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Abstract

We investigate the properties of local minima of the energy landscape of a continuous
non-convex optimization problem, the spherical perceptron with piecewise linear cost
function and show that they are critical, marginally stable and displaying a set of pseudo-
gaps, singularities and non-linear excitations whose properties appear to be in the same
universality class of jammed packings of hard spheres. The piecewise linear perceptron
problem appears as an evolution of the purely linear perceptron optimization problem
that has been recently investigated in [1]. Its cost function contains two non-analytic
points where the derivative has a jump. Correspondingly, in the non-convex/glassy
phase, these two points give rise to four pseudogaps in the force distribution and this
induces four power laws in the gap distribution as well. In addition one can define an
extended notion of isostaticity and show that local minima appear again to be isostatic
in this phase. We believe that our results generalize naturally to more complex cases
with a proliferation of non-linear excitations as the number of non-analytic points in the
cost function is increased.
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1 Introduction

Marginal stability of hard sphere packings at jamming has been the subject of an intensive
line of studies in the last twenty years [2, 3]. This stream of works has culminated in the
exact solution of the statistical mechanics of dense glassy hard spheres in infinite spatial di-
mensions [4]. This has allowed a detailed description of the critical behavior observed at the
jamming transition point. In particular, the critical pseudogaps in the distribution of contact
forces between spheres as well as the divergence of the gap distribution for small gaps have
been completely characterized in infinite dimensions. Remarkably, the mean field predictions
have been shown, within numerical precision, to hold down to two dimensional hard sphere
packings, see [5] for a review, something that has pushed towards a statement about the upper
critical dimension for the jamming transition to be two [6–8]. Furthermore, these predictions
have been shown to agree with the real space scaling argument description of marginal stabil-
ity of jammed packings [3].

The critical behavior observed at jamming was believed to be peculiar of the transition
point. Instead, very recently it has been shown that there is nothing special about jamming.
In [1,9] it was performed a systematic investigation of the properties of soft spheres interacting
with a purely linear repulsive potential as well as a mean field version of the same optimization
problem, namely the spherical perceptron with linear cost function. In particular it has been
shown that in the jammed phase, when the potential energy is non-convex with respect to the
degrees of freedom, both systems self-organize into marginally stable, critical configurations
at finite energy density. The corresponding properties appear to be remarkably close to the
ones of amorphous jammed packings of hard spheres implying that the criticality emerging
at the jamming transition is not so special after all. In particular, local minima of the energy
landscape are characterized by a set of non-linear excitations. These excitations correspond
to the breaking of contacts between pairs of spheres, while the related relaxation mechanisms
correspond to the formation of contacts. As a difference with respect to jamming, such excita-
tions are richer in nature, because the system has more mechanisms to break or form a contact
between two spheres. At variance with hard spheres at jamming, for jammed linear spheres
one could have in addition to contacts becoming positive gaps also contacts becoming nega-
tive gaps. Conversely, the formation of new contacts may come from small overlaps or positive
gaps. The abundance of these excitations depends on how many forces in the contact network
have values close to the stability bounds. It is controlled by the behavior of the force density
distribution near the bounds, which has power law behavior with universal critical exponents.
Similarly, the formation of contacts is controlled by the abundance of small gaps between pairs
of spheres, which has a power law behavior with corresponding critical exponents [3,10].

Remarkably, the critical exponents controlling the excitations’ density appear to be the
same (within numerical precision) to the ones of the jamming point of hard spheres. It fol-
lows that jamming criticality is inherently linked to the non-analyticity of the interaction po-
tential. In the jammed phase, this becomes evident since, despite the fact that the energy is
positive, packings sit on minima in which there is an isostatic1 number of spheres that just
touch (contacts). Therefore jamming criticality, meaning the type of marginal stability found
at the jamming transition, survives in the whole jammed glassy phase.

In this work we explore what happens if the interaction potential has several linear ramps
with different slopes separated by non-analytic points. We show that if we consider a piecewise
generalization of the linear potential studied in [1,9], we obtain again that the jammed phase
of the corresponding optimization problem is made of marginally stable minima whose prop-

1A mechanical system can be in mechanical equilibrium if the number of constraining forces is greater or equal
than the number of degrees of freedom. If they are equal, then the mechanical stability condition is marginally
satisfied and the system is said to be isostatic.
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erties are again very close to hard spheres at jamming. Remarkably, we get that isostaticity
still holds but we need to extend its notion to include the fact that gaps can sit in different non-
analytic points of the interaction potential. Furthermore we show that for each non-analytic
point of the cost function, two pseudogaps emerge whose critical exponents appear to be the
same as the ones controlling the jamming transition. This implies a proliferation of non-linear
excitations that can trigger plastic events when the system is perturbed in some way [10]. Our
results reinforce the fact that jamming criticality does not pertain only to the jamming point
but it is rather related to two concomitant ingredients: the singular nature of the cost function
and the non-convex nature of the problem.

2 The model

We consider the spherical perceptron optimization problem with a piecewise linear cost func-
tion. The model is a mean field model for the corresponding optimization problem for spheres
interacting with piecewise linear cost function in finite dimensions. Despite the fact that the
study we perform here can be extended verbatim to piecewise linear spheres, we leave this
for future work. However, given the results of Ref. [9], we expect that the conclusions we will
draw from the analysis of the perceptron problem will apply also to finite dimensional spheres.

The perceptron optimization problem [11, 12] is defined by an N dimensional vector x
which lives on the N -dimensional sphere |x |2 = N . In addition, one extracts M = αN N -
dimensional random vectors ξµ with µ = 1, . . . , M . Every component of all these random
vectors is a Gaussian random variable with zero mean and unit variance. Given the set of ran-
dom vectors, also called patterns, and the state vector x , one can define a set of gap variables
defined as hµ = ξ

µ · x/
p

N − σ, being σ and α control parameters of order one. The opti-
mization problem is defined in terms of such gap variables. One constructs the cost function

H[x] =
αN
∑

µ=1

v(hµ) , (1)

and asks to find the value of x that minimizes it. In this work we consider the piecewise linear
cost function defined as

v(h) =











−2h−H0 h< −H0

−h h ∈ [−H0, 0]
0 h> 0

, (2)

where H0 is a positive constant of order one that is taken to be fixed. In Fig. 1 we sketch the
form of the corresponding potential. The model admits a satisfiable phase that happens when,
given α, one chooses a sufficiently small σ. In this case one can find a configuration of x such
that hµ > 0 for all µ = 1, . . . , M . Conversely, as soon as one increases σ, fixing α, one finds a
point (that may be algorithm-dependent) beyond which finding configurations where all gaps
are positive becomes algorithmically impossible. This corresponds to the jamming transition
of the model. It is clear that the properties of the configurations at jamming do not depend on
the cost function, since up to jamming no negative gap is present. For this reason we are not
interested in studying jamming which has been fully analyzed in [12,13]. Instead we want to
look at the system beyond the jamming point. In this case local minimization algorithms such
as gradient descent get stuck in local or global minima, depending on the convexity of the
problem. We want to characterize the properties of such minima. We note that the spherical
perceptron problem with purely linear potential studied in [1] can be obtained from Eq. (2)
by taking the limit H0→∞.
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Figure 1: The piecewise linear cost function v(h) defined in Eq. (2) where we set
H0 = 0.3.

In order to characterize local minima of the energy landscape we look at the distribution
of gap variables. In the purely linear perceptron case of [1] it was found that the jammed
non-convex/glassy phase contains minima where the distribution of gap variables contains a
Dirac delta peak at h= 0. The weight of the peak is equal to N which is the number of degrees
of freedom in the problem. This implies that local minima have an isostatic number of gaps
that are strictly equal to zero. This is the version of isostaticity that emerges when the cost
function is purely linear. The presence of this isostatic peak is accompanied by an isostatic
set of contact forces that can be thought as Lagrange multipliers needed to enforce that the
corresponding gaps vanish.

In the present case we will show that we get a similar phenomenology. It is clear that in the
glassy jammed phase the piecewise linear cost function induces the appearance of two Dirac
delta peaks in the distribution of gaps centered in h = 0 and h = −H0. Correspondingly one
will have two sets of contact forces. The main questions we are interested in are: is the system
going to be isostatic? What is the version of isostaticity that applies to this case? What are the
properties of the contact forces? And what is the behavior of the distribution of gap variables
in the jammed glassy phase of the model?

For what follows it will be convenient to introduce some notation to saparate the different
types of gaps and contacts. We define the gaps that are less than−H0 by O< ≡ {µ : hµ < −H0}.
Furthermore we define by O= the set of gaps that are in the interval (−H0, 0), namely
O= ≡ {µ : hµ ∈ (−H0, 0)}. Moreover we define the set of contacts in
h= −H0 as CH0

≡ {µ : hµ = −H0} and the set of contacts in h= 0 as C0 ≡ {µ : hµ = 0}.

3 Numerical simulations

In order to understand the properties of local minima of the model, we perform numerical
simulations. We use the algorithm presented in [10], adapted now to the broken linear poten-
tial case, and the gradient descent minimizations of a regularized version of the potential, as
done in [1].

In order to take into account the gaps that may end up being either exactly in zero or in
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−H0, we define the Lagrangian

L=
∑

µ∈O<∪O=
v(hµ)−
∑

µ∈C0

fµhµ

−
∑

µ∈CH0

fµ(hµ +H0) +
µ

2
(|x |2 − N)− pNσ ,

(3)

where we have added the contact forces fµ that take into account the gaps that eventually fall
in h= 0 or in h= −H0. In addition we have introduced a Lagrange multiplier µ that is needed
to enforce the spherical constraint on the vector x . The last term is added to change the control
parameter from σ to the pressure p. Given the Lagrangian L, a local minimum satisfies the
variational equations with respect to both x as well as the contact forces and σ (which is no
more a control parameter in the problem, and it is fixed essentially by the pressure).

The constitutive equations for local minima are

µx i = 2
∑

µ∈O<

ξ
µ
ip
N
+
∑

µ∈O=

ξ
µ
ip
N
+
∑

µ∈C0∪CH0

fµξ
µ
ip

N

p =
2
N

∑

µ∈O<
1+

1
N

∑

µ∈O=
1+

1
N

∑

µ∈C0∪CH0

fµ

hµ = 0 ∀µ ∈ C0

hµ = −H0 ∀µ ∈ CH0

|x |2 = N .

(4)

It is clear from the two slopes of the linear parts of the interaction potential that a physical
solution to the variational equations (4) requires that

fµ ∈ (0, 1) ∀µ ∈ C0

fµ ∈ (1, 2) ∀µ ∈ CH0
.

(5)

If a solution has contact forces that are outside the corresponding stability intervals, such
solutions identify an unstable configuration.

We observe that, as it happens for the purely linear case [10], the LagrangianL is effectively
linear in all variables except for the term proportional to µ. Therefore the convexity of the
Lagrangian we are minimizing is due to the spherical geometry of x and is self-determined by
the sign of µ. If µ < 0 we are in the non-convex phase with multiple minima and a glassy
landscape, while if µ > 0 we are in a convex phase with just one minimum. We will make use
of this fact when arguing for isostaticity, see Eq. (8).

We choose to work at fixed α and to explore the jammed phase. We note that the value
we have chosen for α corresponds to the situation in which jamming happens in a non-
convex marginally stable situation and therefore it is in the same universality class as hard
spheres [12]. Conversely if we choose α ≤ 2, jamming appears to be in a convex regime and
is not critical anymore. Since we are interested in the properties of the non-convex/glassy
phase, we fix α = 4 , for which jamming is obtained at σJ ' −0.42. We explore the en-
ergy minima of the jammed phase in two ways. The first method is fixing a positive pres-
sure p > 0 and performing a gradient-descent minimization of the smoothed Lagrangian2

2In the L-BFGS minimizations, we substitute the Lagrangian term imposing the spherical constraint, i.e.
µ

2 (|x |
2 − N), with a quartic potential η

4 (|x |
2 − N)2, where η is a parameter chosen to be "large enough" in the

numerical simulations. We empirically set η= 500. The Lagrange multiplier µ is recovered by lim
η→∞

η(|x |2−N) = µ.
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Figure 2: The Lagrange multiplier µ as a function of the distance to jamming. The
jump observed at σ = σJ is due to finite size effects. Indeed in a finite system
the configuration at jamming is stable for a finite amount of pressure before being
destabilized and entering in the jammed phase [10]. The Lagrange multiplier is
negative in the non-convex phase while it is positive when the landscape becomes
convex. The data produced by the compression algorithm and the gradient-descent
(L-BFGS) minimizations are consistent showing that despite the fact that they are
different, they land on family of local minima that have very similar properties. The
figure has been produced simulating the model, with both algorithms, at α = 4 and
N = 512, averaging over 100 samples. The errorbars represent sample to sample
fluctuations.

Lε(x ,σ) =
∑

µ vε(hµ) +
µ
2 (|x |

2 − N) − pNσ, where the ε-regularized potential vε(h) corre-
sponds to v(h) with the singularities regularized by quadratic parts with curvature 1/ε:

vε(h) =



























−2h−H0 h< −H0 −
ε
2

−h+ 1
2ε(h+H0 −

ε
2)

2 h ∈ [−H0 −
ε
2 ,−H0 +

ε
2]

−h h ∈ [−H0 +
ε
2 ,− ε2]

1
2ε(h−

ε
2)

2 h ∈ [− ε2 , ε2]
0 h> ε

2

. (6)

It is evident that lim
ε→0

vε(h) = v(h) and that the derivatives of the quadratic parts of vε(h) provide

the contact forces through lim
ε→0
(hµ − ε/2)/ε = − fµ for hµ ∈ [−ε/2,ε/2] and

−1 + lim
ε→0
(hµ +H0 − ε/2)/ε = − fµ for h ∈ [−H0 − ε/2,−H0 + ε/2]. We find the minima of

L at fixed p by minimizing Lε with the L-BFGS algorithm [14] and performing an annealing
on the parameter ε to go to ε→ 0. The gaps whose values end up in the ε-windows around
0 and −H0 form the sets C0 and CH0

respectively. The second method consists in finding the
jamming point3 σJ and progressively compressing the system as in [10]. The minima explored
by the two methods show statistical properties that are in perfect agreement.

In Fig.2 we plot the behavior of the Lagrange multiplier µ as a function of σ −σJ being
σJ the jamming point. It is clear that as soon as we enter the jammed phase, the landscape

3We do it by performing an L-BFGS minimization of Lε as described in the text, but using a pressure p small
enough (see Ref. [10]).
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Figure 3: The number (normalized by N) of contacts in h = 0, meaning c0, in
h = −H0, meaning cH0

, and their sum. We clearly see that in the whole interval
in which the system is in the glassy/non-convex phase, the total amount of gaps in
the two non-analytic points of the cost functions is isostatic. Isostaticity is lost when
the system is in the convex phase. Also in this case, as for the purely linear cost func-
tion, we notice that, in the glassy phase, the sample to sample fluctuations away from
isostaticity are essentially absent. The data produced by the compression algorithm
and the gradient-descent (L-BFGS) minimizations are consistent showing again that
the minima explored by the two algorithms have similar properties. The figure has
been produced simulating the model, with both algorithms, at α = 4 and N = 512,
averaging over 100 samples. The errorbars represent sample to sample fluctuations.

is strictly non-convex being the Lagrange multiplier negative. When compressing the system
further, it undergoes a topology trivialization transition at σconv − σJ = ∆σconv (' 1.196
for α = 4) towards a convex phase where the landscape is made of just one unique mini-
mum and the Lagrange multiplier µ becomes positive. The behavior of µ is the same both for
configurations explored through the compression algorithm and for those found by L-BFGS
minimizations. We expect that this transition can also be found by analyzing the problem
with the replica method and corresponds to the point where replica symmetry breaking ap-
pears (coming from the convex/non-glassy phase). This behavior mirrors the one found for
the purely linear case [1,10].

We now focus on the properties of the local minima in the glassy phase. We first measure
the cardinality of the sets C0 and CH0

. This is plotted in Fig. 3 where we show the data for
|CH0
|/N = cH0

, |C0|/N = c0 and the total number of contacts. At the beginning of the com-
pression protocol the system contains N gaps in zero and therefore the system is isostatic with
a number |C0| = c0N = N . As soon as we enter the jammed phase, contacts in −H0 start to
appear. Remarkably we find that

|C0|+ |CH0
|= N , (7)

which implies that the system is isostatic only globally. The number of gaps in h = 0 or in
h = −H0 fluctuates but the total sum is equal to the degrees of freedom in the problem.
Remarkably the sample to sample fluctuations of c0 and cH0

seem to be normal yet completely
anticorrelated in order to have Eq. (7) satisfied even at finite N . The system self-organizes in
such a way that only the sum of the number of gaps in zero and −H0 is isostatic.
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Figure 4: The empirical probability distribution function of the gap variables, ob-
tained at pressure p = 4 and for α= 4 and N = 2048.

To understand this fact we use the following argument. Let us imagine that we smooth out
the non-analytic corners in the cost function of Eq. (2) by two small quadratic interpolation
parts. Let us denote by ε the amplitude of the interpolated region. As for the purely linear
case [1], the smoothing removes the degeneracy of the contacts and allows for a real space
description of the contact forces that appear as the gap contained within the smoothed regions.
Since now the cost function admits an harmonic expansion, we can define the corresponding
(rescaled) Hessian, as done in the appendix B of Ref. [9]. Remarkably it takes contribution
from both the contacts in h= 0 as well as the ones in h= −H0 and it is given by

ε
∂ 2Lε
∂ x i∂ x j

=
1
N

∑

µ∈C0∪CH0

ξ
µ
i ξ
µ
j + εµδi j , (8)

which is, neglecting correlations, a Wishart random matrix shifted on the diagonal [15]. In
the glassy phase where µ < 0 we need to have that the Wishart content of the Hessian matrix
should be full-rank in order to have stable minima. Therefore we have that

|C0|+ |CH0
| ≥ N . (9)

If marginal stability holds, the bound is saturated and we get isostaticity [3]. This argument
tells that the number of contacts in h = 0 and h = −H0 can fluctuate but in a correlated way
in order to enforce Eq. (9).

Now we turn to the analysis of the force and gap distribution. We define the empirical
distribution of gap variables as

ρ(h) =
1
M

M
∑

µ=1

δ(h− hµ) . (10)

In Fig.4 we plot the histogram of ρ(h) at p = 4 which corresponds to the point where c0 ∼ cH0
.

It is clear from this qualitative picture that the two Dirac delta functions in h = 0,−H0 are
surrounded by four power law divergences.

In order to characterize those divergences, in Fig.5 we plot the cumulative distribution
function of the gaps, starting from h = 0 and h = −H0. Within our numerical precision we

8

https://scipost.org
https://scipost.org/SciPostPhys.10.1.013


SciPost Phys. 10, 013 (2021)

10−4

10−3

10−2

10−1

1

10−4 10−3 10−2 10−1 1

C
D
F
g
a
p
s

∆h

h ∼ 0+

h ∼ 0−
h ∼ −H+

0
h ∼ −H−

0∝ ∆h1−γ

10−4

10−3

10−2

10−1

1

10−4 10−3 10−2 10−1 1

C
D
F
g
a
p
s

∆h

h ∼ 0+

h ∼ 0−
h ∼ −H+

0
h ∼ −H−

0∝ ∆h1−γ

Figure 5: Left panel: The normalized cumulative distribution functions (CDF) of the
gaps on both sides of both Dirac delta peaks at h= 0 and h= −H0. We define the CDF

as
∫∆h

0 ρ(h′)dh′/
∫∞

0 ρ(h′)dh′ for h ∼ 0+,
∫ −∆h

0 ρ(h′)dh′/
∫ −∞

0 ρ(h′)dh′ for h ∼ 0−,
∫ −H0+∆h
−H0

ρ(h′)dh′/
∫∞
−H0
ρ(h′)dh′ for h∼ −H+0 ,

∫ −H0−∆h
−H0

ρ(h′)dh′/
∫ −∞
−H0

ρ(h′)dh′ for

h ∼ −H−0 . ∆h represents |h| for h ∼ 0± and |h + H0| for h ∼ −H±0 . The fact that
the curves almost coincide in pairs is not due to any physical reason, but simply to
the fact that for the chosen point of the phase diagram the distribution of gaps is
approximately symmetrical with respect to h= −H0/2 (see Fig.4). The prefactors of
the power laws are not in general equal and depend on the pressure p. On the right
panel we show the same quantities for pressure p = 2 where the empirical symmetry
is lost and prefactors appear to be different. The plot has been produced by L-BFGS
minimizations at p = 4 for α = 4 and N = 2048, averaged over 100 samples. The
errorbars represent sample to sample fluctuations.

clearly see that

ρ(h)∼



















A+0 h−γ h→ 0+

A−0 |h|
−γ h→ 0−

A+H0
(h+H0)−γ h∼ −H+0

A−H0
|h+H0|−γ h∼ −H−0

, (11)

where the exponent γ ' 0.41 . . . coincides (within our numerical precision) with the one
characterizing the distribution of positive gaps at the jamming transition point [16, 17] and
the As are constants.

Finally we look at the contact forces. In Fig.6 we plot the empirical distribution of contact
forces both in h= 0 and in h= −H0. We clearly see that there are four pseudogaps appearing
close to the edges of the support of fµ.

In order to quantitatively analyze the behavior close to the four edges of the stability sup-
ports, we look at the cumulative distribution functions that we plot in Fig.7. We clearly see
within our numerical precision that around the edges of the stability supports the force distri-
bution has four pseudogaps

ρ( f )∼



















B+0 f θ f → 0+

B−1 (1− f )θ f → 1−

B+1 ( f − 1)θ f → 1+

B−2 (2− f )θ f → 2−

, (12)

where the Bs are constants of order one and the exponent θ = 0.42 . . . is close to the one
controlling the small forces at the jamming transition point [16,17].
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Figure 6: The empirical probability distribution function of the contact forces. In
red we plot the ones corresponding to the gaps at h = 0 while in blue we plot the
ones corresponding to the gaps at h= −H0. The fact that the two pdfs appear rather
similar is mainly due to the fact that we have measured such distribution at p = 4
where c0 ' cH0

.The data have been produced by L-BFGS minimizations at p = 4
for α = 4 and N = 2048, averaged over 100 samples. Errorbars are obtained from
sample to sample fluctuations.

4 Discussion

All in all, our numerical results suggest that again the glassy phase is isostatic and marginally
stable. At variance with the purely linear potential and the jamming transition, here we have
four pseudogaps characterizing contact forces and four power law divergences in the gap dis-
tribution. This implies a proliferation of non-linear excitations due to the fact that any pertur-
bation can open and close all sorts of contacts. We believe that perturbing local minima of the
system, as it happens for the purely linear potential case [10], will lead to system spanning
avalanches and crackling noise [3]. This is a manifestation of the emergent self-organized
criticality of the non-convex/glassy phase.

It is clear that our results may be generalized by adding more piecewise linear terms to the
cost function. For each point where the potential has a kink, the corresponding gap distribution
will get a Dirac delta peak. The argument about the stability of local minima suggests that in
the non-convex phase, isostaticity is required to ensure marginal stability of local minima and
that the isostatic condition involves a global sum-rule of the number of gaps that end up in
one of the kinks of the cost function. This global topological constraint will enforce critical
pseudogaps on both forces and gaps for each kink giving rise to a proliferation of non-linear
excitations.

We expect, based on our experience with linear spheres [9], that the same results will hold
for spheres interacting with piecewise linear potential down to two dimensions. In this case,
one has the additional possibility to have localized non-linear excitations whose density de-
creases when increasing the packing fraction [9]. Moreover we expect that dense piecewise
linear spheres, at finite temperature, will display strong Gardner phenomenology [18] upon
cooling. Finally it would be interesting to see what happens for deeper models beyond the per-
ceptron architecture [19–21] as well as more complex constraint satisfaction problems [22].

Beyond the isostaticity argument, an analytical understanding of the critical exponents
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Figure 7: The cumulative distribution functions for the contact forces close to the

edges of their stability supports. They are defined as
∫ f

0 ρ( f
′)d f ′/
∫ 1

0 ρ( f
′)d f ′ for

f ∼ 0+,
∫ 1− f

1 ρ( f ′)d f ′/
∫ 0

1 ρ( f
′)d f ′ for f ∼ 1−,

∫ 1+ f
1 ρ( f ′)d f ′/
∫ 2

1 ρ( f
′)d f ′ for

f ∼ 1+,
∫ 2− f

2 ρ( f ′)d f ′/
∫ 1

2 ρ( f
′)d f ′ for f ∼ 2−. We see that the apparent prefactors

look very similar and the dots are rather one onto the other, because we measured
the forces at the rather symmetric point where the number of gaps in zero and in−H0
is roughly the same. We do not expect such prefactors to be universal but to depend
on the point of the phase diagram where local minima are probed. The data have
been produced by L-BFGS minimizations at p = 4 for α= 4 and N = 2048, averaged
over 100 samples. Errorbars are obtained from sample to sample fluctuations.

arising in each kink of the interaction potential requires the replica treatment of the model.
Following [1], we would expect that as soon as the model has a ground state which has a con-
tinuous RSB solution at least close to the leaves of the ultrametric tree of pure states [23], a
generalization of the scaling theory developed in [1] for the fullRSB equations should give rise
to the exponents of the jamming transition, in agreement with the current numerical simula-
tions. We leave the investigation of this aspect to future works. Despite the fact that however
this replica approach holds strictly speaking for the ground state of the problem, as it happens
for other problems, notably the Sherrington-Kirkpatrick model [23], it gives a prediction for
the critical exponents arising in local minima that are obtained with greedy gradient descent
algorithms as the ones we are using. While the derivation of such exponents from a purely
dynamical/algorithmic perspective is an open problem, message passing algorithms are ex-
pected to be tracked by such replica scaling theory [24, 25], see also [26], and therefore to
show the criticality we found here. This theoretical analysis points to the fact that the critical
behavior is inherited from the non-analyticities of the cost function. Finally it would be inter-
esting to understand what happens if one considers cost functions that have different types of
non-analyticities and whether this could give rise to different critical behaviors. As an example
one could look at potentials displaying infinite contact forces in a finite number of points (for
example one could consider v(h) =

p

|h|θ (−h)). We leave this problem for future work.
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