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Abstract

We investigate the finite-size scaling of the lowest entanglement gap δξ in the ordered
phase of the two-dimensional quantum spherical model (QSM). The entanglement gap
decays as δξ = Ω/

p

L ln(L). This is in contrast with the purely logarithmic behaviour as
δξ = π2/ ln(L) at the critical point. The faster decay in the ordered phase reflects the
presence of magnetic order. We analytically determine the constant Ω, which depends
on the low-energy part of the model dispersion and on the geometry of the bipartition.
In particular, we are able to compute the corner contribution to Ω, at least for the case
of a square corner.
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1 Introduction

In recent years the cross-fertilization between condensed matter and quantum information
fueled an impressive progress in our understanding of quantum many-body systems [1–4].
The entanglement spectrum (ES) has been the subject of intense investigation. Let us consider
a system in its ground state |Ψ〉 and a spatial bipartition of it as A∪ Ā (see Fig. 1). The reduced
density matrix ρA = TrĀ|Ψ〉〈Ψ| of A can be written as

ρA = e−HA. (1)

Here HA is the so-called entanglement hamiltonian. The entanglement spectrum levels ξi =
− ln(λi), with λi the eigenvalues of ρA, are the “energies” of HA. Early works [5–7] on entan-
glement spectra aimed at understanding the effectiveness of the density matrix renormalisation
group (DMRG) [8,9] to simulate one-dimensional systems.

Recently, an intense theoretical activity has been devoted to understand the ES in frac-
tional quantum Hall systems [10–21], topologically ordered systems [22–24], magnetically
ordered systems [21,25–37], Conformal Field Theories (CFTs) [38–41], and systems with im-
purities [42]. The entanglement gap (or Schmidt gap) δξ emerged as a natural quantity to
investigate. δξ is the gap of the entanglement hamiltonian, and it is defined as

δξ= ξ1 − ξ0, (2)

where ξ0 and ξ1 are the first two low-laying ES levels. For the standard energy gap, i.e., the
gap of the physical hamiltonian, there exists a “universal” correspondence between its scaling
behaviour and ground state properties, such as the decay of correlation functions [43]. Much
less is known for the entanglement gap, although several results are available. For instance,
its behaviour at one-dimensional quantum critical points has been investigated [5, 6, 11, 27,
28,32,44–46]. In CFTs it is well established that δξ decays logarithmically as δξ∝ 1/ ln(`)
with ` the subsystem length [38]. Similar scaling is found in models that are solvable via
the corner transfer matrix technique [44]. Higher-dimensional models are uncharted terri-
tory. Interestingly, some explicit counterexamples show that the closure of the entanglement
gap in general does not signal criticality [21], also for the momentum-space ES [47]. The
scenario is different deep in ordered phases of matter. For instance, the lower part of the
ES of magnetically-ordered ground states that break a continuous symmetry [29] is reminis-
cent of the Anderson tower-of-states [48–50]. This has been verified in systems of quantum
rotors [29], in the two-dimensional Bose-Hubbard model in the superfluid phase [31] (see
also [37]), and also in Heisenberg antiferromagnets on the square [34] and on the kagome
lattice [36]. In the tower-of-states scenario gaps in the lower part of the ES decay as a power-
law with the subsystem volume, with multiplicative logarithmic corrections [29]. Higher ES
gaps exhibit a slower decay [29,31,35].

Given the lack of general results, exactly solvable models can provide valuable insights
into the generic features of the entanglement gap. Here we investigate the entanglement gap
in the ordered phase of the two-dimensional quantum spherical model (QSM) [51–55]. De-
spite its appealing simplicity, the QSM contains several salient features of generic quantum
many-body systems. The model is mappable to a system of free bosons with an external con-
straint, implying that its properties can be studied with moderate cost. Its classical version
proved to be valuable to validate the theory of critical phenomena and finite size scaling [56].
The ground-state phase diagram of the two-dimensional QSM exhibits a paramagnetic (disor-
dered) phase and a ferromagnetic (ordered) one, which are divided by a continuous quantum
phase transition. The universality class is that of the three-dimensional classical O(N) vector
model [57] in the large N limit [52, 53, 58]. Entanglement properties of O(N) models have
been addressed in the past [59, 60] (see also [61–64] for recent studies in the QSM). Here
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Figure 1: Bipartition of the system as A∪ Ā used in this work. The lattice has L × L
sites and periodic boundary conditions in both directions are used. (a) Bipartition
with smooth boundary. (b) Bipartition with a corner. We define the aspect ratios
ωx = `x/L and ωy = `y/L.

we consider a two-dimensional lattice of linear size L. The typical bipartitions that we use are
reported in Fig. 1. Figure 1 (a) shows a bipartition with a straight boundary. The bipartition in
Fig. 1 (b) contains a square corner. The effect of corners in the scaling of entanglement-related
quantities is nontrivial, and it has been studied intensely in the last decade [4,65–72].

Our main result is that in the ordered phase of the QSM, in the limit L,`x ,`y →∞ with
the ratios ωx ,y = `x ,y/L (see Fig. 1) fixed the entanglement gap decays as

δξ=
Ω

p

L ln(L)
+ . . . (3)

Here the dots denote subleading terms that we neglect. The constant Ω, which we determine
analytically, depends on the low-energy properties of the model and on the geometry of the
bipartition. In particular, we analytically determine the corner contribution to Ω. The “fast”,
i.e., power-law behaviour as 1/

p
L in (3) reflects the presence of magnetic order, whereas

the logarithmic correction is similar to the critical behaviour [64] of δξ. Finally, we should
mention that Eq. (3) is different from the result derived in Ref. [29], where it was shown
that for O(N) models δξ ∝ (L ln(L))−1. The discrepancy could be explained by the fact
that the breaking of the O(N) symmetry that is associated with the onset of magnetic order
happens only in the thermodynamic limit. For finite-size systems the symmetry is preserved.
The results of Ref. [29] are derived within this scenario. On the other hand, in the QSM the
spherical symmetry is imposed only on average, even for finite systems.

The manuscript is organised as follows. In section 2 we introduce the QSM. In section 3 we
review the finite-size scaling of the ground-state two-point correlation functions. In section 4
we briefly overview the calculation of the entanglement gap in the QSM. Section 5 is devoted
to the derivation of our main results. In section 6 we provide numerical checks. We conclude
in section 7. In Appendix A we report some technical derivations.

2 Quantum Spherical Model

The quantum spherical model [52–54] (QSM) on a two dimensional square lattice of volume
V = L2, with L being the lattice linear size, is defined by the hamiltonian

H =
g
2

∑

n

p2 − J
∑

〈n,m〉

snsm + (µ+ 2)
∑

n

s2
n . (4)
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Here, n= (nx , ny) denotes a generic lattice site, and 〈n, m〉 a lattice bond joining two nearest-
neighbour sites. We set J = 1 in (4). The spin si and momenta pi variables satisfy standard
bosonic commutation relations

[pn , pm] = [sn , sm] = 0, [sn , pm] = iδnm . (5)

Here we refer to the parameter g as the quantum coupling. Indeed, in the limit g → 0 the model
reduces to the classical spherical model [73, 74]. The spherical parameter µ is a Lagrange
multiplier that fixes the global magnetization as

∑

n

〈s2
n〉= V. (6)

To diagonalize the QSM hamiltonian (4), one can exploit its translational invariance. First,
one performs a Fourier transform as

pn =
1
p

V

∑

k

e−inkπk , sn =
1
p

V

∑

k

einkqk , (7)

where the sum is over k = (kx , ky) in the first Brillouin zone ki = 2π/L j, with j ∈ [−L/2, L/2]
integer. In Fourier space one obtains

H =
∑

k

g
2
πkπ−k +Λ

2
k qkq−k . (8)

The single-particle dispersion relation is given as

Λk =
p

µ+ωk with ωk = 2− cos kx − cos ky . (9)

To fully diagonalise (8) we introduce the new bosonic ladder operators bk and b†
k as

qk = αk

bk + b†
−kp

2
, πk =

i
αk

b†
k − b−k
p

2
, (10)

where α2
k =

p

g/2Λ−1
k . Now, the hamiltonian (8) is fully diagonal, and it reads as

H =
∑

k

Ek(b
†
k bk + 1/2), with Ek =

p

2gΛk . (11)

For the following, it is useful to consider the ground-state two-point correlation functions
〈snsm〉 and 〈pn pm〉. They are given as [54]

Snm = 〈snsm〉=
1

2V

∑

k

ei(n−m)·kα2
k (12)

Pnm = 〈pn pm〉=
1

2V

∑

k

e−i(n−m)·kα−2
k (13)

Knm = 〈sn pm〉=
i
2
δnm . (14)

Importantly, the trivial identity holds

Pnm =
1
g

∫

dµSnm . (15)
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Figure 2: Spherical parameter µ at the critical point at gc ' 9.67 and in the ordered
phase at g = 3. Symbols are exact numerical results. The lines are analytical results
in the large L limit.

By using (12), the spherical constraint (6) can be rewritten as

2
g
=

1
V

∑

k

1
Ek
=

2
g
Snn . (16)

Eq. (16) is the so-called gap equation in the context of the large-N model [75]. A crucial
observation is that the correlator (12) exhibits a singularity for k = 0. This zero mode will
play a crucial role in the behaviour of the entanglement gap.

In two dimensions at zero temperature the QSM exhibits a second-order phase transition
at a critical value gc . The value of gc is known analytically as

gc =
π4

2
K−4

�

1/2− 1/
p

2
�

' 9.67826. (17)

For g < gc the QSM exhibits a magnetically ordered phase, which is the focus of this work.
At g > gc the ground state is paramagnetic. Different phases are associated with different
behaviours of the spherical parameter µ. In the paramagnetic phase one has that µ is nonzero.
On the other hand, µ= 0 at the critical point, and in the ordered phase. The different phases
of the model correspond to different finite-size scaling behaviours of µ. In the paramagnetic
phase one has µ=O(1). At the critical point one can show that µ=O(1/L2). In the ordered
phase µ = O(1/L4). The critical behaviour at gc is in the universality class of the three-
dimensional N -vector model [53] at large N .

3 Spin and momentum correlators

Here we summarise the finite-size scaling of the spin-spin correlation function Snm (cf. (12))
and the momentum correlation function Pnm (cf. (13)). Let us focus first on the spin correlator.
We are interested in the limit L→∞. We can decompose the correlator as

Snm = S(th)nm + S
(L)
nm + . . . (18)
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The first term is the leading term in the large L limit. Note that the first term depends on
L because µ depends on L. The second term in (18) is the first subleading correction in
powers of 1/L. The dots denote more subleading terms that we neglect. The thermodynamic
contribution is given as

S(th)nm =
p

gc

2
p

2(2π)2

∫

dk
eik(n−m)
p

µ+ωk
. (19)

The finite-size part has the surprisingly simple form [64] as

S(L)nm =
p

g
4π

∞
∑′

l,l ′=−∞

e−
p

2µFl l′ (n,m)

Fl l ′(n, m)
. (20)

Here we defined

Fl l ′(n, m) =
q

(l L + nx −mx)2 + (l ′L + ny −my)2. (21)

The prime in the sum means that one has to remove the term with (l, l ′) = (0,0). Eq. (20) holds
in the limit L→∞ and µ→ 0, i.e., for g ≤ gc . The correlators Snm depend only on nx −mx
and ny−my , reflecting translation invariance. Moreover, the infinite sums in l, l ′ enforces that
Snm is periodic along the two directions, i.e., it is invariant under ny −my → ny −my ± L and
nx −mx → nx −mx ± L. Interestingly, S(L)nm is singular if either ωy = 1 or ωx = 1 (see Fig. 1
(a)), whereas no singularity occurs forωx < 1 andωy < 1, i.e, in the presence of a bipartition
with a corner (see Fig. 1 (b)). Let us consider the case ωy = 1. Now the terms with l = 0 and
l ′ = ±1 in (20) are singular in the limit nx −mx → 0 and ny −my →±1. Terms with |l ′| > 1
or |l| > 1 in (20) are not singular, and do not affect the singularity structure of Snm . These
singularities will play an important role in section 5.

Similar to (18), we can decompose the momentum correlator as

Pnm = P(th)nm + P
(L)
nm + . . . (22)

Here we defined

P(th)nm =
1

4
p

2gπ2

∫ π

−π
dkeik(n−m)pµ+ωk . (23)

The finite-size part P(L)nm has the same structure as (20), and it reads as

P(L)nm = −
1

4π
p

g

∞
∑′

l,l ′=−∞
e−
p

2µFl l′ (n,m)
� 1

F3
l l ′(n, m)

+

p

2µ

F2
l l ′(n, m)

�

, (24)

with Fl l ′(n, m) as defined in (21). Eq. (23) and Eq. (24) are obtained from Eq. (19) and
Eq. (20) by using (15). As for Eq. (20), the finite-size term (24) is singular if subsystem A
spans the full lattice in one of the two directions, i.e., if ωy = 1 or ωy = 1 (see Fig. 1). For
ωy = 1 the singularity occurs for l = 0 and l ′ = ±1 in the limit nx−mx → 0 and ny−my →±1.
Finally, the first term has a stronger singularity than the second one.

3.1 Spherical parameter

Let us discuss the finite-size scaling of the spherical constraint µ (cf. (16)) in the ordered phase
of the QSM. For g ≤ gc the spherical parameter vanishes in the thermodynamic limit. At the
critical point one has the behaviour [64] µ ∝ γ2

2/(2L2), with γ2 a universal constant. To
derive the behaviour of µ in the ordered phase we use Eq. (12) in the gap equation (16). We
obtain

1
p

g
=

1

2
p

2(2π)2

∫

dk
p
ωk
−
p
µ

2
p

2π
+

1
4πL

∞
∑′

l,l ′=−∞

e−
p

2µL
p

l2+l ′2

p
l2 + l ′2

. (25)
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As it clear from the exponent in the last term in (25) the scaling as µ∝ 1/L2 at criticality im-
plies that terms with large l, l ′ are exponentially suppressed. On the other hand, for µ∝ 1/L4

this is not the case because the term in the exponent in (25) is O(1/L). First, we anticipate
that the second term in (25) is O(1/L2), and it is subleading. To extract the leading behaviour
of µ we use the very elegant identity involving the function K(σ, d, y) defined as [76]

K(σ, d, y) =
∑′

l(d)

Kσ(2y|l|)
(y|l|)σ

, |l|= (l2
1 + l2

2 + · · ·+ l2
d)

1
2 . (26)

Here the sum is over the d-dimensional vector of integers li ∈ (−∞,∞), Kσ(z) is the modified
Bessel function of the second kind, and y > 0 and σ are real parameters. We are interested in
the case d = 2 and σ = 1/2 (cf. (25)). One can show that [76]

K = 1
2
π

d
2 Γ
�d

2
−σ

�

y−d +
1
2
π2σ− d

2 C(σ, d)y−2σ −
1
2
Γ (−σ)

+
1
2
π2σ− d

2 Γ
�d

2
−σ

�

y−2σ
∑′

l(d)

��

|l|2 +
y2

π2

�σ− d
2 − |l|2σ−d

�

. (27)

The constant C(σ, d) for d = 2 reads as

C(σ, 2) = 4Γ (1−σ)ζ(1−σ)β(1−σ), (28)

where ζ(x) is the Riemann zeta function, and β(x) is the analytic continuation of the Dirichlet
series

β(x) =
∞
∑

l=0

(−1)l

(2l + 1)x
. (29)

To apply (27) we fix y =
p

µ/2L. In the limit µ→ 0 the leading behaviour of K is given by
the first term on the right hand side in (27). After using that in (25) we obtain

1
p

g
=

1

8π2
p

2

∫

dk
p
ωk
+

1

2
p

2µL2
. (30)

In (30) we are neglecting vanishing terms in the limit L →∞. The second term in (30) is
also simply obtained by isolating the term with k = 0, i.e., the zero mode, in the sum in (16).
It is now clear that we can parametrize µ as

µ=
γ2

4

L4
. (31)

After substituting in (30), we obtain that

γ4 =
�2
p

2
p

g
−

1
4π2

∫

dk
p
ωk

�−1
. (32)

Note that the constant γ4 is not universal, as it is clear from the explicit dependence on g. This
is expected, and it is in contrast with the result at the critical point, where µ= γ2

2/(2L2), with
γ2 universal.

4 Entanglement gap in the QSM

Here we briefly review how to calculate the entanglement gap in the QSM. Entanglement
properties of the QSM are derived from the two-point correlation functions (12) and (13)
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because the model can be mapped to free bosons (see Ref. [7] for a review). We first define
the correlation matrix C restricted to subsystem A as

CA = SA · PA, (33)

with SA and PA defined in (12) and (13), with n, m ∈ A. Since the QSM is mapped to free-
bosons, the reduced density matrix of a subsystem A is a quadratic operator, and it is written
as [7]

ρA = Z−1e−HA, HA =
∑

k

εk b†
k bk. (34)

Here HA is the so-called entanglement hamiltonian, εk are single-particle entanglement spec-
trum levels, and bk are free-bosonic operators. Z is a normalization factor. The eigenvalues
ek of CA are obtained from the εk as

p
ek =

1
2

coth
�εk

2

�

. (35)

The entanglement spectrum, i.e., the spectrum of HA is obtained by filling in all the possible
ways the single-particle levels εk. The lowest ES level is the vacuum state. Thus, the lowest
entanglement gap δξ (Schmidt gap) is

δξ= ε1, (36)

with ε1 the smallest single-particle ES level, or equivalently, the largest e1 (cf. Eq. (35)).

5 Scaling of the entanglement gap in the ordered phase of the
QSM

In this section we investigate the scaling of the entanglement gap for g < gc , i.e., in the ordered
phase of the QSM. First, it has been numerically observed in Ref. [64] that for g < gc , in the
limit L→∞ the flat vector |1〉 defined as

|1〉=
1

p

|A|
(1, 1, . . . , 1), (37)

with |A|= `x`y , is the right eigenvector of CA corresponding to the largest eigenvalue e1, i.e.,
the zero-mode eigenvector. Moreover, |1〉 is also eigenvector of the matrix SA. It is interesting
to investigate the structure of the associated eigenvalue. This is calculated as

〈1|S|1〉=
1
|A|

∑

n,m∈A

Snm . (38)

After using (18), it is straightforward to numerically check that the thermodynamic part of the
correlator S(th) for large L gives a subleading term as L ln(L) in (38) (see section 6). The leading
contribution is given by the finite-size part of the correlator S(L), and it is O(L2). An important
observation is that due to the scaling as µ = γ2

4/L4, the dependence on the coordinates n, m
in (20) can be neglected. Thus, a straightforward calculation yields

〈1|S|1〉=
p

gωxωy L2

2
p

2γ4

. (39)

One should observe that Eq. (39) is exactly the contribution of k = 0 in the sum in (12).
Physically, this means that in the ordered phase of the QSM for g < gc the leading behaviour
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of the eigenvalue of SA associated with the flat vector is simply obtained by isolating the term
with k = 0 in (12). This happens because of the “fast” decay as µ∝ 1/L4. This is not the
case at the critical point [64], where µ∝ 1/L2. Moreover, this result suggests that one can
decompose the correlator S as

S= s0|1〉〈1|+ . . . , with s0 = 〈1|S|1〉. (40)

Here s0∝ L2, and the dots are subleading terms that we neglect. By using (40) and the fact
that P is finite in the limit L → ∞, it is straightforward to show that the eigenvalue e1 of
CA = PA · SA in the limit L→∞ is given as (see [77] and [64])

e1 = 〈1|S|1〉〈1|P|1〉. (41)

Here we have

〈1|P|1〉=
1
|A|

∑

n,m∈A

Pnm . (42)

To proceed we now show that the expectation value 〈1|P|1〉 decays as ln(L)/L, i.e., with a
multiplicative logarithmic correction. Note that the same scaling behaviour is observed at the
critical point [64]. The derivation requires minimal modifications as compared with the critical
case, and it is reported in Appendix A. The main ingredients are standard tools in the finite-size
scaling theory, such as Poisson’s summation formula and the Euler-Maclaurin formula.

Let us discuss the final result. Clearly, we can treat the contribution of the thermodynamic
part (cf. (23)) and the finite-size part (cf. (24)) separately. Similar to what happens at the
critical point [64], the finite-size part contributes only if the boundary between the two sub-
systems is straight. For simplicity we consider the bipartition with ωx = 1/p and ωy = 1/q,
with p, q ∈ N. Note that for ωy < 1 the boundary between the two subsystems is not straight,
i.e., it has a square corner. One obtains the generic thermodynamic contribution as

〈1|P(th)|1〉=
p−1
∑

p′=0

q−1
∑

q′=0

∫ 1/p

0

dkx

∫ 1/q

0

dky sin2(π(kx + p′/p)) sin2(π(ky + q′/q))ηp′,q′(kx , ky). (43)

The function ηp′,q′(kx , ky) reads as

ηp′,q′(kx , ky) =
4

π3pg

� q
(kx + p′/p)2

+
p

(ky + q′/q)2
+ pψ′(1+ ky + q′/q)

+
q

1+ kx + p′/p
+

q
2(1+ kx + p′/p)2

q
6(1+ kx + p′/p)3

+ . . .
� ln(L)

L
. (44)

The dots in the brackets denote terms with higher powers of 1/(kx + p′/p). These can be
derived systematically by using the Euler-Maclaurin formula. The function ψ′(x) is the first
derivative of the digamma functionψ(x)with respect to x . The behaviour as ln(L)/L is clearly
visible in (44). Similar to the critical point [64], ηp′,q′ is determined by the low-energy part of
the dispersion of the QSM. Finally, let us consider the finite-size contribution (24). From (24)
it is clear that the finite-size correlator is regular for ωy < 1 and ωx < 1, whereas it exhibits
a singularity for ωy = 1 or ωx = 1, i.e., for the case of straight boundary (see Fig 1 (b)). For
the straight boundary this gives a contribution as ln(L)/L, whereas it can be neglected if a
corner is present. Again, this is exactly the same at the critical point [64]. The derivation of
the singular contribution, which is present only for straight boundary, is reported in A.2. The
final result reads

〈1|P(L)|1〉= −
1
p

gπ
ln(L)

L
. (45)
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Figure 3: Flat-vector expectation value 〈1|S|1〉 of the spin-spin correlator in the or-
dered phase of the QSM. The behaviour as 〈1|S|1〉 ∝ L2 is clearly visible. The
dashed-dotted lines are the theory predictions (39). We show results for different
aspect ratios ωy ,ωx (see Fig. 1) and quantum coupling g. The inset show the con-
tribution of the thermodynamic part of the correlator S(th) (cf. (18)) for g = 5. The
behaviour as 〈1|S(th)|1〉 ∝ L ln(L) is clearly visible.

The minus sign in (45) implies that the presence of corners increases the prefactor of the
logarithmic growth of e1. After putting together Eq. (41), Eq. (39), Eq. (43) and Eq. (45), one
obtains that

e1 = Ω
′L ln(L), (46)

where the constant Ω′ encodes information about the geometry of the bipartition and the
model dispersion. In Eq. (46) we neglect subleading terms in the limit L →∞. From (46),
after using (35) one obtains that

δξ=
Ω

p

L ln(L)
, with Ω=

1
p
Ω′

. (47)

Few comments are in order. First, in the ordered phase δξ vanishes in the thermodynamic
limit as a power law with L, except for a logarithmic correction. This is different at the critical
point, where [64] δξ= π2/ ln(L). The power-law decay of the entanglement gap in symmetry-
broken phases has been also numerically observed in magnetic spin systems [34,36] and in the
ordered phase of the two-dimensional Bose Hubbard model [31]. Note, however, that even
with state-of-the-art numerical methods it is challenging to observe the logarithmic correction.
Finally, in Ref. [29] it has been suggested that in the presence of continuous symmetry breaking
the gaps in the lower part of the entanglement spectrum are

δξ∝ (L ln(L))−1. (48)

This is different from (47) (note the square root in (47)). The unexpected square root in
Eq. (47) could be explained by the way in which in the QSM the spherical constraint is enforced
(cf. (16)). Further study would be needed to clarify this issue. Finally, it is interesting to
understand the behaviour of δξ as the critical point is approached from the ordered side
of the transition. A natural scenario is that upon approaching the transition the 1/

p
L is
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Figure 4: Rescaled flat-vector expectation value 〈1|P|1〉L of the momentum operator
in the ordered phase of the QSM. We show data for several bipartitions with aspect
ratios ωx ,ωy (see Fig. 1). For ωy < 1 the boundary between the two subsystems is
not smooth (see Fig. 1 (b)). Symbols are exact numerical results. The dashed-dotted
lines are analytic predictions from (43) and (45).

“gapped” out and it gives an extra 1/
p

ln(L), which allows to recover the expected result [64]
δξ∝ 1/ ln(L).

6 Numerical results

In this section we provide numerical evidence supporting the analytic result derived in sec-
tion 5. Let us start discussing the finite-size scaling of the expectation value 〈1|S|1〉. We report
numerical data in Fig. 3, for fixed g = 3 (circles) and g = 5 (squares). We only show data
for the bipartition with straight boundary ωy = 1 (see Figure 1 (a)) and for ωx = 1/2. The
expected behaviour as 〈1|S|1〉 ∝ L2 is visible. The dashed-dotted line in the figure is the
analytic result in Eq. (39), which is in perfect agreement with the numerical data. Again,
we should stress that Eq. (39) originates only from the finite-size part S(L) (cf. (18)). How-
ever, it is interesting to investigate the finite-size scaling of the flat-vector expectation value
calculated using the thermodynamic contribution S(th). We report this analysis in the inset
of Fig. 3 plotting 〈1|S(th)|1〉/L versus L. Data are for g = 5. Interestingly, the figure shows
that 〈1|S(th)|1〉 ∝ L ln(L). This confirms that at the leading order in L the expectation value
〈1|S|1〉 is dominated by the contribution of the zero mode. Finally, we should mention that it
would be interesting to clarify the origin of the logarithmic divergence of the thermodynamic
contribution.

Let us now discuss the flat-vector expectation value of the momentum correlator 〈1|P|1〉.
In contrast with the spin correlator, both the thermodynamic and the finite-size part (cf. (22))
contribute to the leading behaviour at large L. Our numerical data are reported in Fig. 4. In
the figure we plot 〈1|P|1〉L versus L. We show data for ωx = 1/2, ωy = 1 and ωy = 1/2.
Note that for ωy = 1 the boundary between A and its complement is straight. The numerical
data in Fig. 4 confirm the expected behaviour as ln(L)/L in Eq. (43) and Eq. (45). Forωy = 1
the prefactor of the logarithm is obtained by summing Eq. (43) and Eq. (45), whereas in the
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Figure 5: Largest eigenvalue e1 of the correlation matrix C restricted to A. We plot
e1/L versus L. Note the logarithmic scale on the x-axis. Symbols are exact numer-
ical data. The dashed-dotted lines are analytic predictions. Note that for ωy the
boundary between the two subsystems has a corner (see Fig. 1 (b)).

presence of a square corner only Eq. (43) has to be considered. Finally, we discuss the largest
eigenvalue e1 of the restricted correlation matrix CA (cf. (33)). The entanglement gap δξ is
obtained from e1 via Eq. (35). Note that the vanishing of δξ is reflected in a diverging e1. We
show numerical data for e1/L in Fig. 5 plotted versus L. We consider several aspect ratios ωx
and ωy , focusing on g = 5. In all the cases the data exhibit the behaviour e1 = Ω′L ln(L).
The constant Ω′, which depends on the geometry and on low-energy properties of the QSM is
obtained by combining Eq. (41) with Eq. (39) (43) (45). The analytic predictions are reported
in Fig. 5 as dashed-dotted lines and are in perfect agreement with the numerical data. This
implies that the entanglement gap δξ satisfies (47).

7 Conclusions

We investigated the entanglement gap in the magnetically ordered phase of the two-dimensional
QSM. Our main result is that the entanglement gap decays as δξ = Ω/

p

L ln(L). We analyti-
cally determined the constant Ω, which depends on the geometry of the bipartition and on the
low-energy physics of the model.

There are several intriguing directions for future work. First, it would be interesting to ex-
plore whether is possible to extend our results to the N -vector model at finite N . An interesting
question is whether the discrepancy with the results of Ref. [29] can be attributed to the large
N limit. Furthermore, it is important to understand how the scaling of the entanglement gap
depends on dimensionality. This issue could be easily addressed because the QSM is exactly
solvable in any dimension. Another intriguing direction is to further investigate the role of
corners. For instance, it would be interesting to investigate the dependence of the entangle-
ment gap on the corner angle. It would be also interesting to investigate how the outlined
scenario is affected by long-range interactions. This should be straightforward because the
QSM is exactly solvable also in the presence of long-range interactions. An exciting possibility
is to investigate what happens to the entanglement gap in the presence of disorder [78–81].
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Finally, a very interesting direction is to study δξ after a quantum quench. This could be
addressed using the results of Ref. [82].
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A Derivation of the expectation value 〈1|P|1〉

In this appendix we derive the large L behaviour of the expectation value of the momentum
correlator with the flat vector 〈1|P|1〉 (cf. (42)). We consider the leading, i.e, the thermody-
namic limit, as well as the first subleading contributions. The main goal is to show that the
expectation value exhibits a multiplicative logarithmic correction. Two types of contributions
are present. One originates from the thermodynamic limit of the correlator, whereas the sec-
ond one is due to the first subleading. The latter is present only for straight boundary between
the two subsystems (see Fig. 1).

A.1 Thermodynamic contribution

Here derive the thermodynamic contribution, which is given as 〈1|P(th)|1〉. Here |1〉 is the flat
vector in region A, i.e,

|1〉=
1

p

|A|
(1,1, . . . , 1), |A|= `x`y . (49)

The momentum correlation reads

P(th)nm =
1

4
p

2gπ2

∫ π

−π
dkeik(n−m)pµ+ωk . (50)

After performing the sum over n and m in (50), and after changing variables to k′x = Lωx kx/π

and k′y = Lωy ky/π, we obtain

〈1|P(th)|1〉=
2
p

2
p

g L4ω2
xω

2
y

∫ Lωx/2

0

dkx

∫ Lωy/2

0

dky
sin2(πkx) sin2(πky)

sin2
�

π
Lωx

kx

�

sin2
�

π
Lωy

ky

�

×
�

µ+ 2− cos
� 2π

Lωx
kx

�

− cos
� 2π

Lωy
ky

�

�
1
2
. (51)

To extract the large L behaviour of (51) it is useful to split the integration domains [0, Lωx/2]
and [0, Lωy/2] to write

〈1|P(th)|1〉=
2
p

2
p

g L4ω2
xω

2
y

L/2−1
∑

lx=0

L/2−1
∑

l y=0

∫ (lx+1)ωx

lxωx

dkx

∫ (l y+1)ωy

l yωy

dky

×
sin2(πkx) sin2(πky)

sin2
�

π
Lωx

kx

�

sin2
�

π
Lωy

ky

�

�

µ+ 2− cos
� 2π

Lωx
kx

�

− cos
� 2π

Lωy
ky

�

�
1
2
. (52)
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We now restrict ourselves to the case withωx = 1/p andωy = 1/q, with p, q positive integers.
After a simple shift of the integration variables as kx → kx − lxωx and ky → ky − l yωy , one
obtains

〈1|P(th)|1〉=
2
p

2p2q2

p
g L4

p−1
∑

p′=0

q−1
∑

q′=0

L/(2p)−1
∑

lx=0

L/(2q)−1
∑

l y=0

∫ 1/p

0

dkx

∫ 1/q

0

dky

×
sin2(π(kx + lx + p′/p)) sin2(π(ky + l y + q′/q))

sin2
� pπ

L (kx + lx + p′/p)
�

sin2
� qπ

L (ky + l y + q′/q)
�

×
�

µ+ 2− cos
�2pπ

L
(kx + lx + p′/p)

�

− cos
�2qπ

L
(ky + l y + q′/q)

�

�
1
2
. (53)

We now focus on the behaviour at g < gc . We set µ = γ4/L4 (cf. (31)), and we expand (53)
in the limit L→∞. This gives

〈1|P(th)|1〉=

4
p

gπ3 L

p−1
∑

p′=0

q−1
∑

q′=0

L/(2p)−1
∑

lx=0

L/(2q)−1
∑

l y=0

∫ 1/p

0

dkx

∫ 1/q

0

dky
sin2(π(kx + p′/p)) sin2(π(ky + q′/q))

(kx + lx + p′/p)2(ky + l y + q′/q)2

×
� γ4

2π2 L2
+ p2(kx + lx + p′/p)2 + q2(ky + l y + q′/q)2

�
1
2
. (54)

Here we used the periodicity of the trigonometric functions. The term γ4/L2 can be neglected
for L →∞. Importantly, as a result of the large L limit, Eq. (54) depends only on the low-
energy part of the dispersion of the QSM, although it contains non-universal information. We
now have to determine the asymptotic behaviour of the sum over lx , l y in (54), i.e., of the
function ηp′,q′(kx , ky) defined as

ηp′,q′(kx , ky) =
4

p
gπ3 L

L/(2p)−1
∑

lx=0

L/(2q)−1
∑

l y=0

[p2(kx + lx + p′/p)2 + q2(ky + l y + q′/q)2]
1
2

(kx + lx + p′/p)2(ky + l y + q′/q)2
. (55)

The asymptotic behaviour of η in the limit L → ∞ can be obtained by using the Euler-
Maclaurin formula. Given a function f (x) this is stated as

x2
∑

x=x1

f (x) =

∫ x2

x1

f (x)d x +
f (x1) + f (x2)

2
+

1
6

f ′(x2)− f ′(x1)
2!

+ . . . (56)

In (56) the dots denote terms with higher derivatives of f (x) calculated at the integration
boundaries x1 and x2. These can be derived to arbitrary order. To proceed, we first isolate
the term with either lx = 0 or l y = 0 in (55). The remaining sum after fixing lx = 0 or l y = 0
can be treated with (56). We define this contribution to the large L behaviour of ηp′,q′ as η0,
which is given as

η0 =
4

p
gπ3

� q
(kx + p′/p)2

+
p

(ky + q′/q)2
� ln(L)

L
. (57)

In the derivation of (57) we neglected the boundary terms in (56) because they are subleading.
We are now left with the sums over lx ∈ [1, L/(2p)] and l y ∈ [1, L/(2q)] in (55). These

can be calculated again by using (56). We first apply (56) to the sum over lx . We have two
contributions. The first one is obtained after evaluating the integral in (56) at x2 = L/(2p).
After expanding the result for L→∞, we obtain the contribution η1 given as

η1 =
L/(2q)
∑

l y=1

4p
p

gπ3(ky + l y + q′/q)2
ln(L)

L
. (58)
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Note the term ln(L)/L in (58). The sum over l y in (58) can be performed exactly to obtain in
the large L limit

η1 =
4

p
gπ3

pψ′(1+ ky + q′/q)
ln(L)

L
. (59)

Here ψ′(z) is the first derivative of the digamma function ψ(z) with respect to its argument.
The second contribution is obtained by evaluating the integral in (56) at x1 = 1. The remaining
sum over l y cannot be evaluated analytically. However, one can, again, treat the sum over l y
with (56). After neglecting the boundary terms in (56), which are subleading for large L, and
after evaluating the integral in (56) at x2 = L/(2q), we obtain the contribution η2 as

η2 =
4

p
gπ3

q
1+ kx + p′/p

ln(L)
L

. (60)

Having discussed the contribution which derives from approximating the sum over lx in (55)
with the integral in (56), we finally focus on effect of the boundary terms in (56). Let us
consider the first boundary term (first term in the second row in (56)). A term as ln(L)/L
is obtained by fixing lx = 1, other contributions being subleading. After performing the sum
over l y one obtains the first boundary contribution ηb1 as

ηb1 =
2

p
gπ3

q
(1+ kx + p′/p)2

ln(L)
L

. (61)

Similarly, the second boundary term (last term in (56)) gives

ηb2 =
2

3
p

gπ3

q
(1+ kx + p′/p)3

ln(L)
L

. (62)

Note that boundary terms in (56) are expected to be small. Specifically, the k-th term is
suppressed as 1/(k + 1)!. The final result for η(kx , ky , p, p′, q, q′) is obtained by putting to-
gether (57)(59) (60)(61)(62) to obtain

ηp′,q′(kx , ky) = η0 +η1 +η2 +ηb1 +ηb2. (63)

A.2 Finite-size contribution

In this section we derive the leading behaviour in the large L limit of 〈1|P(L)|1〉. Interestingly,
we show that in the presence of a straight boundary between the two subsystems (see Fig. 1)
one has the behaviour 〈1|P(L)|1〉 ∝ ln(L)/L. On the other hand, in the presence of corners
the multiplicative logarithmic correction is absent. The finite-size correlator reads as (cf. (24))

P(L)nm = −
1

4
p

gπ

∞
∑′

l,l ′=−∞
e−
p

2µ
Æ

(l L+nx−mx )2+(l ′L+ny−my )2

×
� 1
[(l L + nx −mx)2 + (l ′L + ny −my)2]3/2

+

p

2µ

(l L + nx −mx)2 + (l ′L + ny −my)2
�

. (64)

Crucially, ifωx < 1 andωy < 1, the denominators in (64) are never singular. This implies that
the logarithmic correction is not present, which can be straightforwardly checked numerically.
Let us now consider the situation with ωx < 1 and ωy = 1. Now, a singularity appears in the
limit L →∞ for l = 0 and l ′ = ±1. We numerically observe that only the first term in (64)
gives rise to a singular behaviour. Thus, we neglect the second term and fix l = 0, obtaining

〈1|P(L)|1〉 = −
1

4
p

gπL2ωx

∞
∑′

l ′=−∞

Lωx
∑

nx ,mx=0

L−1
∑

ny ,my=0

e−
p

2µ
Æ

(nx−mx )2+(l ′L+ny−my )2

((nx −mx)2 + (l ′L + ny −my)2)3/2
. (65)
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Only the differences nx − mx and ny − my appear in (65). Thus, it is convenient to change
variables to x = nx −mx and y = ny −my , to obtain

〈1|P(L)|1〉= −
1

4
p

gπL2ωx

∞
∑′

l ′=−∞

Lωx
∑

x=−Lωx

L−1
∑

y=−(L−1)

�

Lωx + 1− |x |
�

(L − |y|)
e−
p

2µ
p

x2+(l ′L+y)2

(x2 + (l ′L + y)2)3/2
. (66)

Again, the singular behaviour occurs for x ≈ 0 and y ≈ −l L, with l ′ = ±1. In this limit we
can neglect the exponential in (67) because it is regular. Thus, we obtain

〈1|P(L)|1〉= −
1

4
p

gπL2ωx

∞
∑′

l ′=−∞

Lωx
∑

x=−Lωx

L−1
∑

y=−(L−1)

(Lωx + 1− |x |)(L − |y|)
(x2 + (l ′L + y)2)3/2

. (67)

To proceed, let us now consider the case with l = 1. It is clear that the contribution from
l = −1 is the same. We can restrict the sum over x in (67) to x > 0 because of the symmetry
x → −x . We also restrict to y < 0 because the singularity in (67) occurs for y < 0. We now
have

〈1|P(L)|1〉=
1

2
p

gπL2ωx

Lωx
∑

x=0

L−1
∑

y=0

(Lωx + 1− x)(y − L)
(x2 + (L − y)2)3/2

. (68)

Now the strategy is to treat the sum (68) by using the Euler-Maclaurin formula (56). For
instance, one can first apply (56) to the sum over x . One obtains that the leading term in the
large L limit is obtained by evaluating the integral in (56) at ωx L. One can also verify that
the boundary terms in (56) can be neglected. A straightforward calculation gives

〈1|P(L)|1〉= −
1
p

gπ
ln(L)

L
, (69)

where the contribution of l = −1 in (67) has been taken into account.
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