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Weak topological insulating phases
of hard-core bosons on the honeycomb lattice
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Abstract

We study the phases of hard-core bosons on a two-dimensional periodic honeycomb
lattice in the presence of an on-site potential with alternating sign along the different
y-layers of the lattice. Using quantum Monte Carlo simulations supported by analyti-
cal calculations, we identify a weak topological insulator, characterized by a zero Chern
number but non-zero Berry phase, which is manifested at either density 1/4 or 3/4, as
determined by the potential pattern. Additionally, a charge-density-wave insulator is ob-
served at 1/2-filling, whereas the phase diagram at intermediate densities is occupied by
a superfluid phase. The weak topological insulator is further shown to be robust against
any amount of nearest-neighbor repulsion, as well as weak next-nearest-neighbor repul-
sion. The experimental realization of our model is feasible in an optical lattice setup.
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1 Introduction

Since the discovery of topological insulators (TIs), tremendous effort has gone into the under-
standing of this novel phase of matter, both theoretically and experimentally [1]. The hallmark
of a TI is the existence of a bulk band gap, similar to an ordinary insulator, along with pro-
tected gapless surface states. While conducting surface states can also be observed in normal
band insulators, the signature that makes the TIs unique is the topological protection of the
surface states by time reversal symmetry. The application prospects of TIs in spintronic devices
and quantum information technology have projected them as worthy candidates for frontier
research in condensed matter physics.

A three-dimensional (3D) TI is identified by four Z2 topological indices (ν0,ν), where ν0
is the strong topological index and ν represent the weak topological indices [2–5]. A system
with a non-trivial value of ν0 is known as a strong TI (STI), where gapless surface states are
manifested on each two-dimensional (2D) surface of the system. On the other hand, if we
try to form a 3D structure by stacking layers of 2D STIs along some particular direction, we
end up with a system that exhibits gapless states on some of its 2D surfaces (depending on
the stacking orientation), while the other surfaces remain gapped. This system is referred to
as a weak TI (WTI) for which the strong topological index ν0 is zero, but some of the weak
topological indices ν attain non-trivial values.

In general, a d-dimensional WTI can be visualized as a system constructed by stacking
(d−1)-dimensional STIs. For example, in 2D, for the case of the BDI symmetry class, according
to the tenfold periodic table of topological phases [6] the strong topological index is zero,
whereas a STI phase is only manifested in one-dimension (1D) with a Z topological invariant.
If we now think of a system obtained by stacking L y 1D BDI chains with topological index
ν along the y-direction, the resulting 2D system will behave as a WTI as long as the BDI
symmetries are preserved. This system will manifest conducting edge states only along the
edges localized at the two ends of the lattice in the x-direction. The weak topological index
νx in such a case can be measured by averaging the strong topological index over the L y layers.

The main difference between a STI and a WTI lies in the robustness of their edge states.
While for STIs symmetry-preserving disorder can never gap the edge states, this is not the
situation for WTIs. Instead, the protection of the edge states in WTIs appears to require lattice-
translational symmetry, so it is natural to assume that even a small amount of disorder could
destroy the topological phase. However, for a 3D WTI, it was demonstrated that a conducting
edge state can actually persist in the presence of disorder, as long as time-reversal symmetry
and the bulk gap are preserved [7]. While the experimental verification of STIs has been
performed in diverse classes of materials [8–10] since its theoretical prediction, there are only
a few examples of materials exhibiting WTI phases [11–13]. Further venues are needed for the
study of WTI phases [14], their stability properties [15,16], and the effects of interactions [17].

In recent years, the study of topological phases in bosonic systems has been a center of
attraction in condensed matter physics. Due to the condensation property of bosons, the re-
alization of topological phases requires interaction among the particles. This could, in fact,
enhance the richness of the various topological phases observed in a bosonic system. More-
over, recent advancements in optical lattice experiments have created a promising platform,
where different phases of interacting and non-interacting bosonic systems can be realized in a
controlled manner. These developments highlight the need for an extensive theoretical study
of topological phases of bosons in the presence of interactions. In particular, a study of in-
teracting bosonic analogues of WTIs can help identify natural, minimal models that nucleate
such phases, explore the interplay of the various competing orders that arise in such systems,
and determine the effect of interactions on the emerging phase diagram.

In this paper we study the infinite on-site repulsion limit of bosons [hard-core bosons
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(HCBs)] on the 2D honeycomb lattice in the presence of on-site potential and longer-range
interactions. We demonstrate that weak topological phases arise quite naturally when the
HCBs are simply subjected to an on-site potential with alternating signs along the different
y-layers. Using quantum Monte Carlo (QMC) technique supported by analytical calculations,
we find that the phase diagram of the model exhibits three insulating phases at densities 1/4,
1/2 and 3/4, separated from each other by a superfluid region. Depending on the choice of
the on-site potential form, either the insulator at 1/4 or 3/4 filling is found to be a WTI, which
manifests a nontrivial Berry phase and the existence of edge states along the x-edges of the
lattice. These WTI phases away from half-filling are a prime example of a mirror-protected
WTI. We introduce a formula for the Berry phase that relies on the permanent (rather than a
determinant) for the HCBs, and uncover a robust 1D superfluidity along the topological edge
states. Finally, we demonstrate a remarkable stability of the topological phase against any
amount of nearest-neighbor (NN) repulsion, as well as weak next-nearest-neighbor (NNN) re-
pulsion among the HCBs. Through these developments we introduce a framework that could
precipitate the study of additional bosonic TIs, see, e.g., [18].

The paper is organized as follows. In Section 2 we present the model, the numerical
techniques and the relevant order parameters. In Section 3 we present the phase diagram of
the model and analyze the different phases. The edge states of the insulating phases of the
model are analyzed using QMC methods in Section 4. In Section 5 we calculate the topological
invariants for the insulating phases. Next, in Section 6 the effect of NN and NNN repulsion on
the WTI is presented. Lastly, in Section 7 we conclude. In Appendices A and B we analyze the
band structure of the model and discuss the protection of the edge states.

2 Model and Formulation

We consider HCBs in a 2D periodic honeycomb lattice, as depicted in Fig. 1, governed by the
Hamiltonian

Ĥ = −t
∑

〈i, j〉

�

d̂†
i d̂ j + h.c.

�

+
∑

i

Wi n̂i −
∑

i

µn̂i . (1)

Here d̂†
i (d̂i) creates (annihilates) a HCB at site i, 〈i, j〉 represent NN pairs of sites, t is the

amplitude of NN hopping, Wi is the on-site potential at site i and µ denotes the chemical
potential. We take the NN hopping as the unit of energy and set t = 1 for our numerical
calculations. In our study Wi forms a periodic potential along the y-direction with a period of
two lattice sites, i.e., we take Wi =W0 (−W0) for layers (along the y-direction) labeled by odd
(even) values of `. We shall assume that the lattice constant is a = 1 throughout.

To study the various phases of the Hamiltonian in Eq. (1), we use the Stochastic-Series-
Expansion (SSE) technique [19, 20], a quantum Monte Carlo method, employing directed
loop updates [21, 22]. To capture the ground state-properties of a L × L honeycomb lattice
using SSE, all simulations have been done at low enough temperatures such that the inverse
temperature β ∼ L [23].

To construct the phase diagram using SSE we use four order parameters: average density
ρ, superfluid density ρs, structure factor S(Q) and dimer structure factor SD(Q).

The average density of a system containing Ns sites is ρ̂ =
∑

i n̂i/Ns, where n̂i = d̂†
i d̂i gives

the number of HCBs (either 0 or 1) at site i. To calculate the superfluid density using SSE,
we employ the following expression in terms of the winding numbers Ωx and Ωy along x and
y-directions [20],

ρs =
1

2β

¬

Ω2
x +Ω

2
y

¶

≡ ρx
s +ρ

y
s , (2)
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Figure 1: Schematic of the 2D periodic lattices considered in the main text: (a), the
honeycomb lattice with alternating values of on-site potential along the y-direction;
and, (b), the transformed version obtained by straightening the bonds along the
y-axis. The y-layers are indexed by ` = 1,2, . . . and are highlighted by blue (red)
backgrounds indicating the presence of an on-site potential W0 (−W0) along the layer.
The dashed black lines represent the bonds connecting the lattice across the bound-
aries. Each unit cell, delineated by a green rectangle, contains four sites labeled by
the numbers 1 to 4. The stripes along the y-direction are indexed by i = 1,2, . . . in
panel (b).

where 〈· · · 〉 represents ensemble average. For example, the winding number Ωx can be calcu-
lated by counting the total number of operators N+x (N

−
x ) transporting particles in the positive

(negative) x-direction, according to the formula Ωx =
1
Lx
(N+x −N−x ), where Lx is the length of

the lattice along the x-direction.
Next, the structure factor per site is expressed as,

S(Q) =
1

N2
s

∑

i, j

eiQ·(ri−r j)〈n̂i n̂ j〉, (3)

where ri = (x i , yi) is the position of site i. To calculate the structure factor for particles in
a L × L honeycomb lattice, we can always use a transformation on the lattice to straighten
the bonds along the y-direction, such that the resulting lattice looks like the one depicted in
Fig. 1 b. With the use of the position vectors r of this new transformed lattice, the allowed val-
ues of the wavevector Q coincide with those of an L×L square lattice, i.e., Q = (2πp/L, 2πq/L),
where p = 0,1, · · · , L−1 and q = 0,1, · · · , L−1. To detect the presence of diagonal long-range
orders in the system, we have calculated S(Q) for all possible values of Q and identify the ones
at which the structure factor displays peaks.

Lastly, we define the dimer structure factor as

SD(Q) =
1

N2
b

∑

α,β

eiQ·(Rα−Rβ )〈D̂αD̂β〉, (4)

where D̂α = d̂†
αL

d̂αR
+ d̂†

αR
d̂αL

is the dimer operator defined on the α-th NN bond aligned along
x-axis with αL , αR being the two lattice sites attached to this bond. In Eq. (4), the summation
runs over Nb NN bonds oriented along x-axis and the vectors R represent the position coordi-
nate corresponding to the midpoints of these bonds in the transformed lattice in Fig. 1 b. The
dimer operator is chosen in a way such that it will give a nonzero expectation value only when
a dimer is formed, i.e., when the constituent particle hops back and forth along the NN bond.
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Figure 2: Plots of the four order parameters for W0 = 6.0 as a function of the chemical
potentialµ: (a), densityρ and superfluid densityρs; and, (b), structure factor S(0,π)
and dimer structure factor SD(0,π). Here t = 1.0 and the calcualtions are performed
on a 20× 20 periodic honeycomb lattice.

3 Phase diagram

To construct the phase diagram we study the Hamiltonian in Eq. (1) at various values of W0
by varying the chemical potential µ. Fig. 2 depicts the variations of HCB density ρ, superfluid
densityρs, structure factor S(0,π) and dimer structure factor SD(0,π) as a function ofµ, where
the value of W0 is fixed at 6.0. The three plateaus in the ρ − µ curve (apart from the trivial
ones at ρ = 0 and ρ = 1) clearly indicate the presence of three incompressible insulators at
densities 1/4, 1/2 and 3/4. At these plateaus the superfluid density becomes zero, whereas in
the intermediate regions it attains some non-zero value, thus separating the three insulating
regions by a superfluid phase. To understand the nature of the insulators we have calculated
the structure factor S(Q) and dimer structure factor SD(Q) for all possible values of Q. We
find that S(Q) peaks only at wavevector Q = (0,π), whereas SD(Q) displays peaks for both
Q = (0,π) and Q = (π, 0) with the same peak value (in Fig. 2 b only SD(0,π) is displayed).

We note that the results in Fig. 2 are independent of the sign of W0, i.e., whether we choose
Wi to be positive (negative) for odd (even) values of ` in Fig. 1 or the reverse scenario, Fig. 2
remains unaltered. In the following, we assume W0 > 0 to analyze our results, but a similar
analysis can be extended to the reverse scenario as well. In Section 4 we will see that the sign
of W0 nevertheless plays a role in the characterization of the different phases.

Since the on-site potential for the layers labeled by even values of ` is−W0, upto half-filling
the particles will prefer to occupy these layers only, keeping the odd ` layers completely empty.
Due to the presence of NN hopping, at 1/4-filling, it is energetically favorable for the system
to fill the upper two sites of each unit cell (i.e., site 1 and 4) by one particle only, so that this
particle can hop back and forth between sites 1 and 4 of two adjacent unit cells to further
lower the energy of the system. As a result of this hopping process dimers are formed between
two sites belonging to the upper half of two different unit cells. Due to the formation of these
dimers there is no net flow of HCBs in the x or y-directions, which makes the phase insulating
in nature. The structure of this dimer insulator at 1/4-filling is depicted in Fig. 3 a. We note
that at each even ` level we have one dimer which involves two boundary sites when the open
boundary condition is applied along x-direction with zigzag edges.

Now, let us analyze the structure factor, Eq. (3), for Q = (0,π),

S(0,π) =
1

N2
s

∑

i, j

eiπ(yi−y j)〈n̂i n̂ j〉. (5)
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Figure 3: Spatial structures of the insulating phases: (a) The dimer insulator at den-
sity ρ = 1/4; (b) Charge-density-wave insulator at half-filling; and, (c) The dimer
insulator at filling fraction 3/4. The red dashed lines depict the formation of dimers.
The white, grey and black circles signify lattice sites with density 0.0, 0.5 and 1.0 re-
spectively. The blue dashed rectangles represent the underlying 1D SSH-like chains,
at their, (a), topological and, (c), non-topological phases.

(a)

(b) (c)

b
1 b

3

b
2

Figure 4: Pictorial description of hopping processes in the superfluid region in-
between the dimer insulator at ρ = 1/4 and CDW structure at ρ = 1/2.

Although the summation in Eq. (5) is over all possible pairs of sites in the lattice, only those
pairs for which both sites are occupied will have a non-zero contribution. Since for the dimer
insulator at ρ = 1/4 (see Fig. 3 a), all particles reside on the even layers only, for all contribut-
ing pairs yi − y j is even, so Eq. (5) reduces to

S(0,π) =
1

N2
s

∑

i, j

〈n̂i n̂ j〉. (6)

At 1/4-filling there are Ns/4 particles in the system and each of them participates in Ns/4 pairs
in the summation (including the case where i = j) with a +1 contribution to the structure
factor. Therefore, for the dimer insulator at ρ = 1/4, S(0,π) attains the value

S(0,π) =
1

N2
s

�

Ns

4

�2

= 0.0625. (7)

This result matches well with the result in Fig. 2 b. It is clear from the discussion above that at
1/4-filling, as long as the particles are constrained to reside on alternate layers, the value of
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Figure 5: Phase diagram of HCBs on the honeycomb lattice as function of the chemi-
cal potential (µ) and the alternating on-site potential strength along the y-direction
(W0): (a) in the atomic limit; and, (b) in the presence of a finite hopping t = 1.0.
The ρ = 0 (light grey), ρ = 1/2 (pink) and ρ = 1 (dark grey) regions denote the
empty phase, the charge-density-wave insulator at half-filling and the Mott insulator
at filling-fraction 1, respectively. The blue (green) regions indicate the dimer insu-
lator at 1/4 (3/4)-filling. The yellow region depicts the superfluid phase. The solid
lines with points indicate phase boundaries obtained using SSE (for 20× 20 lattice
with β = 120), whereas the dashed lines indicate the calculated band edges.

S(0,π) will be 0.0625. This value is independent, e.g., of whether the particles form a dimer
insulator or arrange themselves in a charge-density-wave (CDW) pattern.

To manifest the formation of dimer insulator at density ρ = 1/4, we next calculate the
dimer structure factor SD(Q) as prescribed in Eq. (4). Since in our system the dimers are
formed along the NN bonds oriented along x-direction of the lattice, we have defined the
dimer structure factor such that it will detect dimers along these bonds only. Now, if we think
about the dimer-insulator structure corresponding to ρ = 1/4 (as depicted in Fig. 3 a) for
the transformed lattice in Fig. 1 b, it is easy to see that for any two dimers with midpoints
Rα = (Xα, Yα) and Rβ = (Xβ , Yβ), both (Xα−Xβ) and (Yα−Yβ) are even. As a result, the dimer
structure factors for Q = (0,π) and Q = (π, 0) reduce to the exact same expression,

SD(0,π) = SD(π, 0) =
1

N2
b

∑

α,β

〈D̂αD̂β〉. (8)

In the dimer insulator phase, with Nb being the total number of NN bonds along x-direction,
there are Nb/2 dimers in the system. Each of these dimers will participate in Nb/2 pairs
(of dimers) in the summation, with a +1 contribution towards the dimer structure factor.
Therefore, the dimer structure factor reduces to,

SD(0,π) = SD(π, 0) =
1

N2
b

�

Nb

2

�2

= 0.25, (9)

which is indeed attained in Fig. 2 b at filling 1/4.
Next, at 1/2-filling, the layers labeled by even ` values are completely filled, such that the

upper two sites of each unit cell are occupied by two HCBs. Therefore, at this density the
dimers of 1/4-filling disappear completely and we have a CDW, similar to the one depicted in
Fig. 3 b, which is insulating in nature. This can further be verified from Fig. 2 b, where we
can see that at ρ = 1/2 the dimer structure factor [SD(0,π)] vanishes and the structure factor
[S(0,π)] shows a peak with value 0.25. The half-filled system contains Ns/2 particles in total
and each of them participates in Ns/2 pairs of sites, which has a non-zero contribution towards
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Figure 6: The four branches of energy spectrum corresponding to (a) W0 < t, (b)
W0 = t, and (c) W0 > t.

the structure factor. So, Eq. (6) in this case simply becomes

S(0,π) =
1

N2
s

�

Ns

2

�2

= 0.25, (10)

which is the maximum value attained by S(0,π).
Finally, the structure of the insulator at 3/4-filling is depicted in Fig. 3 c, where the even `

levels are completely filled and the odd ones are half-filled. In terms of unit cells this means
that the upper two sites (sites 1 and 4) of each cell are fully occupied and the lower two sites
(sites 2 and 3) share a single HCB. Again by virtue of NN hopping, the particles at odd `-levels
can further lower their energy by hopping back and forth between sites 2 and 3 of each unit
cell. As a result, dimers are formed in the lower half of each unit cell. The main difference
between the dimers formed at ρ = 1/4 and ρ = 3/4 is that, the dimers at 1/4-filling are
formed between two sites belonging to two different unit cells, whereas the sites involved in
3/4-filling are residents of the same unit cell. Since the number of dimers formed in this case
coincides with the one for ρ = 1/4, the dimer structure factor attains the same peak value
0.25 in this situation as well. The value of the corresponding structure factor can be extracted
by realizing that out of the 3Ns/4 particles in the system, Ns/4 reside on the odd ` layers,
whereas Ns/2 particles are located at even ` layers. So, in total there are 2(Ns/4)(Ns/2) pairs
for which the separation between the particles along the y-axis (i.e., yi− y j in Eq. (5)) is odd.
Clearly each of these pairs will contribute −1 to the structure factor (as eiπ(yi−y j) = −1 for
these cases). On the other hand, for (Ns/4)2 + (Ns/2)2 number of pairs, yi − y j is an even
multiple of the lattice constant, which gives rise to a positive contribution to the structure
factor. Therefore, the structure factor for this insulator attains the value,

S(0,π) =
1

N2
s

�

�

Ns

4

�2

+
�

Ns

2

�2

− 2
�

Ns

4

��

Ns

2

�

�

=
1

N2
s

�

Ns

2
−

Ns

4

�2

= 0.0625, (11)

which coincides with the one for 1/4-filling, Eq. (7).
Next we turn to discuss the superfluid phase. In the intermediate regions between the

insulating phases, where the superfluid density is finite, both the structure factor S(0,π) and
dimer structure factor SD(0,π) admit nonzero values, see Fig. 2. Interestingly, in these inter-
mediate regions, we observed anisotropy in the superfluid density where ρ y

s , the superfluid
density along y-direction of the lattice, is much larger than the one along the x-direction, ρx

s .
So while the superfluid retains some additional structure from the two neighboring insulators
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in the transition region, it can still superflow in both directions, as we now argue. The mech-
anism is described in Fig. 4, where we take for example the transition between the insulators
at fillings 1/4 and 1/2. Consider a situation where we add one HCB to the dimer insulator at
ρ = 1/4. At this range of fillings the particles will naturally prefer to occupy the even layers,
having the lower on-site potential, so the extra particle chooses to reside on one of the sites
attached to bond b1 in Fig. 4 a, effectively generating a doubly occupied bond. Now, this extra
particle can hop through the lattice giving rise to superfluidity in two different ways. Firstly,
the extra particle can follow a two-step hopping process similar to the one depicted by blue ar-
rows in Fig. 4 a. By virtue of this process, effectively the doubly occupied bond b1 has hopped
to bond b2 (Fig. 4 b) giving rise to superfluidity along y-direction. Since the difference of
energies of the particle at the initial (or final) and intermediate step of this process is 2W0,
the energy gained by the particle during this process is ∼ t2/(2W0). Secondly, the particle
can also follow a three-step hopping process depicted by the green arrows in Fig. 4 a. This
process results in a configuration as shown in Fig. 4 c, where the doubly occupied bond b1 has
effectively hopped along x-direction of the lattice to the bond b3, contributing to a non-zero
superfluid density ρx

s . On account of the fact that both the intermediate sites involved in this
hopping process have energies higher than the initial or final sites, by an amount of 2W0, one
can see that the energy gain in this process is ∼ t3/(4W 2

0 ). Therefore, in comparison the dou-
bly occupied bond can always gain more energy by hopping in the y-direction of the lattice
than in the x-direction. Consequently, anisotropy is developed in the superfluid density with
ρ

y
s > ρ

x
s . Similar arguments hold for the superfluid regions between any two insulators.

The complete phase diagram of the model in the (µ, W0) plane is depicted in Fig. 5 in the
atomic limit, i.e., when the hopping t is turned off (Fig. 5 a) and for t = 1.0 (Fig. 5 b). The
phase boundaries are obtained from QMC (solid lines with points), performed for a 20× 20
periodic honeycomb lattice with inverse temperature β = 120.

In the presence of finite NN hopping t = 1.0 (Fig. 5 b), for W0 = 0, the superfluid phase
fills the range between the Mott lobes at densities ρ = 0 and ρ = 1. Beyond some critical value
of W0, additional insulating lobes start to appear at densities 1/4, 1/2 and 3/4 separated by
superfluid regions. The insulator at half-filling is a CDW, whereas the other two are dimer
insulators. One can see that the phase boundaries obtained from QMC are more or less consis-
tent with the calculated band edges from Appendix A (dashed lines in Fig. 5 b), except in the
neighborhood of W0 = 1, where they slightly deviate. Since the analytical results demonstrate
the phase boundaries for a lattice in the thermodynamic limit, we expect the deviations to be
smaller for larger system sizes. Within the error bars of our QMC calculations the critical value
of W0 beyond which the insulating phases appear, is 1.4 for the CDW at half-filling, whereas
for the dimer insulators it appears to be 1.5. However, the calculated band edges predict that
the tips of all three insulating lobes lie at W0 = 1.

Next, in the atomic limit (Fig. 5 a), we see that only the CDW insulator at half-filling
survives and both the dimer insulators vanish completely. Indeed, the dimers in the dimer
insulators are formed by virtue of the NN hopping in the presence of a finite W0. On the
other hand, in the atomic limit the CDW insulator appears as soon as we have a non-zero
W0. In fact, the presence of NN hopping can destroy this structure by transforming it into
a superfluid, as is indeed observed in Fig. 5 b. Beyond some critical value of W0 the CDW
phase sets in because at this stage W0 dominates over hopping t and it becomes energeti-
cally favorable for the particles to be frozen in this structure instead of moving around in a
superfluid phase. The boundaries of the CDW phase in Fig. 5 a can be determined by consid-
ering the change in the total energy of the system when we introduce an additional HCB in
the half-filled system manifesting the CDW phase. At half-filling all the particles occupy the
sites with on-site potential −W0. As a result, in this situation the total energy of the system
is simply E[Ns/2] = −µNs/2 −W0Ns/2. Now, if we try to add another HCB to the system,
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Figure 7: Splitting of the plateau at: (a),
ρ = 1/4 with W0 = 6.0 ; and, (b), ρ = 3/4
at W0 = −6.0, when open boundary conditions
are applied along the x-direction on a 20× 20
honeycomb lattice. (c) The superfluid density
ρ

y
s,i for different stripes (i) of the same 20×20

open lattice measured for µ= −6.16 (ρ = 1/4)
and µ = 6.16 (ρ = 3/4) with W0 = 6.0. Here
we take t = 1.0 and β = 120.

this additional particle will have to occupy a
site with on-site potential W0. So, in this sce-
nario the total energy of the system will be
E[Ns/2+1] = −µ(Ns/2+1)−W0Ns/2+W0.
Thus, the change in the total energy of
the system to add an additional HCB is
∆E = −µ + W0. As long as ∆E > 0
the phase remains stable against the addi-
tion of an extra particle; therefore, the up-
per phase boundary of the CDW is given by
the line µ = W0. Similarly the lower phase
boundary can be determined by following
the same procedure for the case when we re-
duce one particle from the half-filled system,
for which the boundary will be given by the
line µ= −W0.

The calculated band edges (see Ap-
pendix A) appear as dashed lines in Fig. 5 b.
The nature of the different phases is further
elucidated by the calculated spectrum, pre-
sented in Fig. 6. For W0 < t a Dirac semi-
metal is observed at ρ = 1/2, while for
W0 = t it is replaced by a nodal line semi-
metal. Finally, for W0 > t, the phases at
ρ = 1/4 and ρ = 3/4 develop a full gap,
and the dimer insulators are formed. Since
the dimer insulators have no corresponding
atomic limits, they appear to be more inter-
esting to investigate. In the next section, we
shed some light on the nature of these insu-
lators by exploring their edge structure.

4 Edge States

To further explore the nature of the dimer insulators, we measure the shift in the average
density ρ when we switch to open boundary conditions along the x-direction, i.e., by turning

(a) (b) (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 8: Local density profile of a 20× 20 honeycomb lattice under open boundary
condition along x-direction with W0 = 6, t = 1 and β = 120, corresponding to:
(a) µ = −6.5 in the lower plateau, (b) µ = −5.8 in the upper plateau, and (c) the
difference between densities of (b) and (a).
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off the horizontal dashed bonds in Fig. 1 b [24, 25]. We observe that as a function of the
chemical potential µ the average density ρ remains unaltered except for ρ = 1/4, which
splits into two plateaus corresponding to densities ρ1 = 0.225 and ρ2 = 0.275, see Fig. 7 a.
Further investigation reveals that the values of ρ1 and ρ2 depend on the size of the system:
for an 8 × 8 system ρ1 = 0.1875 and ρ2 = 0.3125, whereas for a 10 × 10 system ρ1 = 0.2
and ρ2 = 0.3. Generally speaking, we find that for a honeycomb lattice with Ne edge sites
(depicted by red circles in Fig. 8 c) and Ns total number of sites, the plateau at ρ = 1/4 splits
into ρ1 = ρ − Ne/(2Ns) and ρ2 = ρ + Ne/(2Ns).

We now argue that the splitting of the plateau under open boundary conditions corresponds
to the number of in gap edge states. At 1/4-filling the dimer structure can be thought of as
a series of 1D Su-Schrieffer-Heeger (SSH)-like chains (depicted by blue dashed rectangle in
Fig. 3 a), where dimers of strength ∼ t are formed. The dimers in each chain are weakly
coupled to each other via third-order hopping through the intermediate sites with higher on-
site potential, t x ∼ t3/(2W 2

0 ). Now, each of these SSH-like chains will give rise to a pair of
degenerate in-gap edge-states under open boundary condition, localized at the two ends of
the chain. As is clear from Fig. 3 a, for a Lx × L y lattice, there are L y/2 different SSH chains
weakly connected to each other via second order hopping, t y ∼ t2/(2W0). Due to this inter-
chain interaction, the degeneracy of the edge-states will be lifted and the resulting L y in-gap
states will now form bands on the two edges, each with a bandwidth ∼ 4t y . The two plateaus
therefore correspond to the situation when: (1), none of the edge sites are occupied; and,
(2), all of the edge sites are completely occupied, beyond some critical chemical potential
determined by the edge bandwidth. In our notations this reduces to ρ1 = ρ − 1/(2Lx) and
ρ2 = ρ + 1/(2Lx).

To help visualize this, in Fig. 8 a, we plot the local density profile of a 20× 20 honeycomb
lattice under open boundary condition along the x-direction, by choosing a value for chemical
potential, µ= −6.5, in the lower plateau ρ1. We can clearly see that the lower plateau corre-
sponds to a situation where bulk sites of the even `-layers have density 0.5 each, while the edge
sites have density close to zero. Contrarily, Fig. 8 b depicts the density profile corresponding
to µ= −5.8, a point in the upper plateau ρ2. The density of the edge sites now becomes close
to 1, while the density of the bulk sites remains 0.5 as before. So, at the ρ1 (ρ2) plateau, each
of the edge sites have 1/2 HCB less (more) compared to the sites in the bulk. The difference
of these two local density profiles is shown in Fig. 8 c, which clearly demonstrates that the
transition between the two plateaus, in Fig. 7 a, corresponds to the occupation of the in-gap
edge states. All this indicates towards the possible topological nature of the dimer insulator at
1/4 filling-fraction.

Next, we study the effect of the reversal of the sign of W0. In this case, at 1/4-filling,
the dimers are formed at odd `-layers and hence no dimers are split by the opening of the
boundary conditions [see Fig. 3 c with black (filled) sites replaced by white (empty) sites]. On
the other hand, at ρ = 3/4, all the sites residing on the odd `-layers are completely occupied
and the dimers are formed in the even `-layers [see Fig. 3 a with white (empty) sites replaced
by black (filled) sites]. Therefore, in this case, it is the dimer insulator at 3/4 filling which
involves the formation of edge states. As a result, under open boundary condition along x-
direction, the plateau corresponding to ρ = 3/4 splits into two plateaus (as shown in Fig. 7 b)
corresponding to densities ρ1 = 0.725 and ρ2 = 0.775, while the other parts of the ρ − µ
curve remain unchanged.

In Fig. 7 c we study the superfluid density, ρ y
s,i , for the different stripes (i) along the y-

direction (see Fig. 1 b) of a 20× 20 lattice with open boundary conditions along x-direction
with W0 = 6.0. The superfluid density is measured for two values of the chemical potential;
µ= −6.16 corresponding to the density ρ = 1/4 in Fig. 7 a, which ensures a partial occupation
of the edge states, and µ = 6.16 corresponding to the middle of the unsplit density plateau
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at ρ = 3/4. For µ = −6.16 the superfluid density acquires a non-zero value at the two ends
of the lattice, while within the bulk of the lattice it acquires a vanishing value. On the other
hand for µ = 6.16 the superfluid density remains vanishingly small for all the stripes. In the
thermodynamic limit while the superfluid density tends to zero for the bulk stripes at ρ = 1/4,
it remains finite at the edges. This captures the conducting nature of the edge states.

Finally, we note that by opening the boundaries of the lattice along the y-direction, we
end up with a honeycomb lattice with armchair edges and no dimers are split by this change.
Therefore, in this case the ρ−µ curve remains unaffected by the open boundary condition for
both positive and negative W0. Thus, edge states are manifested only along the zigzag edges
in the x-direction.

5 The topological invariant
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Π/2

Π

-6 -4 -2  0  2  4  6
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W0   t/

Figure 9: The calculated Berry phase
γ along the x-direction of the Bril-
louin zone as a function of W0/t for
the three gapped phases at densities
(a) 1/4, (b) 1/2 and (c) 3/4.

In order to confirm the topological nature of the dimer
insulators from a bulk perspective, one must calculate
the topological invariant for the system under periodic
boundary conditions. We now turn in this direction.
For a Lx × L y honeycomb lattice, the lattice points on
the discrete Brillouin zone (kx , ky) can be expressed
as,

kx = −
π

3
+

2π
3Lx

p, p = 1,2, · · · , Lx , (12)

ky =
2π
p

3L y
q, q = 1,2, · · · , L y . (13)

Let ψ±,± denote the normalized column eigen-
vectors corresponding to the energy bands E±,±
of Eq. (21) (see Appendix A). Then the ground
state multiplets Ψ(ρ) corresponding to filling-fractions
1/4, 1/2 and 3/4 are given by the matrices
Ψ(1/4) = {ψ−,+}, Ψ(1/2) = {ψ−,+,ψ−,−} and
Ψ(3/4) = {ψ−,+,ψ−,−,ψ+,−}. One can then define the
U(1) link variables along the two directions as,

Ux(p, q) =
det±

�

Ψ†
p,qΨp+1,q

�

�

�det±
�

Ψ†
p,qΨp+1,q

��

�

, (14)

and

Uy(p, q) =
det±

�

Ψ†
p,qΨp,q+1

�

�

�det±
�

Ψ†
p,qΨp,q+1

��

�

, (15)

where det+ (det−) corresponds to the permanent (determinant) of the matrix. It is important
to note that in the definition of the link variable, the permanent is applicable when the particles
under consideration are HCBs, whereas for fermions U involves determinant. Finally, the
Chern number can be calculated as,

C =
1

2πi

∑

p,q

Fx y(p, q), (16)
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Figure 10: Variations of density versus chemical potential for three different values of
NN repulsion V1, with the on-site potential strength W0 = 6.0. The blue curves show
the ρ − µ variations for a 20× 20 honeycomb lattice with periodic boundary condi-
tions. The brown curves in the insets display the splitting of the ρ = 1/4 insulator
under open boundary condition along x-direction.

where Fx y is the lattice field strength defined as,

Fx y(p, q) = ln Ux(p, q)Uy(p+ 1, q)U−1
x (p, q+ 1)U−1

y (p, q), (17)

with −π < 1
i Fx y(p, q)≤ π.

For the three gapped phases at densities 1/4, 1/2 and 3/4, we calculate the Chern number
[26] for W0 > t to determine the topological nature of these phases. Despite of the presence
of the edge states for the 1/4 (or 3/4) dimer insulator, the Chern number turns out to be zero
for all of the three insulators.

As mentioned at the end of Section 4, the edge states are observed only along the zigzag
edges of the lattice under open boundary condition along the x-direction. This is related to
the fact that the dimer insulator structure can be effectively described as 1D SSH-like chains
stacked in a 2D lattice, connected via weak hopping. Therefore, in order to probe the topo-
logical nature of the dimer insulators, we calculate Berry phase for each ky value separately
according to the formula,

γq = Im
Lx
∑

p=1

ln Ux(p, q). (18)

It turns out that the Berry phase (γ) is independent of ky (or q). Fig. 9 depicts the variation
of the Berry phase as a function of W0/t calculated in the gapped region for three different
densities ρ = 1/4, 1/2 and 3/4. We can see that for positive values of W0 (W0 > t), the Berry
phase is quantized at π for the dimer insulator at ρ = 1/4 and remains zero for the one at
density 3/4. The situation is reversed when we reverse the sign of W0 (W0 < −t). On the
other hand, in both of these cases γ remains zero for the insulator at ρ = 1/2. This identifies
the dimer insulators at ρ = 1/4 and 3/4 as weak topological insulators (WTIs) for W0 > t and
W0 < −t respectively.

The existence of the WTI phase becomes clearer by realizing that the governing Hamilto-
nian obeys the following symmetries:

1. Time reversal symmetry: T H(kx , ky)T−1 = H(−kx ,−ky), where T is the antiunitary time
reversal operator T =K, where K is the complex conjugation operator, satisfying T2 = 1.

2. Mirror symmetry: MH(kx , ky)M−1 = H(−kx , ky), with M = σx ⊗σx , using the notations
of Appendix B.

The two symmetry operators T and M commute, [T, M] = 0, which places the model in the
mirror symmetry class AI [27]. This symmetry class admits a Z topological number in 1D, but
a zero topological number in 2D. Our model realizes a stacked WTI of such 1D chains.
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Figure 11: Variation of the density versus chemical potential in the presence of both
NN repulsion V1 and NNN repulsion V2, with the on-site potential strength W0 = 6.0,
for (a) V1 = 2.0, V2 = 0.2, and (c) V1 = 2.0, V2 = 2.0. (b) Change of dimer structure
factor and structure factor with the ratio V2/V1.

One way to interpret the presence of edge states for positive W0 (W0 > t) is illustrated
in Fig. 3 for an effective model, which is described by underlying SSH chains for densities
ρ = 1/4 (Fig. 3 a) and ρ = 3/4 (Fig. 3 c). Each chain admits alternating tunnelings t, t x
along the chain, and neighboring chains are weakly-coupled via t y . Depending on the sign of
W0, the chains for either ρ = 1/4 or ρ = 3/4 manifest their topological phase, which leads to
edge states at the corresponding density, as long as t y is weak enough.

6 Effect of interactions

In this section, we discuss the effect of interactions between HCBs on the phase diagram and
the WTI phase. First we consider NN repulsion between HCBs by adding

H1 = V1

∑

〈i, j〉

n̂i n̂ j , (19)

to the Hamiltonian, Eq. (1). Fig. 10 compares the variations of the average density ρ as a
function of the chemical potential µ for three different values of V1 with periodic and open
boundary conditions.

The blue curves in Fig. 10 depict the average density of a 20 × 20 periodic honeycomb
lattice, whereas the brown curves in the insets show the alteration of the plateau at ρ = 1/4
under open boundary condition. One can see that as we increase the NN repulsion the width
of the plateaus corresponding to ρ = 1/4, 1/2 and 3/4 increases. Since the band gap in
any insulating phase is determined by the width of the plateau in the ρ − µ curve, the gaps
corresponding to the three above-mentioned insulating phases simply gets larger for larger
NN repulsion. In other words, the insulating phases become more stable in the presence of
NN repulsion. This can be understood by realizing that the introduction of NN repulsion
effectively increases the energy cost of adding another particle to the insulating structures.
Therefore, energy minimization forces the system to be in the insulating phases for wider
ranges of the chemical potential, thus increasing the band gap of these phases. Under open
boundary condition along the x-direction, for each value of V1, the plateau at ρ = 1/4 further
splits into two plateaus corresponding to densities 0.225 and 0.275 similar to the case with
zero NN repulsion. This means that the topological nature of the dimer insulator at ρ = 1/4
remains unaffected by the presence of NN repulsion.

We now argue that the WTI phase is in fact robust against any amount of NN repulsion,
as elucidated by considering the spatial structure of the insulating phase. As discussed in
Section 3, the WTI is a dimer insulator, where each dimer is formed by a particle hopping
back and forth between the two sites belonging to a NN bond aligned along x-direction. Since
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(a) (b) (c)

Figure 12: Pictorial description of the insulating structures corresponding to the
density-plateaus in Fig. 11 c at (a) ρ = 1/8, (b) ρ = 1/4, and (c) ρ = 3/8.

the dimers are situated at alternate y-levels, the particles in two neighboring dimers do not
feel any repulsion, as they never reside on two NN sites. Consequently, NN repulsion cannot
restrict the hopping process involved in the formation of a dimer and thus the WTI remains
uninfluenced.

This argument is also valid for the WTI phase at 3/4-filling, which is the particle-hole
conjugate of Fig. 3 a. While NN repulsion is felt between the particle in each dimer and the
particles frozen in the in-between layers (depicted by white circles in Fig. 3 a and reflecting
filled sites in its particle-hole conjugate), this does not disrupt the formation of dimers. In fact
this configuration is the minimum-energy configuration at density ρ = 3/4, even in presence
of NN repulsion. While at this filling, the particle in each dimer encounters 2V1 repulsion from
the two occupied NN sites, this would not depend on which of the two sites of the dimer it
occupies. The particle will therefore prefer to hop back and forth between these sites, rather
than choosing a particular site to reside in, thereby lowering the energy of the system.

The above discussion motivates the consideration of the effect of NNN interactions, de-
scribed by an additional term

H2 = V2

∑

〈〈i, j〉〉

n̂i n̂ j . (20)

As depicted in Fig. 11 a, in presence of weak NNN repulsion the variations of the order param-
eters with the chemical potential remain almost unchanged for a periodic honeycomb lattice.
With open boundary conditions the plateau corresponding to the dimer insulator at ρ = 1/4
splits into two parts (inset of Fig. 11 a) similarly to the non-interacting scenario. This demon-
strates that the WTI phase is robust against small NNN repulsion values. Now, with the increase
of the ratio V2/V1 the hopping process of the constituent particle of each dimer gets disrupted.
Consequently, beyond some critical value of this ratio, it is energetically favorable for the par-
ticle to be localized at one of the two sites of the dimer instead of hopping back and forth.
This way the particles can avoid NNN repulsion felt between two neighboring dimers along
the y-direction. Such a configuration is depicted in Fig. 12 b. In Fig. 11 b the dimer structure
factor SD(0,π) and the structure factor S(0,π) are plotted as a function of V2/V1. We can see
that with increasing value of V2/V1, the dimer structure factor decreases from 0.25 to a value
close to zero, whereas the structure factor remains constant at 0.0625. Since the dimers are
destroyed for larger values of V2, the dimer structure factor obviously decreases. Nevertheless
as the particle number in each y-layer is fixed the structure factor remains unaltered. Hence,
it can be concluded that the WTI transforms into a normal insulator (similar to the one in
Fig. 12 b) for larger values of NNN repulsion.

As can be seen from Fig. 11 c, the NNN interactions are observed to stabilize additional
insulating plateaus at fillings 1/8, 3/8, 5/8 and 7/8 for a periodic honeycomb lattice. At
ρ = 1/8 only half of the dimers in Fig. 3 a are formed so that no NN or NNN repulsion is
felt between two HCBs. The structure corresponding to this insulator is not unique. One of
its possible structures is demonstrated in Fig. 12 a for an 8 × 8 lattice. On the other hand,
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at filling-fraction 3/8, half of the dimers of Fig. 3 a are occupied by an extra particle each,
thus transforming a dimer into a pair of particles. Fig. 12 c depicts one of the many possible
structures corresponding to this insulator. The dimers (pair of HCBs) in this insulating phase
are distributed in a way such that no two dimers (pair of HCBs) are NNN of each other. Despite
of the repulsion felt by the HCBs, this is in fact the minimum energy configuration of the system
at ρ = 3/8. One should note that the insulator at density 5/8 (7/8) is exactly the same as
the one at ρ = 3/8 (1/8) once the even and odd layers, as well as particles and holes, are
interchanged. The detailed characterization of these additional insulating plateaus would be
interesting to pursue in future.

7 Conclusions

To summarize, we have studied HCBs in a periodic honeycomb lattice with NN hopping (t)
and alternating positive and negative on-site potential (W0) along different y-layers, using
SSE QMC supported by analytical calculations. The system reveals the existence of three insu-
lating phases for W0 > t: a CDW at 1/2-filling and two dimer insulators at densities 1/4 and
3/4. Depending on the on-site potential pattern, one of the dimer insulators turns out to be
a WTI, with a zero Chern number but a non-trivial Berry phase, which is protected by mirror-
symmetry and belongs to the mirror-symmetry class AI. The model can be effectively thought
of as weakly coupled SSH chains, where the intermediate layers being either completely empty
(for ρ = 1/4) or fully occupied (for ρ = 3/4). Although our study involves HCBs, it is impor-
tant to note that the WTI phase persists in case of fermions as well. Since the energy bands are
well-separated in the regime W0 > t, the topological phase becomes oblivious to the exchange
statistics of the constituent particles.

With recent advancements, optical lattice with ultra-cold atoms would be a perfect tool
to actualize our model experimentally. Experiments on hexagonal lattices in this framework
have already been around for a while [28–31]. The on-site potential of the lattice sites can
also be tuned in these experiments, making it possible to achieve the pattern required by our
model. Additionally, the measurements of Berry phase [32] as well as Chern number [33] in
an optical lattice setup have also been performed successfully. Thus, we believe that our model
is a promising and interesting candidate to realize weak topological insulating phase in optical
lattice experiments. In addition, certain features of our model, including the band spectrum
and the presence of edge states, could also be probed using driven-dissipative exciton-polariton
microcavity lattices [34].

Besides the WTI phase, our model exhibits a rich phase diagram, which includes intriguing
phases such as bosonic Dirac semi-metal and nodal line semi-metal among others. Since the
main focus of our current work is the WTI phase, a detailed study of the other novel phases
is outside the scope of this paper. It would be interesting to investigate these phases in more
detail and examine how these phases are affected by the presence of off-site interaction in
the system. Furthermore, it would be worthwhile to analyze the dependence of the phase
diagram on the on-site repulsion U , when the HCBs are replaced by soft-core-bosons, as well
as the persistence of the WTI in the U → 0 limit.
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A The band structure

In this Appendix we present details of the band structure of the Hamiltonian in Eq. (1). The ab-
sence of interaction between two different HCBs makes it possible to express the Hamiltonian
in single-particle basis. Consequently, the energy spectrum obtained from this Hamiltonian is
the same for a HCB and a fermion. For a unit cell containing four sites, as depicted in Fig. 1,
the Hamiltonian in Eq. (1) can be expressed in the momentum space as,

H(k) =











−W0 t(1+ ei
p

3ky ) 0 te−i3kx

t(1+ e−i
p

3ky ) W0 t 0
0 t W0 t(1+ e−i

p
3ky )

tei3kx 0 t(1+ ei
p

3ky ) −W0











. (21)

The four branches of the energy spectrum corresponding to this Hamiltonian are,

E±,±(k) = ±[ε(k)±η(k)]1/2, (22)

where

ε(k) =W 2
0 + t2 + 4t2 cos2

�p
3

2
ky

�

,

η(k) = 2t

√

√

√

W 2
0 + 4t2 cos2

�

3
2

kx

�

cos2

�p
3

2
ky

�

. (23)

The Brillouin zone can be chosen to lie between −π3 < kx <
π
3 and 0 < ky <

2πp
3
. In order to

study the energy spectrum, we divide the parameter space into three regions: W0 < t, W0 = t
and W0 > t. For the half-filled system, we expect the lowest two bands E−,+ and E−,− to be
occupied. In the region W0 < t, a pair of Dirac nodes appear in the energy bands E−,− and
E+,− at kx = 0 and two different ky values (Fig. 6 a). The positions of these nodes shift along
the ky -axis as a function of W0 and t values. This can be understood by realizing that to have
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nodes in the E±,− energy bands at kx = 0 we must have ε(0, ky) = η(0, ky), which can be
simplified to the solution,

k±y = ±
1
p

3
cos−1

�

−
W 2

0 + t2

2t2

�

. (24)

Therefore, for W0 < t the half-filled system behaves as a bosonic Dirac semi-metal due to the
presence of the pair of Dirac nodes at momenta (0, k±y ).

Next, we note that at ky =
πp
3
, for all possible values of kx , we have

E−,− = −
�

W 2
0 + t2 − 2tW0

�1/2
= −|W0 − t|, (25)

and

E+,− = +
�

W 2
0 + t2 − 2tW0

�1/2
= |W0 − t|. (26)

At W0 = t, the two point nodes thus coalesce and disappear at kx = 0, ky =
πp
3

and a line
node is formed at ky =

πp
3
, as shown in Fig. 6 b. As a result, at half-filling we have a nodal

line semi-metallic phase for W0 = t.
To understand the situation for W0 > t of the half-filled system, it is important to note that,

at ky =
πp
3

the lower band E−,− attains its maximum value (−|W0 − t|), while the upper band
E+,− reaches its minimum (|W0 − t|). The band gap at half-filling is thus given by,

∆1/2 = E+,− − E−,− = 2|W0 − t|. (27)

Hence, for W0 > t, the half-filled system develops a gap of width 2|W0 − t| and becomes
insulating (see Fig. 6 c).

The analysis of a 3/4-filled system for different values of W0 and t can be done by com-
paring the energy bands E+,− and E+,+. The top of the lower band E+,− lies at kx =

π
3 , ky = 0,

with the energy value

E+,− =
�

W 2
0 + 5t2 − 2tW0

�1/2
, (28)

whereas the bottom of the upper band E+,+ occurs at a different momentum kx = 0, ky =
πp
3

with energy,

E+,+ = |W0 + t|. (29)

The indirect band gap is therefore expressed as,

∆3/4 = |W0 + t| −
�

W 2
0 + 5t2 − 2tW0

�1/2
. (30)

So, the system at 3/4 filling-fraction will behave as an insulator as long as ∆3/4 > 0, which
simplifies to W0 > t. For W0 = t we have E+,−(

π
3 , 0) = E+,+(0, πp

3
) = 2t and the band gap

becomes zero, while for W0 < t the band gap ∆3/4 becomes negative. Consequently in the
region W0 ≤ t, both of the energy bands E+,− and E+,+ become partially filled and the system
behaves as a bosonic semi-metal. A similar analysis of the system at 1/4 filling-fraction leads
to the same conclusions as density 3/4.
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B Protection of edge states

In this Appendix we study the formation of the edge states in the non-interacting version of
our model. We take periodic boundary conditions along the y-direction and open boundary
conditions along the x-direction. Fourier transforming along y we obtain for each ky the
Hamiltonian block

Ĥky
(x) = −W (x)γ3,3 + tγ0,1

�

1+ cos
�p

3ky

��

− tγ3,2 sin
�p

3ky

�

+ tγ1,1 +
3t
2
(γ1,2 + γ2,1)(−i∂x)

−
9t
4
(γ1,1 − γ2,2)∂

2
x , (31)

which is written in position represenation to second order in the momentum p̂x , in terms of
the matrices γi, j = σi ⊗ σ j (where σi with i = 1,2, 3 are the Pauli matrices and σ0 is the
2× 2 identity matrix). This Hamiltonian admits a mirror symmetry M that is represented by
M= UMΠ̂ with UM = γ1,1 and Π̂ x̂Π̂= − x̂ . We take W (x) = −W0sgn(x − L/2)sgn(x + L/2)
which is chosen to respect the mirror symmetry while, for W0 > 0, we get a topological phase
for |x | < L/2 and a non-topological phase for |x | > L/2 at density ρ = 1/4 (and vice-versa
for ρ = 3/4). Near x = ±L/2 the step-like configuration localizes a single state ψ±(x) at the
middle of the ρ = 1/4 gap at energy −ε(ky). Here ε2(ky)'W 2

0 + 2t2[1+ cos
�p

3ky

�

] deter-
mines the dispersion of the edge state along the y-direction. The two edge statesψ±(x) satisfy
Mψ+(x) = ψ−(x). They are distinct due to the localized nature of ψ±(x) (near x = ±L/2),
and occur at the same energy as M and Ĥky

are commuting. Indeed, their degeneracy is main-
tained as long as no mirror symmetry breaking perturbations are added to the Hamiltonian,
as demonstrated in Fig. 13 b.

While mirror symmetry is protecting the edge states from splitting, the edge states are
further pinned to the center of the band due to an emergent chiral symmetry. This is revealed
for the case of ρ = 1/4 by a projection to the lower two bands, which yields the effective
Hamiltonian

Ĥproj = −ε(ky)τ0 + εx(kx , ky)τx + εy(kx , ky)τy . (32)

Here τ0 is the 2× 2 identity matrix and τi (i = x , y, z) are Pauli matrices in the basis of the
two lower bands, ε(ky)'W0 + 2t y(1+ cos

p
3ky) and

εx(kx , ky) = t cos(3kx) +
t x

2
Re f (ky), (33)

εy(kx , ky) = t sin(3kx) +
t x

2
Im f (ky), (34)

where f (ky) =
�

1+ exp
�

−i
p

3ky

��2
, and t x ,y are defined in Section 4 . The Hamiltonian in

Eq. (32) thus admits a partial chiral symmetry τz , which manifests a particle-hole symmetry
with respect to −ε(ky). This ensures that the average energy of the edge states stays pinned
to the center of the band even in the presence of mirror symmetry breaking perturbations, see
Fig. 13 c for an example of the resulting spectrum.

A similar argument holds for the case of ρ = 3/4 by projection to the upper two bands.
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