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Abstract

We propose a technique called Optimal Analysis-Specific Importance Sampling (OASIS)
to reduce the number of simulated events required for a high-energy experimental anal-
ysis to reach a target sensitivity. We provide recipes to obtain the optimal sampling
distributions which preferentially focus the event generation on the regions of phase
space with high utility to the experimental analyses. OASIS leads to a conservation of
resources at all stages of the Monte Carlo pipeline, including full-detector simulation,
and is complementary to approaches which seek to speed-up the simulation pipeline.
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1 Introduction

1.1 Background

Numerical simulations play a key role in collider physics. Since typically there are no closed
form expressions for the distribution of reconstructed collider events under various theory
models, Monte Carlo (MC) methods [1] are needed to simulate the experimental outcomes
predicted by competing theory models (or by different model parameters for the same the-
ory model). Inferences about the underlying model and its parameters can then be made by
comparing the observed data against the simulations. The sensitivity of such an inferential
analysis depends both on the number of real events Nr in the experimental data and on the
number of simulated events Ns available—the finiteness of the real and simulated samples in-
troduces statistical uncertainties in the estimation of the true and theory-model distributions,
respectively. In general, these uncertainties reduce with increasing volume of data; and while
the available statistics for Nr is determined by the integrated luminosity of the experiment, the
amount of simulated data is in principle under our control. That is why it is desirable to have
a sufficient volume of simulated data, i.e., Ns� Nr , so that the statistical uncertainty from its
finiteness is not a dominant source of uncertainty in the analysis.

However, the pipeline for simulating reconstructed collider events is computationally ex-
pensive, and this poses an immense challenge to the high energy physics (HEP) community
in terms of computational and storage resources. As a result, much too often experiments are
forced to settle on an acceptable, but perhaps not ideal, value of Ns, which leads to additional
limitations on the sensitivity [2]. This problem is expected to be exacerbated in the high-
luminosity phase of the Large Hadron Collider (LHC) [3–7]. For this reason, many interesting
ideas have been recently proposed to speed up individual stages of the simulation pipeline, as
well as the entire pipeline [8–31]. The full detector simulation is the most resource-intensive
aspect in this problem. In this paper we shall provide a parton-level optimization which, as we
will discuss, would nevertheless result in resource conservation at all stages of the simulation
pipeline. While motivated by the specific problem arising in HEP, we believe that our ideas are
of more general mathematical interest and could potentially be usefully applied in other fields
as well.

The first step of the simulation pipeline is the parton-level event generation [32,33]. The
distribution of parton-level events can be computed from the relevant matrix-elements and
parton distribution functions (pdfs). However, it is not straightforward to sample events ac-

2

https://scipost.org
https://scipost.org/SciPostPhys.10.2.034


SciPost Phys. 10, 034 (2021)

cording to a given multi-dimensional distribution, except in special cases (e.g., when the distri-
bution is specifically engineered to be easy to sample from). This difficulty is typically handled
as follows.

Let the multi-dimensional random variable x represent a parton-level event and let f (x )
be the differential cross-section (unnormalized distribution) of x for a given process under a
given theory model. The integral of f over the domain gives the cross-section of the process
under consideration. With this backdrop, the goal of the MC simulation is twofold:

• Event generation. On the one hand, to obtain a sample of events distributed throughout
the phase space as-per f :

dn
dx
∝ f (x ) . (1)

• Cross-section estimation. At the same time, to compute the integral of f

F ≡
∫

dx f (x ) , (2)

which can be used to properly normalize (1), e.g., to scale the simulations to match the
available statistics in the real data.

In order to accomplish these goals, one makes use of an alternative normalized distribution
g(x ), referred to as the sampling distribution, which is easy to sample from. Then, as an
alternative to generating events as-per f (x ), we can generate events according to g(x ) and
weight each sampled event x by

w(x )≡
f (x )
g(x )

. (3)

The mean weight of the sampled events can serve as an estimate of the integral F , since

F =

∫

dx f (x )
g(x )
g(x )

=

∫

dx g(x ) w(x )≡ Eg[w(x )] , (4)

where Eg[ · · · ] is the expected value of · · · under the sampling distribution g. This technique
is referred to as “importance sampling” (IS) [34]. The only requirements for the technique to
work are:

• we can efficiently sample events x as-per the distribution g(x ),

• we can compute g(x ) for every sampled event x , so that w is exactly computable from
(3),

• f (x ) 6= 0 =⇒ g(x ) 6= 0, i.e., the support of the distribution g contains the support of
the distribution f .1

A key observation at this point is that the quality of the simulated dataset (with regards
to a given objective) depends on the sampling distribution g. We can then use the freedom of
choosing g(x ) to match a specific goal. For example, if the distribution f is highly singular,
and we want to properly map out the peak and to obtain a reliable estimate of F , g needs to
match the singularity structure of f well enough to adequately sample the different regions of
the phase space.

1It is sufficient for this condition to be satisfied almost everywhere.
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More concretely, if Ns simulated events {x1, x2, . . . xNs
} are used to estimate2 F as

F̂ =
1
Ns

Ns
∑

i=1

w(x i) , (5)

then the variance of the estimate will be given by

varg

�

F̂
�

=
1

N2
s

varg

� Ns
∑

i=1

w(x i)

�

=
varg [w(x )]

Ns
, (6)

where varg[ · · · ] represents the variance of · · · under the sampling distribution g. This means
that the quality of the estimation of F will be better if the variance of w is lower. The ideal
situation is when w(x ) is constant3 and equal to F for all x , or equivalently, if g(x ) = f (x )/F .
In other words, the closer the shape of the sampling distribution g is to the shape of the
underlying (unnormalized) theory distribution f , the better the estimation of F . Instead of
minimizing the variance of w, an alternative procedure often found in the literature is the min-
imization of the maximum weight wmax, which improves the so called unweighting efficiency
〈w〉/wmax, whose inverse is the average number of weighted events needed in order to gener-
ate one unweighted event distributed as per f . This approach also seeks to reduce the distance
between the distributions f and g, albeit captured by a different measure wmax. This has been
the guiding principle for previous importance sampling approaches including the VEGAS algo-
rithm [35,36], Foam [37–40], and more recent machine learning based approaches [41–46].
All these methods implement event sampling strategies that attempt to reduce the distance
between the sampling distribution g and the theory distribution f .4

1.2 Optimal Analysis-Specific Importance Sampling (OASIS)

The estimation of F (the cross-section in a HEP setting) is related to the estimation of the
expected number of events produced in an experiment from a given process under a given
theory model. While this estimation is important, data analysis in HEP has come a long way
from the simple counting experiments of the 20th century. In the LHC era, due to the large
volume of experimental data available, most analyses study the distributions of (possibly multi-
dimensional) event variables. The choice of setting g close to f /F , as we will discuss, is not
optimal for the purposes of these analyses, namely to increase the sensitivity to a) the presence
of a signal, or b) the value of a parameter. In fact, minimizing the variance of w is not even
optimal for the sensitivity of a simple counting experiment that involves some form of event
selection prior to counting. By undersampling the regions of parton-level phase space that
tend to fail the event selection cuts, and oversampling the rest of the phase space, one can get
a better estimate of the expected number of events passing the event selection criteria using
the same number of total simulated events [4]. This, of course, is only one consideration that
can influence the choice of the sampling distribution g, and can encourage a deviation of g
from f .

The traditional viewpoint sees importance sampling as just a technique to allow sampling
from the distribution f , and the weighted nature of the event sample is considered as an as-
sociated nuisance to be either controlled (via variance minimization) or efficiently eliminated

2In what follows, we use a hat symbol to indicate an estimate of some quantity.
3This condition needs to only be satisfied almost everywhere for optimal estimation of F .
4An alternative approach, motivated by recent advances in Machine Learning (ML), replaces the exact distribu-

tion f with an (approximate) ML regressor trained on a small sample of events produced from f [47–49], leading
to an increase in the rate but not necessarily the precision of the simulation [50]. These methods use points in the
phase space for which f is computed, and not events sampled from f .
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(via unweighting). However, weighted events allow us to not only recycle existing simulated
samples for different theory models [51, 52] but also to preferentially focus event sampling
in different parts of the phase space [53–55], in line with the goals of the particular analysis
at hand. Nature is constrained to produce (unweighted) events as-per the true underlying
distribution f , whereas weighted simulations of a given theory model are not—in principle,
one could use any sampling distribution g satisfying the minimum requirements listed above.
With this paper, we hope to kick-start efforts within the HEP community to leverage this free-
dom in order to produce simulated datasets that offer experimental analyses the opportunity
to achieve better sensitivity per simulated event, or equivalently, to approach the sensitiv-
ity floor (set by other sources of uncertainty) with fewer simulated events. This suggests a
unique approach to mitigate the computational resource crunch in HEP. Complementary to
ideas that seek to speed up the simulation pipeline, here we propose to reduce the simulation
requirements of HEP experiments in the first place, by a) committing to weighted events and
b) using a judicious choice of the parton-level phase space sampling distribution g. This is very
important, because a reduction in the simulation requirements of an experiment represents a
conservation of resources at all stages of the simulation pipeline including its computa-
tional bottleneck, the full detector simulation. We name this approach to importance sampling
as Optimal Analysis-Specific Importance Sampling (OASIS). The key ideas of OASIS are the
following:

1. Event weighting allows us to sample events according to a distribution g which is differ-
ent from the theory distribution f under consideration.

2. The better sampled a given region of phase space is, the lower the uncertainty on the
estimated differential cross-section in that region under the theory distribution f .

3. Different regions of phase space are sensitive to different extents to the presence of a
signal or to the value of a parameter. Consequently, different regions of phase space
offer different levels of utility to the experimental analysis per simulated event, for the
same value of w (the ratio between f and the sampling distribution g).

4. Adding nuance (and complexity) to the previous point, collider analyses are performed
on reconstructed events, typically reduced to low-dimensional event variables, after
some event selection and/or categorization. As a result, different parts of the parton-
level phase space will be mixed together (probabilistically) before being analyzed, say
using histograms or parameterized fits. This means that the quality of inference from
events from a particular region of the parton-level phase space depends not just on the
sampling distribution in that region, but also on all other regions and other datasets5 it
will be mixed with.

In the rest of the paper, we will use these considerations to derive expressions that quantify
the relationship between the sampling distribution g and the sensitivity of the analysis that
will use the (weighted) simulated dataset. We will also see how to use these expressions to
optimally choose the sampling distribution g that maximizes the sensitivity of the experi-
ment, for a given computational budget for simulations—this is the optimality alluded to in
the name of the technique.

2 OASIS at the parton-level

To warm up, in this section we first tackle the case where the analysis is performed directly on
the parton-level event x , in its full dimensionality, i.e., without accounting for the complex-

5The MC datasets for a given analysis could be composed of several background and signal subsamples.
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ities mentioned in point 4 above. We will restrict our attention to parameter measurement
analyses—note that signal search analyses can be viewed as signal cross-section measurement
analyses.

2.1 Groundwork

Let θ be the model parameter being measured in an analysis. The parton-level event distribu-
tion f , and hence the event weights w will now be parameterized by θ as indicated by f (x ; θ )
and w(x ; θ ). In this section, we will deal with two kinds of uncertainties:

• Statistical uncertainties in experimental data: these are uncertainties originating
from the finiteness of the experimental dataset (Nr <∞).

• Statistical uncertainties in simulated data: these are uncertainties originating from
the finiteness of the simulated datasets (Ns <∞). When reporting experimental results
they are usually listed under the broader category of “systematic uncertainties”.

The sensitivity of the analysis to the value of θ near θ = θ0 can interpreted as the extent
to which values of θ near θ0 can be distinguished from each other based on the available data.
This is captured by the Fisher information [56] I(θ0) given by

I(θ0) = L

∫

dx
1

f (x ; θ0)

�

∂ f (x ; θ )
∂ θ

�2�
�

�

�

θ=θ0

(7a)

=

∫

dx
1

L f (x ; θ0)

�

L
∂ f (x ; θ )
∂ θ

�2�
�

�

�

θ=θ0

, (7b)

where L is the integrated luminosity of the experiment. Note that this is the Fisher informa-
tion contained in the entire dataset treated as a random variable, and not just a single event,
hence the presence of L in the expression. We derive this expression for the Fisher information
for the case when the total number of events is a Poisson distributed random variable (with
θ dependent mean) in Appendix A. If the true value of the parameter is θ0, [I(θ0)]−1 sets
the lower limit on the variance of any unbiased estimator θ̂ for θ constructed out of the ex-
perimental data, according to the Cramér–Rao bound [56]. Furthermore, this lower bound is
achieved in the asymptotic limit by the Maximum Likelihood Estimator (MLE), provided the
estimation is performed using the exact functional form for the true distribution f [57]. In
our case, however, this bound cannot be achieved since we do not know the exact functional
form of f and are only using a MC estimate for it.

The expression for the Fisher information accounts only for the statistical uncertainties in
experimental data. However, here we want to additionally account for the fact that realis-
tic analyses rely on finite simulations to perform the parameter estimation—in particular Ns
events sampled as per a given sampling distribution g(x ) and weighted accordingly. To in-
corporate the uncertainty due to the finiteness of the simulated sample, let us first intuitively
understand the expression for the Fisher information in (7b). Let nr be the number of events
in a small bin of size∆x at a given value of x , for a given value of θ = θ0. Since nr is a Poisson
distributed random variable, its mean and variance are both given by

E f [nr] = var f [nr] = L f (x ; θ0)∆x , (8)

and the corresponding standard deviation is

stdev f [nr] =
Æ

L f (x ; θ0)∆x . (9)
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The difference in the expected counts under two different values of θ near θ0 that differ by a
small value δθ is given by:

δ E f [nr]≡ L δ f ∆x =
�

L
∂ f (x ; θ )
∂ θ

�

�

�

�

�

θ=θ0

∆x δθ . (10)

The statistical significance of this difference depends on its relative size with respect to the
standard deviation of nr given by (9). Now, (7b) can be seen as an analogue of the familiar
“(deviation over standard deviation) summed over bins in quadrature” per unit (δθ )2. This
line of reasoning lets us see why a higher value of I(θ0) corresponds to a greater distinguisha-
bility between neighboring values of θ .

Armed with this intuitive understanding, we can now introduce the statistical uncertainty
from the simulated data into the expression for the Fisher information. Let the random variable
ns be the number of simulated events in a small bin of size ∆x at a given value of x , for a
given value of θ = θ0. The mean and variance of ns are both given by

Eg[ns] = varg[ns] = Ns g(x )∆x . (11)

Recall that the main purpose of doing the MC simulations was to construct an estimate for
E f [nr], say nest, out of ns. This can be done by scaling ns by appropriate factors to account
for a) the actual integrated luminosity in the experiment and b) the difference between the
sampling distribution g and the true distribution f :

nest ≡ ns ×
L
Ns
×w(x ; θ0) . (12)

The expected value of this estimate nest under g (for a given value of x ) equals E f [nr] as it
should:

Eg [nest] = Eg[ns]×
L w(x ; θ0)

Ns
(13a)

= Ns g(x )∆x ×
L w(x ; θ0)

Ns
= L f (x ; θ0)∆x = E f [nr] , (13b)

where we have used (3), (8), and (11). The variance of the estimate nest is given by:

varg [nest] = varg [ns]×
�

L w(x ; θ0)
Ns

�2

(14a)

= Ns g(x )∆x
L2 w2(x ; θ0)

N2
s

(14b)

=
L
Ns

w(x ; θ0)× L f (x ; θ0)∆x . (14c)

Now, using (8) and (14c), we can add the statistical uncertainty from the real data to the
statistical uncertainty from the simulated data in quadrature6 as

var f [nr] + varg[nest] = L f (x ; θ0)
�

1+
L
Ns

w(x ; θ0)
�

∆x , (15)

which allows us to modify the expression for the Fisher information in (7b) as

IMC(θ0) =

∫

dx

�

L
∂ f (x ; θ )
∂ θ

�2�
�

�

�

θ=θ0

L f (x ; θ0)
�

1+
L
Ns

w(x ; θ0)
� , (16)

6A subtle point is that these are not the uncertainties estimated from the real or simulated datasets, but rather
the uncertainties expected in them under the true and sampling distributions f and g.
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where we have replaced the denominator in (7b) with the corresponding expression from (15)
and the subscript “MC” indicates that this version of the Fisher information incorporates the
uncertainty from the MC simulation [2]. By construction, IMC captures the sensitivity of the
experiment to the value of a parameter, when the analysis is performed by comparing the real
dataset against simulations (likelihood-free inference).

Since IMC scales linearly with the integrated luminosity (for a given value of L/Ns), we
can factor it out and rewrite (16) as

⇒
IMC(θ0)

L
=

∫

dx f (x ; θ0)

�

∂θ ln[ f (x ; θ )]
�2�
�

�

θ=θ0

1+
L
Ns

w(x ; θ0)
(17a)

=

∫

dx f (x ; θ0)
u2(x ; θ0)

1+
L
Ns

w(x ; θ0)
, (17b)

where u(x ; θ ) is defined as

u(x ; θ )≡ ∂θ ln[ f (x ; θ )] =
1

f (x ; θ )
∂ f (x ; θ )
∂ θ

. (18)

We will refer to u(x ; θ ) as the per-event score at the parton-level. This is related to the score of
an observation used in the statistics literature, with the only distinction being that the integral
F of the distribution f over the phase space is θ dependent, while the traditional score uses a
normalized probability distribution7. The per-event score in (17b) captures the sensitivity of
(the weight) of a given event to the value of θ . It can be computed directly from the parton-
level oracle used to compute f (x ; θ ).

The quantity IMC(θ0) captures the relationship between the sampling distribution g and
the sensitivity of the analysis. Correspondingly, IMC(θ0) can be used as a performance measure
to be maximized by the optimal sampling distribution. Note that g(x ) features in (17b) only
through the weight w(x ) = f (x )/g(x ), so that for a given x , lower values of w correspond
to higher sampling rates g. This is consistent with the integrand in (17b) being negatively
correlated with the weight w, since the integrand should increase with increasing sampling
rate. However, we cannot assign small weights for all regions since, according to (4), the
weights w(x ) are constrained to have an expected value of F under the sampling distribution
g. In other words, we are playing a “fixed sum game”—increasing the sampling rate in some
regions must be accompanied by a corresponding decrease in the sampling rate in others.
As a result, the sampling of different regions will need to be prioritized based on the true
distribution f and the per-event score u of the events in the different regions—this is what we
set out to do using OASIS. Before discussing how to use (17b) to construct a good sampling
distribution g, let us consider some special cases in order to gain some further intuition.

2.2 Special cases of IMC

In this subsection, we shall discuss several special cases of the main result (17b). For notational
convenience, from now on the θ0 dependence of f , F , w, u, IMC, I, the optimal sampling
distribution, etc., will not be explicitly indicated unless deemed useful.

7∂θ ln( f /F) (as used in [58–60]) naturally appears in the expression for Fisher information when the experi-
ment uses a given fixed number of real events, while ∂θ ln f naturally appears when the experiment has a given
fixed integrated luminosity (with the actual number of events being a Poisson distributed random variable). The
distinction should not matter much as long as F is only weakly dependent on θ .
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2.2.1 Sampling directly from the true distribution

In order to make the connection to the conventional use of importance sampling, let us first
consider the case when g mimics f well. For concreteness, let us assume that g matches the
true distribution f exactly, i.e.

g(x ) =
f (x )

F
. (19)

As a result, the weights are constant, w= F , and the denominator of the integrand in (17) can
be taken out in front of the integral:

IMC =
1

1+
L F
Ns

I ≈
1

1+
Nr

Ns

I . (20)

Note that L F is the expected total number of events in the real dataset—barring some spec-
tacular surprise in the data, this estimate should not be too far off from the number of events
Nr which were actually observed, hence the last approximate relation above. The prefactor
(1+ LF/Ns)

−1 is precisely the additional penalty that we have to incur for using finite sim-
ulation samples. Thus (20) quantifies the dependence of the sensitivity on the size of the
simulated dataset Ns—the greater the value of Ns, the greater the sensitivity, but the returns
diminish as the value of Ns gets too large, due to the additive term “1” in the denominator.

2.2.2 Constant per-event score

As a second example, consider the case when the per-event score u(x ) is constant in x :

u(x ) = const. (21)

Then (17b) gives

IMC

L
= u2

∫

dx g(x )
w(x )

1+
L
Ns

w(x )
(22a)

≤ u2
Eg[w(x )]

1+
L
Ns

Eg[w(x )]
(22b)

= u2 F

1+
LF
Ns

≈
u2

L
Nr

1+
Nr

Ns

, (22c)

where Eg[ · · · ], as before, represents the expectation value under the sampling distribution g.
In (22b), we have used Jensen’s inequality [56,61] and the fact that w/(1+αw) is a concave
function in w for a positive α. The equality in (22b) holds iff w(x ; θ0) is a constant almost
everywhere. In other words, when the per-event score is immaterial, IMC is maximized if
g(x ) = f (x )/F almost everywhere, which is in agreement with conventional wisdom.

This special case suggests that in the general case when the per-event score is not a con-
stant, the optimal sampling distribution goptimal ≡ f /woptimal will be such that the weights
woptimal depend only on the (absolute value of the) per-event score. This hunch will play a
crucial role in constructing goptimal later on in Section 2.3.3.
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2.2.3 Insufficient simulated data

Let us now consider the (unfortunate) situation when the amount of simulated data is very
limited, i.e.,

Ns g(x )� L f (x ), (23)

implying that in every region of the phase space the simulated data is much sparser than the
real dataset. In this case (17b) gives

IMC

L
≈
∫

dx f (x )
u2(x )
L
Ns

w(x )
(24)

⇒ IMC ≈ Ns

∫

dx g(x ) u2(x ) (25)

and IMC is maximized when the sampling distribution g focuses entirely on the most sensitive
regions, i.e., those with the highest magnitude of per-event score |u(x )|, since they offer the
best bang for the buck in terms of sensitivity gained per event generated.

The additive term “1” in the denominator in (17b) was neglected in the limit (23) to arrive
at (24), but its role is to capture the diminishing returns associated with an indefinite increase
of the simulated statistics in some region (or increasing the total number of simulated event
Ns) as we approach the uncertainty floor set by the statistical uncertainties in the real dataset.
This term will eventually force the optimal sampling distribution to also cover other regions
of the phase space with lower values of |u(x )|, albeit with higher weights.

2.2.4 Too much simulated data

Finally, let us consider the opposite limit to (23), i.e., when the simulated data is much denser
than the real dataset (in every region of the phase space)

Ns g(x )� L f (x ) . (26)

Expanding the denominator in (17b), one obtains

IMC

L
≈
∫

dx f (x )
�

1−
L
Ns

w(x )
�

u2(x ) (27a)

=
I
L
−

L
Ns

∫

dx g(x ) w2(x ) u2(x ) . (27b)

In Appendix B we show that this expression is maximized when g(x )∝ f (x ) |u(x )|, i.e.,

lim
Ns→∞

goptimal(x ) =
f (x ) |u(x )|

∫

dx f (x ) |u(x )|
. (28)

The corresponding optimal weights (in the large Ns limit) are proportional to |u(x )|−1.

2.3 Constructing optimal sampling distributions

In this subsection, we will introduce some prescriptions for constructing the optimal sampling
distribution that maximizes IMC. We will refer to this procedure as “training the sampling
distribution” regardless of whether machine learning techniques are used or not. Instead of
reinventing the wheel, we will piggyback on existing importance sampling techniques when-
ever possible. Equation (17b) will serve as the starting point for all our prescriptions.
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We will assume that we are provided an oracle that can be queried for the value of f (x ; θ0)
and u(x ; θ0) for different events x . θ0 is the value of the parameter θ at which the dataset is
to be produced, and it is also the parameter value near which we want the simulated dataset
to offer the most sensitivity. In situations where the same simulated dataset will be reweighted
for different values of θ [51], a representative value of θ can be used as θ0 for the purpose of
training the sampling distribution.

The term L/Ns in (17b) is a predetermined8 parameter that specifies the size of he simu-
lated dataset that will be generated using the OASIS-trained sampling distribution. Note that
the expected number of events in the real dataset is L F . So, L/Ns can be thought of as the
ratio Nr/Ns of real to simulated events used by the analysis, up to a factor of 1/F which can be
estimated using a preliminary or preexisting dataset. As we will see in Figure 6 and Figure 7,
sampling distributions trained at some value of L/Ns will continue to be good at other values
as well—in this sense, L/Ns is just a heuristic parameter and an accurate pre-estimation of the
parameter is not critical to the utility of the trained sampling distribution.

2.3.1 Adjusting the weights of cells in phase space

Foam [37–40] is an importance sampling technique under which the phase space of the events
is divided into several non-overlapping cells, with each cell i having an associated probability,
say pcell i , and an associated phase space volume Vcell i . The individual cell-probabilities sum
up to 1:

∑

i

pcell i = 1 , (29)

and the individual cell volumes add up to the total phase space volume Vtot:
∑

i

Vcell i = Vtot . (30)

After constructing the cells (and their associated probabilities), the sampling of an event under
Foam is done is two steps: 1) choose a cell as per the probabilities pcell, and 2) choose an event
uniformly at random within the chosen cell. This “piecewise uniform” sampling distribution
is given by

g(x ) =
pcell(x )

Vcell(x )
, (31)

where cell(x ) is the cell that event x belongs to. A simple approach to performing OASIS is to
work with the cells induced by Foam (or a different cellular importance sampling technique9),
and simply adjust the probabilities pcell for choosing the different cells.10

For the piecewise uniform sampling distribution given in (31), the expression for IMC/L
given in (17b) can be written as

IMC

L
=

∫

dx f (x )
u2(x )

1+
L
Ns

f (x )Vcell(x )

pcell(x )

. (32)

Since we do not a priori know the functional form of f , training the sampling distribution
g needs to be performed using simulated events, possibly sampled from a different sampling

8The integrated luminosity L is fixed from experiment while the total number of simulated events Ns depends
on the available computing resource budget.

9Since VEGAS assumes the factorizability of the integrand, it may not offer sufficient flexibility to adjust the
probabilities of the individual cells of the rectangular grid.

10Although the cells in Foam were not originally constructed for the purpose of OASIS, they will still capture the
singular features shared by the optimal sampling distribution g(x ) and the true distribution f (x ; θ0).
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distribution, say g ′ (with weights w′ = f /g ′) 11. This lets us rewrite the previous equation as

IMC

L
=

∫

dx g ′(x ) w′(x )
u2(x )

1+
L
Ns

g ′(x )w′(x )Vcell(x )

pcell(x )

. (33)

A further (optional) simplification of the expression is possible if the distribution g ′ is also
piecewise uniform with the exact same cells used by g (as will be the case when data gener-
ated as-per the “regular” importance sampling Foam is used to adjust its cell-probabilities). If
g ′(x ) = p′cell(x )/Vcell(x ), then

IMC

L
=

∫

dx g ′(x ) w′(x )
u2(x )

1+
L
Ns

p′cell(x )w
′(x )

pcell(x )

. (34)

Now, if the cell-probabilities pcell(x ) are parameterized by parameters ϕ, then the gradient of
IMC with respect to ϕ can be written as

Ns

L2
∇ϕ IMC =

∫

dx g ′(x )









p′cell(x ) w′ 2(x ) u2(x )
�

pcell(x ) +
L
Ns

p′cell(x )w
′(x )

�2

�

∇ϕ pcell(x )
�









. (35)

This expression facilitates the usage of stochastic or (mini)-batch gradient ascent to find the
optimal parameters ϕ that maximize IMC. The discrete cell-probabilities (non-negative and
summing up to 1) can be parameterized with real valued ϕ (with the same dimensionality as
the number of cells), using the softmax function [62] σ as

pcell i = σi(ϕ)≡
eϕi

∑

j

eϕ j
. (36)

Under this parameterization, the gradient of pcell(x ) with respect to ϕ in (35) can be computed
using

∂ pcell i

∂ ϕ j
= pcell i

�

δi j − pcell j

�

, (37)

where δi j is the Kronecker delta function.

2.3.2 An illustrative example

Now we will present a simple one-dimensional example that demonstrates

A. How the technique introduced in Section 2.3.1 can be used to train the sampling distri-
bution.

B. How an OASIS-trained sampling distribution g can offer more sensitivity to the experi-
ment than even the ideal12 case of regular importance sampling (IS).

11The events which were generated during the construction of the cells could also be reused for the purpose of
this cell-probability adjustment. But one will have to keep track of the sampling distributions used to generate
points at different stages in order to reuse them later.

12The ideal case of IS is when the sampling distribution perfectly matches the normalized true distribution f /F .
In order to be conservative in our evaluation of the performance of regular importance sampling, from now on any
mention of IS will refer to this ideal situation.

12

https://scipost.org
https://scipost.org/SciPostPhys.10.2.034


SciPost Phys. 10, 034 (2021)

0 1 2 3 4 5 6 7 8 9 10
x

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

di
st

ri
bu

ti
on

f

f |u|

Figure 1: The red lines show distributions f (x) given by (38) for θ = θ0 = 5 (solid
line) and θ = θ0 ± 0.3 (dotted lines). The green dot-dashed line shows the distribu-
tion f (x)|u(x)| for θ = θ0. All distributions have been unit-normalized in the range
0≤ x ≤ 10.

Despite this being only a one-dimensional toy example, it will be sufficient to convey our main
point. Later in the paper we will additionally show

• How to reduce the task of training the sampling distributions in higher dimensions to
a one-dimensional problem. This means that the ability to derive the optimal sampling
distribution for a one-dimensional case is sufficient to perform OASIS in higher dimen-
sions as well.

• How the results from our one-dimensional example correlate with existing plots from a
realistic physics analysis by the Compact Muon Solenoid (CMS) experiment, thus con-
firming the potential for resource conservation offered by OASIS to collider experiments.

The toy example we will consider is the measurement of the mean of a normally distributed
random variable of known standard deviation, which we take to be equal to 2:

f (x ; θ ) =
1
p

8π
exp

�

−
(x − θ )2

8

�

. (38)

The per-event score for this distribution is given by

u(x ; θ ) =
x − θ

4
. (39)

In a real analysis, these functional forms will be unavailable, and the analysis will be performed
using only the simulated datasets, without knowledge of the true model or the fact that the
parameter θ is simply the mean of the distribution (likelihood-free inference).

We will fix the phase space region considered by the analysis to be 0 ≤ x ≤ 10, and we
will choose θ0 = 5. The red solid curve in Figure 1 shows the distribution f (x ; θ0), while the
red dotted curves show the same distribution f , but for neighboring values of θ = θ0±ε with
ε= 0.3. By visually inspecting these three curves, one can get a feeling for the sensitivity to the
parameter θ at different values of x . Note that the region near the maximum of the distribution
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Table 1: The parameters used in the mini-batch gradient ascent.

L
Ns

Initial ϕ Number of steps Learning rate η Mini-batch size

1 (1,1, . . . , 1) 50,000 0.1 20

10 (1,1, . . . , 1) 50,000 0.1 20

0.1 (1,1, . . . , 1) 100, 000 0.5 20

offers the least amount of sensitivity, since the value of f there does not change much as we
vary θ . On the other hand, the regions away from the peak appear to be much more sensitive to
θ , the exact amount being a function of the per-event score u and the accumulated statistics
as encoded by the value of f . In the large simulation statistics limit, the optimal sampling
distribution from (28) is proportional to the product f |u| (at θ = θ0), which is shown in
Figure 1 with the green dot-dashed line. The shape of the f |u| distribution is such that its
maxima are located one standard deviation from x = θ0, which can be checked explicitly
using the exact expressions (38) and (39). We see that going after a sampling distribution g
which resembles the red lines in Figure 1 (as in the standard approaches to IS) and thus tries
to populate the region of the peak, is sub-optimal and this sub-optimality is what OASIS sets
out to fix.

In order to train the sampling distribution using (35), we split the region 0 ≤ x ≤ 10 into
20 bins of equal length 0.5. For simplicity p′cell was set to be equal for all cells (p′cell = 1/20).
This induces a uniform distribution g ′(x ) = 1/10 for the sampling of the training events. For
this first exercise, we set the heuristic parameter L/Ns to 1. Since the integral of f (x ) in the
region [0, 10] is approximately 1 (≈ 0.9876), this choice of heuristic parameter corresponds
to roughly equal number of simulated and real events13.

Using 10,000 training events sampled as-per g ′, the cell-probabilities pcell were trained
using mini-batch gradient ascent, i.e., using a mini-batch of randomly chosen training events
in each training step. The operation performed in each step is given by

ϕ→ ϕ +η× AVG
mini-batch









p′cell(x ) w′ 2(x ) u2(x )
�

pcell(x ) +
L
Ns

p′cell(x )w
′(x )

�2

�

∇ϕ pcell(x )
�









, (40)

where η is the learning rate parameter, and AVG is the average over the mini-batch. The first
row of Table 1 summarizes the parameters of the mini-batch optimization for L/Ns = 1. The
OASIS-trained sampling distribution g∗(x ) given by

g∗(x ) =
p∗cell(x )

Vcell(x )
, (41)

where p∗cell refers to the trained values of cell-probabilities, is shown in the left panel of Fig-
ure 2 (the blue dashed curve). For comparison, the true distribution f (x ; θ0), which is the
ideal case in regular importance sampling (IS), is shown with the red solid line, after normal-
izing to 1 in the analysis region 0 ≤ x ≤ 10. Since the OASIS sampling distribution (41) is
different from the true distribution, each sampled event has an associated weight. The ma-
genta curve in the right panel of Figure 2 shows the ratio of weights for events sampled under

13In our toy example, the cross-section F , and hence, the integrated luminosity L are both dimensionless quan-
tities. Although different, this is compatible with the HEP convention where L and F are both dimensionful, but
their product is dimensionless.
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Figure 2: The blue dashed line in the left panel shows the sampling distribution
trained using OASIS with L/Ns set to 1. For comparison, the true distribution
f (x ; θ0), which is the ideal case in regular importance sampling (IS), is shown with
the red solid line. The magenta line in the right panel shows the ratio of weights
for events sampled under the OASIS-trained distribution (41) versus events sampled
under the best-case scenario in regular IS (i.e., g matching f perfectly). The ×marks
indicate the ratios of the squares of the estimated error-bars within each bin for the
histograms in Figure 3 produced under OASIS and IS.

the OASIS-trained distribution (41) versus events sampled under the best-case scenario in reg-
ular IS when g matches f /F perfectly (henceforth referred to as the IS distribution). Note that
all the events from the IS-generated distribution will have constant weights wIS equal to F(θ0)
(which is ≈ 0.9876). Notice how the regions oversampled (undersampled) under OASIS have
wOASIS/wIS less than 1 (greater than 1). Also note how the discontinuities in the sampling dis-
tribution coincide with the discontinuities in the weight function. The edge effects from these
two discontinuities at the cell/bin boundaries will cancel out and the weighted dataset will not
have any binning artifacts—this is true of existing cellular importance sampling techniques as
well.

Next we generate 100,000 events from the OASIS-trained sampling distribution (41),
weight them appropriately, and plot a normalized histogram in the top panel of Figure 3
(blue histogram). For comparison we also show a histogram with 100,000 events from the
IS-sampled distribution (red histogram). To allow for visual comparison, the histograms are
plotted on a log-scale on two different vertical axes, which are slightly displaced, so that the
IS (OASIS) values should be read off from the red y-axis on the left (the blue y-axis on the
right). The bottom panel shows the ratio of the simulated counts to the true expected count
(calculated by integrating the true distribution within each bin). As expected, the histograms
from the IS and from the OASIS-trained sampling distributions are both consistent with the
true distribution, owing to the robustness of importance sampling as a Monte Carlo technique.

Notice that near the center of the histogram (x = 5) the OASIS-trained histogram in Fig-
ure 3 has larger error-bars than the IS histogram. Away from the center, however, the situation
is reversed, with OASIS leading to smaller error-bars than the IS distribution. This is because
of the preferential sampling performed by the OASIS-trained sampling distribution g∗: we
already saw from the left panel in Figure 2 that the maximum sensitivity is expected away
from the peak. Correspondingly, the OASIS-trained sampling distribution g∗ is designed so
that the resulting OASIS-trained histogram has relatively small error bars in the θ -sensitive
regions of phase space, x ∈ (0,3.5) and x ∈ (6.5,10). This benefit, however, comes at the
cost or allowing larger error bars elsewhere, in this case in x ∈ (3.5, 6.5), but that is precisely
where the sensitivity to θ is minimal, and such regions are anyway not very useful to an ex-
perimental analysis which is trying to measure θ . In summary, as illustrated in Figure 3, the
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Figure 3: Normalized histogram counts with 3σ error bars with 100,000 events
sampled (and weighted appropriately) under the OASIS-trained distribution (blue
lines) and the true distribution (red lines labelled IS). To allow for visual compari-
son, the histograms are plotted on a log-scale and their corresponding y-axes have
been shifted vertically as indicated by the vertical arrow. The bottom panel shows the
ratio of the simulated counts to the true expected count (calculated by integrating
the true distribution within each bin), along with 1σ error bars.

OASIS perspective keeps an eye on the big picture and improves the precision of the simulated
data precisely in the regions that are most valuable to the experimental analysis which will be
making use of that simulated data later on.

The ratios of squares of the estimated error-bars of the bin counts of the histograms pro-
duced under OASIS and IS in Figure 3 are shown in the right panel of Figure 2 with × marks.
They match the weight ratios (magenta curve) since, for a given bin, the statistical error σ
in the simulated (normalized) histogram scales as σ∝ 1/

p
g ∝

p
w. The slight mismatch

between the × marks and the magenta curve is present because we use the uncertainties esti-
mated from the finite simulated samples in Figure 3—it is the uncertainties in the uncertainty
estimates themselves which cause the mismatch.

Next we repeat the exercise and train optimal sampling distributions for different choices of
L/Ns (with optimization parameters shown in Table 1). The trained distributions are shown
in the upper panel of Figure 4: L/Ns = 10 (red solid line), L/Ns = 1 (blue dashed line),
L/Ns = 0.1 (magenta dotted line). The green dot-dashed line shows the theoretical optimal
sampling distribution in the large Ns limit from (28) (it is the same green dot-dashed line
appearing in Figure 1). The per-event score |u| is plotted in the lower panel of Figure 4. Note
how for large values of L/Ns, the optimal sampling distribution g∗ aggressively focuses the
event sampling in regions of high |u|, while at lower values of L/Ns, the sampling distribution
is more lenient towards regions of lower |u|. This trend is expected from the special cases
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Figure 4: OASIS-trained distributions for several different choices of L/Ns during
training, as indicated by the legend. The green dot-dashed line shows the theoretical
optimal sampling distribution in the large Ns limit from (28) (the green dot-dashed
line in Figure 1). The bottom panel shows the absolute value of the per-event score
|u| as a function of x .

considered in sections 2.2.3 and 2.2.4—we saw that when there is not enough simulated data,
Ns � LF , the sampling distribution is focused entirely on the regions with the highest |u|
(similar to a delta function), while in the opposite limit, Ns � LF , the sampling distribution
is more lenient towards lower magnitudes |u| of the per-event score, with the weights simply
being proportional to |u|−1.

Having demonstrated the effect of OASIS on the histogram error-bars (i.e., the uncertain-
ties in the differential cross-section estimated from the simulated data), we next turn to the
effect of OASIS on the measurement of θ . For this purpose, we perform a number of pseudo-
experiments, where both real and simulated data are generated and compared to each other
and the true value θtrue of the parameter θ is estimated by minimizing the χ2 statistic. Results
from one representative pseudo-experiment are shown in the left panel of Figure 5, while the
right panel of Figure 5 and Table 2 summarize the relevant results from the whole ensemble
of pseudo-experiments.

Specifically, the data generation and the θ measurement were done as follows:

1. We performed two separate sets of pseudo-experiments. In each set, the integrated
luminosity L and number of simulated events Ns were taken to be equal—10, 000 for
the first set and 100,000 for the second set, as shown in the first two rows of Table 2.
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Figure 5: The left panel illustrates the minimum χ2 estimation of θtrue in one typical
pseudo-experiment using a) the theoretical knowledge of the analytical form of (38)
in order to construct the likelihood function (gray dotted line); b) simulation using
OASIS-trained sampling distribution (blue dashed line); and c) simulation using IS
sampling distribution (red solid line). The integrated luminosity L for the real data,
and the number of simulated events Ns were both set to 10,000 (corresponding to
roughly equal number of real and simulated events), and θtrue = 4.9. The events were
re-weighted for different θtrial values as in [51,52]. Higher convexity is indicative of
lower error bars on the estimate θ̂ . The right panel shows the distribution of θ̂ for
the same three methods of θ estimation across 2000 pseudo-experiments, each with
different instances of real and simulated datasets.

2. The underlying true value θtrue of the parameter θ was set to 4.9 (row 3 of Table 2) and
the experimental data was generated as-per (38). The particular pseudo-experiment in
the left panel of Figure 5 resulted in 9887 events (in our example, F(θtrue)≈ 0.9875).

3. In each individual pseudo-experiment, two simulated data samples were produced. For
the first one, we used the OASIS-trained distribution shown with the blue dashed line
in the left panel of Figure 2, which was trained (only once) at θ0 = 5 with L/Ns = 1
(rows 4 and 5 of Table 2). The second simulated sample was produced under the ideal
IS distribution which exactly matches f /F (for consistency, we again used θ0 = 5). The
simulated events were then re-weighted for different trial values θtrial of the parameter
θ [51,52].

4. The real and simulated data were binned into 40 equally sized bins in the region 0≤ x
≤ 10. A minimum χ2 estimation of θtrue was performed, accounting for statistical un-
certainties in both the real and the simulated data [2], with the re-weighted simulations
serving the role of theory expectation for different θtrial values.

5. For comparison, we also perform the minimum χ2 estimation based on the likelihood
function using the exact analytical expression (38). Note that this method does not
suffer from simulation uncertainties and thus represents the ideal case reached in the
infinite simulation statistics limit.

The left panel in Figure 5 illustrates the minimum χ2 estimation of θtrue in a typical pseudo-
experiment from the set with L = Ns = 10, 000, following each of the three methods described
above, i.e., using a) the likelihood function formed with the exact analytical expression (38)
(gray dotted line), b) the OASIS-trained sampling distribution (blue dashed line), and c) the IS
sampling distribution (red solid line). The plot shows the value of the χ2 statistic (relative to
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Table 2: Simulation parameters and summary statistics of the results from the simu-
lated pseudo-experiments to measure θtrue.

L 10, 000 100, 000

Ns 10, 000 100, 000

θtrue 4.9 4.9

Training L/Ns 1 1

Simulation θ0 5 5

Pseudo-expts. 2000 500

ave. θ̂ stdev θ̂ [IMC(θtrue)]
−1/2 ave. θ̂ stdev θ̂ [IMC(θtrue)]

−1/2

Likelihood-based 4.8997(5) 2.15(3)E−2 2.108(1)E−2 4.9001(3) 6.9(2)E−3 6.667(3)E−3
OASIS-based 4.9000(6) 2.64(4)E−2 2.611(2)E−2 4.8998(4) 8.5(3)E−3 8.258(5)E−3

IS-based 4.8999(7) 3.03(5)E−2 2.957(19)E−2 4.9004(4) 9.6(3)E−3 9.390(19)E−3

its minimum value χ2
min) as a function of the trial value θtrial for θ . As anticipated, in each case,

the minimum χ2 is obtained in the vicinity of the true value θtrue = 4.9, but the convexity of the
function is different. This is important because the convexity near the minimum is indicative
of the size of the error bars associated with the minimum χ2 estimate θ̂—higher convexity
corresponds to lower error bars, and vice versa. We see that, as expected, the most precise
measurement is offered by the ideal case when we use the analytical form of (38) and thus do
not suffer from simulation uncertainties. At the same time, the comparison of the blue dashed
and the red solid lines reveals that OASIS outperforms regular IS in terms of the precision on
the θ̂ estimate, since the blue dashed curve is more convex that the red solid line.

In order to quantify the precision gains from using OASIS as opposed to regular IS, we an-
alyze the results from the full ensemble of pseudo-experiments. The right panel shows the dis-
tribution of θ̂ values obtained in the 2000 pseudo-experiments (each with different instances
of real and simulated datasets) performed with L = Ns = 10000, for each of the three methods:
likelihood-based (grey dotted histogram), OASIS-simulation-based (blue dashed histogram),
and IS-simulation-based (red solid histogram). The last three lines in Table 2 list the sample
mean and standard deviation for θ̂ , along with the square-root of the inverse of IMC(θtrue)
which is expected to be comparable to the total uncertainty. The histogram shapes in the right
panel of Figure 5 confirm that OASIS outperforms IS and reduces the gap to the ideal sensitiv-
ity offered by the likelihood-based analysis. This can also be verified by inspecting the entries
in Table 2 for the standard deviation of θ̂ . Note that increasing the statistics to 100,000 events,
as in the rightmost columns of Table 2, has the effect of reducing the measurement errors, but
does not alter the performance rank of the three methods.

Note that the sensitivity of an experimental analysis will depend on the exact likelihood-
free inference technique used, and in particular on how the theory expectations are estimated
from the simulations. But regardless of the inference strategy, analyses will benefit from the
preferential sampling of events in regions of higher sensitivity.

Table 2 also shows the values of [IMC(θtrue)]
−1/2 for the different simulation sampling

distributions. For this purpose, IMC/L is estimated using (17b) as the sample mean of wu2/(1+
Lw/Ns) (over 100,000 simulated events). IMC for the likelihood-based case simply refers to
I, which can be estimated as the sample mean of wu2 under either sampling distribution.
Note the similarity between the estimated values of [IMC(θtrue)]

−1/2 and the corresponding
standard deviations in θ̂ . This establishes IMC as a reliable measure of sensitivity offered by
the respective simulated datasets14.

14It is presently unclear whether IMC provides a lower limit on the uncertainty of an appropriately defined,
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Figure 6: Dependence of IMC on Ns/L for the OASIS-trained (blue dashed curve)
and IS (red solid curve) sampling distributions. In the top (bottom) panel, the OA-
SIS sampling distribution was trained at L/Ns = 1 (L/Ns = 0.1). The horizontal
arrows indicate the percent reduction in the simulation requirements at three repre-
sentative values of the ratio Ns/L. In both panels, the gray dot-dashed line indicates
the theoretical upper bound obtained in the infinite simulated statistics limit.

Having established the relationship between the measurement uncertainty and IMC, we
will now use IMC/L at θ0 = 5 as a performance metric to quantify the resource conservation
offered by OASIS. Figure 6 shows the value of IMC as a function of the available simulation
statistics (as measured by the parameter Ns/L) for the OASIS-trained (blue dashed curve) and
IS (red solid curve) sampling distributions. In each panel, the OASIS sampling distribution was
only trained once: at L/Ns = 1 in the top panel and at L/Ns = 0.1 in the bottom panel. In spite
of this, the same sampling distribution (already trained at a given fixed value of L/Ns) can still
be reused to produce a different number of simulated events—it is the resulting dependence
on Ns which is depicted in Figure 6.

As can be seen from Figure 6, the OASIS-trained sampling distribution leads to higher val-
ues of IMC (and consequently, higher sensitivity of the analysis) for the same value of Ns/L.
(The maximum achievable value of IMC/L is I/L (in the large Ns limit), and it is also depicted
as the gray dot-dashed horizontal line in the same figure.) Viewed differently, any target value
of IMC is reached using fewer simulated events under the OASIS-trained sampling distribu-

generic likelihood-free estimator, like the Fisher information I does for a generic estimator of θ .
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Figure 7: The percent increase (indicated by the horizontal arrows in Figure 6) in
the required amount of simulated data to reach the same value of IMC/L, if using
regular IS instead of OASIS, as a function of Ns/L. EachÆ mark corresponds to the
Ns/L value a particular OASIS distribution was trained to be optimal at.

tion. This potential for resource conservation is depicted by the horizontal arrows in Figure 6,
indicating the percent increase15 in the number of simulated events that would have had to
be generated under the regular IS scheme, for three different values of Ns/L. Figure 7 shows
an alternate representation of this potential for resource conservation, by plotting the percent
increase in the required amount of simulated data as a function of Ns/L for the three different
OASIS distributions trained at L/Ns = 0.1 (magenta dotted line), L/Ns = 1 (blue dashed line)
and L/Ns = 10 (red solid line).

2.3.3 Deriving optimal “target weights” based on the score

The previous example demonstrates the construction of optimal sampling distributions when
the phase space is one-dimensional. While the technique of adjusting the weights of cells
(created by, say, the Foam algorithm) is applicable in higher dimensions as well, since the cells
were not specifically created with OASIS in mind, the performance of the resulting sampling
distribution may be limited.

In this section, we will convert the problem of OASIS-training the sampling distribution
for a multi-dimensional phase space to a one-dimensional problem. The key observation is
that for any sampling distribution g (with weight function w), there exists a ‘better’ sampling
distribution gbetter, with weights wbetter that depend only on |u|, given by

gbetter(x ) =
f (x )

Eg

h

w(x )
�

�

� |u(x )|
i , (42)

wbetter(x ) =
f (x )

gbetter(x )
= Eg

h

w(x )
�

�

� |u(x )|
i

, (43)

15The reason why we plot the percent increase instead of the percent reduction is the following. For any given
simulation budget Ns read off from the x axes of Figure 6 and Figure 7, one would naturally choose to use the
more efficient sampling method, in which case the relevant question becomes, how much worse one would have
been under the other, less efficient, method.
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such that
¦

IMC under gbetter

©

≥
¦

IMC under g
©

. (44)

This can be intuitively understood from the special case considered in (22b)—it is better for
the regions of phase space with the same value of |u| to have the same weight, and gbetter
simply redistributes the sampling distribution g among regions of constant |u| to make the
weights the same. An explicit proof of (44) can be found in Appendix C. This means that
there exists an optimal sampling distribution goptimal (for a given value of θ0), such that the
weights of events under this distribution depend only on |u(x )|. If we can derive these optimal
weights as a function of |u|, we can use them as target weights wtarget(|u(x )|) to be reached
by the OASIS-trained sampling distribution. These target weights will correspond to a target
sampling distribution

ftarget(x ) =
f (x )

wtarget(|u(x )|)
. (45)

Note that ftarget can be computed using the oracle that provides f (x ) and u(x ), and a lookup
table for the target weights. This allows us to employ existing ‘regular’ importance sampling
techniques to train the sampling distribution g to approximate the target sampling distribution
ftarget. Note that ftarget need not be normalized to 1, and the target weight function only needs
to be learned up to a constant multiplicative factor for the approach to work.

To learn the functional form of wtarget(|u|), we will rewrite (17b) for sampling distributions
of the form

g(x ) =
f (x )

w(|u(x )|)
, (46)

as

IMC

L
=

∫

dx f (x )
u2(x )

1+
L
Ns

w(|u(x )|)
(47a)

=

∫

d|u| f|u|(|u|)
u2

1+
L
Ns

w(|u|)
(47b)

=

∫

d|u| f|u|(|u|)
u2

1+
L
Ns

f|u|(|u|)
g|u|(|u|)

, (47c)

where f|u| and g|u| are the distributions of |u(x )| under the distributions f and g for x , and in
arriving at (47c) we have used

w(|u|′) =
f (x )
g(x )

�

�

�

�

|u(x )|=|u|′
=

∫

dx f (x ) δD

�

|u(x )| − |u|′
�

∫

dx g(x ) δD

�

|u(x )| − |u|′
�

=
f|u|(|u|)
g|u|(|u|)

, (48)

where δD is the Dirac delta function. Comparing (47c) with (17b), we can see that the problem
of deriving the optimal weights as a function of |u| is identical to the problem of deriving opti-
mal weights as a function of x which was tackled in the previous section. The only difference
is that we do not have an oracle to return the value of f|u|(|u(x )|) for every generated event
x . But because this is just a one-dimensional problem, we can easily estimate the distribution
f|u| using simulations, possibly from a different sampling distribution.
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2.3.4 Direct construction using machine learning

Recently, there has been a significant interest in employing generative neural networks to
perform importance sampling [41–46]. The idea is as follows: The neural network takes in as
input a random vector r , sampled from a given known distribution Pr(r ) (e.g., multi-variate
standard normal), and maps it to the output vector x (r ). The weights of the neural network,
say ϕ, parameterize the map from r to x , and this map governs the sampling distribution
g of x . Now, if the sampling distribution g(x ) a) covers the support of the true distribution
f (phase space where f is non-zero), and b) can be computed for every sampled event x ,
then the neural network can be used to perform importance sampling. If the neural network
architecture is chosen to be manifestly one-to-one, then g(x (r )) can be computed as

g(x (r )) =
Pr(r )

J
, (49)

where J ≡ |∇r x | is the determinant of the Jacobian matrix of the map induced by the neural
network. As a reminder, the weights of the generated events will be computed as w= f /g.

Such neural networks can be trained using gradient descent to maximize IMC (or minimize
−IMC). From (17b) we have

−IMC =

∫

dx f (x )
−u2(x )

1+
L
Ns

f (x )
g(x )

, (50)

⇒−∇ϕ IMC =

∫

dx f (x )
−u2(x )

�

1+
L
Ns

f (x )
g(x )

�2

f (x )
g(x )

�

∇ϕ ln g(x )
�

(51a)

=

∫

dx g(x )
−w2(x )u2(x )
�

1+
L
Ns

w(x )
�2

�

∇ϕ ln g(x )
�

(51b)

= Eg

�

−
�

wu
1+ Lw/Ns

�2
�

∇ϕ ln g
�

�

. (51c)

This expression for the gradient of −IMC as an expectation over events sampled as-per g(x )
facilitates the use of stochastic or (mini)-batch gradient descent to train the neural network,
similar to the importance sampling loss functions in Refs. [43,44,46]. The viability of training
generative networks using our loss function (or other related surrogate loss functions) is not
explored in this work; here we merely intend to communicate the possibility to the community.

3 OASIS for analysis variables

3.1 Groundwork

The advantage of the parton-level event specification in MC simulations is that the probability
distributions of parton-level variables under a given theory model are exactly computable by
an oracle. This is why HEP simulations begin with the parton-level Monte Carlo, followed by
the remaining stages of the simulation chain. The methods developed in Section 2 relied on
the oracle to compute f (x ) and u(x ), and on the fact that the weight of an event is uniquely
determined by its x value. In this section we will develop the framework for applying OASIS
at the analysis level, accounting for the following experimental realities:
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• Only reconstructed versions of visible parton-level final state particles are available to the
analyses.

• The kinematic information about invisible final state particles (such as neutrinos or dark
matter candidates) is inaccessible.

• At hadron colliders, the particle ids and momentum fractions of the incoming partons in
a given event are a priori unknown.

• Typically all of the available event information is reduced to a handful of sensitive event
variables on which the analyses is performed.

• The analysis only uses events which pass the trigger requirements, the event selection
criteria and the analysis cuts. In addition, the remaining events could be partitioned
into several different categories to be analyzed separately.

To take these into account, let v represent the (possibly multi-dimensional) event variable
in the final analysis corresponding to an event. A parton-level event x is mapped to v in a
probabilistic many-to-many manner, via the rest of the simulation pipeline, the reconstruction
pipeline, and the event variable calculation. We will use v to capture all the information used
by the analysis, including any event selection or categorization information—if a particular
event does not meet the selection cuts, v can carry a special Null or rejected tag, and
if the events are split into different categories (based on purity, for example), the category
information could be included as a dimension in v . Let the transfer function TF(v | x ) represent
the normalized distribution of v conditional on x . Let F(v ; θ ) and G(v) be the distributions
of v corresponding to the parton-level distributions f (x ; θ ) and g(x ) after marginalizing over
x using the transfer function TF:

G(v) =
∫

dx g(x ) TF(v | x ) , (52)

F(v ; θ ) =

∫

dx f (x ; θ ) TF(v | x ) (53a)

=

∫

dx g(x ) TF(v | x ) w(x ; θ ) (53b)

=

∫

dx G(v) ITFg(x | v) w(x ; θ ) (53c)

= G(v) Eg[w | v ; θ] , (53d)

where the inverse transfer function ITFg(x | v) represents the normalized distribution of x con-
ditional on v , when the prior distribution on x is g. Just like their parton-level counterparts,
F(v ; θ ) and G(v) are normalized to F(θ ) and 1, respectively.

For an analysis performed on v , the relevant Fisher information is given by

I(θ0) =

∫

dv
1

LF(v ; θ0)

�

L
∂F(v ; θ )
∂ θ

�2�
�

�

�

θ=θ0

, (54)

where the integral is performed only over the non-Null or non-rejected values of v . Pro-
ceeding as before, the expectation and variance for the number of real events in a bin of size
∆v (small) at a given value of v , for a given value of θ = θ0 is given by LF(v ; θ0)∆v . The
simulated estimate for the expected event-count, as per (53d), is given by the sum of weights
of the simulated events in the relevant bin, say Sw (a random variable), scaled by a factor of
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L/Ns. To estimate the variance of Sw, note that Sw can be expressed as the sum of Ns indepen-
dent random variables Ai ≡ Ii×Bi , where Bi-s are independent random variables following the
same distribution as the weights of simulated events in the bin and Ii-s are indicator random
variables which take value 1 with probability G(v)∆v and 0 otherwise. Now,

Sw =
Ns
∑

i=1

Ai =
Ns
∑

i=1

Ii × Bi (55)

Eg[Sw] = Ns × Eg[Ii]× Eg[Bi] (56a)

= Ns × G(v)∆v × Eg[w | v ; θ0] (56b)

= Ns F(v ; θ0)∆v , (56c)

⇒ E
�

Sw ×
L
Ns

�

= LF(v ; θ0)∆v (57)

varg [Sw] = Ns varg [Ai] (58a)

= Ns

�

Eg

�

I2
i

�

Eg

�

B2
i

�

− Eg[Ii]
2 Eg[Bi]

2
�

(58b)

= Ns

�

G(v)∆v Eg[w
2 | v ; θ0] +O

�

(∆v)2
�

�

(58c)

⇒ varg

�

Sw ×
L
Ns

�

=
L2

Ns
G(v) Eg[w

2 | v ; θ0]∆v +O
�

(∆v)2
�

(59a)

=
L
Ns

Eg[w2 | v ; θ0]

Eg[w | v ; θ0]
× LF(v ; θ0)∆v +O

�

(∆v)2
�

. (59b)

In (56a) and (58b), we have used the fact that I and B are independent by construction. In
(56b) and (58c) we have used Eg[I] = Eg[I2] = G(v)∆v (the binomial ‘success’ probability),
and in (59b), we have used (53d). Equation (58c) is related to the well-known formula for
error-bars in unnormalized weighted histograms, given by the square root of the sum of squares
of the weights in a given bin [63].

Introducing the uncertainty in Sw L/Ns from (59b) into the expression for Fisher informa-
tion (after dropping the O

�

(∆v)2
�

term), we get

IMC(θ0) =

∫

dv

�

L
∂F(v ; θ )
∂ θ

�2�
�

�

�

θ=θ0

LF(v ; θ0)

�

1+
L
Ns

Eg[w2 | v ; θ0]

Eg[w | v ; θ0]

�
, (60)

which is the analogue of (16). Further, in analogy to (17), this result can be rewritten as

IMC(θ0)
L

=

∫

dv F(v ; θ0)

�

∂θ ln[F(v ; θ )]
�2�
�

�

θ=θ0

1+
L
Ns

Eg[w2 | v ; θ0]

Eg[w | v ; θ0]

(61a)

=

∫

dv F(v ; θ0)
U2(v ; θ0)

1+
L
Ns

Eg[w2 | v ; θ0]

Eg[w | v ; θ0]

, (61b)

where U(v ; θ0) is the per-event score at the analysis level given by

U(v ; θ )≡ [∂θ ln[F(v ; θ )]] =
�

1
F(v ; θ )

∂F(v ; θ )
∂ θ

�

. (62)
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As before, for notational convenience, we will suppress the θ0 dependence in the different
distributions and quantities, unless deemed useful. Typically the MC dataset for a given anal-
ysis is composed of several background and signal subsamples. Furthermore, there could be
systematic uncertainties in the MC as well, both from the theory side (e.g., neglecting higher
order corrections, working in the narrow-width approximation, etc.) and from the experiment
side. All of these can be incorporated into (61b) in a straightforward manner as

IMC

L
=

∫

dv F(v) U2(v)

1+
σ2

syst(v)

σ2
stat(v)

+
∑

k

F (k)(v)
F(v)

L

N (k)s

Eg(k)[w
2
k | v]

Eg(k)[wk | v]

, (63)

where σsyst is the systematic uncertainty (in the relevant bin at v) in the MC data unrelated to
its finiteness, σstat is the statistical uncertainty (in the relevant bin at v) in the real dataset16,
and k is a subsample index. N (k)s is the number of simulated events in the k-th subsample with
Ns =

∑

k N (k)s being the total number of simulated events. Each subsample has its own true
distribution f (k) (normalized to the cross-section of the k-th process) and sampling distribution
g(k) (normalized to 1). The weight wk(x ) of a parton-level event x in subsample k is given by
f (k)(x )/g(k)(x ). F (k)(v) and F(v) are defined by

F (k)(v)≡
∫

dx f (k)(x ) TF(v | x ) = G(k)(v) Eg(k)[wk | v] , (64)

F(v) =
∑

k

F (k)(v) , (65)

where G(k)(v) is given by

G(k)(v)≡
∫

dx g(k)(x ) TF(v | x ) . (66)

Note that reducible backgrounds as well as backgrounds with different sets of invisible
final state particles will live in different spaces at the parton-level.

At first sight, the task of deriving good sampling distributions g(k) (in their respective
domains) using (63) seems like a daunting task considering that the terms in the expression
cannot be exactly computed and live in the realm of individual analyses, while g(k) live in the
parton-level MC realm. However, the following observations facilitate the task at hand:

1. The relevant quantities in (63) can be estimated from a preliminary smaller MC
sample. F , F (k), U , and σsyst/σstat can be estimated using ‘preliminary’ (possibly pre-
existing) simulated datasets much smaller than the final MC dataset. For example, σstat
in a given bin can be extrapolated from a smaller MC dataset, with σsyst being indepen-
dent of the size of the dataset. Similarly, U can be estimated either from the estimate
of F for neighboring values of θ , or more directly as the appropriately weighted aver-
age of u(x ) (or equivalently ∂θ ln w), conditional on v [64]. For example, for a single
component sample, from (62) and (53d) we have

U(v) = 1
F(v)

∂F(v)
∂ θ

=
Eg[∂θw | v]
Eg[w | v]

(67a)

=
Eg[w ∂θ ln w | v]

Eg[w | v]
=

Eg[w u | v]
Eg[w | v]

(67b)

=
E f [(w/w)u | v]

E f [w/w | v]
= E f [u | v] . (67c)

16Note that while σstat and σsyst individually depend on the bin-width, their ratio does not (up to local smoothing
effects). The ratio is also independent of whether the σ-s refer to absolute or relative uncertainties.

26

https://scipost.org
https://scipost.org/SciPostPhys.10.2.034


SciPost Phys. 10, 034 (2021)

Similarly, for the case with multiple components, from (62), (65), and (67) we have

U(v) = ∂θ lnF(v) =
∑

k

F (k)(v)
F(v) ∂θ lnF (k)(v) (68a)

=
∑

k

F (k)(v)
F(v)

Eg(k)[wk uk | v]
Eg(k)[wk | v]

(68b)

=
∑

k

F (k)(v)
F(v) E f (k)[uk | v] , (68c)

where uk is simply ∂θwk. Note that although the estimates of F , F (k), U , and σsyst/σstat
from a preliminary dataset will not be accurate up to the sensitivity offered by the full MC
dataset [50], they will be sufficient for projecting, with sufficient accuracy, the sensitivity
of the experiment under different sampling distributions.

2. Target weights in the v space can be translated to weights in the x space. Although
the map from x to v is technically many-to-many, it is usually approximately many-to-
one, with the event variable v for a given value of the parton-level event x typically
falling within a small window of possibilities. This means that if the individual analyses
can identify ‘target’ sampling weights for different regions in v , it can then be translated
to weights in the x (parton-level) phase space.

Here we are proposing to restrict our attention to sampling distributions which (roughly)
assign the same weights to all x values which (roughly) map to the same value of v . This
can be justified as follows. Since

Eg(k)[w
2
k | v]≥

�

Eg(k)[wk | v]
�2

, (69)

it follows from (63) that
§ IMC

L
under

�

g(k)
	

ª

≤
∫

dv
F(v) U2(v)

1+
σ2

syst(v)

σ2
stat(v)

+
∑

k

F (k)(v)
F(v)

L

N (k)s

Eg(k)[wk | v]

, (70)

with equality iff Eg(k)[w
2
k | v] =

�

Eg(k)[wk | v]
�2

(i.e., if the variance of w within subsample
k, conditional on v is 0) for all k and almost all v . If the map from x to v is strictly
deterministic (many-to-one), then from a given set of sampling distributions

�

g(k)
	

, we

can construct a better set of sampling distributions
�

g(k)better(x )
	

, with weights wk,better
which only depend on v(x ), given by

g(k)better(x ) =
f (k)(x )

Eg(k)[wk | v(x )]
, (71)

wk,better(x ) =
f k(x )

g(k)better(x )
= Eg(k)[wk | v(x )] , (72)

such that the value of IMC under
�

g(k)better

	

is greater than or equal to that under
�

g(k)
	

.

This is because the right-hand-side of (70) equals the value of IMC/L under
�

g(k)better

	

(based on the expression in (63)), since

Eg(k)better

�

w2
k,better | v

�

=
h

Eg(k)better
[wk,better | v]

i2
=
�

Eg(k)[wk | v]
�2

. (73)

These two observations (the statements in boldface in items 1 and 2 above) lead to a two-stage
approach to performing OASIS for a realistic analysis, which we will describe next.
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Preliminary/preexisting
analysis level dataset

(could be weighted)

Estimation of
F (k)(v) and U(v)

Oracle for
F (k)(v) and U(v)

Estimation of
target weights

Oracle for
wtarget(v)

Figure 8: A flowchart of the main steps of the first stage of OASIS discussed in Sec-
tion 3.2.1. Rectangles refer to processes or actions, while the remaining parallelo-
grams refer to the corresponding inputs or deliverables. The estimation of F (k)(v)
and U(v) can be done using existing regression techniques. The techniques intro-
duced in Section 2 can be used to perform the estimation of wtarget(v) by maximizing
(75).

3.2 Constructing optimal sampling distributions

3.2.1 Stage 1: Taking stock at the analysis level

Following up on the second observation above, let us restrict our attention to sampling distri-
butions of the form

g(k)(x ) =
f (k)(x )

wk(v(x ))
. (74)

For this case, (63) reduces to

IMC

L
=

∫

dv F(v) U2(v)

1+
σ2

syst(v)

σ2
stat(v)

+
∑

k

F (k)(v)
F(v)

L

N (k)s

wk(v)

. (75)

Since all the terms in the right hand side of (75) other than wk are either heuristic parame-
ters or calculable using a small preliminary MC dataset, we can estimate good target weights
wk,target(v) for different values of v in the different subsamples k using the same technique as
was used to maximize the expression in (17b) in this paper.

The utility of different regions is captured by the U2 term in the numerator. This can be ap-
propriately substituted for purposes other than parameter estimation. For example, in a signal
search analysis it can be replaced by (s/b)2, since U is proportional to the signal-to-background
ratio when θ is the signal cross-section and the sensitivity is to be maximized around θ = 0.
If simulated events are needed in a nonsensitive control region for MC validation, the term
can be fixed to an appropriate value by hand. Furthermore, if the optimization performed in
estimating the target weights wk,target is deemed too aggressive, one can adjust the weights
appropriately by hand. In short, at this stage individual analyses can take stock and identify
a preferred MC sampling distribution in the phase space of the event variable v for each of
the relevant subsamples. The flowchart in Figure 8 summarizes the main steps of this stage of
OASIS.

3.2.2 Stage 2: Translating the target weights to parton-level

In this stage we will choose the parton-level sampling distribution g in the phase space of x
to approach the desired target weights in v . Since we are only considering the generation of
one process at a time, we will drop the subsample index k for notational convenience.
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parton-level
event x

Showering, hadronization,
detector simulation,
event reconstruction,

event selection/categorization,
high-level variable construction

Query
f (x )

f /wtarget

Query
wtarget(v)

ftarget(x )

v

Figure 9: A flowchart of the oracle for ftarget to be used in the second stage of OASIS
discussed in Section 3.2.2. The query for f (x ) can be performed with the existing
standard HEP machinery, while the query for wtarget(v) can be done with the oracle
trained in Section 3.2.1.

For this purpose, we can employ an existing importance sampling approach like the VEGAS
algorithm [35,36], the Foam algorithm [37–40], or a neural network based approach [41–46].
Each of these methods needs to be provided with an oracle that can be queried for the value
of the underlying (possibly unnormalized) distribution we are trying to sample from. Usually
this oracle simply returns f (x ), which is a combination of parton distribution functions and
the relevant matrix elements.

In our case, in addition to f , the oracle will be based on a simulation and reconstruction
pipeline to transform x into v , and the target weights wtarget for different v values produced
in stage 1. For each queried event x , the oracle will run the simulation forward to find an
associated target weight, and return ftarget ≡ f (x )/wtarget. The flowchart in Figure 9 depicts
the internals of the oracle for ftarget(x ). Note that much of the existing standard HEP simulation
tools can be re-purposed for our analysis, in particular the query for f (x ), the production of
v from x and the existing importance sampling algorithms to mimic ftarget.

In concluding this subsection, we provide the following usage notes.

• Since the map from x to v is not deterministic, the oracle may return different values of
ftarget for the same query x . However, the existing importance sampling algorithms are
robust under this non-determinism and will simply settle on an intermediate ftarget.

17

This way, even if a region in the x space only contributes rarely to an important or sensi-
tive region in the v space, this contribution will be taken into account by our approach,
and the x -region will receive a suitably high sampling rate.

• If the event x (after forward smearing to v) does not pass the selection thresholds of
the analysis, its target weight can be set to∞ since it holds no utility for the analysis.
However, this may be too aggressive, and using a suitably high maximum target weight
maybe more appropriate.

For example, there may be a signal region with contributions from reducible back-
grounds due to very rare (in the relative sense) fakes or fluctuations in a process with
a large rate. In such cases, a smaller preliminary dataset might not show any contri-
butions from this background component, but manually setting an upper limit on the
target weight will ensure that these regions receive adequate coverage by the sampling
distribution.

17An equivalent compromise is incorporated into the OASIS results in Section 2.3.2 by the use of wide bins where
g is constrained to be constant, thus limiting the flexibility and forcing a compromise.
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Figure 10: The three distributions of f (x ) from Figure 1 (red solid and dotted lines,
left y-axis) and the distribution of the local shape sensitivity (77) (blue dashed line,
right y-axis) for our toy example.

• Computationally inexpensive fast simulators may be sufficient for the purpose of map-
ping x to event variables v in Figure 9, since the goal is only to attain a good sampling
distribution g.

• The ftarget oracle is to be used only in the training phase of the importance sampling
algorithm. When actually generating events for the analysis, the weights for the sampled
events should be based on the true distribution f (x ) as w(x ) = f (x )/g(x ).

• Note that the individual L/N (k)s values in (75) can also be optimized [65]. For exam-
ple, if events from different sub-channels are equally costly to produce and process, the
relevant constraint on N (k)s is simply

Ns =
∑

k

N (k)s . (76)

On the other hand, if events from different sub-channels have different computational
costs, the above constraint can be modified using suitable weights for the individual
terms.

• If the same sample of simulated events will be used in multiple analyses, a common
ground sampling distribution should be found by taking into account the requirements
of the individual analyses.

3.3 Comparison to a real-life example from a CMS analysis

To appreciate the potential for resource conservation offered by OASIS, let us consider the
measurement of the top quark mass by the Compact Muon Solenoid (CMS) experiment in
the dileptonic t t̄ decay channel presented in [66]. Fig. 1b (available here), Fig. 3b (available
here), and Fig. 4b (available here) of that publication show distributions of different event
variables (Mbl, Mbb

T2, and Mblν, respectively) for three nearby values of the top quark mass MMC
t

used in the MC: 166.5 GeV, 172.5 GeV and 178.5 GeV. This is analogous to the comparison
between the three red curves in Figure 1 (one solid and two dotted, reproduced again in
Figure 10), where the role of θ is played by MMC

t . By comparing the shapes of the curves
at different values of MMC

t , Ref. [66] noted that certain regions of the distributions are more
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sensitive to MMC
t than others. In order to quantify the effect, Ref. [66] introduced a “local

shape sensitivity” function defined by

Local shape sensitivity=
1

f (x ; θ )

�

∂ f (x ; θ )
∂ θ

�2

, (77)

which was also plotted in Figs. 1b, 3b, and 4b of [66]. In order to make the connection to
our previous example, in Figure 10 we also plot with the blue dashed line the so-defined local
shape sensitivity (77) (which in our language is f u2). The fact that in both Figure 10 and the
figures of Ref. [66], the distribution f and the local shape sensitivity (77) have very different
shapes demonstrates the scope for optimization by biasing the event generation appropriately.
This optimization is precisely the motivation for the OASIS framework, and the results from
Figure 6 and Figure 7 are indicative of the resource conservation which could be available to
the LHC experimental collaborations, should such need arise.

4 Conclusions and outlook

In the high-luminosity era of the LHC, as well as in experiments at the intensity frontier, we
expect to face a crunch for the computational resources required for Monte Carlo simulations.
In this paper, we introduced a technique called OASIS for ameliorating this problem by mod-
ifying the sampling distribution used in the Monte Carlo. OASIS preferentially focuses the
sampling of simulated events on certain regions of phase space (and appropriately weights
them), in order to achieve the best experimental sensitivity for a given computational budget.
We can also view the utility of OASIS as reducing the number of simulated events needed to
reach a target sensitivity. We do this in two steps described in Section 3.2 and summarized
with the flowcharts depicted in Figure 8 and Figure 9. In the remainder of this section, we will
summarize and contextualize the key ideas of OASIS.

• The use of weighted events in the samples representing the theory model predictions. While
the use of weighted events on an event-by-event basis is currently not very common in
experimental analyses18, the usefulness of the individual event weights was realised by
theorists quite early on, and the event weight information was implemented in the Les
Houches event file formats [71,72]. Recently, it has been pointed out that event weights
can also be used to optimize the event selection and categorization in any given exper-
imental analysis, leading to higher sensitivity [73, 74]. The event weighting procedure
is actually very straightforward—in fact, experimental analyses in some cases do effec-
tively (re-)weight their events:

– For example, when adding subsamples from different underlying processes with
the same experimental signature, the individual subsamples have to be weighted
appropriately to get their proportions right.

– Another current use example is the oversampling of the tails of distributions, which
can be done by either manually “slicing” with different generation cuts or by “bias-
ing” the parton-level phase space with user-defined suppression factors [7]. While
both of these approaches help reduce the overall event generation resource require-
ments, here we are proposing to exploit the idea to an unprecedented degree.

• The choice of the sampling distribution should be dictated not only by the expected statis-
tics, but also by the utility of a given event to the experimental analysis. The standard ap-
proach (importance sampling) generates events according to their expected frequency

18MC reweighting was used by some LEP experiments in the late 1990s to measure both particle masses [67,68]
and couplings [69], and more recently by CMS to set limits on anomalous vector boson couplings [70].
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in the data. However, as we showed here, the most common events in the data are not
necessarily the most useful in the information-theoretic sense. OASIS directly takes into
account the sensitivity of different phase space regions to a parameter of interest as en-
coded by the per-event score (at the parton or at the analysis level, as desired). Thus the
OASIS approach, by construction, seeks to maximize the utility of the simulated dataset.

• Optimizing for unknown signal parameters. One potential complication when applying
OASIS to the MC generation of new physics samples is that a priori we do not know
the values of the BSM parameters (even approximately). In that case, the standard
procedure is to optimize the sensitivity for the parameter values which are close to the
expected exclusion or discovery contours in parameter space. The same approach can be
applied to OASIS as well.

• Aligning the resource allocation with the established priorities of the experiment. The main
objective of any experimental analysis is achieving the highest possible sensitivity. By
linking the choice of the sampling distribution to the per-event score values, OASIS aligns
the goals of MC event generation and the physics analysis. For a single analysis, this is
straightforward. However, the situation is complicated by the fact that modern experi-
mental collaborations are quite large, comprised of many analysis groups, with poten-
tially conflicting views on the relative importance of different phase space regions for
their analyses. Nevertheless, reaching a consensus is certainly possible, as evidenced
by the accepted agreements for the trigger menu, where different analysis groups are
similarly competing for trigger bandwidth.

• Increased coordination between the analysis and Monte Carlo generation teams within each
experiment. The successful implementation of OASIS also requires unprecedented level
of cooperation and interaction among the MC generation and physics analysis groups
within the experimental collaborations. The MC group will have to rely on the feedback
from the analysts in designing the optimal sampling distribution.

• Taking stock of current resource usage. A very achievable near-term goal for any LHC
collaboration would be to start tracking the current use of MC generated events, and
identify the classes of events which tend to be used a lot (by many analysis groups)
and conversely, the classes of events which, once produced, tend to be underutilized.
This inventorization (which is in principle a very easy first step, since each simulated
event carries a unique label) would go a long way towards implementing the general
philosophy of OASIS in practice.

• Optimizing for model exploration. In this paper we showcased OASIS for measuring the
parameters19 of a theory model. However, the OASIS technique is also applicable when
one is interested in quantifying how well the data fits the theory model. For example,
if we can parametrize the possible deviations of interest from a reference model, the
results from this paper still hold, albeit with respect to the parameters capturing said
deviations.

Looking ahead, the HEP community has identified an ambitious and broad experimental
program for the coming decades, which would require large investments not only in new
facilities and experiments, but also in the R&D and computational resources for the associated
software [4]. One aspect of this program is “improving the efficiency of event generation as
used by the experiments”, which was identified in [4] as an underexplored avenue in event

19Although in this paper we focused on the single parameter measurement case, our technique can be extended
to work for the simultaneous measurement of several parameters.
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generation R&D. OASIS directly addresses this by undersampling regions of the parton-level
phase space which are less useful to the experimental analyses, thus realizing the goal set out
in [4].
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A Fisher information for datasets with Poisson-distributed total
number of events

In this section, we will derive the expression (7a) for the Fisher information contained in
datasets whose total number of events is a Poisson-distributed random variable, with possibly
θ dependent cross-sections. Recall that f (x ; θ ) is the differential cross-section of x for a given
value of θ , F(θ ) is the total cross-section, and L is the integrated luminosity.

Let k (a random variable) be the number of events in the dataset, and let (x1, . . . , xk) be
the x values of the ordered collection of events.20 Let Υ ≡ [k, (x1, · · · , xk)] represent (an
instance of) the dataset. The probability density of Υ is given by

P(Υ ; θ ) =
e−LF(θ ) [LF(θ )]k

k!

k
∏

i=1

f (x i ; θ )
F(θ )

(78a)

=
Lk e−LF(θ )

k!

k
∏

i=1

f (x i ; θ ) . (78b)

Here we have used the fact that k is Poisson-distributed with mean L F(θ ), and the fact that
the x i-s are independent of each other. This probability density is normalized as21

∫

dΥ P(Υ ; θ )≡
∞
∑

k=0

∫

dx1 · · ·
∫

xk P(Υ ; θ ) = 1 . (79)

20Ordering of events can be derived from some form of event id. Ordering is demanded just so we do not have
to worry about combinatorial factors when writing down the probability (density) of a particular instance of Υ ,
since the events are distinguishable.

21(79) implicitly specifies the reference measure with respect to which the probability density of Υ is defined.
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From (78b), we get

∂P(Υ ; θ )
∂ θ

=

�

−L
∂ F(θ )
∂ θ

+
k
∑

i=1

∂ ln f (x i ; θ )
∂ θ

�

P(Υ ; θ ) . (80)

Next we derive (7a) starting from the expression for the Fisher information [56] in (81a) as
follows (the explanations for the steps are provided below):

I(θ ) =
∫

dΥ
1

P(Υ ; θ )

�

∂P(Υ ; θ )
∂ θ

�2

(81a)

=

∫

dΥ P(Υ ; θ )

�

−L
∂ F(θ )
∂ θ

+
k
∑

i=1

∂θ ln f (x i ; θ )

�2

(81b)

= EP





�

−L
∂ F(θ )
∂ θ

+
k
∑

i=1

∂θ ln f (x i ; θ )

�2


 (81c)

= L2
�

∂ F(θ )
∂ θ

�2

− 2L
∂ F(θ )
∂ θ

EP[k ; θ] E f [∂θ ln f (x ; θ )]

+ EP[k ; θ] E f

�

�

∂θ ln f (x ; θ )
�2�

+ EP[k
2 − k ; θ]

�

E f [∂θ ln f (x ; θ )]
�2

(81d)

= L2
�

∂ F(θ )
∂ θ

�2

− 2L
∂ F(θ )
∂ θ

L F(θ )
1

F(θ )
∂ F(θ )
∂ θ

+ L F(θ )
1

F(θ )

∫

dx
1

f (x ; θ )

�

∂ f (x ; θ )
∂ θ

�2

+ [L F(θ )]2
�

1
F(θ )

∂ F(θ )
∂ θ

�2

(81e)

= L

∫

dx
1

f (x ; θ )

�

∂ f (x ; θ )
∂ θ

�2

, (81f)

where EP[ · · · ] and E f [ · · · ] represent the expectation values underP and f respectively. Equa-
tion (81b) follows from plugging in (78b) and (80) in (81a). In (81c), we have used the def-
inition of expectation value. In (81d), we have expanded the square in (81c) and used the
fact that the x i-s are independent of each other. In (81e), we have used the following three
results:

EP[k ; θ] = L F(θ ) , (82)

EP[k
2 ; θ] = L F(θ ) + [L F(θ )]2 , (83)

E f [∂θ ln f (x ; θ )] =
1

F(θ )

∫

dx f (x ; θ )
1

f (x ; θ )
∂ f (x ; θ )
∂ θ

(84a)

=
1

F(θ )
∂ F(θ )
∂ θ

. (84b)

Finally, by cancelling the first, second, and fourth additive terms in (81e), we get (81f) which
matches (7a).
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B Optimal sampling in the Ns→∞ limit

In this section we will prove (28). Staring from (27b), we can write IMC/L in the Ns →∞
limit as

IMC

L
=

I
L
−

L
Ns

∫

dx g(x ) w2(x ) u2(x ) (85a)

=
I
L
−

L
Ns

∫

dx g(x )
f 2(x ) u2(x )

g2(x )
(85b)

≤
I
L
−

L
Ns

�∫

dx g(x )
f (x ) |u(x )|

g(x )

�2

(85c)

=
I
L
−

L
Ns

�∫

dx f (x ) |u(x )|
�2

. (85d)

In (85b) we have used w = f /g and in (85c) we have used Jensen’s inequality and the fact
that the square function is convex. The result in (85d) sets an upper bound on IMC (in the
Ns limit) that is independent of the sampling distribution g. This upper bound is reached
when the equality in (85c) is reached, i.e., if f (x ) |u(x )|/g(x ) is constant almost everywhere.
This means that in the Ns → ∞ limit, the optimal sampling distribution is proportional to
f (x ) |u(x )|, which leads to (28). We use the absolute value of u in (85c) since g(x ) is con-
strained to be non-negative.

C Dependence of the optimal weights on only |u|

In this section we will prove (44), i.e., that for any sampling distribution g (with weights w),
there exists a sampling distribution gbetter (with weights wbetter) given by

gbetter(x ) =
f (x )

Eg

h

w(x )
�

�

� |u(x )|
i , (86)

wbetter(x ) =
f (x )

gbetter(x )
= Eg

h

w(x )
�

�

� |u(x )|
i

, (87)

such that the IMC under gbetter is greater than or equal to the IMC under g.
We will begin by showing that gbetter is a unit-normalized distribution:

∫

dx gbetter(x ) = Eg

�

w
wbetter

�

(88a)

= Eg

�

1
wbetter

Eg

�

w
�

� |u|
�

�

(88b)

= Eg

�

wbetter

wbetter

�

= 1 , (88c)

where Eg[ · · · ] represents the expectation value under the sampling distribution g. In (88a),
we have used the fact that g w = gbetter wbetter. In (88b), we have used the definition of
conditional expectation and the fact that wbetter is fixed for a given value of |u|. In (88c), we
have used the expression for wbetter from (87).

The proof of (44) proceeds as follows (the explanations for the steps are provided below):
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§ IMC

L
under g

ª

=

∫

dx f (x )
u2(x )

1+
L
Ns

w(x )
=

∫

dx g(x )
w(x )u2(x )

1+
L
Ns

w(x )
(89a)

= Eg

�

wu2

1+ L w/Ns

�

(89b)

= Eg

�

u2 Eg

�

w
1+ L w/Ns

�

�

�

�

|u|
��

(89c)

≤ Eg

�

u2
Eg

�

w
�

� |u|
�

1+ (L/Ns) Eg

�

w
�

� |u|
�

�

(89d)

= Eg

�

wbetter u2

1+ L wbetter/Ns

�

(89e)

= Egbetter

�

wbetter

w
wbetter u2

1+ L wbetter/Ns

�

(89f)

= Egbetter

�

w2
better u2

1+ L wbetter/Ns
Egbetter

h

w−1
�

�

� |u|
i

�

(89g)

= Egbetter

�

w2
better u2

1+ L wbetter/Ns
Eg

h

w−1
better

�

�

� |u|
i

�

(89h)

= Egbetter

�

wbetter u2

1+ L wbetter/Ns

�

(89i)

=
§ IMC

L
under gbetter

ª

, (89j)

where Eg[ · · · ] and Egbetter
[ · · · ] represent the expectation values under the sampling distribu-

tions g and gbetter respectively.
In (89a), we have used the definitions of IMC and w. Equation (89b) follows from the

definition of Eg[ · · · ]. In (89c), we have used the fact that u2 is uniquely defined for a given
value of |u|. In (89d), we have used the conditional version of Jensen’s inequality and the
fact that w/(1+ αw) is a concave function in w for a positive α. In (89e), we have used the
expression for wbetter from (87). In (89f), we have used the fact that g w = gbetter wbetter. In
(89g), we have used the fact that u2 and wbetter are fixed for a given value of |u|. In (89h),
we used the fact that f

�

x
�

� |u|
�

= g
�

x
�

� |u|
�

w = gbetter

�

x
�

� |u|
�

wbetter. In (89i), we have used
the fact that wbetter is fixed for a given value of |u|. The equality in (89j) is analogous to the
equality in (89b).
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