(h`)
`
)
〈h |B(λ) , (86)

which corresponds to the evaluation by the sum over the residues of the following contour
integral:

〈Q | Ā(λ) =
∮

Γ ({ξn−η}n=1→N )

dz
2πi

d(z)
λ− z

Q(z +η)
Q(z)

×
∑

h

V (ξ(h1)
1 , . . . ,ξ(hN )

n )

dh(z)

N
∏

n=1

Q(ξ(hn)
n ) 〈h |B(λ) . (87)
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Using now (17), we obtain

〈Q | Ā(λ) = −
N
∑

b=1

a(ξb)

∮

Γ ({ξn−η}n=1→N )

dz
2πi

d(z)
λ− z

Q(z +η)
Q(z)

z − ξb

z − ξb +η
Q(ξb −η)

Q(ξb)

×
∑

h

δhb ,0

∏

6̀=b

λ− ξ(h`)
`

ξb − ξ
(h`)
`

V (ξ(h1)
1 , . . . ,ξ(hN )

n )

dh(z)

N
∏

n=1

Q(ξ(hn)
n ) 〈h |

= −
∮

Γ ({ξn}n=1→N )

dz′

2πi
a(z′)
λ− z′

Q(z′ −η)
Q(z′)

∮

Γ ({ξn−η}n=1→N∪{z′−η})

dz
2πi

d(z)
λ− z

×
Q(z +η)

Q(z)
z − z′

z − z′ +η

∑

h

dh(λ)
dh(z) dh(z′)

N
∏

n=1

Q(ξ(hn)
n )V (ξ(h1)

1 , . . . ,ξ(hN )
n ) 〈h | , (88)

in which we have again used the residue theorem to recast the sum as a contour integral over
z′. Note that doing this the pole at ξb −η becomes a pole at z′ −η, hence we have to deform
the contour of the integral over z to take into account the residue at this pole. The expression
(88) coincides with (82) in the case (ε2,ε1) = (1,1).

The general result is then obtained by induction along the same lines. �

The multiple integral representation (83) of Proposition 5.1 can easily be recasted in a
more convenient form for the further consideration of the homogeneous limit.

Proposition 5.2. For generic parameters λ1, . . . ,λm, the multiple action of a product of operators
T̄ε2,ε1

(λ1) T̄ε4,ε3
(λ2) . . . T̄ε2m,ε2m−1

(λm), εi ∈ {1, 2}, 1 ≤ i ≤ 2m, on a generic separate state 〈Q |
of the form (76) can be written as the following sum of contour integrals:

〈Q | T̄ε2,ε1
(λ1) T̄ε4,ε3

(λ2) . . . T̄ε2m,ε2m−1
(λm) =

∑

h

m
∏

j=1

dh(λ j)
N
∏

n=1

Q(ξ(hn)
n )

×
1
∏

j=m





 

−
∮

C∞j

dz2 j

2πi (z2 j −λ j)

a(z2 j)

dh(z2 j)

Q(z2 j −η)
Q(z2 j)

j−1
∏

k=1

z2 j −λk −η
z2 j −λk

!2−ε2 j

×

 

∮

C∞j

dz2 j−1

2πi (z2 j−1 −λ j)

d(z2 j−1)

dh(z2 j−1)

Q(z2 j−1 +η)

Q(z2 j−1)

j−1
∏

k=1

z2 j−1 −λk +η

z2 j−1 −λk

!2−ε2 j−1




×
∏

1≤ j<k≤2m

�

z j − zk

z j − zk + (−1)kη

�(2−ε j)(2−εk)

V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | , (89)

where the contours C∞j 1 ≤ j ≤ 2m, surround counterclockwise the points qn, 1 ≤ n ≤ R, λ`,
1≤ `≤ j, the pole at infinity, and no other pole of the integrand.
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Proof. Let us prove by recursion on n the formula

〈Q | T̄ε2,ε1
(λ1) T̄ε4,ε3

(λ2) . . . T̄ε2m,ε2m−1
(λm) =

∑

h

m
∏

j=1

dh(λ j)
N
∏

n=1

Q(ξ(hn)
n )

×
n
∏

j=m





 

−
∮

Γ2 j

dz2 j

2πi (λ j − z2 j)

a(z2 j)

dh(z2 j)

Q(z2 j −η)
Q(z2 j)

j−1
∏

k=1

z2 j −λk −η
z2 j −λk

!2−ε2 j

×

 

∮

Γ2 j−1

dz2 j−1

2πi (λ j − z2 j−1)

d(z2 j−1)

dh(z2 j−1)

Q(z2 j−1 +η)

Q(z2 j−1)

j−1
∏

k=1

z2 j−1 −λk +η

z2 j−1 −λk

!2−ε2 j−1




×
1
∏

j=n−1





 

∮

C∞j

dz2 j

2πi (λ j − z2 j)

a(z2 j)

dh(z2 j)

Q(z2 j −η)
Q(z2 j)

j−1
∏

k=1

z2 j −λk −η
z2 j −λk

!2−ε2 j

×

 

−
∮

C∞j

dz2 j−1

2πi (λ j − z2 j−1)

d(z2 j−1)

dh(z2 j−1)

Q(z2 j−1 +η)

Q(z2 j−1)

j−1
∏

k=1

z2 j−1 −λk +η

z2 j−1 −λk

!2−ε2 j−1




×
∏

1≤ j<k≤2m

�

z j − zk

z j − zk + (−1)kη

�(2−ε j)(2−εk)

V (ξ(h1)
1 , . . . ,ξ(hN )

N ) 〈h | , (90)

which coincides with (83) for n= 1 and with (89) for n= m.
Let us suppose that (90) holds for a given n, 1≤ n< m, and let us rewrite the integral over

z2n−1 using the poles outside of the integration contour Γ2n−1. These poles are at the zeroes
q1, . . . , qR of Q, at λ j for j < n and at infinity. Note that the apparent poles at ξ j , 1 ≤ j ≤ N ,
are in fact regular points due to the factor d(z2n−1) in the numerator. Similarly, the poles
at z2k−1 + η for k > n are also regular points since the integral over z2k−1 has to be finally
evaluated by its residue at z2k−1 = ξ` −η for some ` ∈ {1, . . . , N}. Finally, the apparent poles
at z j − η for j < 2n− 1 are also regular points since the integral over z j is first evaluated by
its residues at∞ (and the corresponding factor disappears), at a roots qk of Q (and the factor
Q(z2n−1 + η) in the numerator vanishes) or at λ j for j < n (and the factor z2 j−1 − λ j + η in
the numerator vanishes). Hence the integral over z2n−1 can be rewritten as a contour integral
surrounding the points q1, . . . , qR, λ j for j < n, and∞ with index −1. One then consider the
integral over z2n and show similarly that the points ξ j − η, 1 ≤ j ≤ N , z2k − η, k > n, and
z` + η, ` < 2n, are regular points, so that the integral can be written as a contour integral
around the poles at q1, . . . , qR, λ j for j < n, and∞ with index −1. Hence the representation
(90) holds also for n+ 1. �

The integral representation (89) can be evaluated as a sum over its residues, which leads
to

Corollary 5.1. The multiple action of a product of operators
T̄ε2,ε1

(λ1) T̄ε4,ε3
(λ2) . . . T̄ε2m,ε2m−1

(λm), εi ∈ {1,2}, 1 ≤ i ≤ 2m, on a generic separate state 〈Q |
of the form (76) can be written as a sum over separate states of the form (76) as

〈Q | T̄ε2,ε1
(λ1) T̄ε4,ε3

(λ2) . . . T̄ε2m,ε2m−1
(λm) =

mε
∑

n∞=0

(−1)(m−mε+n∞)N

×
�

〈Q | T̄ε2,ε1
(λ1) T̄ε4,ε3

(λ2) . . . T̄ε2m,ε2m−1
(λm)

�

n∞
, (91)
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where

�

〈Q | T̄ε2,ε1
(λ1) T̄ε4,ε3

(λ2) . . . T̄ε2m,ε2m−1
(λm)

�

n∞

=
∑

(ε̄1,...,ε̄2m)∈Eε,n∞

(R+1)ε̄1
∑

a1=1

(R+1)ε̄2
∑

a2=1
a2 6=a1

. . .
(R+m)ε̄2m−1
∑

a2m−1=1
a2m−1 /∈{a1,...,a2m−2}

(R+m)ε̄2m
∑

a2m=1
a2m /∈{a1,...,a2m−1}

×
m
∏

j=1









d(qa2 j−1
)
∏R+ j−1

k=1 (qa2 j−1
− qk +η)

∏R+ j
k=1

k 6=a2 j−1

(qa2 j−1 − qk)









ε̄2 j−1








−
a(qa2 j

)
∏R+ j−1

k=1 (qa2 j
− qk −η)

∏R+ j
k=1

k 6=a2 j

(qa2 j − qk)









ε̄2 j

×
∏

1≤ j<k≤2m

�

qa j
− qak

qa j
− qak

+ (−1)kη

�ε̄ j ε̄k

〈 Q̄λa,ε̄ |. (92)

Here we have defined, for a given 2m-tuple ε≡ (ε1, . . . ,ε2m),

mε =
2m
∑

j=1

(2− ε j) , (93)

Eε,n∞ =
¦

(ε̄1, . . . , ε̄2m) ∈ {0,1}N | ε̄ j ≤ 2− ε j and
2m
∑

j=1

ε̄ j = mε − n∞
©

. (94)

Moreover, we have used the shortcut notation

qR+ j = λ j , 1≤ j ≤ m , (95)

and Q̄λa,ε̄ is a polynomial of degree R+m−mε+ n∞ defined in terms of Q, of the λk, 1≤ k ≤ m,
and of the a j and the ε̄ j (1≤ j ≤ 2m) as

Q̄λa,ε̄(λ) =Q(λ)

∏m
j=1(λ−λ j)

∏2m
j=1(λ− qa j

)ε̄ j
=

∏R+m
j=1 (λ− q j)

∏2m
j=1(λ− qa j

)ε̄ j
. (96)

Proof. We are just writing the development of the multiple contour integrals (89) in terms of
the sum on the residues. Here 0≤ n∞ ≤ mε corresponds to the number of residues at infinity
that we take so that we are organizing these sums w.r.t. n∞. �

Note that, in the expression (91)-(92), we can now particularize the parameters
λi , 1 ≤ i ≤ m, to be equal to some inhomogeneity parameters. We can therefore directly
use (91)-(92) to express the matrix elements of the form (73).
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5.2 Multiple sum representation for the correlation functions in finite volume

As a consequence of the results of the previous subsection, we can now write any matrix
elements of the form (73) as a sum over scalar products of separate states:

Fm(τ,ε) =
m
∏

k=1

1
τ(ξk)

m′ε
∑

n∞=0

(−1)(m−mε′+n∞)N

×
∑

(ε̄1,...,ε̄2m)∈Eε′ ,n∞

(R+1)ε̄1
∑

a1=1

(R+1)ε̄2
∑

a2=1
a2 6=a1

. . .
(R+m)ε̄2m−1
∑

a2m−1=1
a2m−1 /∈{a1,...,a2m−2}

(R+m)ε̄2m
∑

a2m=1
a2m /∈{a1,...,a2m−1}

×
m
∏

j=1









d(qa2 j−1
)
∏R+ j−1

k=1 (qa2 j−1
− qk +η)

∏R+ j
k=1

k 6=a2 j−1

(qa2 j−1 − qk)









ε̄2 j−1








−
a(qa2 j

)
∏R+ j−1

k=1 (qa2 j
− qk −η)

∏R+ j
k=1

k 6=a2 j

(qa2 j − qk)









ε̄2 j

×
∏

1≤ j<k≤2m

�

qa j
− qak

qa j
− qak

+ (−1)kη

�ε̄ j ε̄k 〈 Q̄ξa,ε̄ |Qτ 〉

〈Qτ |Qτ 〉
, (97)

in which we have defined the 2m-tuple ε′ ≡ (ε′1, . . . ,ε′2m) in terms of the 2m-tuple
ε≡ (ε1, . . . ,ε2m) by

ε′2 j−1 = ε2 j−1, ε′2 j = 3− ε2 j , 1≤ j ≤ m , (98)

and defined mε′ , Eε′,n∞ as in (93)-(94) but in terms of ε′ rather than ε. Similarly as in (99)-
(100), we have used the shortcut notations:

qR+ j = ξ j , 1≤ j ≤ m , (99)

and Q̄ξa,ε̄ is a polynomial of degree R+m−mε′ + n∞ defined in terms of Q ≡ Qτ, of the ξk,
1≤ k ≤ m, and of the a j and the ε̄ j (1≤ j ≤ 2m) as

Q̄ξa,ε̄(λ) =Q(λ)

∏m
j=1(λ− ξ j)

∏2m
j=1(λ− qa j

)ε̄ j
=

∏R+m
j=1 (λ− q j)

∏2m
j=1(λ− qa j

)ε̄ j
. (100)

We also recall that R is the degree of the polynomial Qτ.
This expression (97) can be rewritten with similar notations as those used in the periodic

case [19].

Proposition 5.2. For a given 2m-tuple ε≡ (ε1, . . . ,ε2m) ∈ {1,2}2m, let us define the sets α−ε and
α+ε as

α−ε = { j : 1≤ j ≤ m,ε2 j−1 = 1}, #α−ε = sε (101)

α+ε = { j : 1≤ j ≤ m,ε2 j = 2}, #α+ε = s′ε . (102)
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Then,

Fm(τ,ε) =
m
∏

k=1

1
τ(ξk)

∑

ᾱ−ε⊂α
−
ε

ᾱ+ε⊂α
+
ε

(−1)(m−#ᾱ−+#ᾱ+)N
∑

{a j ,a
′
j}

×
∏

j∈ᾱ−ε









d(qa j
)
∏R+ j−1

k=1
k∈A j

(qa j
− qk +η)

∏R+ j
k=1
k∈A′j

(qa j
− qk)









∏

j∈ᾱ+ε









−

a(qa′j
)
∏R+ j−1

k=1
k∈A′j

(qk − qa′j
+η)

∏R+ j
k=1

k∈A j+1

(qk − qa′j
)









×
〈 Q̄Am+1

|Qτ 〉
〈Qτ |Qτ 〉

. (103)

In (103), the first summation is taken over all subsets ᾱ−ε of α−ε and ᾱ+ε of α+ε , whereas the second
summation is taken over the indices a j for j ∈ ᾱ−ε and a′j for j ∈ ᾱ+ε such that

1≤ a j ≤ R+ j, a j ∈ A j , 1≤ a′j ≤ R+ j, a′j ∈ A′j , (104)

where

A j = {b : 1≤ b ≤ R+m, b 6= ak, a′k, k < j}, (105)

A′j = {b : 1≤ b ≤ R+m, b 6= a′k, k < j and b 6= ak, k ≤ j}} . (106)

Moreover, Q̄Am+1
is the polynomial of degree #Am+1 = R+m−#ᾱ− −#ᾱ+ defined in terms of

the roots q1, . . . , qR of Qτ and of qR+ j ≡ ξ j , 1≤ j ≤ m, as

Q̄Am+1
(λ) =

∏

j∈Am+1

(λ− q j) . (107)

Remark 7. The set (102) and (101) are in fact complementary to the set α+ and α− defined
in [19] in the periodic case. One recovers the same sets by considering the sets for Fm(τ, 3−ε)
using the fact that Fm(τ,ε) = Fm(τ, 3− ε) (75) due to the Γ x symmetry.

Remark 8. The sum over the subsets ᾱ−ε and ᾱ+ε of α−ε and α+ε can be organized as in (97) in
terms of the number n∞ of residues taken at infinity by writing

∑

ᾱ−ε⊂α
−
ε

ᾱ+ε⊂α
+
ε

=
sε+s′ε
∑

n∞=0

∑

ᾱ−ε⊂α
−
ε

ᾱ+ε⊂α
+
ε

#ᾱ−+#ᾱ+=sε+s′ε−n∞

. (108)

Each scalar products of separate states appearing in (97) ot (103) can now be expressed
in terms of generalized Slavnov’s determinants using the results of [113]. Using Theorem 3.3
of [113], we can write

〈 Q̄Am+1
|Qτ 〉

〈Qτ |Qτ 〉
= 0 if m< #ᾱ−ε +#ᾱ+ε , (109)

= (−1)N(R−R̄) 2R−R̄

∏R̄
j=1

�

−a(q̄ j)
∏R

k=1(qk − q̄ j +η)
�

∏R
j=1

�

−a(q j)
∏R

k=1(qk − q j +η)
�

V (qR, . . . , q1)
V (q̄R̄, . . . , q̄1)

×
detR̄ M(−)(q | q̄)

detR N (−)(q)
if m≥ #ᾱ−ε +#ᾱ+ε . (110)
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Here we have set

R̄= #Am+1 = R+m−#ᾱ− −#ᾱ+ , (111)

{q j} j∈Am+1
= {q̄1, . . . , q̄R̄} . (112)

Moreover, for R̄ ≥ R, the matrix M(−)(q | q̄) is defined in terms of the R-tuple q = (q1, . . . , qR)
and of the R̄-tuple q̄= (q̄1, . . . , q̄R̄) as

�

M(−)(q | q̄)
�

j,k =

(

t(q j − q̄k) + aQ(q̄k) t(q̄k − q j) if j ≤ R,

(q̄k) j−R−1 + aQ(q̄k) (q̄k +η) j−R−1 if j > R,
(113)

whereas the matrix N (−)(q) is given by

�

N (−)(q)
�

j,k =
a′Q(q j)

aQ(q j)
δ j,k + K(q j − qk) , (114)

with aQ being given in terms of the roots {q1, . . . , qR} of Q ≡Qτ as in (30) and

t(λ) =
η

λ(λ+η)
, K(λ) = t(λ) + t(−λ) =

2η
(λ+η)(λ−η)

. (115)

Note that, for {q1, . . . , qR} solution of the anti-periodic Bethe equations aQ(q j) = 1, j = 1, . . . , R,
one has

M(−)(q |q) =N (−)(q) . (116)

6 Infinite-size correlation functions of the anti-periodic XXX chain

We now explain how to take the thermodynamic limit of the result obtained in the previous
section for |Qτ 〉 being, in the homogeneous limit, one of the ground state of (1). This will
lead to multiple integral representations for the zero-temperature correlation functions of the
anti-periodic XXX chain in the thermodynamic limit which coincide in this limit with the results
obtained in the periodic case in [17], and directly in the infinite size model in [24].

6.1 Vanishing and non-vanishing terms in the thermodynamic limit

In this subsection we find the conditions under which the terms of the expansion (103) are
non-zero in the thermodynamic limit for |Qτ 〉 being the ground state of the XXX chain (1).

We first compute the ratio of scalar products appearing in the last line of (103) in the
thermodynamic limit.

Proposition 6.1. Let Q be a polynomial of the form

Q(λ) =
R
∏

j=1

(λ− q j) , (117)

with roots q1, . . . , qR solving the system of anti-periodic Bethe equations aQ(q j) = 1, j = 1, . . . , R,
where aQ is defined as in (30). We moreover suppose that R scales as N in the thermodynamic
limit and that the roots q1, . . . , qR become in these limits distributed on the real axis according to
the density ρtot (68), (57).
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Let Q̄ be a polynomial built from Q in the form

Q̄(λ) =
R′
∏

j=1

(λ− qσ j
)

m′
∏

k=1

(λ− ξπk
) , (118)

where σ and π are permutations of {1, . . . , R} and of {1, . . . , N} respectively, and where R− R′

and m′ remain finite in the thermodynamic limit.
Then,

〈Q | Q̄ 〉
〈Q |Q 〉

=
〈 Q̄ |Q 〉
〈Q |Q 〉

=

¨

0 if R′ +m′ < R,

o
�

1
NR−R′

�

if R′ +m′ > R,
(119)

whereas, if R′ +m′ = R,

〈Q | Q̄ 〉
〈Q |Q 〉

=
〈 Q̄ |Q 〉
〈Q |Q 〉

∼
N→∞

m′
∏

j=1

(

a(ξπ j
)
∏R

k=1(qk − ξπ j
+η)

a(qσR′+ j
)
∏R

k=1(qk − qσR′+ j
+η)

R′
∏

i=1

qσi
− qσR′+ j

qσi
− ξπ j

)

×
∏

1≤i< j≤m′

qσR′+i
− qσR′+ j

ξπi
− ξπ j

det
1≤ j,k≤m′

ρ(qσR′+ j
− ξπk

+η/2)

N ρtot(qσR′+ j
)

. (120)

Proof. In the case R′+m′ < R, it was shown in [113] that the ratio of scalar products vanishes
(see (109)).

In the case R′+m′ ≥ R, the ratio of scalar products can be expressed from [113] as a ratio
of determinants as in (110):

〈Q | Q̄ 〉
〈Q |Q 〉

=
〈 Q̄ |Q 〉
〈Q |Q 〉

= (−1)N(R
′+m′−R) 2R−R′−m′

∏m′

j=1

�

−a(ξπ j
)
∏R

k=1(qk − ξπ j
+η)

�

∏R
j=R′+1

�

−a(qσ j
)
∏R

k=1(qk − qσ j
+η)

�

×
R′
∏

i=1

∏R
j=R′+1(qσi

− qσ j
)

∏m′
j=1(qσi

− ξπ j
)

∏

R′<i< j≤R(qσi
− qσ j

)
∏

1≤i< j≤m′(ξπi
− ξπ j

)
detR′+m′M(−)(qσ | q̄)

detR N (−)(qσ)
, (121)

in which we have used the notations of (113)-(114) and the shortcut notations
qσ = (qσ1

, . . . , qσR
) and q̄ = (qσ1

, . . . , qσR′
,ξπ1

, . . . ,ξπm′
). More explicitly, M(−)(qσ | q̄) can

be written as the following block matrix:

M(−)(qσ | q̄) =
�

M(1,1) M(1,2)

M(2,1) M(2,2)

�

, (122)

where M(1,1), M(1,2), M(2,1) and M(2,2) are respectively of size R × R′, R × m′, n̄ × R′ and
n̄×m′, with n̄= R′ +m′ − R, with elements

M(1,1)
j,k =N j,k, j ≤ R, k ≤ R′, (123)

M(1,2)
j,k = t(qσ j

− ξπk
), j ≤ R, k ≤ m′, (124)

M(2,1)
j,k = (qσk

) j−1 + (qσk
+η) j−1, j ≤ n̄, k ≤ R′, (125)

M(2,2)
j,k = ξ j−1

πk
, j ≤ n̄, k ≤ m′, (126)

in which we have used the shortcut notation N =N (−)(qσ). Hence, the ratio of determinants
in (121) can be written as

detR′+m′M(−)(qσ | q̄)
detR N (−)(qσ)

= det
R′+m′

S , (127)
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where

S =
�

N−1M(1,1) N−1M(1,2)

M(2,1) M(2,2)

�

, (128)

with in particular [N−1M(1,1)] j,k = δ j,k for j ≤ R, k ≤ R′. The thermodynamic limit N →∞
of the matrix elements of N−1M(1,2) can be computed similarly as in the periodic case [19]
using the integral equation (56):

�

N−1M(1,2)
�

j,k =
ρ(qσ j

− ξπk
+η/2)

N ρtot(qσ j
)

+ o
�

1
N

�

, (129)

in which ρ is given by (57) and ρtot by (68). In particular, when n̄ = R′ + m′ − R = 0, we
recover the result (120).

In the case R′ +m′ > R, it is convenient to rewrite S (128) in terms of blocks of slightly
different sizes:

S =
�

IR′ S(1,2)

S(2,1) S(2,2)

�

, (130)

where IR′ is the identity square matrix of size R′, and where S(1,2), S(2,1) and S(2,2) are respec-
tively of size R′ ×m′, m′ × R′ and m′ ×m′, with elements

S(1,2)
j,k =

�

N−1M(1,2)
�

j,k (131)

S(2,1)
j,k =

(

0 if j ≤ R− R′,

M(2,1)
j−(R−R′),k if R− R′ < j ≤ m′,

(132)

S(2,2)
j,k =

(
�

N−1M(1,2)
�

j+R′,k if j ≤ R− R′,

M(2,2)
j−(R−R′),k = ξ

j−1−R+R′
πk

if R− R′ < j ≤ m′.
(133)

Hence,
det

R′+m′
S = det

m′
S ′ , (134)

with S ′ = S(2,2) −S(2,1)S(1,2), i.e.

S ′j,k =
�

N−1M(1,2)
�

j+R′,k =
ρ(qσ j+R′

− ξπk
+η/2)

N ρtot(qσ j+R′
)

+ o
�

1
N

�

if j ≤ R− R′ , (135)

whereas, for 1≤ j ≤ m′ + R′ − R,

S ′R−R′+ j,k =M(2,2)
j,k −

R′
∑

`=1

M(2,1)
j,`

�

N−1M(1,2)
�

`,k . (136)

In particular, the (R− R′ + 1)-th line of S ′ is

S ′R−R′+1,k = 1− 2
R′
∑

`=1

�

N−1M(1,2)
�

`,k

−→
N→∞

1− 2

∫ ∞

−∞
ρ(λ− ξπk

+η/2) dλ= 0 , (137)

which proves (119). �
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Remark 9. If we suppose moreover that the sums in (136) can be transformed into integrals
∀ j, we obtain that all the lines of (136) vanish in the thermodynamic limit:

S ′R−R′+ j,k −→N→∞
ξ j−1
πk
−
∫ ∞

−∞

�

λ j−1 + (λ+η) j−1
�

ρ(λ− ξπk
+η/2) dλ= 0 . (138)

Indeed, setting η= −i and supposing that |ℑ(ξπk
+ i/2)|< 1/2, we have that

∫ ∞

−∞
λ j−1ρ(λ− ξπk

− i/2) dλ−
∫ ∞

−∞
(λ− i) j−1ρ(λ− ξπk

− i/2− i) dλ

= −2πiResλ=ξπk

�

λ j−1ρ(λ− ξπk
− i/2)

�

= ξ j−1
πk

, (139)

and we can conclude by using the quasi-periodicity property ρ(λ− i) = −ρ(λ). Note however
that we do not need (138) for j > 1 for the proof of Proposition 6.1, it is enough that these
lines remain finite in the thermodynamic limit.

As a consequence of this proposition, we can formulate the following corollary:

Corollary 6.1. For a given 2m-tuple ε ≡ (ε1, . . . ,ε2m) ∈ {1, 2}2m, let us define the sets α−ε and
α+ε of respective cardinality sε and s′ε as in (102)- (101), and let us consider the matrix element
Fm(τ,ε) in a state |Qτ 〉 with Qτ ≡Q satisfying the same hypothesis as in Proposition 6.1. Then

lim
N→∞

Fm(τ,ε) = 0 if sε + s′ε 6= m . (140)

Moreover, if sε + s′ε = m, the non-vanishing contribution of Fm(τ,ε) in the thermodynamic limit
is given by

lim
N→∞

Fm(τ,ε) = lim
N→∞

m
∏

k=1

1
τ(ξk)

∑

{a j ,a
′
j}

∏

j∈α−ε









d(qa j
)
∏R+ j−1

k=1
k∈A j

(qa j
− qk +η)

∏R+ j
k=1
k∈A′j

(qa j
− qk)









×
∏

j∈α+ε









−

a(qa′j
)
∏R+ j−1

k=1
k∈A′j

(qk − qa′j
+η)

∏R+ j
k=1

k∈A j+1

(qk − qa′j
)









〈 Q̄Am+1
|Qτ 〉

〈Qτ |Qτ 〉
, (141)

in which the summation is taken over the indices a j for j ∈ α−ε and a′j for j ∈ α+ε satisfying
(104)-(106), and where we have used the notation (107).

In other words, it means that, in the thermodynamic limit, we recover the same selection
rules (140) for the elementary blocks as in the periodic case. Moreover, the only non-vanishing
terms in the series (103) corresponds to ᾱ+ε = α

+
ε and ᾱ−ε = α

−
ε , i.e. to n∞ = 0. This means

that the residues of the poles at infinity that appeared when moving the integration contours
in the computation of the action of Section 5.1 (see Proposition 5.2 and Corollary 5.1) do not
contribute to the thermodynamic limit of the correlation functions.

Proof. Let us consider the expansion (103) for Fm(τ,ε), which involves multiple sums over
indices {a j , a′j}.

For a given term of the sum, the polynomial Q̄Am+1
is of the form (118) with R− R′ equal

to the number of indices a j or a′j in the multiple sums which are taken between 1 and R. On
the other hand, each of the sums over an index a j or a′j from 1 to R leads to an integral in the
thermodynamic limit provided it is balanced by a factor 1/N , the other terms of the sums (for
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a j or a′j from R+ 1 to R+m) contributing to order 1 to the thermodynamic limit. Hence, the
non-vanishing contributions in the thermodynamic limits correspond to the configurations in
the expansion (103) for which the ratio of determinants is exactly of order O(1/NR−R′), which,
from Proposition 6.1, happens only when the two polynomials Q̄Am+1

and Qτ are of the same
degree R, i.e. when #ᾱ−ε +#ᾱ+ε = m.

Since #ᾱ−ε +#ᾱ+ε ≤ #α−ε +#α+ε = sε + s′ε, the whole sum (103) is vanishing in the ther-
modynamic limit if sε + s′ε < m, so that

lim
N→∞

Fm(τ,ε) = 0 if sε + s′ε < m . (142)

If instead sε+ s′ε > m we use the symmetry (75) and the fact that s3−ε+ s′3−ε < m to conclude
that

lim
N→∞

Fm(τ,ε) = lim
N→∞

Fm(τ, 3− ε) = 0 if sε + s′ε > m . (143)

This proves (140).
If now sε + s′ε = m, the only terms contributing to the thermodynamic limit of Fm(τ,ε) in

the sum (103) are those for which #ᾱ−ε +#ᾱ+ε = #α−ε +#α+ε , i.e. ᾱ±ε = α
±
ε , which also proves

(141). �

Note that, by using the explicit expression for the transfer matrix eigenvalue evaluated at
ξk, k = 1, . . . , m,

τ(ξk) = −a(ξk)
Qτ(ξk −η)

Qτ(ξk)
, (144)

together with the Bethe equations

d(qa j
) = a(qa j

)
Qτ(qa j

−η)

Qτ(qa j
+η)

, ∀ a j ≤ R , (145)

and the observation that d(qa j
) = 0 for any a j > R, one can rewrite (141) in the following way

lim
N→∞

Fm(τ,ε) = lim
N→∞

m
∏

k=1

Qτ(ξk)
a(ξk)Qτ(ξk −η)

×
∑

{a j ,a
′
j}

∏

j∈α−ε









−a(qa j
)

Qτ(qa j
−η)

Qτ(qa j
+η)

∏R+ j−1
k=1
k∈A j

(qa j
− qk +η)

∏R+ j
k=1
k∈A′j

(qa j
− qk)









×
∏

j∈α+ε









a(qa′j
)

∏R+ j−1
k=1
k∈A′j

(qk − qa′j
+η)

∏R+ j
k=1

k∈A j+1

(qk − qa′j
)









〈 Q̄Am+1
|Qτ 〉

〈Qτ |Qτ 〉
, (146)

where the summation is taken here over the indices a j for j ∈ α−ε and a′j for j ∈ α+ε such that

1≤ a j ≤ R, a j ∈ A j , 1≤ a′j ≤ R+ j, a′j ∈ A′j . (147)

6.2 Multiple integral representation for the correlation functions in the ther-
modynamic limit

Let us now now consider, for any 2m-tuple ε≡ (ε1, . . . ,ε2m), the matrix elements

Fm(ε) = lim
N→∞

〈Qτ |
∏m

j=1 E
ε2 j−1,ε2 j

j |Qτ 〉

〈Qτ |Qτ 〉
, (148)
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for |Qτ 〉 being an eigenstate of the transfer matrix (5) described in the thermodynamic limit
by the density of roots ρtot, and which tends to one of the ground states of the anti-periodic
XXX chain (1) in the homogeneous limit. It follows from Corollary 6.1, (120) and (146) that
the terms contributing to the thermodynamic limit in the anti-periodic model are exactly of
the same form that the terms contributing to the thermodynamic limit in the periodic case,
see formulas (4.6)-(4.7) and (5.3)-(5.4) (in which we use the periodic analog of (144) and
(145)) of [17]. Hence their thermodynamic limit coincide.

Therefore we obtain the following multiple integral representation for the correlation func-
tions (148) in the thermodynamic limit, which coincides with the results of [17,24]:

Fm(ε) = δsε+s′ε,m

∏

k<l

sinhπ(ξk − ξl)
ξk − ξl

s′ε
∏

j=1

∞−i
∫

−∞−i

dλ j

2i

m
∏

j=s′ε+1

∞
∫

−∞

i
dλ j

2

∏

a>b

sinhπ(λa −λb)
λa −λb − i

×
m
∏

a=1

m
∏

k=1

1
sinhπ(λa − ξk)

∏

j∈α−ε





j−1
∏

k=1

(µ j − ξk − i)
m
∏

k= j+1

(µ j − ξk)





×
∏

j∈α+ε





j−1
∏

k=1

(µ′j − ξk + i)
m
∏

k= j+1

(µ′j − ξk)



 , (149)

in which the sets α−ε and α+ε are defined as in (101)-(102), and the integration parameters are
ordered as

(λ1, . . . ,λm) = (µ
′
j′max

, . . . ,µ′j′min
,µ jmin

, . . . ,µ jmax
) , (150)

with

j′min =min{ j | j ∈ α+ε } , j′max =max{ j | j ∈ α+ε } , (151)

jmin =min{ j | j ∈ α−ε } , jmax =max{ j | j ∈ α−ε } . (152)

In the homogeneous limit (ξ j = −i/2, ∀ j) the correlation function Fm(ε) has the following
form:

Fm(ε) = δsε+s′ε,m
(−1)sε (−π)

m(m+1)
2

s′ε
∏

j=1

∞−i
∫

−∞−i

dλ j

2π

m
∏

j=s′ε+1

∞
∫

−∞

dλ j

2π

∏

a>b

sinhπ(λa −λb)
λa −λb − i

×
∏

j∈α−ε

(µ j −
i
2)

j−1 (µ j +
i
2)

m− j

coshm(πµ j)

∏

j∈α+ε

(µ′j +
3i
2 )

j−1 (µ′j +
i
2)

m− j

coshm(πµ′j)
. (153)

7 Correlation functions of the XXX chain with a non-diagonal twist

In the previous sections, we have shown how to compute the (elementary building blocks
of the) correlation functions in the XXX chain with anti-periodic boundary conditions. It is
interesting to see how the method and results presented above are modified in the case of a
chain with a more general non-diagonal twist. This is the purpose of this section.

Let us consider a generic invertible 2× 2 matrix,

K =

�

a b
c d

�

, (154)
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and let us define the monodromy matrix with twist K as

T (K)0 (λ) = K0 T0(λ)

=

�

A(K)(λ) = aA(λ) + bC(λ) B(K)(λ) = aB(λ) + bD(λ)
C (K)(λ) = cA(λ) + dC(λ) D(K)(λ) = cB(λ) + dD(λ)

�

, (155)

to which is associated the one-parameter family of commuting transfer matrices:

T (K)(λ) = tr0 T (K)0 (λ) . (156)

7.1 Diagonalisation of the transfer matrix by the SoV method

Under the condition b 6= 0, one can apply Sklyanin’s SoV approach [3,4], see also [114]. Here,
we follow the presentation given in section 2 of [117] and in [127] for the diagonalization of
the transfer matrix in this general twisted case.

The separate variables are generated by the operator zeros of B(K)(λ). The latter is diago-
nalizable with simple spectrum,

K
〈h |B(K)(λ) = b

N
∏

n=1

(λ− ξn + hnη) K
〈h |,

= b dh(λ) K
〈h |, ∀h≡ (h1, . . . , hN ) ∈ {0, 1}⊗N , (157)

and the elements
K
〈h | of the corresponding SoV eigenbasis can be constructed as

K
〈h | ≡ 〈0 |

N
∏

n=1

�

A(K)(ξn)
k1 d(ξn −η)

�hn

, ∀h≡ (h1, . . . , hN ) ∈ {0,1}⊗N , (158)

where we have defined 〈0 | =
⊗N

n=1(1, 0)n. For convenience, we choose the normalization
coefficient k1 in (158) such that

k2
1 − k1 trK + detK = 0 , (159)

i.e. k1 is an eigenvalue of the matrix K . Setting

k2 =
detK

k1
, (160)

i.e. k2 is the second eigenvalue of K , we can compute the SoV action of the remaining Yang-
Baxter generators on the basis (158) as

K
〈h |A(K)(λ) = a dh(λ) K

〈h |+ k1

N
∑

n=1

δha ,0 d(ξ(1)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b
K
〈T+a h | , (161)

K
〈h |D(K)(λ) = d dh(λ) K

〈h |+ k2

N
∑

a=1

δha ,1 a(ξ(0)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b
K
〈T−a h | , (162)

while the SoV representation of C (K)(λ) follows from the above ones and the quantum deter-
minant condition.

Similarly, following Corollary B.2 of [127], the right SoV basis of H can be constructed as

|h 〉
K
≡

1
n

N
∏

n=1

�

A(K)(ξn −η)
k1 d(ξn −η)

�1−hn

|0 〉, ∀h≡ (h1, . . . , hN ) ∈ {0, 1}⊗N , (163)
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where |0 〉 =
⊗N

n=1

�0
1

�

n and n is a normalization coefficient. Then, the SoV action of the
Yang-Baxter generators on (163) is

B(K)(λ) |h 〉
K
= b dh(λ) |h 〉K , (164)

A(K)(λ) |h 〉
K
= a dh (λ) |h 〉K + k1

N
∑

a=1

δha ,1 d(ξ(1)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b

|T−a h 〉
K

, (165)

D(K)(λ) |h 〉
K
= d dh (λ) |h 〉K + k2

N
∑

a=1

δha ,0 a(ξ(0)a )
∏

b 6=a

λ− ξ(hb)
b

ξ
(ha)
a − ξ(hb)

b

|T+a h 〉
K

, (166)

and, with an adequate choice of the normalization coefficient n, it holds:

K
〈h |k 〉

K
=

δh,k

V (ξ(h1)
1 , . . . ,ξ(hN )

N )
. (167)

Note moreover that, as proven in [117], the transfer matrix is diagonalizable and with
simple spectrum as soon as the same properties holds for the twist matrix K . In the SoV bases,
the eigencovector of the transfer matrix can be written in the form

K
〈Qτ |=

∑

h∈{0,1}N

N
∏

n=1

Qτ(ξ
(hn)
n ) V (ξ(h1)

1 , . . . ,ξ(hN )
N )

K
〈h | , (168)

and the eigenvector has the form

|Qτ 〉K =
∑

h∈{0,1}N

N
∏

n=1

�

�

−
k2

k1

�hn

Qτ(ξ
(hn)
n )

�

V (ξ(1−h1)
1 , . . . ,ξ(1−hN )

N ) |h 〉
K

, (169)

where Qτ(λ) is a polynomial of degree R≤ N satisfying with the corresponding transfer matrix
eigenvalue τ(λ) the following TQ-equation (see Theorem 3.2 of [117]):

τ(λ)Qτ(λ) = k2 a(λ)Qτ(λ−η) + k1 d(λ)Qτ(λ+η) . (170)

The same construction (158)-(170) can be done by exchanging the role of k1 and k2, and
the eigenstates of (156) can alternatively be constructed in terms of a polynomial bQτ(λ) of
degree S ≤ N solving with τ(λ) the second TQ-equation

τ(λ) bQτ(λ) = k1 a(λ) bQτ(λ−η) + k2 d(λ) bQτ(λ+η) . (171)

The two polynomials Qτ and bQτ then satisfy the quantum Wronskian relation

k2 bQτ(λ)Qτ(λ−η)− k1 Qτ(λ) bQτ(λ−η) = (k2 − k1) d(λ) , (172)

implying in particular that R+ S = N .
As in the anti-periodic case (31), (32), (36), (38), the transfer matrix eigenstates can be

written in the form of generalized Bethe states in terms of the roots q1, . . . , qR of Qτ(λ),

K
〈Qτ | ∝ K

〈1 |
R
∏

k=1

B(K)(qk), |Qτ 〉K ∝
R
∏

k=1

B(K)(qk) |1 〉K , (173)

where

K
〈1 |=

∑

h

V (ξ(h1)
1 , . . . ,ξ(hN )

N )
K
〈h | , (174)

|1 〉
K
=
∑

h

N
∏

n=1

�

−
k2

k1

�hn

V (ξ(1−h1)
1 , . . . ,ξ(1−hN )

N ) |h 〉
K

, (175)
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are eigenstates of the transfer matrix with eigenvalue k2 a(λ)+k1 d(λ), or in terms of the roots
bq1, . . . ,bqN−R of bQτ(λ),

K
〈Qτ | ∝ K

〈1alt |
N−R
∏

k=1

B(K)(bqk), |Qτ 〉K ∝
N−R
∏

k=1

B(K)(bqk) |1alt 〉K , (176)

where

K
〈1alt |=

∑

h

N
∏

n=1

�

k1

k2

�hn

V (ξ(h1)
1 , . . . ,ξ(hN )

N )
K
〈h | , (177)

|1alt 〉K =
∑

h

N
∏

n=1

(−1)hn V (ξ(1−h1)
1 , . . . ,ξ(1−hN )

N ) |h 〉
K

, (178)

are eigenstates of the transfer matrix with eigenvalue k1 a(λ) + k2 d(λ).

Remark 10. In the triangular case c = 0 with a = k1 and d = k2 (b 6= 0, k1 6= k2), the eigen-
covector (168) and eigenvector (169) of the transfer matrix can be written as the following
usual Bethe states:

K
〈Qτ | ∝ 〈0 |

R
∏

k=1

B(K)(qk) ∈H∗−N/2,...,R−N/2 , (179)

|Qτ 〉K ∝
N−R
∏

k=1

B(K)(bqk) |0 〉 ∈HR−N/2,...,N/2 , (180)

where we have defined

H−N/2,...,S−N/2 =
⊕

n=−N/2,1−N/2,...,S−N/2

Hn , (181)

HS−N/2,...,N/2 =
⊕

n=S−N/2,S+1−N/2,...,N/2

Hn , (182)

with Hn being the Sz-eigenspace associated to the eigenvalue n. Indeed, it is easy to see that
|0 〉 and 〈0 | are transfer matrix eigenstates with respective eigenvalues k1 a(λ) + k2 d(λ) and
k2 a(λ) + k1 d(λ), and therefore the simplicity of the spectrum implies that |0 〉 ∝ |1alt 〉K and
〈0 | ∝

K
〈1 |. Note that such eigenstates could have been directly constructed within ABA, but

in the latter framework the description is only partial: an ABA construction of the eigenvector
and eigencovector in terms of the same set of roots is actually missing, which makes uneasy
the computation of the scalar products. Instead, the SoV construction provides us with a full
description and the scalar products can be computed as in [113]. The triangular case b = 0
with c 6= 0 can be treated similarly, by exchanging the SoV construction w.r.t. B(K)(λ) with the
SoV construction w.r.t. C (K)(λ).

The solutions of the Bethe equations following from (170), and in particular the ground
state, can be studied as in section 4. We shall restrict our study to twists K satisfying the
physical constraint14

k2

k1
= eiπα with − 1< α≤ 1 . (183)

Then the Bethe equations can be written in logarithmic form as

bξQ(λ j) =
2n j − N + R− 1+α

N
π, n j ∈ Z , (184)

14For a physical model with a Hermitian Hamiltonian, the matrix K is unitary and the ratio of its eigenvalues
obviously satisfies (183).
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where bξQ is still given by (51). Hence, there is simply a shift on the real axis with respect to
the known periodic case (corresponding to α= 0) or with respect to the anti-periodic (or also
the σz-twisted) case (corresponding to α = 1), and the density of Bethe roots for the ground
state on the real axis remains the same (57).

7.2 Action on a separate state

It is possible to compute the action of products of local operators on a transfer matrix eigenstate
by proceeding as in the anti-periodic case.

We have the following reconstruction, which is the analog of Proposition 5.1, in terms of
the twisted transfer matrix (156):

Proposition 7.1. Let K be an invertible 2× 2 matrix, and let Xn ∈ End(Vn). Then

Xn =
n−1
∏

k=1

T (K)(ξk) tr0

�

X0 T (K)0 (ξn)
�

n
∏

k=1

�

T (K)(ξk)
�−1

, (185)

=
n
∏

b=1

T (K)(ξb)
tr0

�

X̃0 T (K)0 (ξn −η)
�

a(ξn) d(ξn −η) det K

n−1
∏

b=1

�

T (K)(ξk)
�−1

, (186)

where X̃ denotes the adjoint matrix of the matrix X , i.e.

X̃ X = X X̃ = det X Id . (187)

Proof. See [111], in which a direct proof is given in the more complicated dynamical 6-vertex
case. In this simpler twisted XXX case, it is also possible to propose an alternative proof based
on the known reconstructions in the periodic case [17]:

Xn =
n−1
∏

b=1

T (I)(ξb) tr0

�

X0 T0(ξn)
�

n
∏

b=1

�

T (I)(ξb)
�−1

, (188)

=
n
∏

b=1

T (I)(ξb)
tr0

�

X̃0 T0(ξn −η)
�

a(ξn) d(ξn −η)

n−1
∏

b=1

�

T (I)(ξb)
�−1

, (189)

with
X̃ = σ y X t σ y . (190)

By using these results we can write

Km =
m−1
∏

b=1

T (I)(ξb) T (K)(ξm)
m
∏

b=1

�

T (I)(ξb)
�−1

, (191)

K̃m =
m
∏

b=1

T (I)(ξb)
T (K)(ξm −η)

a(ξm) d(ξm −η)

m−1
∏

b=1

�

T (I)(ξb)
�−1

, (192)

and so

T (K)(ξm)
T (K)(ξm −η)

a(ξm) d(ξm −η)
=

T (K)(ξm −η)
a(ξm) d(ξm −η)

T (K)(ξm) = detK Id , (193)

r
∏

m=1

Km =
r
∏

b=1

T (K)(ξb)
r
∏

b=1

�

T (I)(ξb)
�−1

, (194)

s
∏

m=1

K̃m =
s
∏

b=1

T (I)(ξb)
s
∏

b=1

T (K)(ξ(1)m )

a(ξm) d(ξm −η)
. (195)
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From the identity

Xn =

� n−1
∏

m=1

Km

�

Yn

� n
∏

m=1

K−1
m

�

, (196)

with Yn = XnKn, we now obtain (185) by expressing Yn using the periodic reconstruction (188)
and the product of K and K−1 by (194) and (195) respectively.

From the identity

Xn =

� n
∏

m=1

Km

�

Zn

� n−1
∏

m=1

K−1
m

�

, (197)

with Zn = K−1
n Xn, we obtain (186) by expressing Zn using the periodic reconstruction (189)

and the product of K and K−1 by (194) and (195) respectively. �

For any λ /∈ {ξi − η,ξi − 2η | i = 1, . . . , N}, we can then define, similarly as in (77), the
operators:

T̄ (K)
ε,ε′ (λ) =

(
�

B(K)(λ+η)
�−1

A(K)(λ+η)D(K)(λ) if (ε,ε′) = (2,1),

T (K)
ε,ε′ (λ) otherwise,

(198)

since B(K)(λ) is invertible for anyλ 6= ξi ,ξi−η, i = 1, . . . N . The condition detqT (K)(ξi+η) = 0,
then implies the identities:

T̄ (K)
ε,ε′ (ξi) = T (K)

ε,ε′ (ξi) ∀i ∈ {1, . . . , N}, ∀ε,ε′ ∈ {1,2} , (199)

so that the reconstruction of local operators (185) can be written in terms of the matrix ele-
ments T̄ (K)

ε,ε′ instead of T (K)
ε,ε′ .

The action of the operators (198) on a separate state of the form

K
〈Q |=

∑

h∈{0,1}N

N
∏

n=1

Q(ξ(hn)
n ) V (ξ(h1)

1 , . . . ,ξ(hN )
N )

K
〈h | , (200)

where Q(λ) =
∏R

k=1(λ − qk) is a polynomial of degree R ≤ N , can easily be computed in
terms of multiple contour integrals, as in Proposition 5.1. More precisely, the analog of Propo-
sition 5.1 in the case of the twist K (154) can be formulated as follows:

Proposition 7.1. Let λ be a generic parameter. The left action of the operator
T̄ (K)ε2,ε1

(λ), ε1,ε2 ∈ {1,2}, on a generic separate state
K
〈Q | of the form (200) can be written

as the following sum of contour integrals:

K
〈Q | T̄ (K)ε2,ε1

(λ) =
∑

h

b dh(λ)
N
∏

n=1

Q(ξ(hn)
n )

×

��

d

b

∮

C∞
+

k2

b

∮

Γ2

�

dz2

2πi (λ− z2)
a(z2)
dh(z2)

Q(z2 −η)
Q(z2)

�ε2−1

×

��

a

b

∮

C∞
+

k1

b

∮

Γ1

�

dz1

2πi (λ− z1)
d(z1)
dh(z1)

Q(z1 +η)
Q(z1)

�2−ε1 � z1 − z2

z1 − z2 +η

�(2−ε1)(ε2−1)

× V (ξ(h1)
1 , . . . ,ξ(hN )

N )
K
〈h | , (201)

in which the contour C∞ surrounds only the pole at infinity, the contour Γ2 surrounds counter-
clockwise the points ξn, 1 ≤ n ≤ N, and no other poles in the integrand, and the contour Γ1
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surrounds counterclockwise the points ξn−η, 1≤ n≤ N, the point z2−η if ε2 = 1, and no other
poles in the integrand.

Similarly, for generic parameters λ1, . . . ,λm, the multiple action of a product of operators
T̄ (K)ε2,ε1

(λ1) T̄ (K)ε4,ε3
(λ2) . . . T̄ (K)ε2m,ε2m−1

(λm), εi ∈ {1, 2}, 1 ≤ i ≤ 2m, on a generic separate state
K
〈Q |

of the form (76) can be written as the following sum of contour integrals:

K
〈Q | T̄ (K)ε2,ε1

(λ1) T̄
(K)
ε4,ε3
(λ2) . . . T̄ (K)ε2m,ε2m−1

(λm) =
∑

h

m
∏

j=1

[b dh(λ j)]
N
∏

n=1

Q(ξ(hn)
n )

×
1
∏

j=m











 

d

b

∮

C∞
+

k2

b

∮

Γ2 j

!

dz2 j

2πi (λ j − z2 j)

a(z2 j)

dh(z2 j)

Q(z2 j −η)
Q(z2 j)

j−1
∏

k=1

z2 j −λk −η
z2 j −λk





ε̄2 j

×





 

a

b

∮

C∞
+

k1

b

∮

Γ2 j−1

!

dz2 j−1

2πi (λ j − z2 j−1)

d(z2 j−1)

dh(z2 j−1)

Q(z2 j−1 +η)

Q(z2 j−1)

j−1
∏

k=1

z2 j−1 −λk +η

z2 j−1 −λk





ε̄2 j−1






×
∏

1≤ j<k≤2m

�

z j − zk

z j − zk + (−1)kη

�ε̄ j ε̄k

V (ξ(h1)
1 , . . . ,ξ(hN )

N )
K
〈h | . (202)

Here we have defined, for 1 ≤ j ≤ m, ε̄2 j = ε2 j − 1 and ε̄2 j−1 = 2 − ε2 j−1. The contour C∞
surrounds counterclockwise only the pole at infinity, the contours Γ2 j surround counterclockwise
the points ξn, 1≤ n≤ N, the points z2k−1+η, k > j, and no other poles in the integrand, whereas
the contours Γ2 j−1 surround counterclockwise the points ξn − η, 1 ≤ n ≤ N, the points z2k − η,
k ≥ j, and no other poles in the integrand.

This result can be proven similarly as Proposition 5.1. It is interesting to note here that
the extra contribution in (161)-(162) with respect to (16) and (17) can directly be taken into
account by a contribution of the pole at infinity in the multiple integral representations (201)
and (202).

Hence, moving the contour as in Proposition 5.2 will simply result in a modification of
the weights of the contributions of the different poles, and in particular of the pole at infinity.
More precisely, the analog of Proposition 5.2 in the case of the twist K (154) can be formulated
as follows:

Proposition 7.2. For generic parameters λ1, . . . ,λm, the multiple action of a product of operators
T̄ (K)ε2,ε1

(λ1) T̄ (K)ε4,ε3
(λ2) · · · T̄ (K)ε2m,ε2m−1

(λm), εi ∈ {1, 2}, 1 ≤ i ≤ 2m, on a generic separate state
K
〈Q |

of the form (200) can be written as the following sum of contour integrals:

K
〈Q | T̄ (K)ε2,ε1

(λ1) T̄
(K)
ε4,ε3
(λ2) . . . T̄ (K)ε2m,ε2m−1

(λm) =
∑

h

bm
m
∏

j=1

dh(λ j)
N
∏

n=1

Q(ξ(hn)
n )

×
1
∏

j=m











 

k2 − d

b

∮

C∞
+

k2

b

∮

C j

!

dz2 j

2πi (z2 j −λ j)

a(z2 j)

dh(z2 j)

Q(z2 j −η)
Q(z2 j)

j−1
∏

k=1

z2 j −λk −η
z2 j −λk





ε̄2 j

×





 

k1 − a

b

∮

C∞
+

k1

b

∮

C j

!

dz2 j−1

2πi (z2 j−1 −λ j)

d(z2 j−1)

dh(z2 j−1)

Q(z2 j−1 +η)

Q(z2 j−1)

j−1
∏

k=1

z2 j−1 −λk +η

z2 j−1 −λk





ε̄2 j−1






×
∏

1≤ j<k≤2m

�

z j − zk

z j − zk + (−1)kη

�ε̄ j ε̄k

V (ξ(h1)
1 , . . . ,ξ(hN )

N )
K
〈h | , (203)
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where we have defined ε̄2 j−1 = 2− ε2 j−1, ε̄2 j = ε2 j − 1. The contour C∞ only surrounds coun-
terclockwise the pole at infinity, whereas the contours C j , 1≤ j ≤ 2m, surround counterclockwise
the points qn, 1≤ n≤ R, λ`, 1≤ `≤ j, and no other pole of the integrand.

Remark 11. It is interesting to observe that, when k1 and a tend to the same non-zero value ā,
whereas k2 and d tend to the same non-zero value d̄, the contributions of the pole at infinity
become negligible compared to the contributions of the other poles. This is in particular the
case when we tend (from non-diagonal values) to a diagonal matrix K . The contributions of
the pole at infinity also disappear when the matrix K is triangular with c = 0, b 6= 0, a = k1,
d= k2.

7.3 Correlation functions

We can now compute, for any 2m-tuple ε≡ (ε1, . . . ,ε2m), the matrix elements of the form

F (K)m (τ,ε) =
K
〈Qτ |

∏m
j=1 E

ε2 j−1,ε2 j

j |Qτ 〉K

K
〈Qτ |Qτ 〉K

(204)

=
K
〈Qτ | T̄ (K)ε2,ε1

(ξ1) . . . T̄ (K)ε2m,ε2m−1
(ξm) |Qτ 〉K

∏m
k=1τ(ξk) K

〈Qτ |Qτ 〉K
, (205)

and their thermodynamic limit

F (K)m (ε) = lim
N→∞

K
〈Qτ |

∏m
j=1 E

ε2 j−1,ε2 j

j |Qτ 〉K

K
〈Qτ |Qτ 〉K

, (206)

for |Qτ 〉K being an eigenstate of the transfer matrix (156) described in the thermodynamic
limit by the density of roots ρtot.

The different steps of the computation follow closely what has been done in the anti-
periodic case. We have first to rewrite the multiple integrals in terms of sums on the residues
as done in Corollary 5.1. Here, we have just to pay attention to the different weights associated
with the residues, i.e. k2/b or k1/b for the finite poles and (k2 − d)/b or (k1 − a)/b for the
poles at infinity. Hence, we can rewrite (204) as a sum over scalar products as in (103). More
precisely, the analog of Proposition 5.2 in the case of the twist K (154) can be formulated as
follows:

Proposition 7.2. For a given 2m-tuple ε≡ (ε1, . . . ,ε2m) ∈ {1, 2}2m, let us define the sets α−ε and
α+ε as in (101)-(102). Then,

F (K)m (τ,ε) =
bm−sε−s′ε

∏m
k=1τ(ξk)

∑

ᾱ−ε⊂α
−
ε

ᾱ+ε⊂α
+
ε

(−1)(m−#ᾱ−ε+#ᾱ+ε )N (k1 − a)sε−#ᾱ−ε (k2 − d)s
′
ε−#ᾱ+ε

∑

{a j ,a
′
j}

×
∏

j∈ᾱ−ε









k1 d(qa j
)
∏R+ j−1

k=1
k∈A j

(qa j
− qk +η)

∏R+ j
k=1
k∈A′j

(qa j
− qk)









∏

j∈ᾱ+ε









k2 a(qa′j
)
∏R+ j−1

k=1
k∈A′j

(qk − qa′j
+η)

∏R+ j
k=1

k∈A j+1

(qk − qa′j
)









× K
〈 Q̄Am+1

|Qτ 〉K
K
〈Qτ |Qτ 〉K

. (207)

In (207), the first summation is taken over all subsets ᾱ−ε of α−ε and ᾱ+ε of α+ε , whereas the second
summation is taken over the indices a j for j ∈ ᾱ−ε and a′j for j ∈ ᾱ+ε defined as in (104)-(106).
Moreover, Q̄Am+1

is the polynomial of degree R̄ = #Am+1 = R+m−#ᾱ− −#ᾱ+ defined in terms
of the roots q1, . . . , qR of Qτ and of qR+ j ≡ ξ j , 1≤ j ≤ m, as in (107).
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The corresponding scalar products are then computed using the identities of section 3.2
of [113]: in [113], these scalar products were shown to admit a Slavnov’s type determinant
formula (see formula (3.46) of [113]) associated to a twist parameter µ, which in our current
case reads µ= k2/k1. More precisely, in the case R̄≥ R, i.e. m≥ #ᾱ− +#ᾱ+, we have

K
〈 Q̄Am+1

|Qτ 〉K
K
〈Qτ |Qτ 〉K

= (−1)N(R̄−R)(1−µ)R−R̄

∏R̄
j=1

�

µ a(q̄ j)
∏R

k=1(qk − q̄ j +η)
�

∏R
j=1

�

µ a(q j)
∏R

k=1(qk − q j +η)
�

×
V (qR, . . . , q1)
V (q̄R̄, . . . , q̄1)

detR̄ M(µ)(q | q̄)
detR N (µ)(q)

, (208)

with
�

M(µ)(q | q̄)
�

j,k =

(

t(q j − q̄k)−µ−1aQ(q̄k) t(q̄k − q j) if j ≤ R,

(q̄k) j−R−1 −µ−1aQ(q̄k) (q̄k +η) j−R−1 if j > R,
(209)

�

N (µ)(q)
�

j,k =
�

M(µ)(q |q)
�

j,k = −µ
−1a′Q(q j)δ j,k + K(q j − qk) ,

=
a′Q(q j)

aQ(q j)
δ j,k + K(q j − qk) , (210)

in which we have used the notations (111)-(112) and (115), and the Bethe equations

−µ−1aQ(q j) = 1, j = 1, . . . , R . (211)

Note that, for {q̄1, . . . , q̄R̄} ⊂ {q1, . . . , qR}∪{ξ1, . . . ,ξm}, the matrices (209) and (210) coincide
respectively with (113) and (114), i.e. the explicit µ-dependance disappears.

It now remains to identify the terms in the sum (207) which are vanishing and non-
vanishing in the thermodynamic limit. Since the the matrices (209) and (210) coincide re-
spectively with (113) and (114), the direct analog of Proposition 6.1 for the ratio of scalar
products in the K-twisted case still holds. In particular, the results (119) and (120) remain
valid in this case.

Let us observe that, for a given 2m-tuple ε≡ (ε1, . . . ,ε2m),

sε + s′ε = mA+mD + 2mC , (212)

where sε and s′ε are defined as in (101)-(102) and mX is the number of X (K)(λ) in (205), for
X ∈ {A, B, C , D}, and let us first consider the case

sε + s′ε ≤ m, i.e. mC ≤ mB . (213)

We can then repeat the first part of the proof of Corollary 6.1 and derive that the only non-
vanishing elementary blocks under the condition (213) are those for which sε + s′ε = m, there
the only contributing terms are the ones for which the pole at infinity does not contribute, i.e.
for which ᾱ±ε = α

±
ε . If now

m< sε + s′ε, i.e. mB < mC , (214)

and if moreover c 6= 0, we can repeat all the computations in the SoV basis given by the
eigenbasis of C (K)(λ). All the steps that we have described here repeat in the same way but
the role of B and C are exchanged. It is easy to verify than the elementary blocks vanish
under the condition (214) since, with this construction, the number of sums that we generate
is smaller than the order with which the scalar products go to zero in the thermodynamic
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limit, as explained in the first part of the proof of Corollary 6.1. If instead c = 0, i.e. if the
matrix K is triangular, then the contributions of the poles at infinity disappear (see Remark 11),
so that the first sum in (207) reduces to the term ᾱ+ε = α

+
ε and ᾱ−ε = α

−
ε . We can then

conclude from the fact that the scalar product is vanishing when deg Q̄Am+1
< degQτ, with

here deg Q̄Am+1
= degQτ + m − sε − s′ε, see (119)15, so that the corresponding elementary

blocks also vanish (even in finite size) under the condition (214).
Therefore, we have proven that

F (K)m (ε) = δsε+s′ε,m
lim

N→∞

m
∏

k=1

1
τ(ξk)

∑

{a j ,a
′
j}

∏

j∈α−ε









k1 d(qa j
)
∏R+ j−1

k=1
k∈A j

(qa j
− qk +η)

∏R+ j
k=1
k∈A′j

(qa j
− qk)









×
∏

j∈ᾱ+ε









k2 a(qa′j
)
∏R+ j−1

k=1
k∈A′j

(qk − qa′j
+η)

∏R+ j
k=1

k∈A j+1

(qk − qa′j
)









K
〈 Q̄Am+1

|Qτ 〉K
K
〈Qτ |Qτ 〉K

, (215)

where, as already mentioned, the ratio of scalar products is computed in the thermodynamic
limit by the formula (120) of Proposition 6.1. We have to use now the analog of formulas
(144) and (145) in the K-twisted case, i.e.

τ(ξk) = k2 a(ξk)
Qτ(ξk −η)

Qτ(ξk)
, k = 1, . . . , N , (216)

k1 d(qa j
) = −k2 a(qa j

)
Qτ(qa j

−η)

Qτ(qa j
+η)

, ∀ a j ≤ R , (217)

and the observation that d(qa j
) = 0 for any a j > R, to rewrite the non-zero terms of (215) in

a form that coincides with (146)-(147).
Hence, we have shown the following result:

Proposition 7.3. For any 2m-tuple ε ≡ (ε1, . . . ,ε2m), the matrix element of the form (206)
in the K-twisted chain coincides, in the thermodynamic limit, with its counterpart (148) in the
anti-periodic or periodic chain, i.e.

F (K)m (ε) = Fm(ε) , (218)

and is given by the multiple integral representations (149), (153). In particular, this matrix
elements vanishes when sε + s′ε 6= m, where sε, s′ε are defined as in (101)-(102).

In other worlds, we have here explicitly shown that — as expected from physical argu-
ments — the ground state correlation functions of the XXX spin 1/2 chain with quasi-periodic
boundary conditions do not depend, in the thermodynamic limit, on the particular boundary
condition we consider, i.e. on the particular form of the twist matrix K , and coincide with
the correlation functions of the periodic chain in the thermodynamic limit, at least for non-
diagonal twists. Of course, the same statement can be proven for diagonal twist, by developing
the same computations in the algebraic Bethe Ansatz framework as done in the periodic case
in [19].

15This can also be seen from the fact that, in the triangular case,
K
〈 Q̄Am+1

| ∈ H∗−N/2,...,R̄−N/2
with degAm+1 = R̄

whereas |Qτ 〉K ∈HR−N/2,...,N/2 with degQτ = R (see Remark 10).
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8 Conclusion

In this paper, we have explained how to compute correlation functions in the quantum SoV
framework, and shown that it is possible to obtain, in this framework, the same kind of results
as in the algebraic Bethe Ansatz framework [19] or the q-vertex operator approach [24]. To
this aim, we have considered a very simple example, the twisted XXX spin chain.

One of the difficulties of the SoV approach for its applicability to physical systems comes
from the fact that all results are a priori obtained in terms of the non-physical inhomogeneity
parameters that have to be introduced for the method to work. Getting rid of these inho-
mogeneity parameters, i.e. taking the homogeneous limit, may be a very non-trivial task: at
the level of the spectrum, we naturally obtain a description in terms of a discrete Baxter TQ-
equation that we need to reformulate into a more conventional one [112]; the determinant
representations for the scalar products that we naturally obtain also need to be transformed
into more tractable expressions [113]; finally, the action of local operators on separate states
involves the inhomogeneity parameters in a very intricate way, and needs to be reformulated.

This last point is crucial if we want to use this approach for the direct computation of
correlation functions, and bring the SoV approach to same level of achievement as the algebraic
Bethe Ansatz [19] or the q-vertex operator approach [24]. In this paper, we have therefore
explained how to transform the SoV action into a more conventional one, involving the roots
of the Baxter Q-function (the "Bethe roots") rather than the inhomogeneity parameters. More
precisely, we have expressed these actions using multiple contour integrals: taking the residues
inside the contours, we recover the SoV action in terms of the inhomogeneity parameters;
taking the residues outside the contours, we obtain an ABA-type action, in terms of "Bethe
roots". Note that, doing this, we also obtain some extra contributions from the pole at infinity.
In fact, the correlation functions of the (non-diagonally) twisted XXX chain in finite volume
involve many additional contributions with respect to the periodic or diagonally-twisted one,
since the spin Sz is no longer conserved. We have explicitly shown here that all these extra
contributions are vanishing in the thermodynamic limit, hence leading in this limit to the same
result as in the periodic case.

We expect our approach to correlation functions in SoV to be generalizable to more com-
plicated models. A natural question in this respect concerns the (anti-periodic) XXZ chain
which, contrary to what happens in the periodic case with Bethe Ansatz, is not a trivial gen-
eralization of the XXX case: new difficulties appear due to the fact that the Baxter Q-function
is no longer a usual trigonometric polynomial [112, 131]. We intend to solve this problem in
a future publication (see [135] for first results on scalar products and form factors). Another
natural and interesting question concerns the correlation functions of open chains (XXX or
XXZ) with non-diagonal boundaries, for which preliminary results have already been obtained
concerning scalar products of separate states [115,134].

The computation of correlation functions for quantum integrable models associated to the
higher rank cases is then a next natural target of great relevance. Given the recent notable
achievements [6,88,117–129] in their SoV description, with first results available also on com-
pact scalar product formulae, the task to compute correlation functions in higher rank seems
very promising nowadays. This is, in particular, the case if one can compute the action of the
local operators in the simplified SoV basis introduced in [127] for the rank 2 models. Indeed,
under this choice the SoV measure simplify considerably and rank 1 Slavnov’s type determi-
nants appear for the scalar product of separate states with transfer matrix eigenvectors. Then,
the manipulations described in the present article for these determinants in the thermody-
namic limit should be extendible to the higher rank case, under the assumption of a suitable
description of the density of the Bethe roots in this limit. Nevertheless, one should point out
that at the current stage the main difficulty left is exactly the computation of the action of
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local operators on these higher rank SoV basis. This represents a new problem mainly for the
complexity of the action of the monodromy matrix elements on the SoV basis. In fact, one
should recall that up now only the action of the transfer matrix has been computed in these
SoV basis and this was possible thanks to the use of the fusion relations satisfied by the same
transfer matrices. How to generalize this to the other elements of the monodromy matrix is
currently under analysis but still at an early stage to be here discussed.
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A On elementary blocks for similar transfer matrices

In this paper, as in [19, 24], we have not computed the more general correlation functions
but their elementary buildings blocks, i.e. quantities of the form (70). Here we make some
comments on the role of the GL(2) transformations on such elementary building blocks for the
quasi-periodic XXX chains, and on the consequences for the computation of such elementary
building blocks for similar transfer matrices.

Due to the GL(2)-invariance of the XXX R-matrix (4), the transfer matrix of the periodic
chain,

T (I)(λ) = tr0T0(λ) , (219)

satisfies, for any invertible matrix γ ∈ GL(2), the invariance property

[T (I)(λ), Γ ] = 0 Γ =
N
⊗

n=1

γn . (220)

As a consequence of this invariance, we obtain the following identity on the elementary blocks
of correlation functions:

〈ΨI |
∏m

j=1 E
ε2 j−1,ε2 j

j |ΨI 〉

〈ΨI |ΨI 〉
=
〈ΨI |Γ

�

∏m
j=1 E

ε2 j−1,ε2 j

j

�

Γ−1 |ΨI 〉

〈ΨI |ΨI 〉
, (221)

where |ΨI 〉 denotes any eigenstate of (219).
However, one should point out that, as soon as we consider quasi-periodic boundary con-

ditions with a non-identity twist K , the GL(2) invariance of the transfer matrix is lost. Hence,
in general, for such a twisted chain in finite volume,

〈ΨK |
∏m

j=1 E
ε2 j−1,ε2 j

j |ΨK 〉

〈ΨK |ΨK 〉
6=
〈ΨK |Γ

�

∏m
j=1 E

ε2 j−1,ε2 j

j

�

Γ−1 |ΨK 〉

〈ΨK |ΨK 〉
, (222)

for any γ which does not commute with K , where |ΨK 〉 denotes a given eigenstate of the K-
twisted transfer matrix T (K)(λ). Let use now consider the twist Kγ = γ−1 K γ. The Kγ-twisted
transfer matrix is then given by

T (Kγ)(λ) = Γ−1 T (K)(λ) Γ , (223)

and admits the following eigenstates:

〈ΨKγ |= 〈ΨK | Γ , |ΨKγ 〉= Γ
−1 |ΨK 〉 . (224)
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Hence,
〈ΨK |Γ

�

∏m
j=1 E

ε2 j−1,ε2 j

j

�

Γ−1 |ΨK 〉

〈ΨK |ΨK 〉
=
〈ΨKγ |

∏m
j=1 E

ε2 j−1,ε2 j

j |ΨKγ 〉

〈ΨKγ |ΨKγ 〉
, (225)

and the inequality (222) can be equivalently rewritten as

〈ΨK |
∏m

j=1 E
ε2 j−1,ε2 j

j |ΨK 〉

〈ΨK |ΨK 〉
6=
〈ΨKγ |

∏m
j=1 E

ε2 j−1,ε2 j

j |ΨKγ 〉

〈ΨKγ |ΨKγ 〉
, (226)

for any γ which does not commute with K . That is, the same elementary block associated to
two similar transfer matrices (or equivalently to two similar twist matrices) do not in general
coincide in the finite chain. Of course, the equality may be recovered in the thermodynamic
limit, and we have indeed shown in section 7 that

F (K)m (ε) = F (Kγ)m (ε) , (227)

provided |ΨK 〉 and |ΨKγ 〉 are described in the thermodynamic limit by the density of Bethe
roots (57) on the real axis.

Finally, we want to point out that it is a priori not easy to deduce the expression of an
elementary block in the gauge transform model from the ones that we can compute in the
original model. In this respect, the exact computations of the elementary blocks that we have
developed in the SoV framework for the quasi-periodic boundary conditions associated to non-
diagonal twist matrices K is an interesting set of results in their own and not only for their
ability to describe our SoV approach to correlation functions.

In fact, let K be non-diagonal but diagonalizable and Kγ diagonal, then the similarity re-
lations (223) may suggest that, in the XXX chain, one can compute the elementary blocks of
the quasi-periodic boundary condition associated to the twist K in terms of those of the twist
Kγ, as it follows:

〈ΨK |
∏m

j=1 E
ε2 j−1,ε2 j

j |ΨK 〉

〈ΨK |ΨK 〉
=
〈ΨKγ |

�

Γ−1
�

∏m
j=1 E

ε2 j−1,ε2 j

j

�

Γ
�

|ΨKγ 〉

〈ΨKγ |ΨKγ 〉
. (228)

The main problem with this approach is that the matrix element on the r.h.s. of the above
identity is not one simple elementary block but in general the sum of 4m different elementary
blocks. Now by the symmetry satisfied by T (Kγ)(λ) some of them can be proven to be zero
and we know how to compute all the others in the ABA framework but we have still to sum
all them up to get just one elementary block associated to the transfer matrix T (K)(λ). Our
previous discussion tells us that this sum has to reproduce in the thermodynamic limit always
the same elementary block. We have proven it by our direct SoV approach, however to prove
it only in the ABA framework seems a complicate task as it is equivalent to prove that the large
sum of nonzero elementary blocks obtained expanding the difference:

〈ΨKγ |
�

Γ−1
�

∏m
j=1 E

ε2 j−1,ε2 j

j

�

Γ
�

|ΨKγ 〉

〈ΨKγ |ΨKγ 〉
−
〈ΨKγ |

∏m
j=1 E

ε2 j−1,ε2 j

j |ΨKγ 〉

〈ΨKγ |ΨKγ 〉
, (229)

has to be zero in the thermodynamic limit.
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