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Abstract

Within the tensor network framework, the (positive) thermal density operator can be
approximated by a double layer of infinite Projected Entangled Pair Operators (iPEPO)
coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-
1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-SU(2)
and lattice-C4v symmetric on-site tensors (of bond dimensions D = 4 or D = 7) and
a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution opera-
tor. A variational optimization is performed on the plaquettes, using a full (for D = 4)
or simple (for D = 7) environment obtained from the single-site Corner Transfer Matrix
Renormalization Group fixed point. The method is benchmarked by a comparison to
quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation
length starts to deviate from the exact exponential growth for inverse-temperature β ¦ 2,
the behavior of various observables turns out to be quite accurate once plotted w.r.t the
inverse correlation length. We also find that a direct T = 0 variational energy optimiza-
tion provides results in full agreement with the β →∞ limit of finite-temperature data,
hence validating the imaginary-time evolution procedure. Extension of the method to
frustrated models is described and preliminary results are shown.
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1 Introduction

The spin-1/2 Heisenberg antiferromagnet on the square lattice orders magnetically at zero
temperature but, compared to the classical Néel state, quantum fluctuations induce a reduc-
tion of the order parameter [1]. The value of the staggered magnetization is about 60% of its
classical counterpart (1/2) [2–5]. At any non-zero temperature, Mermin-Wagner theorem im-
plies the restoration of the full continuous spin-SU(2) symmetry but the magnetic correlation
length diverges exponentially fast when approaching zero temperature [6]. These features
have been well established by quantum Monte Carlo (QMC) simulations [2,4,7,8] which are
free of any sign problem in the absence of magnetic frustration.

In the last decade, tensor network methods have brought considerable new insights in the
understanding of models of interacting quantum spins. At zero temperature, two-dimensional
Projected Entangled Pair States (PEPS) have provided many valuable ansatze for groundstates
satisfying the area-law of the entanglement entropy [9–13]. Although small deviations from
the area-law are expected [14, 15], simple PEPS with small bond dimensions offer good ap-
proximate realizations of the symmetry-broken Néel state [16,17]. However, describing SU(2)-
symmetric groundstates with critical or even very long-range correlations remains an open
challenge [18].

The implementation of finite-temperature tensor network algorithms in two-dimensions
has been steadily developed and improved over the last ten years [19–22], and benchmarked
on simple models as the quantum Ising model [20,21,23,24], the quantum compass model [25]
or the Shastry-Sutherland Heisenberg model [26, 27]. These methods are based on a
parametrization of the thermal density operator (TDO) in terms of a Projected Entangled
Pair Operator (PEPO). Among the recent developments, the most efficient framework uses
a double-layer PEPO, instead of a single layer one, which naturally guarantees the positiv-
ity of the approximated TDO. The PEPO formalism also allows to construct the TDO via an
imaginary-time evolution [28–31]. The method can be used directly in the thermodynamic
limit with infinite-PEPO (iPEPO). Its efficiency is remarkably good, provided the phase is
gapped. Here, our aim is to test this method in the more complex case of a gapless phase,
with a diverging correlation length at low temperature. Interesting new features of this work,
which have not been explored before at finite temperature, are the implementation of SU(2)
spin and C4v lattice symmetric tensors, and plaquette-type update approaches.
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Figure 1: (a) Elementary SU(2)-symmetric C4v-symmetric on-site tensor A. (b) Ther-
mal density operator written as an (infinite) double layer. A thermal expectation
value is obtained by applying local operators on the physical (blue) legs and tracing
over all degrees of freedom. (c) Construction of the rank-6 local tensor by contract-
ing rank-5 and rank-3 SU(2)-symmetric tensors. The dotted line stands for the 4-
dimensional internal space given by the direct sum of the singlet (spin 0) and triplet
(spin 1) SU(2) multiplets.

2 Symmetric iPEPO method

2.1 Thermal density operator framework

The method is based on a simple tensor network approximation of the (unnormalized) ther-
mal density operator ρ(β) = exp (−βH) at temperature T = 1/β , as depicted in Figs. 1. The
building block of this construction is the rank-6 on-site tensor A of Fig. 1(a) containing 4
virtual bonds of dimension D to be connected to the neighboring sites, a physical bond (in
blue) carrying the d = 2 spin-1/2 degrees of freedom and an ancilla bond (in red) of same
dimension. The square lattice translation and point group symmetry can be enforced by as-
suming identical C4v-symmetric tensors on every site. In addition, since spin SU(2)-symmetry
is preserved at any finite temperature, we also enforce the SU(2)-symmetry at the level of the
on-site tensor (see later for details). An infinite Projected Entangled Pair Operator (iPEPO) L,
i.e. a linear map from the (infinite) physical space to the (infinite) ancilla space, is obtained
by contracting the tensor network over all virtual degrees of freedom1. The thermal density
operator can then be approximated by a double layer of such iPEPOs, LLT , after contract-
ing over all ancillas as shown in Fig. 1(b). It has been pointed out that such a construction
naturally guarantees the positivity of the (approximate) TDO. Note that this approximative
representation of the TDO becomes more and more accurate for increasingly larger (virtual)

1To avoid the insertion of matrices on the lattice bonds, a 180o spin rotation is performed on one of the two
sublattices.
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Table 1: Numbers of elementary tensors in each of the tensor classes defined by their
virtual spaces V . The number of elementary C4v-symmetric tensors are shown in
the third column. When the site C4v point group symmetry is broken to Cs, the ND
tensors are “split" into N ′D tensors (fourth column). For D = 7, assuming “color" spin-
1 exchange symmetry reduces the number of elementary tensors, as shown by the
numbers in parenthesis.

V D ND N ′D
0 D = 1 1 1

0⊕ 1 D = 4 8 13
0⊕ 1

2 ⊕ 1 D = 6 21 45
0⊕ 1⊕ 1 D = 7 49 (31) 115 (73)

bond dimension D. With the iPEPO approximation of the TDO at hand, any thermal average
can, in principle, be computed by applying a local operator (or a string of operators) on the
(e.g. top) physical layer and tracing over all top and bottom physical degrees of freedom.

Symmetric PEPO ansatz - Here, by enforcing the lattice and spin symmetries of the prob-
lem, we simplify the ansatz further since the on-site tensor can then be written as a linear
superposition of a small number ND of (fixed) symmetric tensors Tα,

A(β) =
ND
∑

α=1

cα(β)Tα , (1)

where cα(β) are real temperature-dependent coefficients. The temperature dependence of the
TDO ρβ is therefore only encoded in the temperature dependence of the latter coefficients.

The construction of symmetric PEPO is a generalization of the standard method introduced
to derive symmetric Projected Entangled Pair State (PEPS) tensors [32]. In fact, as depicted in
Fig. 1(c), the family of tensors Tα can be obtained by contracting two families of PEPS tensors
over their “physical" space 0⊕1. The family of rank-5 A tensors is constructed assuming spin-
SU(2) and C4v symmetry w.r.t. exchange of the four virtual bonds (thick segments). There
are two rank-3 tensors corresponding to each fusion outcomes – spin-0 or spin-1 – of the
physical and ancilla degrees of freedom, and therefore two independent subclasses of A tensors
obtained by contracting each of the two rank-3 tensors with the appropriate (matching) rank-5
tensors.

The families ofA tensors are defined by the vector space V of the virtual degrees of freedom
written as a direct sum of SU(2) irreducible representations (irreps). At infinite temperature,
i.e. β = 0, the unnormalized TDO reduces to the identity and the virtual space reduces to a
single singlet state, V0 = 0, D = 1. At non-zero β we increase the entanglement between sites
by introducing more SU(2) spins into V , and the physical Hilbert space becomes the direct
sum of SU(2) multiplets such as V = 0⊕ 1 (D = 3), V = 0⊕ 1

2 ⊕ 1 (D = 6) or V = 0⊕ 1⊕ 1
(D = 7). The number of C4v SU(2) symmetric tensors Tα in each class is shown in the third
column of Table 1.

2.2 Plaquette Trotter-Suzuki decomposition

With the framework established, one needs a reliable method to obtain the β-dependence
of the coefficients cα(β). We shall use here a Trotter-Suzuki decomposition. The usual initial
starting point consists in splitting the unnormalized TDO into a large number Nτ of imaginary-
time evolutionary steps, ρ(β) = [exp (−τH)]Nτ , where τ = β/Nτ is a small imaginary-time
step, and start from the infinite-temperature i.e. β = 0 limit.
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Figure 2: a-b (a) and a-b-c-d (b) checkerboard Trotter-Suzuki (TS) decomposition.
Each plane corresponds to a given (imaginary) time step.

In our framework, assuming that, at a given temperature T = 1/β , ρβ is in the (approx-
imate) iPEPO form, the problem reduces to evaluate the action of the “infinitesimal" prop-
agator G(τ) = exp(−τH), i.e. ρ(β + τ) = G(τ)ρ(β), and to approximate the result as a
new iPEPO defined by an updated tensor A(β + τ) corresponding to the set of coefficients
{cα(β+τ)}. To realize this, in practice, one can rewrite the Hamiltonian as H =

∑

a Ha+
∑

b Hb
or H =
∑

a H
′
a+
∑

b H
′
b+
∑

c H
′
c+
∑

d H
′
d , where {a}, {b}, {c} and {d}, are the sets of plaquettes

depicted in Fig. 2. Focussing on the a-b decomposition for the moment (which is legitimate if
the Hamiltonian contains only nearest-neighbor interactions), we get
G(τ)'
∏

b Gb(τ)
∏

a Ga(τ), up to small O(τ2) Trotter errors.

2.3 Variational optimization of the plaquette fidelity

2.3.1 First step: a plaquettes

Let us first concentrate on the first product term
∏

a Ga(τ) of G(τ). Since all Ga plaquette prop-
agators commute with each other, it is sufficient to consider the action of one of them to obtain
the new tensors on a single plaquette, and then update the tensors on the whole lattice. Fol-
lowing the notation of Fig. 3(a,b), we can rewrite Ga(τ) = G2 and approximate ρ(β) = LLT .
Up to a cyclic permutation of the operators (which does not change thermal expectation val-
ues) we obtain ρ(β + τ) = (LG)(LG)T which we have to approximate as ρ(β + τ) ' L′L′T ,
where L′ is a single layer iPEPO which differs from L only on the four sites of a single plaquette,
by a new A′ tensor. Since the action of

∏

a Ga(τ) breaks the square lattice C4v symmetry into
Cs (only the reflections w.r.t the a plaquette diagonals remain), the A′ tensor belongs to an
enlarged class,

A′(β +τ) =
N ′D
∑

α=1

c′α(β +τ)T
′
α , (2)

where the new class dimensions N ′D are listed in the fourth column of Table 1.
Using the purified PEPS notation of Fig. 3(c), one can define fidelities (or “overlaps") as

〈L|L′〉 = Tr[LL′] or 〈L|G|L′〉 = Tr[LGL′], where the trace is performed on the ancilla de-
grees of freedom. Outside of the active 2×2 plaquette, all fidelities involve the same uniform
tensor network of on-site C4v-symmetric double-layer AAT tensor contracted over both phys-
ical and ancilla degrees of freedom. We have used a single-site (symmetric) Corner Transfer
Matrix Renormalization Group (CTMRG) [33–35], more specifically its single-site symmetric
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Figure 3: (a) Elementary plaquette representation of the (half-) density operator L.
(b) Plaquette gate G. (c) The L iPEPO operator can be viewed as a purified PEPS
|L〉.

version [32], to contract the network around the active plaquette, resulting into a converged
(so-called “fixed-point") SU(2)-symmetric environment of adjustable bond dimension χ, as
shown e.g. in Fig. 4(a).

Figure 4: (a) Graphical representation of the overlaps ω0, ω1, and ω2, obtained by
using the CTMRG fixed-point environment, and by contracting the operators Ω0 (b),
Ω1 (c) and Ω2 (d), respectively, over the ancilla degrees of freedom and drawn in (a)
using the same generic green box (e).

Minimizing the distance ‖G|L〉 − |L′〉‖ between G|L〉 and |L′〉 is equivalent to maximize
the (normalized) fidelity

O =ω1/[ω0ω2]
1/2 , (3)

where the overlaps ω0, ω1 and ω2 are defined as

ω0 = 〈L′|L′〉 , (4)

ω1 = 〈L|G|L′〉 , (5)

ω2 = 〈L|GG|L〉 , (6)

and graphically represented in Fig. 4. We have used a Conjuguate Gradient (CG) optimization
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routine to maximize O w.r.t. the set of coefficients {c′α(β +τ)} defining the A′ tensor located
on the four sites of the 2× 2 plaquette of |L′〉.

2.3.2 2nd step: b plaquettes

Once the optimum A′ tensor is obtained on the 2× 2 plaquette, it is updated on all the other
lattice sites. We then have to consider the new fidelity O defined on a 2 × 2 b plaquette by
replacing A → A′ and A′ → A′′, in the bottom and top layers respectively, and optimize it
w.r.t. the new Cs-symmetric tensor A′′. Applying G on a b plaquette, instead of an a plaquette,
amounts in fact to rotate the four (bottom) A′ tensors by 180o. We know that, in the limit
τ→ 0, the optimum A′′ tensor should become exactly C4v-symmetric, and the small deviation
from C4v-symmetry is due to the non-commutativity of Ga and Gb on neighboring plaquettes
and, hence is part of the Trotter error. We can partially correct it by symmetrizing the A′′
tensor and update it on the whole lattice for the next Trotter step.

2.3.3 Full environment versus simplified environment

At this stage, it is useful to specify how the overlapsωi are computed. As mentioned above, we
use a single-site CTMRG algorithm to contract the network around the active plaquette. This
procedure is parametrized by the number χ of (virtual) states kept at each step of truncation
of the corner transfer matrix (see Ref. [32,35] for details). In the course of the imaginary-time
evolution (TE), we have used a fixed χ = χTE, typically set to D2 or 2D2, to compute with
CTMRG the new converged C and T environment tensors (see Fig. 4(a)) at each Trotter step.
For D = 4, we have used a full environment (FE) scheme, meaning that the environment used
to construct theωi overlaps retain all the χ2 and χ2D2 components of the fixed-point C and T
tensors. In contrast, for D = 7, we used a simplified environment (SE) where we used only the
largest weight of the fixed-point χ ×χ corner matrix (and the corresponding D2 components
of the T tensor) to construct the environment.

Note however that, in both cases, i) the CTMRG involves all χ = χTE degrees of free-
dom on the bonds (in this sense the SE scheme is more elaborate than the simple update
scheme [36] for which no CTMRG is performed) and ii) the same type of “brute force" vari-
ational optimization w.r.t. the components of the A′ (or A′′) tensor is performed via a CG
algorithm, necessitating repeated computations (a few thousand times at each Trotter step) of
the overlaps ωi . Also, once the A′ and A′′ tensors have been optimized, all observables (like
the energy density) are computed using the full environment. We point out that, to compute
the overlap cost-function, one can also consider an intermediate case, between the SE and the
FE cases, by considering a number χoverlap of highest weights of the fixed-point corner matrix
between 1 (the SE case) and χT E (the FE case), to build a simplified environment of the ωi .
Note that we have not attempted to consider such an intermediate scheme so far, it is left for
future studies on the frustrated model (see below).

3 Results

3.1 Heisenberg model and comparison to QMC

We now focus on the spin-1/2 Heisenberg model on the square lattice,

H = J1

∑

〈i, j〉

Si · S j , (7)

involving only an antiferromagnetic coupling J1 (set to 1) between nearest-neighbor sites 〈i, j〉,
enabling a direct comparison to quantum Monte Carlo (QMC) results. In that case, the simplest
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Figure 5: (a) Mean energy vs β = 1/T computed using V = 1⊕0, D = 4 (V = 1⊕0⊕1,
D = 7), and FE (SE), and compared to QMC (on a cluster of size L = 256). The exact
1st order high-T behavior – linear in β (green line) – is subtracted in (b) to magnify
the scale and compare different imaginary-time evolution dynamics (see text) to the
second order high-T correction and to QMC. The finite-temperature QMC data are to
be considered in the thermodynamic limit for β ≤ 4 (see text). The T = 0 QMC data
are taken from Ref. [4].

a-b Trotter-Suzuki decomposition of Fig. 2(a) is possible, since all the Hamiltonian terms are
contained within the a and b plaquettes. The QMC computations, which are statistically exact,
are performed at non-zero temperature on finite albeit large samples of linear size L, thanks
to the efficient loop algorithm [37]. When the sample size L is several times larger than the
correlation length ξ (one usually considers L > 6ξ), the QMC results can be considered to be
in the thermodynamic limit, thus allowing to benchmark the iPEPO results. QMC simulations
are performed on systems of size up to L = 256 (with N = L2 spins), leading to the absence of
finite-size effects down to inverse temperature β = 4 (where ξ' 40). The correlation length ξ
is estimated from the second moment estimator [38,39] using a loop improved estimator [37,
39].

3.1.1 Thermal energy density

As a first benchmark we computed the temperature dependence of the mean energy (per site),
e = 〈H〉T/N where the thermal average is defined as usual as 〈· · · 〉T = Tr(ρβ · · · )/Tr(ρβ),
using the same χ = χTE as for the overlaps ωi . The results are shown in Fig. 5(a) for the two
ansätze corresponding to D = 4 and D = 7, with small time steps for which Trotter errors are
almost negligible. At high temperatures, say for β < 1.5, the iPEPO data follow very closely
the QMC data2. Note that, already for β > 0.5 strong deviations occur w.r.t second order high-
temperature expansion, e(β) = −3

8 J2
1β −

3
32 J3

1β
2 + o[β3], which is picked-up relatively well

2Within QMC, for β < 2 (β < 4), finite size effects become negligible on 642 (2562) clusters, and results in the
thermodynamic limit are obtained.
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by our method. This is clear from Fig. 5(b) where the first-order, linear in β , contribution has
been subtracted off to zoom in on the small energy difference: above β ∼ 0.5 the iPEPO data
deviate strongly from the second-order prediction while staying quite close to the exact QMC
data. We believe that the small remaining deviations still observed for D = 7 in the range
0.5 ≤ β ≤ 1.5 are due to the approximate SE procedure used in that case to compute the
fidelity. When lowering the temperature further, the energy density starts to saturate above
the exact ground-state energy eQMC

0 ' −0.6694 (see Ref. [4]), around −0.636 and −0.661 for
D = 4 and D = 7, respectively. Note that the ansatz with 0⊕ 1

2 ⊕ 1 (D = 6) is not providing a
significant improvement compared to D = 4, so we shall not consider it further.

3.1.2 Spin correlation function and correlation length

At any non-zero temperature, the spin-spin correlations are short-range (from Mermin-Wagner
theorem) but it is known that the correlation length ξ associated to the long-distance expo-
nential decay rises exponentially fast at (not so) large inverse-temperature β . For example, at
β = 5 (respectively β = 6), ξ is already beyond 120 (respectively 400) lattice spacings [6–8].
To investigate how good this feature is captured by our iPEPO approach we have computed
the spin-spin correlation function C(|i− j|) = 〈Si ·S j〉 versus distance ri j = |i− j|, and extracted
the correlation length ξ from an exponential fit exp (−ri j/ξ) of the long distance behavior3.
Although the tensor optimization is always realized at χ = χTE = D2, converged results for the
correlations require larger values of χ, as we have carefully checked. Results for correlation
functions obtained with D = 4 and D = 7 are reported in Figs. 6(a) and 6(b), respectively.
Although, at distance r = 1, the spin correlation converges quickly with increasing β , strong
changes with β occur at intermediate and long distances, reflecting the rapid increase of the
correlation length.

As shown in Fig. 6(c), showing the scaling of the correlation length ξwith the environment
dimension χ, larger values of χ are needed for convergence at larger β and at larger D as well.
At high temperature, the iPEPO correlation length reported in Fig. 6(d) increases linearly with
β , tracking very well the QMC results. However, above β ∼ 2, the QMC correlation length
shoots up while the D = 4 iPEPO correlation length starts to saturate around 7 lattice spacings.
Even for larger D = 7, deviations from QMC still occur quickly at intermediate β . For example,
while the (exact) QMC correlation length at β = 3 (β = 4) is around 12 (39) lattice spacings,
we get ξ' 4.2 (ξ' 5.6) and ξ' 5.5 (ξ' 9.2) for D = 4 and D = 7, respectively.

The iPEPO spin correlations at short and intermediate distances have been directly com-
pared to QMC results, obtained on system sizes for which finite size effects are negligible. As
shown in Fig. 6(a), a good agreement with the D = 4 results is obtained up to β = 1.5, while
significant deviations occur at β = 2. Even for D = 7, strong deviations occur above β ∼ 2, as
seen in Fig. 6(b) comparing results at β = 3 and β = 4. Interestingly, we observe that QMC re-
sults at β = 3 agree with iPEPO results at β = 4. This suggests that one may define an effective
inverse-temperature βeff(β , D) < β such that local observables computed at β approximately
match their exact values at βeff. Of course, this would imply an equivalence between the two
TDO (not only between specific observables) which is difficult to prove.

3.1.3 Finite correlation length scaling

Although the iPEPO correlation length deviates strongly from the exact behavior at interme-
diate and low temperatures, qualitative agreement between iPEPO and QMC still survives for
some observables providing one considers their behaviors w.r.t. the inverse correlation length
rather than w.r.t. the inverse-temperature. Such inverse correlation length scaling has been

3The correlation length ξ can also be obtained from the spectrum of the transfer matrix, providing identical
results.
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Figure 6: (a) Spin correlation function versus distance in semi-log scales, for D = 4
(a) and D = 7 (b) tensors optimized with χTE = D2. Exponential fits of the long
distance behavior (not shown) are indicated as dashed lines. Converged QMC results
are also shown, obtained on 64× 64 (β = 1,1.5 and 2 data displayed from bottom
to top) (a) and 256× 256 systems (b). m2 corresponds to the T = 0 long-distance
correlation. (c) Scaling of the spin correlation length w.r.t. χ, for a few values of the
temperature and D = 4,7. The largest available values of χ are used in (a) and (b).
Extracted spin correlation lengths are plotted vs β in (d), and compared to QMC.
Note that in (b) and (d), the data for D = 7 and β = 6 are not fully converged in χ.
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Figure 7: Energy (a) and magnetization estimator mq (b) plotted versus the inverse
of the spin correlation length, for D = 4 tensors optimized with χTE = D2. Large
enough environment dimensions χ are chosen to get converged results (in contrast
to results obtained with χ = χTE, also shown). End-points obtained directly at T = 0
(see text) are also included. QMC results in the thermodynamic limit are shown in the
range β ∈ [1,4], for comparison, as well as the T = 0 magnetization [4] (horizontal
dashed line in (b)). Similar results for D = 7 are also shown as circles in the inset of
panel (a) and in panel (b).

introduced as a powerful tool for zero-temperature symmetry-broken groundstates [40, 41]
and used recently to extract quantitatively the staggered magnetization curve of the frustrated
quantum Heisenberg model [17]. Also, it has been applied to the case of second-order finite-
temperature phase transitions associated to the spontaneous breaking of a discrete symmetry,
as in the 2D quantum Ising model [42].

We investigate here whether the same concept still holds in the more challenging case of
a zero-temperature phase transition associated to a continuous-symmetry breaking. Fig. 7(a)
shows the behavior of the mean energy versus ξ-inverse where different temperature ranges
have been considered for iPEPO and QMC, β ∈ [1, 8] and β ∈ [1,4], respectively. The QMC
energy varies almost linearly with ξ−1 in rough agreement with the iPEPO data. Note that,
although deviations do occur, such a qualitative agreement is nevertheless rather unexpected
considering the very important mismatch of the correlation lengths at intermediate tempera-
ture.

We have also computed an estimator of the (zero-temperature) staggered magnetization
mq = |〈

1
N

∑

i exp(iq · ri)Si〉0|, with q = (π,π), in terms of the spin structure factor
Sq =

1
N

∑

i j exp(iq · ri j) 〈Si · S j〉 =
∑

r = (−1)r〈S0 · Sr〉. When β → ∞, Sq should diverge
as ξ2 i.e. as the area of (antiferromagnetically) correlated spins. More precisely, if we crudely
assume that spins are correlated, i.e. 〈S0 ·Sr〉 ' (−1)r(mq)2, within a disk of radius ξ and that
〈S0 · Sr〉 ' 0 beyond, we then obtain

mq ' Sq/π
1/2ξ , (8)
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when ξ � 1. The quantity mq = Sq/π
1/2ξ on the right-hand side of (8) gives then a finite-

temperature estimator of the (zero-temperature) staggered magnetization mq. Note that, be-
cause of the abrupt separation assumed between correlated and uncorrelated spins, the r.h.s
is approximate, even in the β →∞ limit, and the exact relation between the two quantities
should involve a numerical prefactor (close to 1). We have plotted mq versus 1/ξ in Fig. 7(b)
and compared it to the QMC estimate. Although the agreement is still rough, our data ex-
trapolated to ξ−1 = 0 clearly indicates that the zero-temperature staggered magnetization is
indeed finite.

3.1.4 Zero-temperature limit

So far the optimization of the finite-T site tensor A has been performed via imaginary-time
propagation. An alternative method would involve the direct variational optimization of the
free energy (per site) f = e − Ts, where s is the thermodynamic entropy per site. Computing
s is a notoriously hard problem for tensor networks but, at T = 0, it becomes feasible to
minimize the thermal energy e = 1

N Tr(Hρ(A)) which only involves the local tensor A to
optimize upon. We have accomplished this task using the same global optimization scheme
as used for optimizing iPEPS [18, 43]. Our T = 0 result for D = 4 reveals a quite large spin
correlation length, around 16 lattice spacings, as shown in Fig. 6(c). For D = 7, our CTMRG
failed to produce a SU(2)-invariant boundary, probably because the correlation length becomes
very large in the course of the optimization inducing spontaneous symmetry breaking. We have
also included the T = 0 data point obtained for D = 4 to Figs. 7(a) showing that the finite-T
data seem to approach, for larger and larger β , the T = 0 “end-point". This provides a check
that our imaginary-time propagation method remains reliable at low temperature in producing
the optimal TDO within its variational manifold.

Note that, in Figs. 7(a,b), we have not shown any QMC data beyond β = 4, value of β at
which finite size effects start to come into play on the largest 256×256 cluster. In the regime
β � 1, one expects the energy to behave as e = e0 + Cβ3 [4, 6, 7] and then to approach the
T = 0 limit e0 as −1/ ln3 (ξ−1) i.e. with a vertical slope in Fig. 7(a).

3.2 Extention to frustrated models

Lastly, we introduce frustrating interactions. The Hamiltonian takes the form :

H = J1

∑

〈i, j〉

Si · S j + J2

∑

〈〈k,l〉〉

Sk · Sl , (9)

where the antiferromagnetic J2 interaction couples all next-nearest-neighbor sites. Due to
the frustration, quantum Monte Carlo suffers from the sign problem and cannot provide pre-
cise results here. Recent Variational Monte Carlo [44], DMRG [45, 46], finite PEPS [47] and
iPEPS [17] calculations show that the (T = 0) Néel phase survives up to J2/J1 ' 0.46(2),
where a second-order phase transition to a (possibly critical) spin liquid takes place [18, 45–
47]. We choose here J2 = 0.5 (J1 is set to 1 as before), inside the spin liquid phase.

Since interactions occur on all plaquette diagonals, we now have to use the a-b-c-d TS
decomposition of Fig. 2(b)4, i.e. write the infinitesimal imaginary-time propagator as

G(2τ)'
∏

d

Gd(τ)
∏

c

Gc(τ)
∏

b

Gb(τ)
∏

a

Ga(τ) , (10)

where the J1 couplings have been equally split between adjacent plaquettes. Then, in ad-
dition to the previous two first steps associated to the a and b plaquettes, we now have to

4We have checked that, for J2 = 0, the a-b and a-b-c-d decoupling schemes give identical results.
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complete two more steps. After the two first steps, the optimized A′′ tensor is approximately
C2v-symmetric (instead of C4v-symmetric, because of the extra diagonal interactions) and we
(partially) correct the deviation due to the Trotter error by symmetrizing it. For the c plaquette,
the (C2v-symmetrized) A′′ tensor is rotated by 90-degrees and the optimization of the fidelity
leads to a new A′′′ tensor, which is rotated by 180-degrees and used for the d plaquette. We
observed (for D = 7) that the last optimized tensor after these 4 steps is almost C4v-symmetric,
as expected, and can be used (after exact symmetrization) in the single site CTMRG to com-
pute the new environment. Note however that, for D = 4, the above procedure does not seem
to provide reliable results. We comment in Appendix A on the role of the bond dimension.
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β 
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-0.3

-0.2

-0.1

0

en
er

gy
 / 

si
te first order: −(15/32) β

Padé [4,5]

J2=0.5

D=7  τ=1/16

D=7 iPEPS

DMRG extrapolation

Figure 8: (a) Mean energy of the J1 − J2 model at J2 = 0.5 vs β = 1/T , computed
using V = 1⊕ 0⊕ 1 (D = 7), χTE = D2 and SE. The exact 1st order high-T behavior
– linear in β (blue dotted line) – and a Padé approximation (see text) are shown for
comparison. The DMRG extrapolated [45] and the D = 7 iPEPS [18] groundstate
energies (almost indistinguishable at this scale) are also shown.

The temperature-dependance of the thermal energy versus the inverse-temperature β is
shown in Fig. 8 for D = 7 using a Trotter step τ = 1/16. Furthermore, from the series ex-
pansion in β up to 9th-order [48], we constructed several Padé approximants which show
convergence up to β ' 2 (we display the specific Pade [4, 5] approximant in Fig. 8). Even
at the smallest β , for which the energy is linear in β , we see deviations from the expected
analytical predictions. This suggests that our iPEPO ansatz is not optimal to approximate the
TDO of the frustrated model (see Appendix A for more details). We believe, either the dimen-
sion D = 7 of the virtual space of the iPEPO is still not large enough or the analytical iPEPO
form of the TDO itself is not appropriate. In any case, we observe that, at large β , the thermal
energy seems to slowly decrease towards the estimated groundstate energy [18,45] shown on
the plot, rather than to exponentially saturate to a minimum value. This may be a signature
of the critical nature of the spin liquid phase [18,45–47].
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4 Conclusion and perspectives

Within the last ten years, tensor network methods have become the state-of-the-art technique
to deal with two-dimensional correlated lattice models, and frustrated quantum spins in partic-
ular, for which QMC is inapplicable due to the sign problem. Here, we have more specifically
examined the efficiency and the accuracy of tensor network techniques to compute finite-
temperature properties in quantum spin systems with diverging correlation length at low tem-
perature, a particularly challenging situation. In addition, our goal was to explicitly preserve
the symmetries of the problem, namely the lattice symmetry as well as the continuous spin-
rotation (SU(2)) symmetry. Thirdly, we wished to design a set up capable to deal with longer-
range (frustrating) interactions. Our symmetric iPEPO ansatz of the TDO, associated to a pla-
quette TS discretized time-evolution fulfils such requirements. This framework has first been
tested on the square lattice spin-1/2 Heisenberg model and confronted to large-scale QMC
results (in the thermodynamic limit). First, we found that our ansatz, despite its relatively
small bond dimension, is capable to generate thermal states with large correlation length, of
the order of 20 lattice spacings or even more. Unfortunately, the rapid exponential growth of
the Heisenberg model correlation length at low temperature is beyond the current ability of
the method. Nevertheless, we showed that some observables (like the thermal energy or the
staggered magnetization estimator) follow an approximate inverse-correlation length scaling,
which could be of practical use for future investigations.

Our framework based on plaquette Trotterisation, allowed to also include antiferomagnetic
coupling between next-nearest neighbor sites, and to investigate the long-time debated J1−J2
quantum spin model on the square lattice. Our preliminary results show a “proof of principle"
that the technique can be used in such a case. However, we found that our iPEPO does not
accurately capture the correct temperature behavior. We believe a more entangled ansatz
with increased bond dimension becomes necessary in the presence of magnetic frustration.
This challenging issue is left for future studies.
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A Decomposition of the 2× 1 and 2× 2 gate operators

In the presence of a non-zero frustrating J2 interaction, a 4-sites 2× 2 gate has to be used, in
contrast to the J2 = 0 case where the TS decomposition could be performed in terms of 2× 1
units. We believe that there is a minimum bond dimension D of the PEPO in order to obtain
the correct high-temperature behavior e(β) = −3

8(J
2
1 + J2

2 )β . The minimum D value should
be intrinsically connected to the bond dimension needed to decompose the 2× 1 (2× 2) gate
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operator Gkl
i j (Gkl rs

i jmn) in terms of the product of two (four) rank-3 (rank-4) site tensors,

Gkl
i j (τ) =

D
∑

u=1

T k
i;uT l

j;u (11)

Gkl rs
i jmn(τ) =

D
∑

u,v,w,x=1

T k
i;uv T l

j;vwT r
m;wx T s

n;xu , (12)

where i, j, m, n (k, l, r, s) label the physical degrees of freedom on the bottom (top) – see
Fig. 3(b). Indeed, at β = 0 (infinite temperature), the TDO is just L= L0 = I⊗Ns and maxi-
mizing the fidelity (3) amounts simply to finding for L′ a tensor product given by the r.h.s. of
(11) or (12) which best approximates (or exactly corresponds to) G.

We first assume J2 = 0 and start from a 2×1 gate. A simple singular value decomposition,
gives D = d2 = 4 corresponding to a 1⊕ 0 virtual space and

Gkl
i j =

4
∑

u=1

(T0)
k
i;u∆uu′(T0)

l
j;u′ , (13)

where T0 is a constant rank-3 tensor independent of the parameters τ and J1 and ∆ is a
diagonal positive matrix,

∆=







x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 y






, (14)

with x = 1
2 e−

J1τ
8

�

e
J1τ

2 − 1
�

and y = 1
2 e−

J1τ
8

�

e
J1τ

2 + 3
�

. The site tensor T in (11) can then be

expressed as T = T0
p
∆ namely,

T =









−
p

x/2 0 0
p

y/2
0 0

p
x 0

0
p

x 0 0
p

x/2 0 0
p

y/2









. (15)

When a 2×2 gate is used (as in the main text), the decomposition (12) is not exact for D = 4 but
the optimized overlap is nevertheless very close to 1 as seen in Fig. 9(a). It is relevant to com-
pare the fidelity to a reference obtained by choosing L′ = L0 i.e.
Oref = Tr(Gkl rs

i jmn(τ))/Tr(Gkl rs
i jmn(0)). We see that the deviation 1 − O is almost five order of

magnitude smaller than 1−Oref.
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Figure 9: (a) Deviation of the maximized fidelity O for the first τ-step at β = 0
computed on a 2× 2 isolated plaquette. References (see text) are shown as × and
+. (b) Energy per site obtained from the optimized site tensor on an isolated 2× 2
plaquette.

We now turn to J2 6= 0 and, for simplicity, we choose J1 = 0. As shown in Fig. 9(a),
the optimized fidelity is very close to the reference one. This proves that a D = 4 is not large
enough to capture the β → 0 limit. To provide further evidence, we have computed the energy
of the isolated 2×2 plaquette using the optimized T site tensor5. For J2 = 0, we find the exact
τ → 0 asymptotic behavior e(τ) = −3

8 J2
1τ, as shown in Fig. 9(b). In contrast, when J2 6= 0

and J1 = 0, the energy deviates substantially from the expected behavior, e(τ) = −3
8 J2

2τ.
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