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Abstract

Using derivatives of primary fields (null or not) with respect to the conformal dimen-
sion, we build infinite families of non-trivial logarithmic representations of the confor-
mal algebra at generic central charge, with Jordan blocks of dimension 2 or 3. Each
representation comes with one free parameter, which takes fixed values under assump-
tions on the existence of degenerate fields. This parameter can be viewed as a simpler,
normalization-independent redefinition of the logarithmic coupling. We compute the
corresponding non-chiral conformal blocks, and show that they appear in limits of Liou-
ville theory four-point functions.
As an application, we describe the logarithmic structures of the critical two-dimensional
O(n) and Q-state Potts models at generic central charge. The validity of our description
is demonstrated by semi-analytically bootstrapping four-point connectivities in the Q-
state Potts model to arbitrary precision. Moreover, we provide numerical evidence for
the Delfino–Viti conjecture for the three-point connectivity. Our results hold for generic
values of Q in the complex plane and beyond.
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1 Introduction

Following the lead of its non-logarithmic counterpart, the study of two-dimensional logarith-
mic CFT has led to a good understanding of chiral structures, in particular logarithmic rep-
resentations and their fusion rules [1]. However, powerful results on chiral logarithmic CFT
are not always easy to translate into a good understanding of bulk logarithmic CFT. Bulk CFT
involves coupling left- and right-moving chiral structures, and this coupling can be nontriv-
ial [2]. Then is it possible to study the bulk theory without starting from the chiral theory? We
propose a positive answer to this question, in the case of CFTs based on the Virasoro algebra
at generic central charge. This case is relatively simple algebraically, and it is motivated by the
O(n)model and the Q-state Potts model. These models are known to be logarithmic at certain
rational central charges, and have long been suspected of being logarithmic at generic central
charge.

Logarithmic fields as derivatives

Of course, at any central charge and even in any dimension, we can obtain simple logarithmic
fields by taking derivatives of primary fields with respect to the conformal dimension [3,4]. We
will focus on the next simplest case, and build logarithmic fields from primary fields that have
null vectors. Our main technical tool will still be derivatives with respect to the conformal
dimension. Actually, we can not only differentiate, but also apply any linear operation: in
particular, following [5], we will linearly combine primary fields with descendant fields.

This approach is particularly effective for computing correlation functions and conformal
blocks. Four-point conformal blocks need not be computed by summing over states in log-
arithmic representations: they can be obtained by combining standard conformal blocks for
Verma modules. This will allow us to determine four-point conformal blocks for representa-
tions whose logarithmic features appear at arbitarily high level, and ultimately to compute
connectivities in the Potts model to arbitrary precision.

Constraints from degenerate fields

Constructing logarithmic representations from derivative fields says nothing on the possible
appearance of these representations in particular CFTs. However, the existence of degenerate
fields in a CFT can imply the existence of logarithmic representations, and determine their
structures [6]. In the cases of the O(n) model and of the Q-state Potts model, this idea was
recently used in [7], although it was only worked out for a subset of logarithmic representa-
tions. We will follow this idea more systematically, and write a conjecture for the structures of
all logarithmic representations in these models at generic central charge. (See Section 4.)
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The determination of the structures of logarithmic representations includes the determi-
nation of their parameters, sometimes called logarithmic couplings. We will find explicit ex-
pressions for these parameters, which not only hold at generic central charge, but also seem
to make sense at rational central charge, as we will show in examples. (See Section 3.1.)

Bootstrapping connectivities

Our logarithmic structures may seem somewhat speculative, as they rely on using derivative
fields in theories with discrete spectrums, and assuming the existence of degenerate fields. In
order to validate our techniques and assumptions, we will first show that our constructions
make sense in the context of Liouville theory, whose continuous spectrum allows us to dif-
ferentiate physical fields, and where degenerate fields are known to exist. (See Section 3.3.)
Then we will bootstrap four-point connectivities in the Q-state Potts model. A recent attempt
at bootstrapping these connectivities was broadly successful [8], although its accuracy was
limited by the presence of unknown logarithmic contributions. We will overcome this limita-
tion, and solve crossing symmetry equations to a high accuracy. (See Section 5.) Our Python
code for computing four-point connectivities is available at GitLab [9].

According to forthcoming work by Grans-Samuelsson et al, predictions from the lattice
discretization of the Q-state Potts model also seem to converge towards the same logarithmic
structures [10].

2 Logarithmic fields as derivatives of primary fields

Primary fields play a central role in conformal field theory, because they generate the simplest
and most common representations of the conformal algebra: Verma modules and quotients
thereof. In such representations, the dilation generator is diagonalizable. We will now inves-
tigate logarithmic representations, where by definition the dilation generator is not diagonal-
izable.

We will build logarithmic representations from derivatives of primary fields with respect
to the conformal dimension. This approach is technically convenient, because it allows us
to easily compute correlation functions, conformal blocks and operator product expansions:
since these objects are solutions of linear Ward identities, their derivatives are solutions as
well. In two dimensions, this approach has the added advantage of guaranteeing the single-
valuedness of correlation functions: if we separately studied left- and right-moving fields and
representations, we would face the additional problem of combining them in a single-valued
way, in other words of building bulk CFT from chiral CFT.

From the derivative of a primary field, we build a logarithmic representation whose struc-
ture depends on the primary field’s properties. We will first focus on the simplest case of a
non-degenerate primary field, i.e. a primary field that generates an irreducible Verma module.
This case is well-known [3], and has even been investigated in higher-dimensional CFT [4].
We will then move on to the case where a null vector (= a singular vector) is present. This
case has already been investigated in two dimensions [11] and higher dimensions [12]. Things
cannot get more complicated at generic central charge, as representations with several null
vectors only appear at rational central charge.

The novelty in our approach therefore comes neither from the derivative field techniques,
nor from the algebraic structures of logarithmic representations, but from the combination
of these two elements. Namely, we will use derivative field techniques for determining the
parameters of logarithmic representations, under assumptions on the existence of degenerate
fields. Moreover, our definition of these parameters will allow us to bypass the awfully pedes-
trian calculations that sometimes appear in the literature, and to determine these parameters
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in the presence of null fields with arbitrary levels.

2.1 Derivatives of primary fields

Jordan blocks from derivatives

Let us start with a primary field V∆ with the conformal dimension ∆. By definition, this is a
field on which the dilation generator L0 and annihilation modes Lm>0 act as

L0V∆ =∆V∆ , (2.1)

Lm>0V∆ = 0 . (2.2)

Our notations for the symmetry generators Lm come from the Virasoro algebra which is rele-
vant to the two-dimensional case. Let us take ∆-derivatives of these equations, while consid-
ering the operators L0, Lm>0 as ∆-independent. Let

V̂∆ =
�

1
n!

V (n)∆ , · · · ,
1
2

V ′′∆ , V ′∆, V∆

�T

(2.3)

be the vector of derivatives of V∆ up to V (n)∆ . We then have

L̂0V̂∆ = ∆̂V̂∆ , (2.4)

L̂m>0V̂∆ = 0 , (2.5)

where L̂m is the diagonal matrix with Lm on the diagonal, and we introduce

∆̂=

















∆ 1 0 · · · 0

0 ∆ 1
... 0

0 0 ∆
. . . 0

...
. . .

. . .
. . . 1

0 0 0 0 ∆

















. (2.6)

This describes a Jordan block of dimension n+ 1.
The primary field V∆ is defined up to a ∆-dependent normalization factor, and this leads

to ambiguities in the definition of V ′∆ too:

V∆→ λ(∆)V∆ =⇒ V ′∆→ λ(∆)V
′
∆ +λ

′(∆)V∆ . (2.7)

More generally, in the module generated by V (n)∆ , this change of normalization leads to a
change of bases that preserves the action of L0. A change of bases is not a change of structure,
and the module has no free parameters.

Two-dimensional case: diagonal primary fields

In two dimensions, the conformal algebra factorizes into a product of two Virasoro algebras,
called left-moving and right-moving. A field that is primary for both Virasoro algebras is char-
acterized by a left-moving and a right-moving conformal dimensions called ∆ and ∆̄. Single-
valuedness of correlation functions on the sphere requires∆−∆̄ ∈ 1

2Z. (See [13] for a review.)
The simplest way to fulfil this constraint is to consider diagonal fields, i.e. fields with ∆= ∆̄.

There are known conformal field theories, such as Liouville theory, that involve diagonal
primary fields whose dimensions can vary continuously. This encourages us to consider deriva-
tives of diagonal primary fields. On the other hand, we do not know of any theory that would

4

https://scipost.org
https://scipost.org/SciPostPhys.10.1.021


SciPost Phys. 10, 021 (2021)

involve non-diagonal primary fields with continuously varying dimensions. We will therefore
refrain from building logarithmic representations from derivatives of non-diagonal primary
fields.

From now on, V∆ will denote a diagonal primary field whose left and right dimensions are
both ∆. Then the derivative field V ′∆ obeys

L0V ′∆ = L̄0V ′∆ =∆V ′∆ + V∆ . (2.8)

It follows that the representation generated by V ′∆ cannot be factorizable. To prove this, let us
concentrate on the two-dimensional subspace Span(V∆, V ′∆), which we view as a representation
of the subalgebra Span(L0, L̄0). If this subspace could be factorized as a tensor product of
representations of L0 and L̄0, one of the two factors would have dimension one, and V ′∆ would
be an eigenvector of either L0 or L̄0.

2.2 Derivatives of null fields

Null fields

Let us rewrite the central charge c in terms of a coupling constant β , and the conformal di-
mension ∆ in terms of a momentum P:

c = 1− 6
�

β −
1
β

�2

, ∆=
c − 1
24

+ P2 . (2.9)

The condition that the Verma module V∆ with the conformal dimension ∆ has a null vector is

V∆ has a null vector ⇐⇒ ∆ ∈
�

∆(r,s)
	

r,s∈N∗ , (2.10)

where the degenerate dimensions ∆(r,s) correspond to the momentums

P(r,s) =
1
2

�

β r − β−1s
�

. (2.11)

We will use the notation V(r,s) = V∆(r,s) for a diagonal primary field of dimension ∆(r,s). Let us
write the null fields in the corresponding Verma module as LV(r,s) = L(r,s)V(r,s), where L(r,s) is
a creation operator. For example, L(1,1) = L−1 and L(2,1) = L2

−1 − β
2 L−2. The same primary

field also has a right-moving null descendant L̄V(r,s). Then LL̄V(r,s) is a diagonal primary field
of dimension ∆(r,−s), and we make the identification

V(r,−s) = LL̄V(r,s) . (2.12)

Null fields can consistently be set to zero, and they do vanish in CFTs such as minimal models.
However they do not have to vanish, and we assume that our null fields do not vanish, in
particular LL̄V(r,s) 6= 0. We plot the four primary fields V(r,s),LV(r,s), L̄V(r,s), V(r,−s) according to
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their left and right conformal dimensions:

∆ ∆̄

L(r,s)

L(r,s)

L̄(r,s)

L̄(r,s)

V(r,s)

V(r,−s)

LV(r,s) L̄V(r,s)

∆(r,s)

∆(r,−s)

∆(r,s)

∆(r,−s)

(2.13)

Combinations of derivatives

We have considered a representation that contains two diagonal primary fields, namely V(r,s)
and V(r,−s). From their derivatives V ′(r,s) or V ′(r,−s), we could generate logarithmic representa-
tions that would not differ much from the representations from Section 2.1. To build something
new, we introduce the linear combination

Wκ
(r,s) = (1−κ)V

′
(r,−s) +κLL̄V ′(r,s) . (2.14)

We call Wκ
(r,s) the representation of the product of two Virasoro algebras that is generated by

the field Wκ
(r,s). We have fixed the sum of the coefficients to one by a choice of normalization,

but κ is a normalization-independent parameter of the representation.
Let us investigate the properties of the representation Wκ

(r,s). We first compute

�

L0 −∆(r,−s)
�

Wκ
(r,s) =

�

L̄0 −∆(r,−s)
�

Wκ
(r,s) = V(r,−s) , (2.15)

where we used the equations (2.8) and (2.12). This shows that the representation Wκ
(r,s) is

logarithmic for any finite value of κ. On the other hand, W∞
(r,s) is an eigenvector of L0, and

generates a non-logarithmic representation.
For any creation operator L, annihilation operator A, and conformal dimension ∆, let us

define a ∆-dependent creation operator [[A,L]](∆) by

ALV∆ = [[A,L]](∆)V∆ . (2.16)

For example, [[L1, L2
−1]](∆) = (4∆+ 2)L−1. Then [[A,L]](∆) depends polynomially on ∆.

Let us now focus on the case L= L(r,s). Since ALV(r,s) = 0, we have

[[A,L(r,s)]](∆(r,s)) = 0 . (2.17)

Differentiating with respect to ∆, we then find

ALV ′(r,s) = [[A,L(r,s)]]
′
(∆(r,s))V(r,s) . (2.18)

Therefore, the action of an annihilation operator on the field Wκ
(r,s) is

AWκ
(r,s) = κ[[A,L(r,s)]]

′
(∆(r,s))L̄V(r,s) . (2.19)
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Let us consider the special case where A is an annihilation operator of degree rs, which we
now denote D: for example, D = Lrs

1 . The operator [[D,L(r,s)]](∆) is actually proportional to
the identity, and we treat it as a number, not an operator. As a polynomial in ∆, it has a zero
at ∆ = ∆(r,s), and this zero is simple if the central charge is generic. Applying D to the field
Wκ
(r,s), we climb back to the primary fields LV(r,s) and L̄V(r,s). For simplicity, we now assume

that D is normalized such that

[[D,L(r,s)]]
′
(∆(r,s)) = 1 . (2.20)

We then have

DWκ
(r,s) = κL̄V(r,s) , D̄Wκ

(r,s) = κLV(r,s) . (2.21)

We deduce closed equations for Wκ
(r,s),

L(r,s)DWκ
(r,s) = L̄(r,s)D̄Wκ

(r,s) = κ
�

L0 −∆(r,−s)
�

Wκ
(r,s) = κ

�

L̄0 −∆(r,−s)
�

Wκ
(r,s) . (2.22)

We can also rewrite Eq. (2.19) as a closed equation,

AWκ
(r,s) = [[A,L(r,s)]]

′
(∆(r,s))DWκ

(r,s) . (2.23)

Let us plot the resulting representation Wκ
(r,s), with black dots for primary fields, and a blue

circle for Wκ
(r,s):

L(r,s)L̄(r,s)
DD̄

V(r,−s), Wκ
(r,s)

LV(r,s) L̄V(r,s)

(2.24)

Although the diagonal primary field V(r,s) does not belong to Wκ
(r,s), we use the notations

LV(r,s), L̄V(r,s) for two non-diagonal primary fields that do. The subrepresentation that they
generate can be built by joining the Verma modules generated by each field along their com-
mon submodule, which is generated by the diagonal primary field V(r,−s):

V(r,s) ⊗ V̄(r,−s) ⊕V(r,−s) ⊗ V̄(r,s)
V(r,−s) ⊗ V̄(r,−s)

⊂Wκ
(r,s) . (2.25)

Finally, let us show that the parameter κ uniquely characterizes the representation Wκ
(r,s),

and is normalization-independent. Given the representation Wκ
(r,s), we first have to find the

field Wκ
(r,s). From its definition (2.14) as a derivative field, we already know that this field is

not quite unique, as we can perform a change of field normalization (2.7) that is compatible
with Eq. (2.12), i.e.

λ(∆(r,s)) = λ(∆(r,−s)) . (2.26)

Under such a change of field normalization, the field Wκ
(r,s) behaves as

Wκ
(r,s)→ λ(∆(r,s))W

κ
(r,s) +

�

(1−κ)λ′(∆(r,−s)) +κλ
′(∆(r,s))

�

V(r,−s) , (2.27)
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which amounts to a change of bases of the representation Wκ
(r,s). Let us argue that the al-

gebraic definition (2.22), (2.23) of the field Wκ
(r,s) only allows this ambiguity and nothing

more. Since by definition Wκ
(r,s) generates the representation Wκ

(r,s), and since Ln≥0Wκ
(r,s) is an

eigenvector of L0, L̄0, the only fields that can be added to Wκ
(r,s) are (L0, L̄0)-eigenvectors with

eigenvalues (∆(r,−s),∆(r,−s)). Moreover, these eigenvectors can always be written as MDWκ
(r,s)

for some creation operator M of level rs. In order for Eq. (2.23) to be unchanged under
Wκ
(r,s)→Wκ

(r,s) +MDWκ
(r,s), we would need

∀A ,
�

[[D,L(r,s)]]′[[A,M]]− [[D,M]][[A,L(r,s)]]′
�

(∆(r,s)) = 0 . (2.28)

This system of linear equations has the obvious solution M= L(r,s), which corresponds to the
ambiguity (2.27). This is the only solution if the central charge is generic, as we found by
numerical explorations for rs ≤ 8. (For any given (r, s), we find finitely many central charges
where more solutions exist, which depend on the choice of D.) Therefore, at generic central
charge, the field Wκ

(r,s) is determined up to the ambiguity (2.27), and we can measure the
paramter κ using Eq. (2.22). In order to make that parameter manisfestly invariant under
rescalings of L(r,s), we can relax the normalization condition (2.20) on D, and rewrite (some
of) Eq. (2.22) in the form

1
[[D,L(r,s)]]′(∆(r,s))

L(r,s)DWκ
(r,s) = κ

�

L0 −∆(r,−s)
�

Wκ
(r,s) . (2.29)

Degenerate fields and special values of κ

We will now argue that two special values of κ are singled out by degenerate fields. By a
degenerate field we mean a diagonal primary field with not only a degenerate dimension of
the type (2.10), but also such that the left and right null vectors vanish. We will use the
notation V〈r0,s0〉 for the degenerate field of conformal dimension ∆(r0,s0).

In order to derive constraints on logarithmic representations from the existence of degen-
erate fields, we will study operator product expansions, a technique that dates back to the very
origins of logarithmic CFT [14]. Pushing this technique to greater generality, we will apply
it to degenerate fields with arbitrary indices r0, s0, and to logarithmic representations with
arbitrary indices r, s.

Operator product expansions involving degenerate fields are constrained by fusion rules,
which are simpler when written in terms of the momentum (2.9) rather than the conformal
dimension:

V〈r0,s0〉VP ∼

r0−1
2
∑

i=− r0−1
2

s0−1
2
∑

j=− s0−1
2

VP+iβ+ jβ−1 , (2.30)

where the sums run by increments of 1. Given r, s ∈ N∗, we now consider a degenerate field of
the type V〈1,s0〉 and a diagonal primary field VP(r,0) such that their OPE includes the two primary
field V(r,±s). (This happens if s0 ∈ s+ 1+ 2N.) We consider the OPE

V〈1,s0〉VP(r,0)+ε = C1(ε)
�

1+ f (ε)L(r,s) + f (ε)L̄(r,s) + f (ε)2L(r,s)L̄(r,s)
�

VP(r,s)+ε

+ C2(ε)VP(r,−s)+ε + · · · . (2.31)

Here Ci(ε) and f (ε) are OPE coefficients, which also depend on the fields’ positions. We
omit contributions of other primary fields, and of all descendant fields except for the three
L(r,s), L̄(r,s) and L(r,s)L̄(r,s)-descendants, which become null vectors as ε → 0. Therefore, the
coefficient f (ε) has a simple pole at ε= 0.

The behaviour of our OPE will now follow from two facts:
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• The OPE is finite. This is a consequence of the associativity of the double OPE
V〈1,s0〉VP(r,0)+εVP ′ for a generic P ′.

• C1(ε) has a simple zero at ε= 0. The coefficients C1(ε), C2(ε) are determined by crossing
symmetry of

¬

VP(r,0)+εV〈1,s0〉VP(r,0)+εV〈1,s0〉

¶

via standard analytic bootstrap methods [13],
and do not depend on the particular CFT we are considering. One way to determine their
behaviour is to read it from their known expressions in Liouville theory, see Section 3.3.

We deduce that the first term of the OPE (2.31) has a simple pole, which must cancel with a
simple pole of the second term. This implies that C2(ε) has a simple pole, such that

lim
ε→0

C1(ε) f (ε)2

C2(ε)
= −1 . (2.32)

It follows that the leading behaviour of the terms (2.31) includes a contribution from the
derivative field

W−
(r,s) = ∂P VP(r,−s)

−L(r,s)L̄(r,s)∂P VP(r,s) . (2.33)

This is a special case of the derivative field Wκ
(r,s) (2.14), whose value of κ is found by translating

P-derivatives into ∆-derivatives,

κ−(r,s) =
P(r,s)

P(r,s) − P(r,−s)
=

s− rβ2

2s
. (2.34)

Had we started with degenerate fields of the type V〈r0,1〉 instead of V〈1,s0〉, we would have found
derivative fields of the type

W+
(r,s) = ∂P VP(−r,s)

−L(r,s)L̄(r,s)∂P VP(r,s) , (2.35)

whose parameter κ is

κ+(r,s) =
P(r,s)

P(r,s) − P(−r,s)
=

r − sβ−2

2r
. (2.36)

In theories with both types of degenerate fields, both types of derivative fields can exist.

2.3 Second derivatives of null fields

We will now consider second derivative fields. Like our first derivative fields Wκ
(r,s), second

derivative fields appear in OPEs of degenerate fields. Higher derivative fields only appear in
subleading terms of these OPEs, and we will refrain from considering them.

Combinations of second derivatives

We introduce the combination

fWκ
(r,s) =

1− κ
2

V ′′(r,−s) +
κ

2
LL̄V ′′(r,s) , (2.37)

and we call fWκ
(r,s) the corresponding representation of the product of two Virasoro algebras.

The field fWκ
(r,s) obeys

�

L0 −∆(r,−s)
�

fWκ
(r,s) =

�

L̄0 −∆(r,−s)
�

fWκ
(r,s) =Wκ

(r,s) , (2.38)
�

L0 −∆(r,−s)
�2
fWκ
(r,s) = V(r,−s) . (2.39)
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Using an annihilation operator D normalized as in Eq. (2.20), and taking the second derivative
of Eq. (2.16), we obtain

DfWκ
(r,s) = κL̄V ′(r,s) , D̄fWκ

(r,s) = κLV ′(r,s) , DD̄fWκ
(r,s) = κV(r,s) . (2.40)

This leads to a closed equation for the field fWκ
(r,s),

L(r,s)L̄(r,s)DD̄fWκ
(r,s) = κ

�

L0 −∆(r,−s)
�2
fWκ
(r,s) . (2.41)

This also leads to

L(r,s)DfWκ
(r,s) = L̄(r,s)D̄fWκ

(r,s) = κW 1
(r,s) . (2.42)

Therefore, the representation fWκ
(r,s) contains both fields W 1

(r,s) and Wκ
(r,s). By linearly combining

these fields, we could obtain Wκ′

(r,s) for any value of κ′. We collectively denote these fields as
W ∗
(r,s) in the following plot, which uses the same conventions as the plot (2.24):

L(r,s)

L(r,s)

L̄(r,s)

L̄(r,s)

V(r,s)

D

D

D̄

D̄

V(r,−s), W ∗
(r,s),fW

κ
(r,s)

LV(r,s),LV ′(r,s) L̄V(r,s), L̄V ′(r,s) (2.43)

In terms of subrepresentations, we have

V(r,s) ⊗ V̄(r,s) ⊂ fWκ
(r,s) , W∗

(r,s) ⊂ fW
κ
(r,s) . (2.44)

Under a change of normalization that respects Eq. (2.26), the second derivative field changes
as

fWκ
(r,s)→ λ(∆(r,s))fW

κ
(r,s) + (1− κ)λ

′(∆(r,−s))V
′
(r,−s) +κλ

′(∆(r,s))LL̄V ′(r,s)

+
1
2

�

(1− κ)λ′′(∆(r,−s)) +κλ
′′(∆(r,s))

�

V(r,−s) . (2.45)

In particular, there appear fields Wκ′

(r,s) with parameters κ′ that depend on the function λ(∆).

Since all these fields belong to the representation fWκ
(r,s), changes of normalization amount to

changes of bases.

Degenerate fields and special values of κ

Given r, s ∈ N∗, let us consider a momentum P0 such that the degenerate fusion rule for the
OPE V〈r0,s0〉VP0

(2.30) allows the four field VP(±r,±s)
. For simplicity, we choose P0 = P(0,0) = 0
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and assume r0 ∈ r + 1+ 2N, s0 ∈ s+ 1+ 2N, but the results do not depend on this choice. We
focus on the behaviour of a few terms in the OPE V〈r0,s0〉Vε as ε→ 0,

V〈r0,s0〉Vε =
∑

±

�

C1(ε)
�

1+ f (ε)L(r,s) + f (ε)L̄(r,s) + f (ε)2L(r,s)L̄(r,s)
�

VP(r,s)±ε

+ C2(ε)VP(r,−s)±ε

�

+ · · · , (2.46)

where we assume that the fields are normalized such that VP = V−P , which implies that the
coefficients Ci(P), f (P) are even functions of P. As in the case with first derivatives, the leading
terms of the OPE cancel. The proof of that cancellation still works, and Eq. (2.32) is still
valid for our coefficients Ci(P), f (P), with the only difference that C1(ε) now has a finite limit
instead of a simple zero. The cancelling leading terms are now double poles; the simple poles
also cancel by parity in ε. The limit of our OPE therefore involves the double derivative field

fW 0
(r,s) = ∂

2
P VP(r,−s)

−L(r,s)L̄(r,s)∂ 2
P VP(r,s) . (2.47)

Transforming P-derivatives into ∆-derivatives, and using the ambiguity (2.45) for getting rid
of first derivative terms, we find that fW 0

(r,s) is a field of the type fWκ
(r,s) (2.37), for the special

value of the parameter

κ0
(r,s) =

P2
(r,s)

P2
(r,s) − P2

(r,−s)

=
1
2
−

r
4s
β2 −

s
4r
β−2 . (2.48)

3 Correlation functions and conformal blocks

Let us compute correlation functions of our logarithmic fields. We will pay particular attention
to the cases of two-point functions and four-point conformal blocks on the sphere. Two point
functions are simple observables that capture the structure of representations, including their
parameters. Four-point functions are necessary and sufficient for establishing consistency of a
CFT on the sphere.

For expository reasons, we will first review two-point functions and four-point blocks for
derivatives of primary fields, which are rather trivial. New results start with the two-point
functions (3.21) of fields in the representation Wκ

(r,s) for arbitrary indices r, s. Then we will
compute logarithmic four-point blocks that do not obey any differential equations and have no
Coulomb gas integral representations: this is apparently unheard of in the earlier literature.

3.1 Two-point functions

In contrast to higher correlation functions, two-point functions of derivative fields cannot be
computed by just differentiating two-point functions of primary fields. In a CFT with contin-
uously varying conformal dimensions, the two-point function involves a Dirac delta function



V∆1
(z1)V∆2

(z2)
�

∝ δ(∆1−∆2)
|z12|4∆1

. While we can easily deduce the simple identities

∆1 6=∆2 =⇒
¬

V (i)∆1
V ( j)∆2

¶

= 0 , (3.1)

there is no well-defined procedure to recover two-point functions of V∆ and its derivatives,
which would require setting ∆1 =∆2.

Instead of just differentiating two-point functions, we therefore have to differentiate the
Ward identities for the two-point functions, and solve the differentiated Ward identities [15].
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Derivatives of primary fields

Let us determine the matrix B̂∆ of two-point functions of the derivatives of V∆ up to order n:

B̂i j
∆ =



1
(n− i)!

V (n−i)
∆

1
(n− j)!

V (n− j)
∆

·

. (3.2)

Here and in the rest of Section 3.1, the first field is at z1 and the second field at z2, i.e. we use
the notation

〈X Y 〉= 〈X (z1)Y (z2)〉 . (3.3)

Two-point functions of arbitrary fields obey the global Ward identities
�

∂z1
+ ∂z2

�

〈X Y 〉= 0 , (3.4)
�

z1∂z1
+ z2∂z2

+ L(X )0 + L(Y )0

�

〈X Y 〉= 0 , (3.5)
�

z2
1∂z1
+ z2

2∂z2
+ 2z1 L(X )0 + 2z2 L(Y )0 + L(X )1 + L(Y )1

�

〈X Y 〉= 0 , (3.6)

where the L1-terms vanish when the fields are primaries or derivatives thereof. In this case,
the global Ward identities imply (L(X )0 − L(Y )0 ) 〈X Y 〉= 0. In matrix form, this equation reads

∆̂B̂∆ = B̂∆∆̂
T , (3.7)

where ∆̂ (2.6) is the matrix form of the action of L0 on the vector of derivative field V̂∆ (2.3).
The general solution of this equation is

B̂∆ = f (∆̂)B̂0 = B̂0 f (∆̂T ) , (3.8)

where we introduced

B̂0 =















bn bn−1 . . . b0

bn−1 . .
.

b0 0
... . .

. ...
b0

b0 0 · · · 0















, (3.9)

for some coefficients b0, . . . , bn, and the function f is undetermined. To determine it, we
use the rest of the Ward identities, and find f (∆) = |z12|−4∆, plus the requirement that the
coefficients bi are zk-independent. For example, in the case n= 1, we recover the well-known
result [1]








V ′∆V ′∆
� 


V ′∆V∆
�




V∆V ′∆
�

〈V∆V∆〉



=
1

|z12|4∆





b1 − b0 log |z12|4 b0

b0 0



 . (3.10)

In the case n= 2, the result is










1
2 V ′′∆

1
2 V ′′∆

� 
1
2 V ′′∆V ′∆

� 
1
2 V ′′∆V∆

�




V ′∆
1
2 V ′′∆

� 


V ′∆V ′∆
� 


V ′∆V∆
�




V∆
1
2 V ′′∆

� 


V∆V ′∆
�

〈V∆V∆〉









=
1

|z12|4∆





b2 − b1 log |z12|4 +
1
2 b0

�

log |z12|4
�2

b1 − b0 log |z12|4 b0
b1 − b0 log |z12|4 b0 0

b0 0 0



 . (3.11)
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Notice that the existence of derivative fields constrains the two-point functions of the original
primary field to vanish. More generally, i + j < n =⇒

¬

V (i)∆ V ( j)∆
¶

= 0.
Recall that two-point functions of descendants of a primary field V∆ obey the identity

¬

L1V∆L2V∆
¶

= (−1)|L1|+|L2|
¬

L2V∆L1V∆
¶

, (3.12)

where L1 and L2 are creation operators, and |L| is the level of L, in particular |L(r,s)| = rs.

For derivative fields, we observe
¬

V (i)∆ V ( j)∆
¶

=
¬

V ( j)∆ V (i)∆
¶

. Therefore, the identity (3.12) still
holds if L1,L2 are combinations of creation operators and derivatives with respect to ∆.

Null fields

Since the field V(r,s) and its null descendant LV(r,s) are two primary fields of different dimen-
sions, their two-point function vanishes, and so do two-point functions of their descendants.
In particular,




V(r,s)LV(r,s)
�

=



LV(r,s)LV(r,s)
�

= 0 . (3.13)

The non-trivial and non-vanishing quantities that will appear in two-point functions of deriva-
tive fields are

ρ(r,s) =
∂

∂∆




L(r,s)V∆L(r,s)V∆
�

z−rs
12 z−rs

21 〈V∆V∆〉

�

�

�

�

�

∆=∆(r,s)

= 2

¬

LV(r,s)LV ′(r,s)
¶

z−rs
12 z−rs

21




V(r,s)V(r,s)
� , (3.14)

ω(r,s) =
∂

∂∆




V∆L(r,s)V∆
�

z−rs
12 〈V∆V∆〉

�

�

�

�

�

∆=∆(r,s)

=

¬

V(r,s)LV ′(r,s)
¶

z−rs
12




V(r,s)V(r,s)
� . (3.15)

The second expression for ρ(r,s) directly follows from the first expression, and from the identity



L(r,s)V ′∆L(r,s)V∆
�

=



L(r,s)V∆L(r,s)V ′∆
�

which follows from Eq. (3.12). Similarly, the second
expression for ω(r,s) follows from

∂

∂∆




V∆L(r,s)V∆
�

�

�

�

�

∆=∆(r,s)

=
¬

V ′(r,s)LV(r,s)
¶

+
¬

V(r,s)LV ′(r,s)
¶

, (3.16)

where the first term vanishes due to Eq. (3.1). One may worry that we are using the field
V ′(r,s), whose existence in principle implies




V(r,s)V(r,s)
�

= 0. However, the particular correlation

function where we insert V ′(r,s) is not related to



V(r,s)V(r,s)
�

by Ward identities, so there is no
inconsistency.

The quantity ρ(r,s) is actually well-known, and it coincides with the denominator of the
conformal block’s residue at ∆=∆(r,s). Assuming the normalization

L(r,s) = Lrs
−1 + · · · , (3.17)

we have [16,17]

ρ(r,s) = −

∏r
i=1−r

∏s
j=1−s 2P(i, j)

2P(0,0)P(r,s)
. (3.18)

The quantity ω(r,s) does not seem so well-known. Computer-assisted calculations of examples
with rs ≤ 20 suggest

ω(r,s) =
2P(r+1,s+1)

2P(1,1)

∏r
i=0

∏s
j=0 2P(i, j)

2P(0,0)2P(r,0)2P(0,s)2P(r,s)

r−1
∏

i=1

s−1
∏

j=1

2P(i, j) . (3.19)
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In practice, it is convenient to repeatedly use the global Ward identity (3.6), which reduces
ω(r,s) to the purely algebraic quantity

ω(r,s) =
[[Lrs

1 ,L(r,s)]]′(∆(r,s))
(rs)!

, (3.20)

where the polynomial [[Lrs
1 ,L(r,s)]](∆) was defined in Eq. (2.16). In the formulas for ρ(r,s)

and ω(r,s), the total powers of ∆∼ P2 coincide with what we would expect from the heuristic
rule L(r,s)∝∆rs.

Derivatives of null fields

Let us compute two-point functions in the representation Wκ
(r,s) (2.24). We will focus on the

representation-generating logarithmic field Wκ
(r,s), and on the primary fields V(r,−s) and L̄V(r,s).

(The primary field LV(r,s) can be dealt with similarly.) We normalize the creation operator
L(r,s) via Eq. (3.17). Let us show that the two-point functions are of the type







¬

Wκ
(r,s)W

κ
(r,s)

¶ ¬

Wκ
(r,s)V(r,−s)

¶ ¬

Wκ
(r,s)L̄V(r,s)

¶

¬

V(r,−s)W
κ
(r,s)

¶




V(r,−s)V(r,−s)
� 


V(r,−s)L̄V(r,s)
�

¬

L̄V(r,s)W
κ
(r,s)

¶




L̄V(r,s)V(r,−s)
� 


L̄V(r,s)L̄V(r,s)
�







=
1

|z12|4∆(r,−s)







b1 − log |z12|4 1
2ω(r,s)
ρ(r,s)

zrs
12

1 0 0
2ω(r,s)
ρ(r,s)

zrs
21 0 2

κρ(r,s)
zrs

12zrs
21






. (3.21)

We start with the Jordan block of dimension 2 whose basis is (V(r,−s), Wκ
(r,s)). Since L1Wκ

(r,s) 6= 0,
we may fear that we cannot directly apply Eq. (3.10). However, thanks to Eq. (3.12), the L1
terms actually cancel in the Ward identiy (3.6), so that (3.10) is applicable after all. This
yields the top left submatrix of size two, where we have normalized Wκ

(r,s) so that b0 = 1, and
b1 cannot be determined as it is not invariant under changes of bases (2.27).

Starting from the definition of ρ(r,s) (3.14), let us insert the action of L̄(r,s). Noticing that

the relations (2.12) and (3.1) imply
¬

V ′(r,−s)V(r,−s)

¶

= 0, we can rewrite the numerator as a
two-point function of Wκ

(r,s) (2.14),

ρ(r,s) =
2
¬

Wκ
(r,s)V(r,−s)

¶

κz−rs
12 z−rs

21




L̄V(r,s)L̄V(r,s)
� . (3.22)

Next, we consider the definition of ω(r,s) (3.15). Inserting again the action of L̄(r,s) on all
involved fields, we obtain

ω(r,s) =

¬

L̄V(r,s)W
κ
(r,s)

¶

κz−rs
12




L̄V(r,s)L̄V(r,s)
� , (3.23)

which completes the proof of Eq. (3.21).
Two-point functions of fields in the representation fWκ

(r,s) could be computed along the same
lines. They would involve more complicated coefficients of the type of ω(r,s) and ρ(r,s).

14

https://scipost.org
https://scipost.org/SciPostPhys.10.1.021


SciPost Phys. 10, 021 (2021)

Logarithmic couplings

Logarithmic representations are usually parametrized by a number called the logarithmic cou-
pling [1], which has to be related to our parameter κ. The main difference is that κ is fully
normalization-independent, while the logarithmic coupling is not. As a result, κ is much sim-
pler. On the other hand, the logarithmic coupling has the advantage that it can be directly
read off from the two-point functions. Let us use this for relating it to κ.

In the particular normalization where L(r,s) = Lrs
−1+ · · · and D = Lrs

1 + · · · , the logarithmic
coupling should coincide with the ratio of the log |z12|2 term with the bottom right coefficient
of the matrix two-point function (3.21). Calling γ the logarithmic coupling (since the usual
notation β for that coupling already has another meaning for us), we therefore find

γ= ρ(r,s)κ , (3.24)

where ρ(r,s) (3.18) should be considered a normalization prefactor.
Let us compare this with some known logarithmic couplings from logarithmic minimal

models [6]. In the rest of Section 3.1, for the first and only time in this article, the cen-
tral charge is not generic, but rational. We first focus on the logarithmic minimal model
LM(2,3), which corresponds to β2 = 3

2 . Due to the existence of degenerate fields, the loga-
rithmic coupling should be γ−(r,s) = ρ(r,s)κ

−
(r,s), where κ−(r,s) is given in Eq. (2.34). We should

beware of two subtleties:

• The normalization in [6] is not L(r,s) = Lrs
−1+ · · · but L(r,s) = L−rs+ · · · , so their couplings

have to be multiplied with a normalization factor.

• Our labels (r, s) are the indices of a non-vanishing null vector, whereas the labels in [6]
are the indices of a vanishing null vector.

Modulo these subtleties, we find that the logarithmic couplings agree:

Coupling from [6](3.9) Normalization factor γ−(r,s)

β1,4 = −
1
2 1 γ−(1,1) = −

1
2

β1,5 = −
5
8

4
9 γ−(1,2) = −

5
18

β1,7 = −
35
3 36 γ−(3,1) = −420

(3.25)

Let us also discuss the vacuum module, which includes an identity field V〈1,1〉 = V(1,2) of di-
mension zero whose level one null vector vanishes, but whose level two null vector L(1,2)V〈1,2〉
does not. The representation W−

(1,2), which is characterized by the coupling −5
8 , obviously

differs from the vacuum module, as it does not contain the identity field. Actually, the vac-
uum module should contain not only the identity field, but also a Jordan block of dimension
3 [18], so our module fW0

(1,2) is a better candidate. The usual definition of the vacuum mod-
ule’s logarithmic coupling is however not based on the Jordan block of dimension 3, but on
the Jordan block of dimension 2 whose generators appear as (LV(r,s),LV ′(r,s) = W 1

(r,s)) in the

diagram (2.43). The κ-parameter for this Jordan block is not the parameter κ0
(r,s) of the full

module, rather it is simply κ= 1. (Notice that the identity [18](4.6) just reads in our notations
1 = 1

2(
1
κ+(r,s)
+ 1
κ−(r,s)
).) Therefore, the usually defined logarithmic coupling is just the normal-

ization prefactor ρ(1,2) = −
20
9 , divided by the normalization factor 4

9 from Table (3.25). The
resulting coupling −5, initially computed in [19], is made of nothing but normalizations: the
meaningful and nontrivial structural parameter is actually κ0

(1,2) = −
1

288 .
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There is also a conjecture for some of the logarithmic couplings of LM(2, p) [6](5.11),
which corresponds to β2 = p

2 . These couplings are

β̂1,p+n = (−1)n
p
8

n−1
∏

i=−n

(p+ 2i) =
p2n

4(n− 1)!2
γ−(1,n) , (3.26)

where the prefactor of the last expression comes from a particular choice of normalization.
This equality is valid for any 1 ≤ n < p, i.e. whenever the formula for β̂1,p+n holds. Our
expression for γ−(1,n) should also be valid for more general values of n.

3.2 Four-point conformal blocks

If we wanted to compute four-point functions of logarithmic fields, we would of course need
the corresponding logarithmic conformal blocks. These would just be derivatives of non-
logarithmic conformal blocks with respect to conformal dimensions. Computing such deriva-
tives is straightforward, because conformal blocks are analytic functions of the fields’ dimen-
sions.

However, in CFTs such as the Potts model, we are not that interested in correlation func-
tions of logarithmic fields – fields whose existence and properties we are establishing only
now. More interesting observables, which have been studied for a long time, are correlation
functions of non-logarithmic fields fields, for example correlation functions of spin fields, or
the cluster connectivities of Section 5. Logarithmic fields can appear as channel fields when
we decompose such correlation functions into conformal blocks.

Derivatives of primary fields

Starting from a three-point function of diagonal primary fields,
® 3
∏

i=1

V∆i
(zi)

¸

= C∆1,∆2,∆3
|z12|2(∆3−∆1−∆2)|z13|2(∆2−∆1−∆3)|z23|2(∆1−∆2−∆3) , (3.27)

we deduce a three-point function involving the derivative field V ′∆1
(z1),

¬

V ′∆1
(z1)V∆2

(z2)V∆3
(z3)

¶

=

�

C ′∆1,∆2,∆3
− C∆1,∆2,∆3

log

�

�

�

�

z12z13

z23

�

�

�

�

2
�

× |z12|2(∆3−∆1−∆2)|z13|2(∆2−∆1−∆3)|z23|2(∆1−∆2−∆3) . (3.28)

This shows that the coupling of the logarithmic field V ′∆1
to two diagonal primary fields V∆2

, V∆3

involves two structure constants C ′∆1,∆2,∆3
and C∆1,∆2,∆3

. Let us now recall the decomposition
of a four-point function into conformal blocks,

® 4
∏

i=1

V∆i

¸

=

∫

d∆ C∆,∆1,∆2
C∆,∆3,∆4

F∆F̄∆ . (3.29)

Here we omit the dependence on positions zi , which are spectators in our reasoning. We
introduce the s-channel conformal block F∆ for a Verma module of dimension∆, and its value
F̄∆ at complex conjugate positions. For positions (z1, z2, z3, z4) = (z, 0,∞, 1), the conformal
block is

F∆(z) = z∆−∆1−∆2

�

1+
(∆+∆1 −∆2)(∆+∆4 −∆3)

2∆
z +O(z2)

�

. (3.30)
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Let us differentiate the four-point function’s integrand with respect to the channel dimension:

∂

∂∆

�

C∆,∆1,∆2
C∆,∆3,∆4

F∆F̄∆
�

= C∆,∆1,∆2
C∆,∆3,∆4

�

F∆F̄ ′∆ +F ′∆F̄∆
�

+
�

C ′∆,∆1,∆2
C∆,∆3,∆4

+ C∆,∆1,∆2
C ′∆,∆3,∆4

�

F∆F̄∆ . (3.31)

We interpret this expression as the contribution of the channel representation generated by the
field V ′∆. This contribution involves two distinct non-chiral conformal blocks F∆F̄ ′∆ +F ′∆F̄∆
and F∆F̄∆, whose coefficients are combinations of three-point structure constants. For the
channel representation generated by V (n)∆ , we would similarly obtain a linear combination of
the conformal blocks F∆F̄∆, (F∆F̄∆)′, . . . , (F∆F̄∆)(n).

We insist that taking derivatives is only a technical trick, and that the resulting expressions
are also valid if the spectrum is discrete, i.e. if the decomposition into conformal blocks is a
discrete sum rather than an integral. In this context, the structure constants C ′∆1,∆2,∆3

should
not be understood as the derivative of C∆1,∆2,∆3

, but as an independent structure constant.

Derivatives of null fields

The conformal block F∆ has simple poles at degenerate values of the channel dimension
∆ ∈ {∆(r,s)}r,s∈N∗ . The first pole ∆ = ∆(1,1) = 0 can be seen in Eq. (3.30). The behaviour
near a simple pole is

F∆(r,s)+ε =
Rr,s

ε
F∆(r,−s)

+F reg
∆(r,s)
+ εF (1)∆(r,s) +O

�

ε2
�

, (3.32)

where Rr,s is a known, z-independent constant. This is the basis for Al. Zamolodchikov’s re-
cursive representation of conformal blocks. This will now allow us to determine the conformal
blocks that correspond to the logarithmic representation Wκ

(r,s).
Let us consider two terms that may appear in the OPE

V∆1
V∆2
= c∆(r,s)+ε,∆1,∆2

L(r,s)L̄(r,s)V∆(r,s)+ε + c∆(r,−s)+ε,∆1,∆2
V∆(r,−s)+ε + · · · , (3.33)

and the two corresponding terms in the four-point function’s s-channel decomposition,

® 4
∏

i=1

V∆i

¸

= C∆(r,s)+ε,∆1,∆2
C∆(r,s)+ε,∆3,∆4

F∆(r,s)+εF̄∆(r,s)+ε

+ C∆(r,−s)+ε,∆1,∆2
C∆(r,−s)+ε,∆3,∆4

F∆(r,−s)+εF̄∆(r,−s)+ε + · · · . (3.34)

Due to the relation (2.12) between V(r,s) and V(r,−s), we may expect that the two terms match
in the ε → 0 limit, whether in the OPE or in the four-point function. However, we will only
assume that they match up to a factor χ,

lim
ε→0

c∆(r,−s)+ε,∆1,∆2

c∆(r,s)+ε,∆1,∆2

= lim
ε→0

C∆(r,−s)+ε,∆1,∆2
C∆(r,−s)+ε,∆3,∆4

C∆(r,s)+ε,∆1,∆2
C∆(r,s)+ε,∆3,∆4

ε2

R2
r,s
= χ . (3.35)

As we saw in Section 2.2 in the case of OPEs, it can indeed happen that the two terms cancel
instead of matching, so we should allow for χ = −1 in addition to χ = 1. What happens is
that the two-point functions




V(r,−s)V(r,−s)
�

and



LL̄V(r,s)LL̄V(r,s)
�

can actually vanish, so the
matching of the corresponding two fields determines the ε→ 0 limits (3.35) only up to a factor
χ, which should not depend on ∆1,∆2,∆3,∆4. This factor should however be the same for
four-point structure constants as for OPE coefficients, because three-point functions can be
computed by inserting OPEs into four-point functions.
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Let us now introduce the formal linear combination of our two OPE terms,

κχc∆(r,s)+ε,∆1,∆2
L(r,s)L̄(r,s)V∆(r,s)+ε + (1−κ)c∆(r,−s)+ε,∆1,∆2

V∆(r,−s)+ε

= c∆(r,−s),∆1,∆2

�

V(r,−s) + εW
κ
(r,s) + ε

2
fWκ
(r,s)

�

+
�

κχc′∆(r,s),∆1,∆2
+ (1−κ)c′∆(r,−s),∆1,∆2

�

εV(r,−s) +O(ε2) . (3.36)

We have chosen a combination such that the logarithmic fields Wκ
(r,s) and fWκ

(r,s) appear at the or-

ders O(ε) and O(ε2) respectively. To compute the corresponding conformal blocks, we should
therefore expand the corresponding formal linear combination of the four-point function’s in-
tegrand (3.29),

Zκε = κχC∆(r,s)+ε,∆1,∆2
C∆(r,s)+ε,∆3,∆4

F∆(r,s)+εF̄∆(r,s)+ε
+ (1− κ)C∆(r,−s)+ε,∆1,∆2

C∆(r,−s)+ε,∆3,∆4
F∆(r,−s)+εF̄∆(r,−s)+ε . (3.37)

We then have the Taylor expansion

Zκε = C∆(r,−s),∆1,∆2
C∆(r,−s),∆3,∆4

F∆(r,−s)
F̄∆(r,−s)

+

�

C∆(r,−s),∆1,∆2
C∆(r,−s),∆3,∆4

Gκ(r,s)

+
�

C∆(r,−s),∆1,∆2
C ′(r,s),∆3,∆4

+ C ′(r,s),∆1,∆2
C∆(r,−s),∆3,∆4

�

F∆(r,−s)
F̄∆(r,−s)

�

ε+O
�

ε2
�

, (3.38)

where C ′(r,s),∆1,∆2
is combination of derivatives of three-point structure constants, and we in-

troduced the non-chiral logarithmic conformal block

Gκ(r,s) =
κ

Rr,s

�

F∆(r,−s)
F̄ reg
∆(r,s)
+F reg

∆(r,s)
F̄∆(r,−s)

�

+ (1− κ)
�

F∆(r,−s)
F̄∆(r,−s)

�′
. (3.39)

We interpret the O(ε) term of Zκε as the contribution of the representation Wκ
(r,s) to a four-point

function. This contribution has the same overall structure as Eq. (3.31), with two independent
structure contants C , C ′ for each three-point coupling, and two conformal blocks F∆(r,−s)

F̄∆(r,−s)

and Gκ(r,s). The latter conformal block is however more complicated than in Eq. (3.31), and it
depends on the parameter κ.

Since the logarithms come from differentiating the z∆ prefactor of the conformal block

F∆(z) (3.30), they cancel in the combination
F̄ reg
∆(r,s)
Rr,s
−F̄ ′∆(r,−s)

. Therefore G∞(r,s) is not logarithmic,
whereas Gκ(r,s) is logarithmic for any finite κ. Since the field Wκ

(r,s) is logarithmic if and only if
κ 6=∞, this is a basic check of our formula for Gκ(r,s).

Computing the O(ε2) term in the Taylor expansion (3.38) of Zκε , we would obtain the
conformal block for the representation fWκ

(r,s), namely

eGκ(r,s) = κ
�F reg

∆(r,s)
F̄ reg
∆(r,s)

R2
r,s

+
1

Rr,s

�

F (1)∆(r,s)F̄∆(r,−s)
+ F̄ (1)∆(r,s)F∆(r,−s)

�

�

+
(1− κ)

2

�

F∆(r,s)F̄∆(r,−s)

�′′
, (3.40)

with the coefficient C∆(r,−s),∆1,∆2
C∆(r,−s),∆3,∆4

. The O(ε2) term also includes contributions of

Gκ′(r,s) and F∆(r,−s)
F̄∆(r,−s)

, which we interpret as coming from the representation fWκ
(r,s) again.
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Case with degenerate fields

Let us now introduce the combination

Z−ε = D(P(r,s) + ε)FP(r,s)+εF̄P(r,s)+ε + D(P(r,−s) + ε)FP(r,−s)+εF̄P(r,−s)+ε . (3.41)

In contrast to the formal combinationZκε (3.37), we do not introduce the parameter κ. Instead,
we make the assumption that degenerate fields of the type V〈1,s0〉 exist. This assumption leads
to relations between structure constants whose arguments differ by integer multiples of β−1,
such as D(P(r,s) + ε) and D(P(r,−s) + ε). Even though our conformal blocks come from a four-

point function
¬

∏4
i=1 V∆i

(zi)
¶

that needs not involve any degenerate field, the combination
Z−ε is analogous to the OPE (2.31). And like in that OPE, the leading terms will cancel, thanks
to the relation

D(P(r,−s) + ε)

D(P(r,s) + ε)
∼
ε→0
−

Rr,sR̄r,s

4P2
(r,s)ε

2
. (3.42)

For greater generality, we allowed our four fields to be non-diagonal, in which case the residues
Rr,s and R̄r,s of the left- and right-moving conformal blocks may differ. The factor 4P2

(r,s) comes
from translating the ∆-residues Rr,s into P-residues. This relation is ultimately a consequence
of the analytic bootstrap equations of [20], and it can be deduced from Eqs. (2.17) and (3.8)
in [21]. In the diagonal case, this relation was already observed in [5](4.19), where it was de-
duced from the assumption that structure constants are given by Liouville theory expressions.

The analytic bootstrap equations determine not just the leading behaviour of the ratio of
structure constants as ε→ 0, but also its value for any finite ε. This allows us to compute the
leading non-vanishing term

Z−ε ∝ε→0
G−(r,s) = 2P(r,s)



F∆(r,−s)

F̄ reg
∆(r,s)

R̄(r,s)
+
F reg
∆(r,s)

Rr,s
F̄∆(r,−s)





− 2P(r,−s)

�

F∆(r,−s)
F̄∆(r,−s)

�′
− `(1)−(r,s)F∆(r,−s)

F̄∆(r,−s)
, (3.43)

where the coefficient `(1)−(r,s) comes from the Taylor expansion

log

�

ε2
D(P(r,−s) + ε)

D(P(r,s) + ε)

�

=
∞
∑

n=0

`
(n)−
(r,s) ε

n . (3.44)

Explicitly,

β`
(1)−
(r,s) = −4

s
∑

j=1−s

¦

ψ(−2β−1P(r, j)) +ψ(2β
−1P(r,− j))

©

− 4π cot(πsβ−2)

+
s−1
∑

j
2
=1−s

∑

±,±

¦

ψ
�1

2 − β
−1(P(r, j) ± P1 ± P2)

�

+ψ
�1

2 + β
−1(P(r, j) ± P̄1 ± P̄2)

�

©

+
s−1
∑

j
2
=1−s

∑

±,±

¦

ψ
�1

2 − β
−1(P(r, j) ± P3 ± P4)

�

+ψ
�1

2 + β
−1(P(r, j) ± P̄3 ± P̄4)

�

©

, (3.45)

where ψ(x) = Γ ′(x)
Γ (x) is the digamma function, regularized such that ψ(−r) = ψ(r + 1) for

r ∈ N.
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Comparing the non-chiral conformal block G−(r,s) with Gκ(r,s) (3.39), we first see that the
logarithmic terms do correspond to the expected value κ−(r,s) (2.34) of the parameter κ. In
addition to fixing the value of κ, the existence of degenerate fields determines the coefficient
of F∆(r,−s)

F̄∆(r,−s)
, which used to be an independent structure constant in Eq. (3.38).

Instead of degenerate fields of the type V〈1,s0〉, we could assume the existence of degenerate
fields of the type V〈r0,1〉. In this case, we would find conformal blocks G+(r,s) = θ · G

−
(r,s) for the

representation W+
(r,s), where we introduce the operation

θ :

�

β →−β−1 ,
r↔ s ,

(3.46)

in particular θ · P(r,s) = P(r,s) and θ · P(r,−s) = −P(r,−s). Assuming the existence of both types
of degenerate fields, or equivalently of general degenerate fields V〈r0,s0〉, we can obtain both

types of conformal blocks, and also conformal blocks eG0
(r,s) for the representations fW0

(r,s) with

Jordan blocks of dimension 3. The conformal block eG0
(r,s) is the leading term of Z0

ε =
∑

±Z
−
±ε

as ε→ 0, and we find

eG0
(r,s) =

�

FF̄
�′′

P(r,−s)
−

4P2
(r,s)

Rr,sR̄r,s

�

(P − P(r,s))
2FF̄

�′′
P(r,s)

+
�

`
(1)−
(r,s) − `

(1)+
(r,s)

�

�

FF̄
�′

P(r,−s)
+

4P2
(r,s)

Rr,sR̄r,s

�

`
(1)−
(r,s) + `

(1)+
(r,s)

�

�

(P − P(r,s))
2FF̄

�′
P(r,s)

+
�

2`(2)(r,s) − `
(1)+
(r,s) `

(1)−
(r,s)

�

�

FF̄
�

P(r,−s)
. (3.47)

In this formula only, the primes are derivatives with respect to P, not ∆. We have introduced
`
(1)+
(r,s) = θ · `

(1)−
(r,s) and

`
(2)
(r,s) = `

(2)+
(r,s) = `

(2)−
(r,s) = −8

� s
∑

j=1−s

r
∑

i=1−r

1
(2P(i, j))2

−
1

(2P(0,0))2

�

−
1
2

s−1
∑

j
2
=1−s

r−1
∑

j
2
=1−r

∑

±,±

�

1
(P1 ± P2 ± P(i, j))2

+
1

(P̄1 ± P̄2 ± P(i, j))2

+
1

(P3 ± P4 ± P(i, j))2
+

1

(P̄3 ± P̄4 ± P(i, j))2

�

. (3.48)

The statement here is that the coefficient `(n)−(r,s) in the expansion (3.44) is a linear combination

of values of ψ(n−1), which however simplifies to a rational function of the momentums if n is
even. Moreover, we have `(n)−(r,s) =

n∈2N∗
`
(n)+
(r,s) , where `(n)+(r,s) = θ · `

(n)−
(r,s) .

The conformal block eG0
(r,s) (3.47) coincides with the conformal block eGκ(r,s) (3.40) at κ= κ0

(r,s)

(2.48), plus terms of the type Gκ′(r,s) and F∆(r,−s)
F̄∆(r,−s)

, which are now completely fixed by con-

straints from degenerate fields. By definition of eG0
(r,s) we must have the identities θ ·κ0

(r,s) = κ
0
(r,s)

and θ · eG0
(r,s) =

eG0
(r,s), which are indeed satisfied.

3.3 Limits of Liouville theory four-point functions

We have been building logarithmic fields as formal derivatives of diagonal fields. In CFTs where
conformal dimensions take continuous values, these derivatives need not be formal, and can
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be performed in actual correlation functions, leading to specific values for the parameter κ
for logarithmic fields. We will now consider the case of Liouville theory, a nontrivial CFT
with a continuous spectrum, whose structure constants are known analytically. (See [13] for
a review.) In this case, the presence of degenerate fields will determine the values of the
parameter κ.

Two flavours of Liouville theory

The properties of Liouville theory, and the analytic expression for the structure constants,
depend on whether c ≤ 1 or c ∈ C− (−∞, 1).

In the case c ≤ 1, the null descendants of V(r,s) = V∆(r,s) do not vanish [22], and the relation
(2.12) holds, provided the primary fields are properly normalized. It is still possible to in-
troduce degenerate fields V〈r0,s0〉 whose null descendants vanish, but they are not obtained as
limits of the primary fields V∆. Our statements on behaviour of OPE coefficients and structure
constants in Sections 2.2 and 3.2 then hold.

In the case c ∈ C−(−∞, 1), which we will call DOZZ–Liouville theory, the null descendants
of V(r,s) vanish, i.e. LV(r,s) = L̄V(r,s) = 0, so that V(r,s) = V〈r,s〉 is a degenerate field. Nevertheless,
a diagonal primary field of dimension ∆(r,−s) is obtained as [16]

(DOZZ–Liouville theory) V(r,−s) = LL̄V ′(r,s) , (3.49)

instead of our relation (2.12). Equivalently,

(DOZZ–Liouville theory) L(r,s)L̄(r,s)V∆ ∼
∆→∆(r,s)

(∆−∆(r,s))V(r,−s) . (3.50)

A zero at ∆ = ∆(r,s) is present in the DOZZ three-point structure constant. Nevertheless, the
OPE lim∆→∆(r,s) V∆V∆0

does not vanish, thanks to poles of the structure constant. In order to
build the logarithmic field Wκ

(r,s) in DOZZ-Liouville theory, we should therefore do the replace-
ment V ′(r,s)→ V ′′(r,s) in Eq. (2.14). Our analyses of representations, OPEs and conformal blocks
then hold.

From Liouville theory to logarithmic conformal blocks

This article starts with the structure of logarithmic representations, and deduces conformal
blocks and correlation functions. It is however possible to reverse the logic, and start with
logarithmic correlation functions before looking for the corresponding representations. The
reverse logic has the advantage of starting from well-known quantities, namely correlation
functions in Liouville theory. And this is how we actually found the representations’ structure
in the first place.

Let us describe this reverse logic in more detail. There is no need to redo any calculations:
whatever the logic, the formulas are the same. We start with Liouville four-point functions
that involve one degenerate field,

ZLiouville
ε =

¬

V〈r0,s0〉VP(r2,s2)+ε
VP3

VP4

¶

, (3.51)

where V〈r0,s0〉 with r0, s0 ∈ N∗ is a degenerate field, and r2, s2 ∈ Z. We consider the s-channel
decomposition of this four-point function into conformal blocks. The s-channel momentums
are the type P(r,s) + ε, where the possible values of the integers r, s ∈ Z are dictated by the
degenerate fusion rules (2.30). Given a value of (r, s), the situation depends on how many
terms of the type (±r,±s) are present:

• One-term case: the conformal block FP(r,s)+εF̄P(r,s)+ε remains non-logarithmic as ε→ 0.
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• Two-term case (r, 0)&(−r, 0) or (0, s)&(0,−s): the leading behaviour of the sum of the

two terms as ε→ 0 gives rise to the logarithmic non-chiral conformal block
�

FP(r,0)F̄P(r,0)

�′

or
�

FP(0,s)
F̄P(0,s)

�′
. This corresponds to simple logarithmic representations, with no null

fields involved.

• Two-term case (r, s)&(r,−s) with r, s 6= 0: the leading behaviour of the sum of the two
terms as ε→ 0 gives rise to the logarithmic non-chiral conformal block G−(r,s).

• Two-term case (r, s)&(−r, s) with r, s 6= 0: the leading behaviour of the sum of the two
terms as ε→ 0 gives rise to the logarithmic non-chiral conformal block G+(r,s).

• Four-term case (r, s)&(r,−s)&(−r, s)&(−r,−s): the leading behaviour of the sum of the
four terms as ε→ 0 gives rise to the logarithmic non-chiral conformal block eG0

(r,s).

All these conformal blocks involve at most second derivatives of the chiral Virasoro conformal
blocks FP . This is why we limited our investigations to second derivative fields.

From conformal blocks to OPEs and representations

The reader may worry that we have only obtained very special examples of our logarithmic
conformal blocks, since we started with four-point functions ZLiouville

ε (3.51) where two fields
have discrete parameters. However, the other two fields are generic, and we obtain logarith-
mic contributions to their OPE VP3

VP4
. This is enough for characterizing the structure of the

corresponding representations. This is also enough for reconstructing logarithmic contribu-
tions to correlation functions

¬

∏4
i=1 VPi

¶

of generic diagonal fields, using the OPEs VP1
VP2

and
VP3

VP4
.

In Liouville theory, how do we understand the logarithmic contributions to
¬

∏4
i=1 VPi

¶

?
This four-point function has an s-channel decomposition as a integral over momentums P ∈ R,
with no logarithmic terms involved. In order to get logarithmic terms, we could deform the
contour until it goes through values of the type P(r,s) with r, s ∈ Z. Such contorsions would not
be natural, and the logarithmic values of P would anyway have measure zero.

Therefore, Liouville theory should certainly not be considered a logarithmic CFT. Rather,
we found one more class of interesting limits of Liouville theory correlation functions. Other
interesting limits include minimal model correlation functions [13].

4 The O(n) model and the Q-state Potts model

Torus partition functions

The main known source of information on the spaces of states of the O(n) model and of the
Q-state Potts model is their torus partition functions. This information has limitations:

• There can be interesting fields that do not contribute to the torus partition function.
For example, in the Ising model, disorder fields [23] or the fields that describe cluster
connectivities [24] do not belong to the minimal model.

• In the case of fields that do contribute, the torus partition function determines the struc-
tures and multiplicities of representations in simple cases such as minimal models [23],
but not in more complicated cases.
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In the O(n) model and the Q-state Potts model, the torus partition function is a combination
of characters with multiplicities that are generally not positive integers [25]. This is because
for non-integer Q and n, these models are defined in terms of non-local geometrical objects.
Moreover, since the torus partition function is defined as a trace of a function of the dilation
generator, it does not know about off-diagonal components of that generator. Therefore, it
does not know about logarithmic structures.

However, as we saw in Section 2.2, we can obtain logarithmic fields by fusing two non-
logarithmic fields, including one degenerate field. This will allow us to predict the existence
of logarithmic representations, even if their structure is not directly captured by the partition
function.

Primary fields

Let us review what we know about the primary fields that appear in the O(n) model and of
the Q-state Potts model, based on their respective partition functions. The question has been
analyzed in the original article [25], and more recently in [26] for the Q-state Potts model and
in [7] for the O(n) model. We do not worry about the multiplicities of the fields: rather, we
focus on whether they are degenerate.

The relations between the models’ parameters and the central charge are

n= 2 cos(πβ−2) , Q = 4cos2(πβ2) , (4.1)

where β was defined in Eq. (2.9). We still write V〈r0,s0〉 with r0, s0 ∈ N∗ for a diagonal degener-
ate primary field whose left and right momentums are P(r0,s0) (2.11). Moreover, we write V N

(r,s)
with r, s ∈ Q for a primary field whose left and right dimensions are (∆, ∆̄) = (∆(r,s),∆(r,−s)).
The superscript N stands for non-diagonal, although the spin rs of V N

(r,s) vanishes if r = 0 or
s = 0. With these notations, the primary fields are

O(n) model:
�

V〈r0,1〉
	

r0∈2N+1 ∪
¦

V N
(r,s)

©

s∈ 1
2N
∗

r∈ 1
s Z

, (4.2)

Q-state Potts model:
�

V〈1,s0〉
	

s0∈N∗
∪
¦

V N
(r,s)

©

r∈N∗
s∈ 1

r Z
∪
¦

V N
(0,s)

©

s∈N+ 1
2

. (4.3)

In both models, the set of degenerate fields is closed under fusion, and generated by one basic
degenerate field: V〈3,1〉 in the O(n) model, and V〈1,2〉 in the Q-state Potts model.

Unless r, s ∈ Z∗, there are no null vectors among the descendants of the primary field V N
(r,s),

and the corresponding representation must be the product of left and right Verma modules
V∆(r,s) ⊗ V̄∆(r,−s)

. If however r, s ∈ Z∗, then V N
(r,s) has a null descendant on the left if rs > 0 or on

the right if rs < 0. In this case, there can be several distinct indecomposable representations
that contain V N

(r,s). In the case r, s > 0, the possibilities include

• V∆(r,s) ⊗ V̄∆(r,−s)
,

•
V∆(r,s)
V∆(r,−s)

⊗ V̄∆(r,−s)
, i.e. the product of a degenerate representation with a Verma module,

• Wκ
(r,s), our logarithmic representation with Jordan blocks of dimension 2.

We will now determine which representation is the right one.
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Logarithmic structures

Let us start with the Q-state Potts model. We have primary fields of the type V〈1,s0〉 and V N
(r,0).

These are the fields that appear in the ε→ 0 limit of the OPE (2.31), which leads to logarithmic
fields of the type W−

(r,s). This suggests that for any (r, s) ∈ N∗×Z∗, the fields V N
(r,s) and V N

(r,−s) of
the Potts model are part of the same logarithmic representation W−

(r,s) (2.24), where they are

called LV(r,s) and L̄V(r,s).
In the O(n) model, we have primary fields of the type V〈r0,1〉 and V N

(0,s). We therefore
expect logarithmic representations of the type W+

(r,s). In the case (r, s) = (1,1), let us compare
this with the results of [7]. Our field W+

(1,1) is called A in [7] (Section 5.2), and it obeys
1
2 L−1 L1A = κ(L0 − 1)A in agreement with Eq. (2.22). The parameter κ is called −s2 in [7],

and it takes the value κ+(1,1) =
1−β−2

2 in agreement with Eq. (2.36). The so-called currents are

J = LV(1,1) and J̄ = L̄V(1,1). They are called currents because their conformal dimensions are
(∆, ∆̄) = (1, 0) and (0,1) respectively. However, their level one null vectors do not vanish,
∂̄ J = ∂ J̄ = V(1,−1) 6= 0.

To summarize, we propose the following logarithmic subspaces of the spectrums of the
Q-state Potts model and O(n) model,

∞
⊕

r,s=1

W−
(r,s) ⊂ SQ-state Potts model ,

∞
⊕

r,s=1

W+
(r,s) ⊂ SO(n) model , (4.4)

where we however do not know the multiplicities of the representations.

Values of the parameters n and Q

The allowed values of the parameters n and Q, and the corresponding values of β2 (4.1), are
traditionally given as [25]

−2≤ c ≤ 1 ,
1
2
≤ β2 ≤ 1 ,

�

−2≤ n≤ 2 ,
0≤Q ≤ 4 ,

(4.5)

although it is known that analytic continuations are possible [26]. From the point of view of
conformal field theory, the only hard limit is the convergence of the operator product expan-
sions, which requires that conformal dimensions be bounded from below. Given the models’
primary fields, this condition amounts to [27]

ℜc < 13 ⇐⇒ ℜβ2 > 0 . (4.6)

The allowed region is therefore vastly larger than the complex n-plane or the complex Q-plane.
In order to cover these complex planes, it is enough to consider the following fundamental
domains:

n ∈ C ⇐⇒ 1≤ℜβ−2 < 2 ⇐⇒ ℜ∆(1,2) < 1≤ℜ∆(1,3) , (4.7)

Q ∈ C ⇐⇒
1
2
<ℜβ2 ≤ 1 ⇐⇒ ℜ∆(3,1) ≤ 1<ℜ∆(5,1) . (4.8)

(See [27] for a picture of the Q-state Potts model’s fundamental domain in the complex c-
plane.) We have rewritten the boundaries of the fundamental domains in terms of conditions
for certain fields to be relevant. Curiously, the Q-state Potts model’s fundamental domain is
related to the relevance of degenerate fields that appear in the O(n) model, and vice-versa.

It is therefore possible to analytically continue the models beyond the complex n,Q-planes.
Nothing dramatic happens to the conformal field theories, but their statistical interpretations
may change.
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5 Four-point connectivities in the Q-state Potts model

Our determination of logarithmic structures in the Q-state Potts model relies on plausible but
unproven assumptions on the existence and properties of degenerate fields. In order to test
these assumptions and the logarithmic structures themselves, we will look for solutions of the
crossing symmetry equations based on our logarithmic conformal blocks.

Four-point connectivities in the Q-state Potts model were recently computed using a semi-
analytic conformal bootstrap approach [8]. Crossing symmetry could be checked to a good
precision, which was only limited by the lack of knowledge of logarithmic conformal blocks.
If our logarithmic structures are correct, they should allow us to bootstrap connectivities to a
precision that is only limited by numerical artefacts.

5.1 Logarithmic structures in four-point connectivities

According to a longstanding conjecture [28], connectivities in the critical Q-state Potts model
coincide with correlation functions of primary fields with the left and right dimension ∆(0, 1

2 )
.

This conjecture was of little practical help for determining four-point connectivities, until it
was complemented with another conjecture on the decompositions of the four-point functions
into conformal blocks [29].

Decomposing four-point connectivities into conformal blocks

Let us schematically write a decomposition of a four-point connectivity P(z1, z2, z3, z4):

P(zk) =
∑

i∈S(c)
D(c)i G(c)i (zk) , (5.1)

where D(c)i is a four-point structure constant, G(c)i (zk) is a four-point conformal block in the
channel c ∈ {s, t, u} for four fields of dimension∆(0, 1

2 )
, and S(c) is the spectrum of the connec-

tivity in that channel, i.e. a set of representations of the product of the left and right Virasoro
algebras.

There are four independent connectivities Paaaa(zk), Paabb(zk), Pabab(zk), Pabba(zk). Per-
mutations of the positions zk leave Paaaa(zk) invariant, and exchange the other connectivities.
Let us call Sσ the s-channel spectrum of the connectivity Pσ. By permutation symmetry, we
have Sabab = Sabba, and the connectivity Paabb has the spectrums Saabb,Sabab and Sabab in
the s, t and u channels respectively.

The conjecture for the spectrums is based on a lattice discretization of the model [29], and
suffers from the same shortcoming as the determination of the Q-state Potts model’s spectrum
based on the torus partition function: it does not predict the full structure of the represen-
tations, but only their primary fields. We therefore have the following three subsets of the
model’s set of primary fields (4.3):

Saaaa =
¦

V N
(r,s)

©

r∈2N∗
s∈ 2

r Z
∪
¦

V N
(0,s)

©

s∈N+ 1
2

, (5.2)

Saabb =
¦

V N
(r,s)

©

r∈2N∗
s∈ 2

r Z
∪
¦

V N
(0,s)

©

s∈N+ 1
2

∪
�

V〈1,s0〉
	

s0∈N∗
, (5.3)

Sabab,Sabba =
¦

V N
(r,s)

©

r∈2N∗
s∈ 1

r Z
. (5.4)

Singularities of conformal blocks

Recall that the s-channel conformal block F∆ for a Verma module of dimension ∆ has simple
poles at degenerate values∆ ∈ {∆(r,s)}r,s∈N∗ . In a four-point function of fields with dimensions
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∆(0, 1
2 )

, some of these poles have vanishing residues, and are therefore actually absent. The
pole at ∆ = ∆(r,s) has a vanishing residue whenever the fusion rule (2.30) of the degenerate
field V〈r,s〉 allows the fusion V〈r,s〉VP

(0, 1
2 )
→ VP

(0, 1
2 )

or V−P
(0, 1

2 )
, i.e. whenever r is odd.

Any conformal block that appears in the decomposition of a four-point connectivity must
of course be finite. We will now see that this basic criterion gives us hints on the structure of
the spectrum.

The degenerate fields V〈1,s0〉 that are conjectured to appear in the spectrum Saabb have an
odd first index, so that F∆(1,s0)

is finite, and the corresponding conformal block in the decom-

position of the connectivity Paabb(zk) (5.1) may well be of the type

Gaabb
〈1,s0〉

= F∆(1,s0)
F̄∆(1,s0)

. (5.5)

This is consistent with the claim that V〈1,s0〉 is a diagonal degenerate field, i.e. a primary field

that generates a degenerate representation
V∆(1,s0)

V∆(1,−s0)
⊗

V̄∆(1,s0)

V̄∆(1,−s0)

. (In contrast to characters, four-

point conformal blocks do not see the difference between Verma modules and their degenerate
quotients.)

The conjectured spectrums Saaaa, Saabb and Sabab also contain primary fields of the type
V N
(r,s) with (r, s) ∈ 2N∗ ×Z∗. Since the first index is even, the conformal block F∆(r,s) is infinite.

This rules out the possibility that the corresponding representation could be a Verma module
or a degenerate representation, and suggests that more complicated structures are required.
Our claim is that the correct conformal blocks are of the type G−(r,s) (3.43).

5.2 Linear relations between four-point structure constants

The basic idea of the conformal bootstrap method is that the decomposition (5.1) of a given
four-point function should not depend on the channel. The equality between the s, t and
u-channels is called crossing symmetry. Assuming that we know the spectrum, crossing sym-
metry amounts to linear equations for the four-point structure constants, which we will solve
numerically. This flavour of the conformal bootstrap was introduced in [30], and may be called
semi-analytic in contrast to situations where the spectrum is itself an unknown (numerical
bootstrap) or where the structure constants are known analytically too (analytic bootstrap).

However, in our case, the structure constants are not quite independent unknowns. The
degenerate fields that allowed us to predict the nontrivial conformal blocks, also lead to linear
relations between certain structure constants [20]. These relations may be viewed as emanat-
ing from an “interchiral” symmetry algebra that is larger than the product of the left and right
Virasoro algebra [8].

The relations

Let us call Dσ(r,s) the four-point structure constants for the primary fields V N
(r,s) in the spectrums

Sσ (5.2)-(5.4), and Daabb
〈1,s0〉

the structure constants for the diagonal degenerate fields in Saabb.
Due to the known permutation properties of structure constants and conformal blocks [13],

we have the relations

Dabab
(r,s) = (−1)rsDabba

(r,s) , (5.6)

since rs =∆(r,−s)−∆(r,s) is the conformal spin of V N
(r,s). Moreover, we are considering four-point

functions of four spinless primary fields. This implies that the crossing symmetry equations
are invariant under the exchange of the left and right quantities, and therefore the relations

Dσ(r,s) = Dσ(r,−s) . (5.7)
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From the definition of four-point connectivities, it is also possible to predict [27]

Daabb
(0, 1

2 )
= −Daaaa

(0, 1
2 )

. (5.8)

Let us now move to the relations that follow from the existence of the degenerate field V〈1,2〉. In

general four-point functions, these relations would determine the ratios
Dσ(r,s+2)
Dσ(r,s)

[20]. However,

in a four-point function of fields with the particular dimension ∆(0, 1
2 )

, we have slightly more
powerful relations, which determine how structure constants behave under shifts of the second
index by one unit, rather than the usual two units [8]:

Dσ(r,s+1)

Dσ(r,s)
= 2

(2+2ω)r− 4s+2
β2
Γ (1−r

2 +
s

2β2 )

Γ (2−r
2 +

s
2β2 )

Γ (ωr
2 −

s
2β2 )

Γ (1+ωr
2 − s

2β2 )

Γ (1−r
2 +

s+1
2β2 )

Γ (−r
2 +

s+1
2β2 )

Γ (2+ωr
2 − s+1

2β2 )

Γ (1+ωr
2 − s+1

2β2 )
, (5.9)

whereω= −1 for our non-diagonal fields V N
(r,s), andω= 1 for diagonal fields with dimensions

∆ = ∆̄ = ∆(r,s), such as V〈1,s0〉. For s ∈ {0,−1}, this shift equation involves the value of the
Gamma function at its poles. In the non-diagonal case however, these singularities cancel
among the factors, and the ratio can be rewritten in a manifestly finite manner,

Dσ(r,s+1)

Dσ(r,s)
=

s∈{0,−1}

 

2
1− 2

β2

|r|

Γ (1−r
2 +

1
2β2 )

Γ (−r
2 +

1
2β2 )

Γ (2−r
2 −

1
2β2 )

Γ (1−r
2 −

1
2β2 )

!2s+1

. (5.10)

We insist that the shift equations also hold in the case r, s ∈ Z∗ i.e. if V N
(r,s) belongs to a

logarithmic representation. The validity of these equations indeed only depends on V N
(r,s) being

a primary field.
Our formulas for the ratios are equivalent to the formulas in [8] (Section 4.1). Cosmetic

differences come down to notations and to our use of the Gamma function duplication formula.
We will now rederive these ratios by following the logic of [8], while trying to streamline the
derivation.

The derivation

Let us denote two- and three-point structure constants as 〈ViVi〉 ∼ Bi and



ViVjVk

�

∼ Ci jk.

Then an OPE reads ViVj ∼
∑

k
Ci jk
Bk

Vk, and four-point structure constants that appear in s and
t-channel decompositions of four-point functions read

s-channel:
2

ε
3

1 4

→ d(s)ε =
C12εCε34

Bε
, (5.11)

t-channel:
2

η

41

3
→ d(t)η =

C23ηC41η

Bη
. (5.12)

We normalize the degenerate field V〈1,1〉 as an identity field, i.e. C〈1,1〉ii = Bi and B〈1,1〉 = 1.
We consider four-point functions that involve at least one degenerate field, such as

¬

V〈1,2〉
∏4

i=2 V N
(ri ,si)

¶

or
¬

V〈1,2〉V
N
(r,s)V

N
(r,s)V〈1,2〉

¶

. In these cases, only two fields can appear in

each channel, as dictated by the OPEs V〈1,2〉V
N
(r,s) ∼

∑

ε=± V N
(r,s+ε) and V〈1,2〉V〈1,2〉 ∼ V〈1,1〉+V〈1,3〉.

Crossing symmetry and single-valuedness determine the ratios of all involved four-point struc-
ture constants, and in particular [20]

d(t)η

d(s)ε
= −εωη

Fε,η

F̄ε,−ωη
det F̄ with det F̄ = −

P̄2

P̄4

. (5.13)
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Here the s- and t-channel fields are labelled by discrete indices ε,η = ±. We define ω = + if
the fourth field is V〈1,2〉, andω= − if the fourth field is V N

(r4,s4)
. The fusing matrix elements are

Fε,η =
Γ (1− 2β−1εP2)Γ (2β−1ηP4)

∏

± Γ (
1
2 − β−1εP2 ± β−1P3 + β−1ηP4)

. (5.14)

We first consider the four-point function


V〈1,2〉V
N
(r,s)V

N
(0, 1

2 )
V N
(0, 1

2 )

·

, and focus on the following s-

and t-channel terms:

(r, s)
(r, s+ 1)

(0, 1
2)

〈1,2〉 (0, 1
2)

,

(r, s)

(0, 1
2)

(0, 1
2)〈1,2〉

(0, 1
2)

. (5.15)

In this case, Eq. (5.13) gives us
d(t)−
d(s)+
= − P̄

P
(0, 1

2 )

F+−
F̄+−

, explicitly

C〈1,2〉(0, 1
2 )(0, 1

2 )
C(r,s)(0, 1

2 )(0, 1
2 )

C〈1,2〉(r,s)(r,s+1)C(r,s+1)(0, 1
2 )(0, 1

2 )

B(r,s+1)

B(0, 1
2 )

= 21−2β−1(P−P̄)γ( 1
2β2 )
Γ (1− β−1P)
Γ (−β−1 P̄)

Γ (1
2 − β

−1 P̄ − 1
2β2 )

Γ (1
2 − β−1P + 1

2β2 )
, (5.16)

where we denote the left and right momentums of V N
(r,s) as (P, P̄) = (P(r,s), P(r,−s)), and introduce

γ(x) = Γ (x)
Γ (1−x) . We next consider the four-point function

¬

V〈1,2〉V
N
(r,s)V

N
(r,s)V〈1,2〉

¶

, and focus on
the following s- and t-channel terms:

(r, s)
(r, s+ 1)

(r, s)

〈1,2〉 〈1,2〉

,

(r, s)

〈1, 1〉

〈1, 2〉〈1,2〉

(r, s)

. (5.17)

In this case, Eq. (5.13) gives us
d(t)−
d(s)+
= − P̄

P〈1,2〉

F+−
F̄++

, explicitly

B〈1,2〉B(r,s)B(r,s+1)

C2
〈1,2〉(r,s)(r,s+1)

= 24β−2−3γ(β−2 − 1
2)

Γ (1− 2β−1P)
Γ (−2β−1P + β−2)

Γ (1− 2β−1 P̄ − β−2)
Γ (−2β−1 P̄)

. (5.18)

We finally consider the four-point function


V〈1,2〉V
N
(0, 1

2 )
V N
(0, 1

2 )
V〈1,2〉

·

, and focus on the following

s- and t-channel terms:

(0, 1
2)

(0, 1
2)

(0, 1
2)

〈1,2〉 〈1, 2〉

,

(0, 1
2)

〈1, 1〉

〈1, 2〉〈1, 2〉

(0, 1
2)

. (5.19)
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In this case, Eq. (5.13) gives us
d(t)−
d(s)−
= −

P
(0, 1

2 )

P〈1,2〉

F−−
F̄−+

, explicitly

B2
(0, 1

2 )
B〈1,2〉

C2
〈1,2〉(0, 1

2 )(0, 1
2 )

= 24β−2−3γ(β−2 − 1
2)γ(1−

1
2β2 )2 . (5.20)

We are interested in the four-point structure constant D(r,s) =
C2
(r,s)(0, 1

2 )(0, 1
2 )

B(r,s)
. Combining the

square of Eq. (5.16) with Eq. (5.18) and Eq. (5.20), we obtain the expression for
D(r,s+1)
D(r,s)

that

was written in Eq. (5.9) withω= −1. For the caseω= 1, it suffices to set (P, P̄) = (P(r,s),−P(r,s))
instead of (P(r,s), P(r,−s)).

Interchiral conformal blocks and reduced spectrums

Using the linear relations (5.7) and (5.9) between four-point structure constants, we can
rewrite s-channel decompositions of four-point connectivities (5.1) such that the only un-
known coefficients are Dσ(r,s) with 0 ≤ s ≤ 1

2 . In this rewriting, Dσ(r,s) is the coefficient of an
infinite linear combinations of conformal blocks, which was called an interchiral conformal
block in [8]:

H(r,s) =
0<s≤ 1

2

∑

s′∈(s+Z)∪(−s+Z)

Dσ(r,s′)
Dσ(r,s)

F∆(r,s′)F̄∆(r,−s′)
, (5.21)

H(r,0) = F∆(r,0)F̄∆(r,0) +
∞
∑

s′=1

Dσ(r,s′)
Dσ(r,0)

G−(r,s′) , (5.22)

H〈1,1〉 =
∞
∑

s′=1

Dσ〈1,s′〉

Dσ〈1,1〉
F∆(1,s′)

F̄∆(1,s′)
, (5.23)

where F∆ is a standard Virasoro conformal block, and G−(r,s) (3.43) is a logarithmic conformal
block. Neither the ratios of structure constants, nor therefore the interchiral conformal blocks,
depend on σ. The spectrums (5.2)-(5.4) can then be reduced to the fields whose second
indices obey 0≤ s ≤ 1

2 ,

Saaaa
reduced =

¦

V N
(r,s)

©

r∈2N∗
s∈ 2

r N∩[0, 1
2 ]
∪
n

V N
(0, 1

2 )

o

, (5.24)

Saabb
reduced =

¦

V N
(r,s)

©

r∈2N∗
s∈ 2

r N∩[0, 1
2 ]
∪
n

V N
(0, 1

2 )

o

∪
�

V〈1,1〉
	

, (5.25)

Sabab
reduced,Sabba

reduced =
¦

V N
(r,s)

©

r∈2N∗
s∈ 1

r N∩[0, 1
2 ]

, (5.26)

and we write the four-point connectivities as

Pσ =
∑

V∈Sσreduced

DσV HV , (5.27)

where we abuse notations by identifying a primary field V with its indices.

5.3 Semi-analytic bootstrap

Let us determine the four-point structure constants Dσi by solving crossing symmetry equations
for the connectivities Pσ with σ ∈ {aaaa, aabb, abab, abba}. Given a connectivity and two
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different channels c, c′ ∈ {s, t, u}, we have the crossing symmetry equation
∑

i∈S(c)reduced

D(c)i H(c)i (zk) =
∑

i′∈S(c
′)

reduced

D(c
′)

i′ H(c
′)

i′ (zk) , (5.28)

for any values of the positions zk. We are not so much interested in the solutions themselves
as in their existence, which tests several things at once:

• the identification of connectivities with correlation functions,

• the existence of degenerate fields,

• Jacobsen and Saleur’s spectrums Saaaa,Saabb and Sabab,

• our conformal blocks G−(r,s) and the structure of logarithmic representations.

Numerical implementation

Using Zamolodchikov’s recursive representation, the interchiral conformal blocks have a series
expansion of the type

H(c)i (zk) =H(c)0 (zk)
�

�q(c)
�

�

∆i+∆̄i
∞
∑

N=0

hi,N

�

q(c)
� �

�q(c)
�

�

N
. (5.29)

Here H(c)0 (zk) is an i-independent prefactor, the nome q(c) is a function of (z1, z2, z3, z4) that
depends on the channel c, and the coefficients hi,N (q) is a polynomially bounded function of
q
|q| and log q. In order to write the connectivities as finite sums, we introduce a cutoff Nmax and
truncate the conformal blocks’ expansions to N ≤ Nmax, while also truncating the sums over
reduced spectrums to ℜ(∆i + ∆̄i) ≤ Nmax. After truncation, the crossing symmetry equation
(5.28) involves a finite number of unknown four-point structure constants,

X (Nmax) = #
�
¦

D(c)i

©

ℜ(∆i+∆̄i)≤Nmax
∪
¦

D(c
′)

i′

©

ℜ(∆i′+∆̄i′ )≤Nmax

�

. (5.30)

We then normalize one of these structure constants to be 1, and determine the rest by solving
crossing symmetry for a number E ≥ X (Nmax)−1 of randomly chosen positions Z e = (ze

1, ze
2, ze

3, ze
4).

We compute the averages and the relative deviations of the resulting structure constants over
a number A of random draws of the positions,

D̄(c)i =
1
A

A
∑

a=1

D(c)i (Z
e
a) , Deviation

�

D(c)i

�

=max
a





�

�D(c)i (Z
e
a)− D̄(c)i

�

�

max
�
�

�D(c)i (Z
e
a)
�

�,
�

�D̄(c)i

�

�

�



 . (5.31)

If the crossing symmetry equation has a unique solution, the deviations should tend to zero as
Nmax increases, except for structure constants that are in fact zero.

Results

We focus on two specific examples of the crossing symmetry equations (5.28):
∑

i∈Sabab
reduced

Dabab
i H(s)i (zk) =

∑

i′∈Saabb
reduced

Daabb
i′ H(u)i′ (zk) , (5.32)

∑

i∈Saaaa
reduced

Daaaa
i

�

H(s)i (zk)−H(t)i (zk)
�

= 0 . (5.33)
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In the first equation, we can use the normalization condition Daabb
〈1,1〉 = 1, and determine the

rest of the structure constants. In the second equation, we can then normalize the structure
constants such that the relation (5.8) is obeyed. We find that both equations have unique
solutions. For example, let us display how the deviations for Saabb

reduced behave as the cutoff Nmax
increases [9]:

Nmax = 16 Nmax = 24 Nmax = 32

(r, s) Deviation

(1, 1) 7.61× 10−12

(0, 1/2) 8.19× 10−12

(2, 0) 4.37× 10−11

(4, 0) 6.19× 10−8

(4, 1/2) 6.12× 10−8

(6, 0) 0.269
(6, 1/3) 0.802

(r, s) Deviation

(1, 1) 3.47× 10−18

(0, 1/2) 3.78× 10−18

(2, 0) 9.85× 10−18

(4, 0) 1.04× 10−14

(4, 1/2) 9.88× 10−15

(6, 0) 4.44× 10−8

(6, 1/3) 8.25× 10−8

(8, 0) 0.211
(8, 1/4) 0.118
(8, 1/2) 0.574

(r, s) Deviation

(1,1) 2.3× 10−24

(0,1/2) 2.38× 10−24

(2,0) 2.28× 10−24

(4,0) 3.17× 10−21

(4,1/2) 2.62× 10−21

(6,0) 1.2× 10−14

(6,1/3) 2.14× 10−14

(8,0) 4.86× 10−7

(8,1/4) 3.41× 10−7

(8,1/2) 2.37× 10−7

(10,0) 0.489
(10,1/5) 1.19
(10,2/5) 1.76

(5.34)

Here and in our other numerical examples, we chose a generic value of the parameter β = 0.8+0.1i
i.e. Q ' −0.121+ 1.725i. The code runs in O(103) seconds on a standard laptop. The devia-
tion of Daabb

〈1,1〉 is nonzero because the code uses the normalization condition Dabab
(0, 1

2 )
= 1 rather

than Daabb
〈1,1〉 = 1.

In order to determine the structure constants Dabab
i , it may seem easier to focus on a

crossing symmetry equation with fewer unknowns,
∑

i∈Sabab
reduced

Dabab
i

�

H(s)i (zk)− (−1)Spin(i)H(t)i (zk)
�

= 0 , (5.35)

where the spin-dependent sign is due to the relation (5.6). However, while the deviation of
Dabab
(2, 1

2 )
does tend to zero as Nmax increases, the deviations of Dabab

(r≥4,s) remain large. The in-

tepretation is that our equation has a solution, which is however not unique. For the deviation
of a structure constant to tend to zero, that structure constant must be nonvanishing in one
solution only. We find an infinite series of subsets of the spectrum

(r0 ∈ 2N∗) S r0
reduced =

¦

V N
(r0,0)

©

∪
¦

V N
(r,s)

©

r≥r0∈2N∗

s∈ 1
r N
∗∩[0, 1

2 ]

⊂ Sabab
reduced , (5.36)

such that the crossing symmetry equation for S r0
reduced has a unique solution. These solutions

provide a basis of solutions for the original crossing symmetry equation (5.35). Let us display
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the deviations in the cases r0 = 2,4, 6 with Nmax = 32 [9]:

r0 = 2 r0 = 4 r0 = 6

(r, s) Deviation

(2,0) 0
(2,1/2) 2.98× 10−28

(4,1/4) 2.01× 10−23

(4,1/2) 3.1× 10−24

(6,1/6) 3.56× 10−17

(6,1/3) 1.21× 10−16

(6,1/2) 4.71× 10−16

(8,1/8) 7.42× 10−5

(8,1/4) 0.000244
(8,3/8) 0.000406
(8,1/2) 0.000243

(r, s) Deviation

(4,0) 0
(4,1/4) 3.57× 10−25

(4,1/2) 3.25× 10−25

(6,1/6) 2.8× 10−15

(6,1/3) 2.52× 10−15

(6,1/2) 2.51× 10−15

(8,1/8) 0.00143
(8,1/4) 0.0014
(8,3/8) 0.00137
(8,1/2) 0.00136

(r, s) Deviation

(6, 0) 0
(6, 1/6) 1.76× 10−17

(6, 1/3) 4.62× 10−17

(6, 1/2) 6.39× 10−17

(8, 1/8) 0.105
(8, 1/4) 0.105
(8, 3/8) 0.105
(8, 1/2) 0.105

(5.37)

(For conciseness we do not display the deviations for the structure constants Dr0
(10,s), which are

of order 1.)

Comparison with analytic formulas

Using a lattice regularization of the Q-state Potts model, analytic formulas for a few ratios of
four-point structure constants have been conjectured [31](Section 5.2):

Daabb
(2,0)

Daaaa
(2,0)

=
1

1−Q
, (5.38)

Daabb
(4,0)

Daaaa
(4,0)

= −
Q5 − 7Q4 + 15Q3 − 10Q2 + 4Q− 2

2(Q2 − 3Q+ 1)
, (5.39)

Daabb
(4, 1

2 )

Daaaa
(4, 1

2 )

=
2−Q

2
, (5.40)

Dabab
(2,0)

Daaaa
(2,0)

=
2−Q

2
, (5.41)

Dabab
(4,0)

Daaaa
(4,0)

= −
1
4
(Q2 − 4Q+ 2)(Q2 − 3Q− 2) , (5.42)

Dabab
(4, 1

2 )

Daaaa
(4, 1

2 )

=
1
4
(Q− 1)(Q− 4) . (5.43)

We have checked these formulas to a high precision [9]. With our code, it is possible to look
for analytic formulas for other ratios of structure constants. For instance, we have found the
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formulas

Daabb
(6, 1

3 )

Daaaa
(6, 1

3 )

=
2−Q

2
, (5.44)

Dabab
(6, 1

3 )

Daaaa
(6, 1

3 )

=
1
4

�

Q5 − 9Q4 + 27Q3 − 28Q2 +Q+ 4
�

, (5.45)

Daabb
(6,0)

Daaaa
(6,0)

=
2Q8 − 26Q7 + 134Q6 − 348Q5 + 479Q4 − 337Q3 + 112Q2 − 23Q+ 3
(1− 6Q+ 5Q2 −Q3) (3Q6 − 24Q5 + 64Q4 − 66Q3 + 24Q2 − 8Q+ 3)

, (5.46)

Dabab
(6,0)

Daaaa
(6,0)

=
(2−Q)

�

Q2 − 4Q+ 1
� �

Q6 − 9Q5 + 30Q4 − 40Q3 + 13Q2 + 4Q+ 3
�

2 (3Q6 − 24Q5 + 64Q4 − 66Q3 + 24Q2 − 8Q+ 3)
, (5.47)

which hold at high precision.

5.4 The Delfino–Viti conjecture

Our semi-analytic bootstrap calculations give us access to the three-point structure constant
C(0, 1

2 )(0, 1
2 )(0, 1

2 )
=
r

Daaaa
(0, 1

2 )
, which can be interpreted as the three-point connectivity [27]. Let

us compare this with the conjectured exact expression of this connectivity.
Delfino and Viti’s conjectured expression [32] is the three-point structure constant of Liou-

ville theory with c ≤ 1, times a combinatorial prefactor
p

2 whose lattice origin was elucidated
in [33]:

C(0, 1
2 )(0, 1

2 )(0, 1
2 )
=
p

2C c≤1 Liouville
∆
(0, 1

2 )
,∆
(0, 1

2 )
,∆
(0, 1

2 )
. (5.48)

As far as we understand, Liouville theory appeared here not because it has any particular
relation with the Q-state Potts model, but because it exists at generic central charges, has a
diagonal field of dimension ∆(0, 1

2 )
, and is analytically solvable. Based on this information

alone, we would a priori not expect the conjecture to be exactly true. And consistency with
Monte-Carlo simulations of the Q-state Potts model [27, 34] only tests the conjecture to a
relatively low precision.

However, it was recently observed that connectivities of the Q-state Potts model are related
to correlation functions of the RSOS model [31]. In the critical limit, the latter model is
described by analytically solvable CFTs of the type of Liouville theory and minimal models. This
suggests that the Delfino–Viti conjecture may be exactly true. And this is what our numerical
results confirm, with a precision of about 26 significant digits [9].

Let us emphasize that the Q-state Potts model is nevertheless not related to Liouville theory
proper. The former has a discrete spectrum, the latter a continuous spectrum. The analytic
expression for C c≤1 Liouville

∆
(0, 1

2 )
,∆
(0, 1

2 )
,∆
(0, 1

2 )
is valid in Liouville theory for c ≤ 1 only [22], while the three-

point connectivity is valid under the much weaker conditionℜc < 13. The analytic expression
for C c≤1 Liouville

∆
(0, 1

2 )
,∆
(0, 1

2 )
,∆
(0, 1

2 )
is the unique solution of certain crossing symmetry equations, and should

be considered a universal quantity, although it happened to be first discovered in the context
of Liouville theory.

6 Conclusion and outlook

Let us summarize some of our results, and point out a few questions that arise.
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Logarithmizing CFT

Using derivative fields, we found it relatively simple to derive logarithmic from non-logarithmic
CFT objects: we have logarithmized Verma modules with zero or one null vector, as well as the
associated correlation functions and conformal blocks. It would be interesting to understand
this operation at a more formal level, in order to apply it to more complicated situations,
including higher-dimensional CFT.

In two dimensions, logarithmizing Verma modules with null vectors leads to so-called stag-
gered Virasoro modules [11]. For β2 ∈ Q<0, there are infinitely many null vectors, and the
resulting representations are relevant in CFTs such as critical percolation. Some of our results
can be directly applied to these staggered Verma modules, as we saw in Section 3.1 when
studying logarithmic couplings in a few examples. It would be interesting to study the appli-
cability of our results for rational β2 more systematically.

An alternative to logarithmizing non-logarithmic CFT at rational central charge would be to
rationalize logarithmic CFT at generic central charge, by taking limits β2→ p

q . This would be
straightforward if we wanted to numerically compute connectivities in critical percolation: we
would just need to do it in the Q-state Potts model with a parameter Q ≈ 1 i.e. c ≈ 0. However,
it would be more difficult to derive the space of states, structure constants and conformal blocks
at c = 0: rationalizing is already known to be non-trivial in simpler, non-logarithmic CFTs [21].

If logarithmizing and rationalizing could be defined precisely, a natural question would be
whether they commute.

Crossing-symmetric four-point functions

We have found that the crossing symmetry equations (5.32), (5.33) have unique solutions.
This is a non-trivial result, which depends very sensitively on the structure of the spectrum,
and on the correct computation of conformal blocks.

As always in the conformal bootstrap approach, the next question is to interepret the so-
lutions, and determine to which CFT they belong. In the case of the Potts model, it is tricky to
identify bootstrap solutions with four-point connectivities, because there are no high-precision
results on connectivities. Based on Monte-Carlo calculations, four-point connectivities were
found to agree with other solutions of crossing symmetry [30]. However, these other solu-
tions turned out to fail more extensive numerical and analytic comparisons with the Potts
model [27,29], and to describe the RSOS model instead [31].

Let us summarize the argument for our bootstrap solutions to describe connectivities in
the Potts model:

• The spectrum of the Potts model is known [25].

• More precisely, the spectrums of the connectivities in all channels are known [29].

• Crossing symmetry equations with these spectrums have unique solutions.

The bootstrap solutions of [30] featured only subsets of the expected spectrums, only in two
out of three channels, and only for three out of four connectivities.

In the case of the particular crossing symmetry equation (5.35), we actually found an
infinite-dimensional space of solutions, which includes the connectivity Pabab. This echos a
speculation of [8] (Section 3.3), which predicted the existence of multiple solutions of crossing
symmetry equations, based on the freedom to change the weights of non-contractible loops in
the discretized model. Nevertheless, it is not yet clear what our extra solutions describe, or
to which CFT they belong. There are not too many known solutions of crossing symmetry at
generic central charge [35], so these solutions may be worth investigating.
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Towards a solution of the Q-state Potts model

With our high-precision checks of analytic conjectures for structure constants or ratios thereof,
we provided additional evidence that the Q-state Potts model may be analytically solvable. Of
course, solving the model involves computing not just four-point connectivities, but also more
general correlation functions. Connectivities have a few nice peculiarities, for instance their
structure constants obey slightly stronger linear relations as we saw in Section 5.2, but this
should not make an essential difference.

Meanwhile, the problem of numerically computing four-point connectivities to arbitrary
precision is now effectively solved. After numerically determining four-point structure con-
stants by solving crossing symmetry equations, we can use the structure constants for comput-
ing connectivities. An estimate of the precision of such computations is given by the lowest
nonzero deviation of a structure constant, for example O(10−24) for the last table of Eq. (5.34).
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