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How many particles make up
a chaotic many-body quantum system?
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Abstract

We numerically investigate the minimum number of interacting particles, which is re-
quired for the onset of strong chaos in quantum systems on a one-dimensional lattice
with short-range and long-range interactions. We consider multiple system sizes which
are at least three times larger than the number of particles and find that robust signa-
tures of quantum chaos emerge for as few as 4 particles in the case of short-range inter-
actions and as few as 3 particles for long-range interactions, and without any apparent
dependence on the size of the system.
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1 Introduction

Quantum chaos, especially when caused by particle interactions, has seen a revival in the last
decade or so, because it is closely related with topics of high experimental and theoretical in-
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terest. It is behind the mechanism of thermalization of isolated many-body quantum systems
and the validity of the eigenstate thermalization hypothesis (ETH) [1–3], it explains the heat-
ing of driven systems [4,5], it is the main obstacle for many-body localization [6–9], it inhibits
long-time simulation of many-body quantum systems [10], it can lead to the fast scrambling of
quantum information [11], and it is the regime where the phenomenon of quantum scarring
may be observed [12–14].

For systems with a proper semiclassical limit, quantum chaos refers to specific properties
found in the quantum domain, when the corresponding classical system is chaotic in the sense
of mixing, sensitivity to initial conditions and positive Lyapunov exponents. This correspon-
dence is well established for systems with a few degrees of freedom, such as billiards and
kicked rotors, however in the case of systems with many interacting particles, as the ones
we are interested in, the correspondence is still lacking due to the challenges involved in their
semiclassical analysis [15]. The usual approach is therefore to denote a given system as chaotic
if it shows correlated eigenvalues and eigenstates components with similar features to those
found in ensembles of full random matrices [16–19].

Most recent studies of quantum chaos in many-body systems are performed for a finite
density of particles, but two questions arise: can quantum chaos occur also at the limit of zero
density? And if so, how many interacting particles are needed to bring a quantum system to
the regime of strong chaos? These questions are particularly relevant for experiments with
cold atoms and ion traps, where the number of particles and also the size of the systems
can be controlled. In Ref. [20], by increasing the number of cold atoms step by step, it was
experimentally shown that the Fermi sea is formed for as few as four particles. Quantum
chaos [18] and thermalization with the appearance of the Fermi-Dirac distribution [21–25]
were also obtained with just four interacting particles. More recently, thermalization was
studied in systems with 5 particles [26] and quantum chaos was verified again in systems
with only 4 particles [27–30], and possibly even with as few as 3 interacting particles [31].
However, it is not entirely clear if other indicators of chaos show similar behaviors, and if the
obtained threshold of 4 interacting particles can be changed by the introduction of long-range
interactions. These are the questions that we consider in this work.

We focus on spin-1/2 chains with a small number N of excitations and power-law interac-
tions that decay with the distance between the spins. These systems are analogous to systems
of hardcore bosons or spinless fermions, such that the number of particles in these cases cor-
responds to the spin excitations in our models 1. We find that in systems with short-range cou-
plings, strong chaos emerges already for N ¦ 4, no matter how large the system size is. While
large chains improve the statistics, they do not change our results. We show that long-range in-
teractions can facilitate the transition to chaos and decrease the threshold to only 3 excitations,
such that systems with only 3 interacting particles exhibit chaotic properties similar to large
interacting systems in the dense limit. This is of particular interest to experiments with ion
traps, where the range of interactions can be controlled [32,33], and to studies which explore
the generalization of the Lieb-Robinson bound for long-range interacting systems [32–35].

2 Model and Chaos Indicators

The spin-1/2 chain that we study is described by the following Hamiltonian

Ĥγ =
L−1
∑

i=1

L
∑

j=i+1

J
( j − i)γ

�

Ŝ x
i Ŝ x

j + Ŝ y
i Ŝ y

j +∆Ŝz
i Ŝz

j

�

+ h1Ŝz
1 + hbL/2cŜ

z
bL/2c, (1)

1The analogy is exact only in the limit of nearest-neighbors interactions, as can be seen via the Jordan-Wigner
and Holstein-Primakoff transformations
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where Ŝ x ,y,z
i are the spin-1/2 operators at lattice site i, L is the size of the chain, J is the

coupling strength, which we set to be equal to 1, ∆ is the anisotropy parameter, γ determines
the range of the interactions, whose strengths decay as a power-law with the distance between
the spins; and h1 [hbL/2c] is the amplitude of an impurity (defect) placed on site 1 [site bL/2c].
The system has open boundary conditions and conserves the total magnetization in the z-
direction.

We analyze the onset of chaos in sectors with low total z-magnetization, where most spins,
except a few, point down. Each such sector is characterized by the number of up-spins (exci-
tations). In equivalent models of spinless fermions, this number corresponds to the number of
particles. We denote the number of excitations by N and the Hilbert space dimension of the
corresponding sector by D =

� L
N

�

.

2.1 Integrable and chaotic points

In the limit of γ→∞ and for h1 = hbL/2c = 0, Eq. (1) describes the XXZ model with nearest-
neighbor couplings, which is an integrable model. By adding a small impurity at the border of
the chain, we can break the reflection symmetry (parity), but the model remains integrable.
Throughout this work we fix h1 = 0.11 and denote this integrable point by Ĥ0

∞, where the
superscript indicates that hbL/2c = 0. To avoid degeneracies, we stay away from the isotropic
point and fix ∆= 0.55.

We explore two ways to break the integrability of the XXZ model: by adding an impurity
in the middle of the chain, hbL/2c 6= 0, and by adding long-range interactions. The fact that the
addition of a defect takes the system to the chaotic regime was demonstrated in Refs. [36–39].
Here, without the loss of generality, we choose hbL/2c = 0.7 and denote the single-impurity

model with nearest-neighbor interactions by Ĥ imp
∞ . In the absence of the middle-site impu-

rity, integrability is broken by adding interactions between further neighbors, which we do
by decreasing the value of γ. For hbL/2c = 0, the system approaches the chaotic domain for
γ ¯ 5, but then gets closer to yet another integrable point for γ < 1. We therefore focus on
the interval 1≤ γ≤ 5.

2.2 Indicators of chaos

We employ two indicators of quantum chaos that do not require the unfolding of the spectrum.
To detect short-range correlations between the eigenvalues, we use the so-called r-metric,
which was introduced in Refs. [40–42],

rα =min
�

sα
sα−1

,
sα−1

sα

�

, (2)

where sα = Eα+1 − Eα is the spacing between neighboring eigenvalues of the Hamiltonian.
Averaging over all the eigenvalues, 〈r〉 ≈ 0.39 for the Poissonian distribution of the spacings,
that is often found in integrable models. For chaotic models with real and symmetric matrices,
〈r〉 ≈ 0.536. While in our calculations of 〈r〉, we consider the whole spectrum, it is worth
emphasizing that in realistic systems, as the ones we study, chaos develops away from the
edges of the spectrum.

Since the eigenstate thermalization hypothesis (ETH) holds due to quantum chaos, we
can use the indicators of ETH to detect the transition to chaos. The expectation value of an
observable Ô evolves according to

O(t) =



Ψ
�

�Ô (t)
�

�Ψ
�

=
∑

α

|Cα| 2Oαα +
∑

α6=β

C∗αCβ e−i(Eβ−Eα)tOαβ , (3)
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where Cα = 〈α|Ψ〉 is the overlap between the eigenstate |α〉 and the initial state |Ψ〉 of the
system and Oαβ = 〈α|Ô|β〉. For sufficiently local observables, ETH builds on two assumptions:
that the infinite-time average of O(t), which corresponds to the first term in Eq. (3), coincides
with the value of the operator at thermal equilibrium, and that the fluctuations around this
value, which are given by the second term in Eq. (3), decrease with system size and cancel
out on average. In this work, we focus on the second term, in particular, we investigate the
distributions of the off-diagonal elements of the operator, Oαβ .

The distribution of the off-diagonal matrix elements, Oαβ , in chaotic (thermalizing) sys-
tems is Gaussian [43–48], while integrable models have a clear non-Gaussian distribution [44,
47,49,50]. The observable that we consider is the magnetization on the impurity-site, Oαβ =
D

α
�

�

�Ŝz
bL/2c

�

�

�β
E

, and to assess the chaoticity of the studied systems, we quantify the distance of

the distribution of Oαβ from a normal distribution using two measures.
One quantity considered is the kurtosis of the distribution of Oαβ ,

κÔ =
1
σ4


�

Oαβ −



Oαβ
��

4
�

, (4)

where 〈.〉 indicates the average over all pairs of eigenstates |α〉 6= |β〉 and σ is the standard
deviation of the distribution of Oαβ . For Gaussian distributions the kurtosis is κÔ = 3. In our
plots of the distributions and in our calculations of κ, we always consider 200 eigenstates with
energies closest to the center of the many-body spectrum.

The other metric that we use is

ΓÔ
�

ω= Eβ − Eα
�

=

�

�Oαβ
�

�

2

�

�Oαβ
�

�

2 , (5)

which allows to assess the departure from the Gaussianity of the distribution as a function of
the energy difference ω= Eβ − Eα. We extract all the eigenstates that satisfy (Eα + Eβ)/2 ∈
[−0.025ε,+0.025ε], where ε is the many-body bandwidth, ε≡ Emax − Emin, and group these
pairs according to their value of ω in bins of width 0.05 . The overbar in Eq. (5) indicates
averaging over the pairs in a given bin. For a Gaussian distribution the value of ΓÔ does not
depend on ω and is equal to π/2 [51].

3 Results

We now have all the tools to investigate how the transition to chaos depends on the number
of excitations, N , for systems with short and long-range interactions.

3.1 Short-Range Interactions

We start our analysis by considering the limit of short-range couplings, γ →∞. In the left
panel of Fig. 1, we plot 〈r〉 as a function of the number of excitations for various systems
sizes for Ĥ0

∞ (triangles) and Ĥ imp
∞ (circles). As expected, for Ĥ0

∞, 〈r〉 stays very close to 0.39
indicating integrability, with negligible drifts with the system size. On the other hand, for
Ĥ imp
∞ , the metric 〈r〉 increases gradually from an intermediate value between integrability and

chaos, 〈r〉 ' 0.44, obtained for two excitations, to the chaotic value of 〈r〉 ' 0.536 for four or
more excitations. The size of the chain does not affect the results.

Figure 2 shows the distributions of the off-diagonal elements of Ŝz
bL/2c. For chaotic sys-

tems without conserved quantities the variance of the off-diagonal matrix elements scales as
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Figure 1: Left panel: Quantum chaos indicator 〈r〉 as a function of the number of exci-
tations N calculated for the integrable model Ĥ0

∞ (Î) and the single-impurity model

Ĥ imp
∞ (•). Right panel: same as the left panel, but for the kurtosis κ of the distribu-

tion of the off-diagonal elements of the middle-site magnetization. Each color repre-
sents a number of excitations with the darker shades corresponding to larger system
sizes. The system sizes ranges used are: N = 2,L ∈ [100,200]; N = 3,L ∈ [30, 50];
N = 4,L ∈ [22, 28] and N = 5,L ∈ [16, 21].
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Figure 2: Distribution of the off-diagonal elements of Ŝz
bL/2c, computed for 200 eigen-

states in the middle of the spectrum, for the integrable model Ĥ0
∞ (top row) and the

single-impurity model Ĥ imp
∞ (bottom row) for different number of excitations (dif-

ferent columns). In each panel, larger system sizes are represented by darker colors
(see legends). The histograms are scaled by D0.5 L. The insets display log-log plots of
the scaled variance σ2/L2 against the Hilbert space dimension and the black dashed
lines correspond to σ2/L2∝D−1.

D−1,where D is the Hilbert space dimension. However when conserved quantities are present,
the variance decreases slower, as L2D−1 [2, 50]. Since in our case both the energy and the
magnetization are conserved, to plot the distributions of the off-diagonal matrix elements cor-
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Figure 3: Ratios ΓŜz
bL/2c
(ω) for the integrable model Ĥ0

∞ (top row) and the single-

impurity model Ĥ imp
∞ (bottom row) for different number of excitations (different

columns). In each panel, larger system sizes are represented by darker colors (see
legends). The insets zoom in into areas of interest and are on a linear scale. See
main text for the explanation of how ΓŜz

bL/2c
(ω) was calculated.

responding to different system sizes, such that they will have the same variance, we rescale
the values of the off-diagonal matrix elements by the factor D0.5 L.

For Ĥ0
∞ (top row in Fig. 2), the distributions are visibly non-Gaussian and exhibit a peaked

structure for any number of excitations. For Ĥ imp
∞ (bottom row in Fig. 2) they are non-Gaussian

for N = 2, 3, but this changes for N ≥ 4, which is consistent with our results for 〈r〉 in the left
panel of Fig. 1, where the single-impurity model shows a transition to the regime of strong
chaos for 4 or more excitations. For N ≥ 4 the variance of the off-diagonal matrix elements, as
seen in the insets of Fig. 2, decreases as L2D−1, as expected for chaotic systems with conserved
quantities [2,50]. Notice also that scaled distributions do not show significant dependence on
system size, although due to better statistics, the curves become smoother as L increases.

To quantify how close the distributions are to normal distributions, we plot their kurtosis
in the right panel of Fig. 1. For Ĥ0

∞ (triangles), the kurtosis is much larger than the value

which corresponds to a normal distribution, κ = 3, and it increases with L. For Ĥ imp
∞ (circles)

the kurtosis is close to 3 for N ≥ 4, converging even closer to 3 as the system size increases.
The behavior of 〈r〉 in the left panel of Fig. 1 and of the kurtosis in the right panel of Fig. 1

for Ĥ imp
∞ shows a very similar trend towards chaos as N increases, namely, as 〈r〉 approaches

its chaotic value 0.536, κ approaches 3. We note that these two metrics are very different
in nature, since the r-metric has information about the spectrum, while the kurtosis reflects
the structure of the eigenstates through the off-diagonal elements of the observable, yet, they
provide equivalent information about the onset of quantum chaos.

In Fig. 3, we analyze how close the distributions of the off-diagonal elements of Ŝz
bL/2c are

to normal distributions, taking into account the energy difference ω. For Ĥ0
∞ (top row), the
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Figure 4: Kurtosis of the distribution of off-diagonal matrix elements computed for
200 eigenstates in the middle of the spectrum for systems with variable ranges of
interactions without the middle-site impurity, Ĥ0

γ (top row), and with a middle-site

impurity, Ĥ imp
γ (bottom row), plotted for different number of excitations (different

columns). In each panel, larger system sizes are represented by darker shades (see
legends).

value of ΓŜz
bL/2c

is larger than the value which corresponds to a normal distribution, ΓŜz
bL/2c
= π/2,

for all ω and it increases as the system size increases. The behavior is very similar for Ĥ imp
∞

and N ≤ 3, although for N = 3, as the inset indicates, the deterioration with the system size
is less apparent. For Ĥ imp

∞ and N = 4, we reach a crossing point, where ΓŜz
bL/2c

is close to π/2

for small ω’s and appears to converge to π/2 with the system size. The improvement with L
for N = 5 is even more evident and somewhat analogous to the improvement with system size
verified in systems with a fixed density [44,45,47].

3.2 Long-Range Interactions

We now examine how the transition to quantum chaos is affected by the the presence of long-
range interactions. Given the similar information obtained with the spectral correlation mea-
sure 〈r〉 and the kurtosis, in Fig. 4 we present only the kurtosis as a function of the coupling
range γ.

For long-range interactions, when γ ∼ 1, the system approaches the chaotic limit, corre-
sponding to κ = 3, for as few as 3 excitations and this happens for both Ĥ0

γ (top row) and

Ĥ imp
γ (bottom row). Focusing on the point γ = 1 there is however no apparent drift towards

chaos with the system size.
For 1 ≤ γ ≤ 2 and N ≥ 4, it is evident that the system is chaotic and drifts towards

chaos as a function of the system size for both Ĥ0
γ and Ĥ imp

γ . As we leave the region of long-
range interactions and γ > 2, the results for the two Hamiltonians become different, as can
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be anticipated, since in this limit the interaction is sufficiently short-ranged that the models
become practically indistinguishable from their the local variants (cf. right panel of Fig. 1).

4 Discussion

In this work we have numerically studied the quantum chaotic properties of the spectrum and
the eigenstates of a prototypical spin-1/2 chain with short and long-range interactions in the
limit of a small number of spin excitations. These systems correspond to bosonic or fermionic
systems with a small number of particles. Our focus is in the region of the spectrum where
quantum chaos is known to develop in systems with many interacting particles, that is, away
from the spectrum edges.

We have shown that a large one-dimensional lattice with only four nearest-neighbor-inter-
acting particles or even just three long-range-interacting particles exhibits the same properties
of quantum chaos observed in systems with a finite density of interacting particles. Since
our results do not appear to depend on the system size, they suggest that the transition to
chaos occurs at zero particle density, though further studies are in place, since for four or
more excitations, it is challenging to go below a density of 1/6 as the Hilbert space size gets
too big for exact diagonalization. Our result is of practical advantage for experiments that
have a control over the number of particles and the range of interactions, such as those with
ion traps, and which study thermalization and other consequences of many-body quantum
chaos. Moreover it offers a simplified scenario for the development of semiclassical analysis
of interacting quantum systems.

A natural extension of our work is to search for the differences between interacting chaotic
systems at high particle density from those with low and in particular zero density. A specific
direction to be considered is the effects of particle statistics, since it has marginal effects for
low densities, but not so in the high density limit. Other topics worth investigating include the
speed of the evolution, specially, short-time dynamics, where spectral correlations are not yet
relevant, and transport behavior. These studies may reveal differences between systems with
few and many interacting particles [28], which show similar level statistics and ETH indicators.
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