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Abstract

We uncover a new family of few-body topological phases in periodically driven fermionic
systems in two dimensions. These phases, which we term correlation-induced anoma-
lous Floquet insulators (CIAFIs), are characterized by quantized contributions to the bulk
magnetization from multi-particle correlations, and are classified by a family of integer-
valued topological invariants. The CIAFI phases do not require many-body localization,
but arise in the generic situation of k-particle localization, where the system is localized
(due to disorder) for any finite number of particles up to a maximum number, k. We
moreover show that, when fully many-body localized, periodically driven systems of in-
teracting fermions in two dimensions are characterized by a quantized magnetization in
the bulk, thus confirming the quantization of magnetization of the anomalous Floquet
insulator. We demonstrate our results with numerical simulations.
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In recent years, periodic driving has been studied as a means for realizing topological
phases of matter [1–14]. An important result of this work has been the discovery of a wide
range of intrinsically nonequilibrium topological phases with no equilibrium counterparts [14–
37]. These “anomalous” phases are characterized by robust properties of their micromotion
(i.e., the dynamics that takes place within a driving period), such as frequency-locked oscil-
lations in Floquet time crystals [24–28], or quantized orbital magnetization density in the
two-dimensional anomalous Floquet-Anderson insulator (AFAI) [16,30,31].

Disorder plays a crucial role for stabilizing Floquet phases in closed systems. In particular,
in the presence of interactions, disorder-induced many-body localization (MBL) provides a
mechanism for the system to avoid uncontrollably absorbing energy from the driving field,
and thereby to retain nontrivial properties at long times [38–40]. Importantly, the requirement
of many-body localization does not preclude the system from exhibiting a variety of types of
symmetry-breaking and topological order [25,26,37].

In this paper we characterize the topological properties of time-evolution in
two-dimensional periodically driven systems of fermions which exhibit either full many-body
localization, or a weaker form of “k-particle localization” that we define below [37–40] (see
Fig. 1). Recent results suggest that this class of systems can support a nontrivial topologi-
cal phase, known as the Anomalous Floquet Insulator [37] (AFI), which can be seen as the
generalization of the AFAI to interacting systems (see Refs. 30, 31). Despite being localized
and insulating, the AFI features nontrivial circulating currents in the bulk, which in the non-
interacting case (the AFAI) give rise to quantized orbital magnetization [30]. In a geometry
with boundaries, the AFI supports thermalizing chiral edge states coexisting with a localized
bulk [31, 37]. The existence AFI as a stable many-body state of matter rests on the existence
of MBL; even if MBL does hold out to infinite times, the phenomenology of the AFI is expected
to persist for at least exponentially long times.

The motivation of our work is to determine the topological invariant(s) that characterize
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Figure 1: (a) The anomalous Floquet insulator (AFI) is characterized by drive-
induced circulating motion of particles in the bulk. Nontrivial topology is revealed
in a quantized, nonzero magnetization density within regions where all states are
filled, given by 〈m〉= µ1

T , where µ1 is a nonzero integer. (b) With sufficiently strong
interactions, a new class of interaction-induced topological phases can emerge, which
we term correlation-induced anomalous Floquet insulators (CIAFI’s). CIAFI phases
are characterized by a quantized, nonzero contribution to the magnetization from
`-particle correlations. Such correlations can for example arise due to immobiliza-
tion of many-particle bound states, as depicted in the figure. (c,d) Topological phase
transition between the AFI and a CIAFI phase with µ2 = 2 obtained from numerical
simulations of a driven Hubbard-like model (see Sec. 4 for details). (c) Contribution
to the time-averaged magnetization in the system due to two-particle correlations,
S2 (see Sec. 1 for definition and relationship with µ2), as a function of the interac-
tion strength V . (d) The localization length ξ in the system diverges for interaction
strength V comparable to the hopping J , indicating a topological transition between
AFI and CIAFI phases.

the AFI. Focusing on the topological characterization of the micromotion of particles in the
bulk (i.e., the dynamics which take place within each driving period), we uncover two main
results.

As our first result, we confirm that, like the AFAI, the AFI is characterized by a quantized
magnetization density in regions of the bulk where all states are occupied, as schematically de-
picted in Fig. 1a. Specifically, the magnetization density is quantized as µ1/T where T denotes
the driving period, and µ1 is an integer characterizing the topological phase. This quantization
is protected by many-body localization, and µ1 cannot change under any deformation of the
system that preserves MBL.

As the second major finding of our work, we uncover a rich new structure of topological
invariants that emerges in the interacting case: while periodically driven systems of nonin-
teracting fermions in two dimensions (such as the AFAI) may be characterized by a single
invariant µ1, their interacting counterparts are characterized by a family of integer-valued
topological invariants µ1,µ2, . . .. The invariant µ` encodes information about the contribution
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to the time-averaged magnetization from `-particle correlations. Hence, interactions allow for
a richer topological structure in the system.

The topological protection of the invariant µ` relies on a less restrictive notion of local-
ization than the conventional notion of MBL. Specifically, µ` is well-defined and topologically
protected when all Floquet eigenstates with up to k particles are localized for some k ≥ `. We
term this notion of localization “k-particle localization.” Many-body localization corresponds
to k-particle localization in the limit where k and the system size goes to infinity, while allow-
ing the particle density to be finite in the thermodynamic limit. While the existence of MBL in
more than one dimension is still a subject of debate [41], k-particle localization for finite k is
well established in any dimension [42]. It is likely that systems exhibiting k-particle localiza-
tion, even if not fully MBL, may still display long-lived transient phenomena: delocalization in
such systems must be induced by k+1-particle correlated processes, whose rates are expected
to be exponentially suppressed in k for sufficiently weak interactions.

Our results above show that k-particle localized Floquet systems of interacting fermions in
2D are characterized by k independent topological invariants, µ1, . . .µk. When one or more
of the higher-order invariants are nonzero, the system is in a new, strongly-correlated, in-
trinsically nonequilibrium phase that is topologically distinct from any noninteracting system,
including the (noninteracting) AFAI. We term this class of phases Correlation-Induced AFIs
(CIAFIs). Here we consider a broader notion of the term “phase” than for equilibrium sys-
tems; in the sense we consider here, a phase characterizes the structure of the Hamiltonian
of the isolated system, independently of the particular state of the system (and in particularly,
independently of particle density and temperature).

We present a family of models which interpolate from the AFI phase to a CIAFI phase with
a nonzero value of µ2, and demonstrate the existence of a nontrivial CIAFI phase in the model
through numerical simulations [see Fig. 1(c)-(d)].

The arguments leading to the identification of the higher-order invariants µ` can in prin-
ciple also be applied to bosonic systems where the total number of bosons is conserved (e.g.,
as in systems of bosonic atoms in optical lattices). Hence AFI and CIAFI phases also exist
for k-particle localized bosonic systems. However, for simplicity, in this paper, we consider
fermionic systems only.

The rest of the paper is organized as follows. In Sec. 1, we summarize the main results of
this paper. In Sec. 2 we briefly review the structure of the Floquet operator in many-body and
k-particle localized systems, and of the orbital magnetization operator. In Sec. 3 we use the
time-averaged magnetization density operator to identify a set of topological invariants {µ`}
that characterize the AFI phase, and show that nonzero values of the invariants give rise to a
quantized magnetization density in regions where all sites are occupied (Sec. 3.4). In Sec. 4
we present a family of models that realize both the AFI and CIAFI phases, and support our
conclusions with numerical simulations of these models. We conclude with a discussion in
Sec. 5.

1 Summary of main results

We begin by summarizing the main results of this paper. We consider a two-dimensional peri-
odically driven systems of interacting fermions, which is k-particle (or many-body) localized
due to disorder1. To characterize the topology of the system, we quantify the circulating mo-

1For any choice of parameters, there exist disorder realizations where resonances occur between two or more
sites separated by a distance comparable to the system size, L. Disorder realizations supporting such accidental
resonances do not meet the conditions for k-particle or many-body localization, as defined in Sec. 2. However, for
a randomly chosen disorder realization within the k-particle localized region of parameter space, the probability
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tion of particles in the bulk. For concreteness, we take the system to be a square lattice with
lattice constant a. This circulating motion can be captured through the time-averaged magne-
tization density operator of each plaquette p in the Heisenberg picture, m̄p. The magnetization
density m̄p measures the total time-averaged current that circulates around the plaquette; see
Sec. 2 for a definition of this operator and a review of its properties. From its intrinsic prop-
erties, we show that the trace of m̄p defines a family of topological invariants for the system.
Specifically, the trace of m̄p in the `-particle subspace, Tr` m̄p, for each ` = 1, . . . k, must take
the same value for each plaquette in the system; this value cannot change under any smooth de-
formation of the parameters of the system that preserves k-particle localization. Hence Tr` m̄p
for each ` = 1, . . . k constitutes a topological invariant of the system. The intrinsic invariants
µ1 . . .µk described in the introduction are constructed by forming system-size independent,
integer-valued combinations of the (system size dependent) invariants Tr1 m̄p, . . . Trk m̄p; see
Sec. 3.3 for further details.

To illustrate the physical meaning of the invariants {µ`}, consider first the case where the
system holds a single fermion, initially located on site i in the lattice (we assume, without loss
of generality, that each site holds a single orbital). When all single-particle Floquet eigenstates
are localized, the particle will remain confined near site i at all times. However, the driving
field may cause the particle to undergo circulating motion, as schematically depicted in the
bottom left of Fig. 1(b). This circulating motion gives rise to a nonzero long-time-averaged
(orbital) moment, M̄i . For both single- and many-particle systems (which we consider below),
the total time-averaged magnetic moment can be computed as the integral of magnetization
density over the entire lattice,

∑

p m̄pa2. Ref. [31] showed that the sum of M̄i over all single-
particle states, S1 ≡

∑

i M̄i , is quantized as an integer times A/T , where A denotes the area of
the system; this integer defines µ1. As an implication, magnetization density is quantized in
the bulk of the system in regions where all states are occupied.

We now consider the dynamics resulting from initializing the system in a two-particle state
where sites i and j are occupied. We let M̄i j denote the total long-time-averaged magnetiza-
tion of the system resulting from this initialization. In the absence of interactions, one can
verify that M̄i j = M̄i + M̄ j . However, with interactions present, M̄i j generically differs from
M̄i + M̄ j when sites i and j are close to each other. The deviation can be measured by the
“magnetization cumulant” Ci j ≡ M̄i j − (M̄i + M̄ j). In Sec. 3 below, we show that, when all 1-
and 2-particle states are localized, the sum of Ci j over all distinct two-particle configurations,
S2 ≡

∑

i< j Ci j , must be quantized as an integer µ2 times A/T . The number µ2 cannot change
under any perturbation that preserves localization of states with 1 and 2 particles. Thus, µ2 is
a topological invariant protected by 2-particle localization, and characterizes the contribution
to the magnetization associated with 2-particle correlations. The higher-order invariants, µ`
for ` > 2, are defined analogously to µ2 from higher-order “cumulants” of the magnetization
(see Sec. 3.3 for details), and µ` is protected under any perturbation that preserves `-particle
localization.

We term the class of phases characterized by nonzero values of the higher-order invariants
(i.e., µ` for ` > 1) as correlation-induced anomalous Floquet insulators (CIAFIs). The AFI
phase is the MBL extension of the noninteracting AFAI, where all higher-order invariants must
be zero, and can thus only be characterized by a nonzero value of µ1. Hence the CIAFI phases
are distinct from the AFI.

In Sec. 4 we present a model that realizes a CIAFI phase with µ2 = −2. The model consists
of spin-1/2 fermions on a bipartite square lattice with Hubbard-like on-site interactions and

that the `-particle quasienergy spectrum (for each ` ≤ k) features any such an accidental resonance goes to zero
in the thermodynamic limit L →∞ [42]. In the following, we assume that the disorder realization under con-
sideration does not feature such accidental resonances; within the k-particle localized regime of parameter space,
this assumption holds with probability 1 in the thermodynamic limit.
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disorder, subject to the 5-step driving protocol of the canonical AFAI model [16, 30, 31] [see
Fig. 3(a)].

As discussed in Sec. 4, and shown numerically in Fig. 1(c), the strength of the Hubbard-type
interactions, V , controls the topological phase of the model [see Fig. 1(b)]: when interactions
are absent (V = 0), the system is in the AFAI phase with µ1 = 2, while all higher-order
invariants take the value zero [31]. When interactions are weak, but finite, our numerical
results indicate that many-body localization persists, and hence the system remains in the AFI
phase with µ1 = 2 (here the factor of 2 accounts for the two spin species). In particular,
the values of all higher-order invariants must remain zero [S2 = 0, see Fig. 1(c)]. However,
when interactions are much stronger than the tunneling rate between the sites, J , they act
to block tunneling to or from doubly-occupied sites, resulting in nonzero values of Ci j for
such configurations. We demonstrate that this effect drives the model into a CIAFI phase with
µ2 = −2 (S2 = −2A/T). In Fig. 1(d), we confirm that the transition between the AFI and
CIAFI phases in this model is accompanied by a divergence of the localization length of the
two-particle states of the system.

2 Many-body and k-particle localization in periodically driven sys-
tems

The main result of this work is to characterize the topological properties of time-evolution in
two-dimensional periodically-driven k-particle (or many-body) localized fermionic systems.
As a preliminary step, in this section we review the structure of the Floquet operator in such
systems.

The system we study is a two-dimensional lattice systems of interacting fermions, of physi-
cal dimensions L× L, subject to periodic driving. While our results apply to any type of lattice,
below we assume for simplicity that the system is defined on a square lattice with lattice con-
stant a and (time-dependent) nearest-neighbor tunneling. The time evolution of the system is
described by the time-periodic Hamiltonian H(t) = H(t + T ), where T is the driving period.
To avoid complications from the coexistence of thermalizing chiral edge states and a localized
bulk [37], we focus on the case where the system is defined on a torus, such that no edges are
present2.

2.1 Structure of Floquet operator in many-body localized systems

We first review the structure of the Floquet operator when the system is many-body localized,
i.e., when any state of the system exhibits localized behavior in the thermodynamic limit. The
concepts we introduce here also form a basis for our discussion of the more general case of
k-particle localization (Sec. 2.2).

When the system is MBL, it has a complete set of emergent local integrals of motion [39,
40,43,44] (LIOMs), {n̂a}. The LIOMs form a mutually commuting set of quasilocal operators
that are individually preserved by the stroboscopic evolution of the system3. The number of
independent LIOMs in the localized system is given by the dimension D1 of the system’s single-
particle Hilbert space. For spinless fermions with one orbital per site, we have D1 = L2/a2.
The LIOMs {n̂α} may thus be labelled by a single index α which runs from 1 to D1.

2As for the k = 1 (i.e., single-particle) special case [30, 31], we expect that k-particle localization in the bulk
can coexist with delocalized edge states [42]. A detailed study of the interplay between bulk localization and
delocalized edge states in the case of full MBL is left for future work; some aspects have been discussed in Refs.37,
51.

3Note that, due to the finite Lieb-Robinson velocity of the system, the conservation of the LIOMs by the strobo-
scopic evolution requires the system’s dynamics to also be localized at intermediate times.
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To make the discussion more concrete, the LIOMs can be identified from the system’s Flo-
quet operator [39], U(T ). The Floquet operator is defined as the evolution operator of the

system, U(t) ≡ T e−i
∫ t

0 d t H(t), evaluated for a time interval corresponding to one complete
driving period T . Here T denotes the time-ordering operation, and we work in units where
ħh = 1 throughout. Analogously to nondriven systems, the stroboscopic time-evolution (i.e.,
the time-evolution at integer multiples of the driving period T) is conveniently expressed in
terms of the eigenstates of the Floquet operator, {|ψn〉}, known as Floquet eigenstates. These
satisfy U(T )|ψn〉 = e−iεnT , where εn has units of energy and is known as quasienergy. Note
that each quasienergy εn is only defined modulo the driving frequency Ω≡ 2π/T . The strobo-
scopic time-evolution is hence equivalent to that generated by the static effective Hamiltonian,
Heff ≡

∑

n εn|ψn〉〈ψn|, since U(T ) = e−iHeffT .
In the many-body localized regime, the effective Hamiltonian takes the form

Heff =
∑

α1

εα1
n̂α1
+
∑

α1,α2

εα1α2
n̂α1

n̂α2
+ · · · . (1)

Each coefficient εα1...a` (referred to as a quasienergy coefficient in the following) is associated
with a particular combination n̂α1

. . . n̂αk
formed from the D1 distinct LIOMs, and has units of

energy. Each sum
∑

α1...α`
in Eq. (1) runs over all

�D1
`

�

combinations of ` distinct LIOMs, where
�a

b

�

denotes the binomial coefficient. The above form of the Floquet operator implies that each
LIOM n̂α is preserved by the stroboscopic evolution of the system, and thus the operators {n̂α}
are integrals of motion.

We now review some important properties of the LIOMs which we use in the follow-
ing. Firstly, each LIOM n̂α can be written in the form of a fermionic counting operator:
n̂α = f̂ †

α f̂α. Here f̂α is a (dressed) quasilocal fermionic annihilation operator, constructed
from the original lattice annihilation and creation operators {ĉi} and {ĉ†

i }, respectively, as:
f̂α =

∑

iψ
α
i ĉi +

∑

i jkψ
α
i jk ĉ†

i ĉ j ĉk +
∑

i...mψ
α
i jklm ĉ†

i ĉ†
j ĉk ĉl ĉm + · · · , where ĉi annihilates a fermion

on site i in the lattice. Through the identification of the LIOMs with fermionic counting oper-
ators, we note that

∑

α n̂α gives the total number of fermions in the system.
Another crucial property of the LIOMs is that each LIOM n̂α has its support localized around

a particular location rα in the lattice. Specifically, the magnitude of the coefficient ψαi1...i`
decreases exponentially with the distance s from any of the sites i1, . . . i` to rα: ψαi1...i`

∼ e−s/ξ f ,
where the length scale ξ f sets the spatial extent of the LIOMs. Similarly to the LIOMs, the
quasienergy coefficients {εα1...α`} also exhibit localized behavior. Specifically, εα1...α` decays
as e−d/ξε , where d is the distance between any two of the LIOM centers rα1

. . . rαk
; here ξε is

another localization length scale (not necessarily identical to ξ f , see Ref. 45).
As is evident above, MBL systems may be characterized by several distinct localization

lengths [45]. In particular, the LIOM expansion above establishes two length scales, ξ f and
ξε. In the following, we will make use of an additional relevant length scale, ξl , which char-
acterizes the spread of time-evolved operators.

2.2 k-particle localization

As we explained in the introduction, the topological classification we develop in this work
applies to a more general class of systems than those exhibiting full MBL; specifically, the in-
variants we identify can be defined for any system that is k-particle localized for some nonzero
k. As defined in the introduction, k-particle localization is understood as the situation where
all Floquet eigenstates holding ` particles for ` = 1, . . . k are localized. In the remainder of
this paper we will make use of similar notation, such that ` always refers to a specific particle-
number sector, while k refers to the “degree of localization” of the system: i.e., k is defined as
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Figure 2: a) Schematic depiction of the relationship between current and magneti-
zation density [Eq. (4)]. In many-body localized systems, the time-averaged current
passing through a cut C is determined by the difference between the currents cir-
culating around the cut’s two end-points, p and q. The currents circulating around
plaquette p are measured by the magnetization density operator m̄p. b) Ampere’s
law on the lattice. The difference in magnetization densities between two adjacent
plaquettes p and q gives the current Īpq on the bond between them.

the integer such that Floquet eigenstates in the system with k or fewer particles are localized,
while at least one Floquet eigenstate with k+ 1 particles is delocalized.

For k-particle localized systems, we expect a LIOM decomposition and effective Hamilto-
nian Heff as defined in Eq. (1) can be written to describe the evolution in Fock space of up to k
particles, with the expansion truncated to kth order. Full MBL can be seen as a special case of
k-particle localization; specifically, MBL can be understood as the k →∞ limit of k-particle
localization where the localization length of the truncated LIOM expansion described above
remains bounded for all k.

3 Topological invariants of the time evolution

In this section, as the main result of our work, we characterize the micromotion of k-particle
localized systems (which includes the case of MBL as described above). We show that such
systems may exhibit non-trivial micromotion, featuring steady-state circulating currents at
long times. We characterize these circulating currents by analyzing the time-averaged mag-
netization density operator of the system. From this analysis we identify a set of topological
invariants µ1 . . .µk that characterize the steady-state circulating currents that the system may
support.

In a stepwise fashion, below we consider the dynamics of a k-particle localized system in
the `-particle subspace for each ` = 1, . . . k (allowing k to be infinite for fully MBL systems).
This approach ensures that our results do not rely on full MBL to be valid, while still applying
to this class of systems if such exist.

3.1 Characterization of micromotion

To characterize the micromotion of k-particle localized systems, in this subsection we consider
the dynamics within the subspace of states holding ` particles, where ` ≤ k. Naively, one
might expect that the time-averaged current density in this subspace always vanishes due to
localization. Indeed, there can be no net flow of charge across any closed curve. However,
for an open curve (or “cut”), as schematically depicted in Fig. 2a, a nonzero time-averaged
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current may run across the cut due to uncompensated local circulating currents around the
curve’s endpoints. The total current circulating around a point in a given plaquette is precisely
the magnetization density in this plaquette.

To establish this relationship in more rigorous terms, we consider the total time-averaged
current that passes through a cut C between plaquettes p and q in the lattice, as depicted in
Fig. 2a. The operator IC(t) measuring the current through the cut C is given by

IC(t) =
∑

b∈BC

Ib(t) , (2)

where Ib denotes the bond current operator on bond b (restricted to the `-particle subspace4),
and the sum runs over the set BC of all bonds that cross the cut C [see Appendix A for an explicit
definition of Ib(t)]. Note that Ib(t), and thereby IC(t), depends on time in the Schrödinger
picture due to the explicit time-dependence of the Hamiltonian H(t).

To characterize the circulating currents in the system, we seek the long-time-averaged
expectation value of the current 〈〈IC〉〉 for an arbitrary initial `-particle state, |ψ〉. Here we in-
troduce the notation 〈〈O〉〉 ≡ limτ→∞

1
τ

∫ τ

0 d t 〈ψ(t)|O(t)|ψ(t)〉 to indicate the time-averaged
expectation value that results from the time-evolution of |ψ〉, |ψ(t)〉. The time-averaged cur-
rent 〈〈IC〉〉may equivalently be computed in the Heisenberg picture as 〈〈IC〉〉= 〈ψ| ĪC |ψ〉, where
ĪC denotes the long-time-average of the current operator IC in the Heisenberg picture:

ĪC ≡ lim
τ→∞

1
τ

∫ τ

0

dt U†(t)IC(t)U(t) , (3)

where U(t) denotes the system’s time-evolution operator as defined above. For later, we define
O ≡ limτ→∞

1
τ

∫ τ

0 d t U†(t)O(t)U(t) for any operator O.
As argued above, the time-averaged current ĪC across cut C can only have nonzero expecta-

tion value due to localized circulating currents at the cut’s two endpoints, p and q. This implies
that ĪC only depends on the details of the system near plaquettes p and q. In Appendix A we
verify this intuition, by proving that the operator ĪC only has support near the two endpoints
of the cut C . Specifically, assuming only k-particle localization and conservation of charge, we
show that, within the `-particle subspace, where `≤ k, ĪC must take the form

ĪC = m̄p − m̄q , (4)

where the operator m̄p has its full support (up to an exponentially small correction) within a
distance ξl from plaquette p, and similarly for m̄q. Here ξl is a finite, system-size independent
length scale measuring the spread of operators in the system (within the `-particle subspace):
specifically, for any time-periodic operator A(t) with a finite region of support R, the long-time
average Ā (when restricted to the `-particle subspace) is a local integral of motion with support
within a finite distance ξl from R (up to an exponentially small correction)5.

Crucially, the operator m̄p in Eq. (4) is the same for any cut with an endpoint in plaquette
p. Thus, Eq. (4) uniquely defines the operator m̄p for each plaquette p in the system, up to a
correction exponentially small in system size. Specifically, let plaquette q be separated from
plaquette p by a distance d, of order the system size, L. In this case, m̄p can be identified
uniquely from the terms of ĪC which have support nearest to plaquette p, up to a correction of
order O(e−d/ξl )∼O(e−L/ξl ).

4Note that, with this notation, each bond b is implicitly defined with an orientation, such that Ib(t) measures
the current along the bond’s orientation.

5This follows from straightforward generalization of the arguments in Ref. 46 to periodically driven systems.
In particular, note that our assumption of localization by definition precludes the possiblity of resonances between
far-separated sites that cause Īb to have support far away from the bond b (see also Footnote 1).
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For each plaquette p, m̄p may be defined from Eq. (4) as described above by considering a
cut of length∼ L (up to an exponentially small correction). The set of operators {m̄p} obtained
in this way then obey Eq. (4) for any two plaquettes in the lattice. In particular, when the
plaquettes p and q are adjacent, Eq. (4) implies that m̄p − m̄q = Īpq, where Īpq measures the
time-averaged current on the bond separating plaquettes p and q, as schematically depicted
in Fig. 2b. This relationship is the time-averaged lattice version of Ampere’s law, which relates
the current density, j, to the magnetization density, m: j=∇×m (see Ref.30). We thus identify
the operator m̄p as the time-averaged magnetization density in the system at plaquette p6. As
the above discussion shows, the time-averaged magnetization m̄p measures the total current
circulating around plaquette p.

3.2 Topological invariance of Trk m̄p

We now show that, for each value of ` = 1, . . . k, the trace of m̄p in the `-particle subspace,
Tr`m̄p, takes the same value for all plaquettes in the system. Subsequently (in Sec. 3.2.1)
we show that this universal value is quantized as an integer multiple of 1/T , z`. Periodically
driven k-particle localized systems of fermions in two dimensions are thus characterized by
the k integer-valued topological invariants z1 . . . zk.

We prove the topological invariance of Tr` m̄p through a simple line of arguments. First,
Eq. (4) implies:

Tr` m̄p − Tr` m̄q = Tr` ĪC . (5)

Using the cyclic property of the trace and U(t)U†(t) = 1, we find
Tr` ĪC = limτ→∞

1
τ

∫ τ

0 d t Tr` IC(t). Recall from Eq. (2) that the current operator IC(t) is given
by a sum of bond current operators. Noting that any bond current operator Ib(t) is by con-
struction traceless (see Appendix A), we conclude that Tr` ĪC = 0. Hence we find:

Tr` m̄p = Tr` m̄q . (6)

This relation holds for any pair of plaquettes in the lattice. Therefore, for a given disorder
realization, Tr` m̄p must take the same universal value for all plaquettes in the system.

We now show that the universal value of Tr` m̄p is a topological invariant of the system in
the thermodynamic limit (L→∞)7. Consider perturbing H(t)within some subregion R of the
system (by a small but finite amount), in such a way that `-particle localization is preserved.
Before and after the perturbation, Tr` m̄p only depends on the details of the system around the
plaquette p, up to an exponentially small correction (due to the exponentially decaying tails
of the LIOMs). Hence, for a plaquette p located a distance of order L/2 from the region R,
Tr` m̄p may only change by an amount of order e−L/2ξl due to the perturbation. Since Tr` m̄p is
given by the same value for all plaquettes in the system, Tr` m̄p must remain unaffected by the
perturbation even for plaquettes within the region where the system is perturbed, R. Thus,
Tr` m̄p is unaffected by any local perturbation that preserves `-particle localization, up to a
correction exponentially suppressed in system size. We conclude that Tr` m̄p is a topological
invariant of the system, protected by `-particle localization.

6Note that Ampere’s law is only meaningful when the current density has zero divergence. The long-time-
averaged magnetization density m̄p in an MBL system is always well-defined, since the time-averaged current
density always has zero divergence. Moreover, while Ampere’s law only defines magnetization density up to a
constant shift, m̄p is uniquely defined by the definition in Sec. 3.1.

7For a finite system, the fact that mp
α1 ...α`

is exponentially insensitive to the details of the system far away from

the plaquette p means that it may only change by an amount of order e−L/ξ when the system size is increased. This
implies that the sum Σα1 ...α`m

p
α1 ...α`

is given by its value in the thermodynamic limit, up to a correction of order

e−L/ξ.

10

https://scipost.org
https://scipost.org/SciPostPhys.10.6.128


SciPost Phys. 10, 128 (2021)

In the following, it is convenient to parameterize the topologically-invariant value of Tr` m̄p
by a dimensionless number; we hence let z` denote the value of Tr` m̄p in units of the inverse
driving period, such that Tr` m̄p = z`/T .

3.2.1 Quantization of z`

Here we show that the dimensionless invariant z` must take an integer value for each `. To
do this, we use an approach that generalizes the one employed for the noninteracting case
in Ref. 30. This subsection provides a summary of the proof, while full details are given in
Appendix B.

To begin, we consider the total time-averaged magnetization operator, M̄ ≡
∑

p m̄pa2.
Since Tr` m̄p takes the value z`/T for all plaquettes in the system, we have

Tr`M̄ = z` L2/T . (7)

To establish the quantization of z`, we proceed in two steps. First, we obtain Tr`M̄ from the
response of the system to the insertion of the weak uniform magnetic field B0 = 2π/L2 that
corresponds to one flux quantum piercing the torus (note that the flux quantum is given by
2π in the units we employ): we show that, in the thermodynamic limit,

e−iTr`(M̄)B0T = |Ũ(T )|`/|U(T )|` , (8)

where Ũ(T ) denotes the Floquet operator of the system in the presence of the magnetic field B0,
and | · |` denotes the determinant within the `-particle subspace. Subsequently, we show that
the determinants |Ũ |` and |U |` must be identical (see also Ref.30); this implies that Tr`(M̄)B0T
equals an integer multiple of 2π. Using B0 = 2π/L2 along with Eq. (7), we conclude that z`
must be an integer.

To obtain Eq. (8) (which forms the first step in our derivation), we show that the magnetic
moment of each `-particle Floquet eigenstate, |ψn〉, gives the response of its quasienergy, εn, to
the addition of the weak magnetic field B0. Letting ε̃n denote the perturbed quasienergy level
in the one-flux system associated with |ψn〉 (see the following for details, and, in particular,
for a discussion of perturbation-induced resonances), we show in Appendix B that

ε̃n − εn ≈ −〈ψn|M̄ |ψn〉B0 . (9)

Specifically, the sum of ε̃n − εn over all `-particle Floquet states satisfies
∑

n

(ε̃n − εn) = −
∑

n

〈ψn|M̄ |ψn〉B0 +O(e−L/ξ) , (10)

where O(e−L/ξ) denotes some (dimensionfull) correction which goes to zero as e−L/ξ in the
thermodynamic limit. We obtain Eq. (8) from Eq. (10) by multiplying with −iT , taking the
exponentials on both sides and recalling that |Ũ(T )|` = exp(−i

∑

n ε̃nT ) and likewise for U(T ).
Eq. (10) can be obtained through first-order perturbation theory in B0. In Appendix B,

we provide a rigorous derivation of this result, along with an exact definition of the one-
to-one relationship between the quasienergy levels of the one- and zero-flux systems which
Eq. (10) implicitly requires. (In particular, we give the prescription for uniquely identifying
ε̃n for each “unperturbed” quasienergy level εn.). Here we summarize the arguments: near
the region of support of |ψn〉8, the Hamiltonian of the one-flux system, H̃(t), is given by
H(t) −

∑

b Ib(t)θb +O(θ2
b ), where θb denotes the Peierls phase on bond b induced by the

8Here the region of support is understood as the region of the lattice where the particle density is significant in
the state |ψn 〉. See Appendix B for further details.
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magnetic field B0, and Ib(t) denotes the bond current operator (see Sec. 3.1 and Appendix A).
Note that there is a gauge freedom in choosing the Peierls phases; we choose them to be of
order 1/L2 near the region of support of |ψn〉 (such that the subleading correction in the above
expansion of H̃(t) can be neglected in the thermodynamic limit).

In the thermodynamic limit L →∞, one may naively expect that the quasienergy spec-
trum of the one-flux system can be obtained through a first-order perturbative expansion in
δH(t)≡ H̃(t)−H(t) (for each |ψn〉), which is approximately identical to −

∑

b Ib(t)θb. How-
ever, note that the convergence of such an expansion to first order is only ensured if the ratio
between the matrix elements of δH in the Floquet eigenstate basis and the corresponding
quasienergy level spacings, rmn ≡ 〈ψm|δH(t)|ψn〉/(εm − εn), is much smaller than 1 for all
choices of `-particle Floquet eigenstates m and n. While the perturbation δH(t) is of order L−2,
the many-body level spacing in the `-particle subspace is of order Ω/(L2`), where Ω ≡ 2π/T
denotes the angular driving frequency. Hence, in the thermodynamic limit rmn can potentially
be much larger than 1 for certain choices of m and n. However, in Appendix B we provide a
careful analysis that confirms our initial expectation: with a probability that goes to 1 in the
thermodynamic limit (for each ` between 1 and k), rnm goes to zero for all choices of m and n.
This result arises because states where 〈ψn|δH|ψm〉 is nonvanishing must be spatially close,
and hence experience local level repulsion.

The above discussion shows that the quasienergy level corresponding to the state |ψn〉 in
the one-flux system, ε̃n, is captured by first-order perturbation theory with respect to δH(t).
Expanding the quasienergy ε̃n to first order in δH(T ), we obtain

ε̃n − εn ≈
1
T

∫ T

0

dt 〈ψn|U†(t)δH(t)U(t)|ψn〉 (11)

(see Appendix B for proof). Using δH(t)≈ −
∑

b θb Ib(t) along with the fact that in a Floquet
eigenstate the time-averaged expectation value over one period is identical to the long-time
average, we find

ε̃n − εn ≈ −
∑

b

θb〈ψn| Īb|ψn〉 , (12)

where Īb denotes the long-time average of the bond current Ib(t) in the Heisenberg picture
(see Sec. 3.1).

Recall from Eq. (4) (see also Fig. 2b) that Īb = m̄pb
− m̄qb

, where pb and qb denotes the
two adjacent plaquettes separated by the bond b, such that b is oriented counterclockwise with
respect to pb

9. Inserting this result into Eq. (12), we note that each plaquette in the lattice
appears four times exactly (namely once for each of the four bonds bounding the plaquette).
Rearranging the terms from a sum over bonds to a sum over plaquettes, we thus find

ε̃n − εn ≈ −
∑

p

〈ψn|m̄p|ψn〉(θbp,1
+ θbp,2

+ θbp,3
+ θbp,4

) , (13)

where bp,i denotes the lattice bond that constitutes the ith edge of plaquette p (counted in
clockwise order starting from the positive x-direction), and θbpi

gives the Peierls phase ac-
quired by traversing the bond counterclockwise with respect to p. The sum of Peierls phases
θbp,1

+ θbp,2
+ θbp,3

+ θbp,4
hence gives the flux through plaquette p, and hence yields exactly

B0a2 for each plaquette. Eq. (9) follows by using M̄ ≡
∑

p a2m̄p.
The rigorous derivation in Appendix B shows that the correction to the approximate equal-

ity in Eq. (9) scales with system size as L−4, and hence is subleading in thermodynamic limit
(recall that B0 ∼ L2). We subsequently use the LIOM structure of the Floquet operator in

9Note that, with this notation, each bond b is implicitly defined with an orientation, such that Ib(t) measures
the current along the bond’s orientation.
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Eq. (1) to show that, remarkably, these individual corrections approximately cancel out when
summed over all `-particle states, yielding an exponentially suppressed net correction, which
scales with system size as e−L/ξ. This establishes Eq. (10), and thereby also Eq. (8).

What remains to be shown is that U(T ) and Ũ(T ) have identical determinants in the `-
particle subspace. We show this using the approach from Ref. 30: the determinant of any
time-evolution operator can be found from the time-integrated trace of the Hamiltonian [17]:

|U(T )|` = e−i
∫ T

0 d t ′ Tr`H(t). This follows because

∑

n

εn = −
i
T

∫ T

0

dt Tr[U†(t)∂t U(t)]` , (14)

which can be straightforwardly verified using the spectral decomposition of U(t). Identifying
the integrand in the right-hand side above as −iTr[H(t)]`, we find
|U(T )|` = exp(−i

∫ T
0 dt Tr[H(t)]`). Since the insertion of a magnetic flux only modifies off-

diagonal elements of the Hamiltonian (in the lattice site basis), the trace of the Hamiltonian
is unaffected by the magnetic field B0. Thus |Ũ(T )|` = |U(T )|`. Hence, the right-hand side of
Eq. (8) equals 1 and therefore the argument in the exponent of e−iTr`(M̄)B0T must be an integer
multiple of 2π. Combining this with Eq. (7) and using that B0 = 2π/L2, we conclude that z`
must be an integer.

3.3 Cumulant basis of invariants

The above discussion shows that k-particle localized systems are characterized by the k in-
dependent, integer-valued topological invariants z1 . . . zk. Here z` gives the trace of the mag-
netization density operator in the `-particle subspace (in units of the inverse driving period).
However, each z` depends on the size of the system, and thus is not an intrinsic property of the
system. For instance, in noninteracting systems, z` scales as L2(`−1), where L is the physical
dimension of the system10. In this subsection we construct linear combinations of the invari-
ants z1 . . . zk that give an equivalent set of system size independent invariants µ1 . . .µk that
characterize the intrinsic topological properties of the system.

The intrinsic invariants µ1 . . .µk can be expressed as the cumulants of the magnetization
operator, as discussed in Sec. 1. To illustrate, consider the time-averaged magnetic moment,
M̄ ≡

∑

p a2m̄p, of a state where two particles are initialized on sites i and j, which we denote
M̄i j . The average of the total magnetic moment, taken over all 2-particle states, is given by
1
D2
(z2 L2/T ), where D` denotes the dimension of the `-particle subspace. For each i and j, we

write M̄i j = M̄i + M̄ j + Ci j , where, as in Sec. 1, M̄i denotes the time-averaged magnetization
of the system holding a single particle initially located at site i. From this definition of Ci j , we
find

1
L2

∑

i< j

Ci j =
z2 − 2(L2 − 1)z1

T
, (15)

where we used that Tr`M̄ = z`L
2/T for ` = 1, 2. The right hand side is evidently an integer

multiple of 1/T . We take this integer to be our definition of the intrinsic invariant µ2.
Note that µ2 gives the mean value of Si ≡

∑

j 6=i Ci j over all sites i (recall that Ci j = C ji).
Importantly, due to the fact that the two particles only influence each other’s motion when
they are within a localization length of one another, the cumulant Ci j is only significant for
O(ξ2

l /a
2) choices of j for each i. The mean value of Si is therefore an intrinsic quantity, which

10For noninteracting systems, m̄p is a one-body operator, and mp
α1 ...αk

= 0 when k ≥ 2. Hence only µ1 may be

nonzero [see Eq. (21)]. In this case, Eq. (18) implies that Trkm̄p =
�D−1

k−1

�

µ1. Using D = L2, we see that
�D−1

k−1

�

scales
as L2(k−1) with the system size L.
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does not depend on the system size; in particular, it remains finite in the thermodynamic
limit. In the noninteracting case, Ci j = 0, and µ2 = 0. Thus, µ2 gives the contribution to the
magnetization from 2-particle correlations.

We extend this definition to higher numbers of particles, by expanding M̄ in terms of the
fermionic annihilation and creation operators, {ĉi}, {ĉ

†
i }. Since M̄ preserves the number of

particles, we have

M̄ =
∑

i1 j1

Mi1; j1 ĉ†
i1

ĉ j1 +
∑

i1 i2, j1 j2

Mi1 i2; j1 j2 ĉ†
i1

ĉ†
i2

ĉ j1 ĉ j2 + · · · . (16)

Without loss of generality, we take Mi1...ik; j1... jk to be nonzero only if i1 < i2 . . . < ik and
j1 > j2 . . . > jk, such that each independent combination of creation and annihilation op-
erators appears only once in the above sum. We see that the expectation value of M̄ in a
single-particle state |i〉 ≡ ĉ†

i |0〉 (where |0〉 denotes the vacuum state) is given by Mi;i . We
thus identify Mii = M̄i , where M̄i was defined above. Likewise, in the two-particle-state
|i j〉 ≡ ĉ†

i ĉ†
j |0〉 (where i < j), the expectation value of M̄ is given by Mi;i +M j; j +Mi j; ji . We

thus identify Mi j; ji = Ci j . The higher-order cumulants can be defined in a similar fashion,
such that Ci1,...i` =Mi1...i`;i`...i1 . Note that the long-time average of an operator in the Heisen-
berg picture, such as M̄ , must be diagonal in the Floquet eigenstate basis; for example, Mi; j
is diagonal in the basis of single-particle Floquet eigenstates.

Due to localization and the locality of interactions (see above), the coefficient Ci1...i` can
only be nonzero if all sites i1 . . . i` are spatially close (on the scale of ξl). Thus, through argu-
ments analogous to those below Eq. (15), for each `= 1 . . . k, T

L2

∑

i1,...i`
Ci1...i` is a (dimension-

less) intrinsic quantity of the system. This motivates us to define the `-th intrinsic invariant
as:

µ` =
T
L2

∑

i1...i`

Ci1...i` . (17)

To relate µ` to the invariants z1 . . . zk, we take the `-particle trace in Eq. (16). Using
Tr`[ĉ

†
i1

. . . ĉ†
iν

ĉiν . . . ĉi1] =
�D1−ν
`−ν

�

(this can be verified from combinatorial arguments), where

D1 = L2 denotes the dimension of the system’s single-particle subspace, we find

z` =
∑̀

ν=1

�

D1 − ν
`− ν

�

µν , (18)

where we used Tr`M̄ = z`L
2/T . By induction, one can verify that each µ` is an integer. First, by

the definition above, µ1 equals z1, and hence is an integer. For ` > 1, µ` = z`−
∑`−1
ν=1

�D1−ν
`−ν

�

µν.
Thus, if µ1 . . .µ`−1 are integers, µ` is also an integer (since z` is an integer).

To further elucidate the physical meaning of the intrinsic invariant µ`, we express it in
terms of the LIOMs that were introduced in Sec. 2. Since the long-time average of any Heisen-
berg picture operator is diagonal in the basis of Floquet eigenstates11, the operator m̄p must
be an integral of motion [46]. This requires m̄p to take the following form in terms of the of
the LIOMs {n̂α} that we introduced in Eq. (1):

m̄p =
∑

α1

mp
α1

n̂α1
+
∑

α1α2

mp
α1α2

n̂α1
n̂α2
+ · · · . (19)

Here, for each term involving a products of ` LIOMs, the sum
∑

α1...α`
runs over the

�D1
`

�

distinct
combinations of ` LIOM indices α1 . . .α`. Due to the finite support of the operator m̄p, we note
that the coefficient mp

α1...α` vanishes as e−d/ξl , where d is the distance from the plaquette p to
the center of the most remote of the LIOMs α1 . . .α`.

11In case of degeneracies, one can always pick a basis of eigenstates where m̄p is diagonal.
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Taking the `-particle trace in Eq. (19) and using Tr`[n̂α1
. . . n̂αν] =

�D1−ν
`−ν

�

, we find

z` =
∑̀

ν=1

�

D1 − ν
`− ν

�

∑

α1...αν

mp
α1...αν

/T . (20)

Comparing with Eq. (18) for each `= 1 . . . k, we find

µ` ≡
∑

α1...α`

mp
α1...α`

/T . (21)

Note that µ` is independent of the choice of plaquette p.
From the expression above, it is evident that µ` characterizes the intrinsic topological prop-

erties of the system. Since the magnetization coefficients {mp
α1...α`} vanish when the distance

from any of the LIOM centers rα1
. . . rα` to plaquette p becomes large, the right-hand side of

Eq. (21) is independent of system size in the thermodynamic limit. In essence, µ` captures the
contribution of `-body correlations to the magnetization density.

3.4 Quantized magnetization density in fully occupied regions

As a final part of this section, we show that the values of the invariants µ1 . . .µk can be mea-
sured directly from the magnetization density within a region of the system where all sites are
occupied. In particular, for the AFI (which is fully MBL and for which only µ1 takes nonzero
value), the magnetization density is given by µ1/T .

Consider preparing the system in an `-particle state |ΨR〉 (where ` ≤ k) by filling all sites
in some finite region of the lattice, R, of linear dimension d, with all sites outside R remain-
ing empty (here we assume this requires fewer than k particles). For a plaquette p located
deep within the fully occupied region, we find the time-averaged magnetization density as
〈〈mp〉〉 = 〈m̄p〉R, where we introduced the shorthand 〈O〉R ≡ 〈ΨR|O|ΨR〉. Using the expan-
sion of m̄p in Eq. (19), we thus find:

〈〈mp〉〉=
∑

α1

mp
α1
〈n̂α1
〉R +

∑

α1α2

mp
α1α2
〈n̂α1

n̂α2
〉R + · · · . (22)

To analyze the sum, we note that, for a LIOM n̂a whose center ra is located deep within the filled
region R, all sites where n̂a has its support are occupied. Thus n̂α|ΨR〉= |ΨR〉+O(e−d/ξl )12.
Here the correction arises from the exponentially decaying tail of n̂α outside the filled region.
For terms in the above equation where the centers of all the LIOMs α1 . . .αν are located near
the plaquette p, the above result implies that 〈n̂α1

. . . n̂αν〉R = 1+O(e−d/ξl ), since all of the
LIOMs n̂α1

. . . n̂αν are located deep within the initially occupied region. For all remaining terms
in Eq. (22), one or more LIOMs α1 . . .αν are located outside the filled region, and thus reside at
least a distance ∼ d from the plaquette p. In this case, the coefficient mp

α1...αν is exponentially
small in d/ξl [see the discussion below Eq. (19)]. For both categories of terms we can thus
set 〈ΨR|m

p
α1...αν n̂α1

. . . n̂αν |ΨR〉= mp
α1...αν , at the cost of a correction of order e−d/ξl . Doing so,

we obtain
〈〈mp〉〉=

∑

α1

mp
α1
+
∑

α1α2

mp
α1α2
+ . . .+O(e−d/ξl ) .

Using Eq. (21), we identify the `-th sum above as the invariant µ`/T . Recalling that
〈ΨR|m̄p|ΨR〉= 〈〈mp〉〉, we thus find:

〈〈mp〉〉=
1
T

∑̀

ν=1

µν +O(e−d/ξl ) . (23)

12To see this, note that n̂α|ΨR〉= (1− f̂α f̂ †
α
)|ΨR〉. The operator f̂ †

α
is a polynomial in {ĉα} and {ĉ†

α
}, where each

term has the net effect of creating one fermion in the region around LIOM α. Since all sites near the LIOM α are
occupied for the state |ΨR〉, f̂ †

α
|ΨR〉= 0, and thus n̂α|ΨR〉= |ΨR〉.
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Figure 3: Simulations of model studied in Sec. 4 in the case of weak interactions,
where it realizes the AFI phase (see main text for details). (a) Schematic depic-
tion of the driving protocol. (b) Final particle density after 5000 driving periods for
initialization in a random on-site configuration of particles (initial configuration of
particles marked by white). (c) Histogram of magnetic moments of 1972 randomly
chosen initial states that are evolved for 5000 periods (see main text for details). A
single outlier at value 3.89 is not shown here. (d) Time-averaged bond-current (red)
and magnetization density in the system (blue) for the realization depicted in panel
(a).

The above discussion thus shows that the magnetization density deep within the filled region
is given by the (convergent13) sum of the invariants {µ`}. In particular, for the AFI, where
only µ1 is nonzero, 〈〈mp〉〉= µ1/T .

We note that the individual invariants µ1 . . .µk may be extracted from the dependence of
the magnetization density on the particle density in the system. Specifically, for a random ini-
tial state with a uniform, finite particle density ρ, the expectation value 〈n̂α1

. . . n̂αν〉, averaged
over all choices of LIOMs, is given by ρν. Hence, at finite particle density ρ, the average mag-
netization density in the system is given by 〈〈mp〉〉 ≈

1
T

∑`
ν=1µνρ

ν. The values of the individual
invariants µν can thus be extracted from a fit of 〈〈mp〉〉 as a function of ρ.
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4 Specific model and numerical simulations

In this section we present a simple model for a periodically driven system of interacting
fermions in two dimensions, which realizes either the AFI or a CIAFI phase. The model was
briefly discussed in Sec. 1. We first consider the limit of weak interaction. In this regime we
argue that the system realizes the AFI phase with µ1 = 2. Subsequently, we show that, in the
limit of strong interactions, the model is characterized by a quantized, nonzero value of the
“two-particle cumulant” of the magnetization density, consistently with a CIAFI phase char-
acterized by µ2 = −2. To support our conclusions, we provide numerical simulations of the
model in the above regimes.

The model we consider consists of fermions with spin-1/2 living in a two-dimensional
bipartite square lattice with periodic boundary conditions. The Hamiltonian is given by

H(t) = Hdr(t) +Hdis +Hint , (24)

where Hdr(t) describes piecewise-constant, time-dependent hopping, Hdis denotes a disorder
potential, while Hint describes an on-site interaction between the fermions. The driving pro-
tocol, which is contained in Hdr(t), is divided into five segments, as depicted in Fig. 2a. The
first four segments each have duration ηT/4, while the fifth segment has duration (1− η)T ;
the parameter η is a number between 0 and 1 which controls the localization properties of the
model (see below). In the first four segments, Hdr(t) turns hopping on for the four different
bond types in a counterclockwise fashion, as indicated in Fig. 3a, while Hdr(t) = 0 in the fifth
segment. More specifically, in the j-th segment (where j ≤ 4),

Hdr(t) = J
∑

r∈A

∑

s

(ĉ†
r+b j ,s

ĉr,s + h.c.) . (25)

Here ĉr,s annihilates a fermion on site r with spin s, and the vectors {b j} are given by
b1 = −b3 = (a, 0) and b2 = −b4 = (0, a). The r-sum above runs over all sites in sublat-
tice A of the bipartite square lattice. We set the tunneling strength to J = 2π

ηT , such that, in the
absence of disorder and interactions, Hdr would generate a perfect transfer of particles across
the active bonds in each of the first four segments. The parameter η controls how rapidly the
“hopping π-pulses” are applied (and thereby how strong they are relative to the disorder and
interaction potentials), and thus controls the localization properties of the model; smaller η
yields stronger localization (see Ref. 37).

The disorder and interaction terms Hdis and Hint are constant throughout the driving period
and are given by

Hdis =
∑

r,s

wrρ̂r,s, Hint = V
∑

r

ρ̂r,↑ρ̂r,↓ . (26)

For each site, wr takes a random value in the interval [−W, W ], and ρ̂r,s ≡ ĉ†
r,s ĉr,s denotes

the occupancy on site r. The parameter V has units of energy and denotes the strength of the
interactions. Note that when V � J , tunneling is effectively blocked between doubly-occupied
and vacant sites. As we show below, this blocking leads to a nonzero value of the higher-order
invariant µ2.

To characterize the topological properties of the model, we consider the dynamics of par-
ticles in the two limits of weak and strong interactions. Below we demonstrate how these two

13To see that the sum in Eq. (23) converges, note that the coefficient mα1 ...α` is exponentially suppressed in
d/ξ, where d is the distance from any of the LIOM centers rα1

. . . rα` to the plaquette p. The number of distinct
LIOMs whose centers are located within a radius ξl from the plaquette p is of order ξ2

l /a
2, where a is the lattice

constant in the system. Therefore, the coefficient mp
α1 ...α`

vanishes exponentially when `� ξ2
l /a

2. Recalling that
µ` ≡ Σα1 ...α`m

p
α1 ...α`

must take integer value for each `, we thus conclude that µ` equals zero when `� ξ2
l /a

2.
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regimes drive the model into the AFI phase with µ2 = 2 and a CIAFI phase with µ2 = −2,
respectively. We substantiate these conclusions with numerical simulations in Sec. 4.1.

In the absence of interactions, V = 0, the model in Eq. (24) reduces to two decoupled
copies of the AFAI model from Ref. 31. When interactions are weak, but nonzero, Ref. 37
suggests that the phase remains MBL (i.e., non-thermalizing). Since the model should be
connected to the non-interacting AFAI, we hence expect the system to be in the AFI phase [37]
with winding number µ1 = 2 (see also discussion in Sec. 1). The factor of 2 arises from the
extra species of fermions introduced due to the spin-1/2 degree of freedom.

We now show that the model above is in a CIAFI phase with µ2 = −2 in the limit of strong
interactions, V →∞. To see this, we consider the time-averaged magnetic moment M̄i j (see
Sec. 3.3) that results when initially occupying two single-particle states i and j, where each
choice of i or j corresponds to a particular site and spin. In the limit V → ∞, tunneling
is blocked when the first particle is located on, or tunnels to, a site occupied by the second
particle. Hence, doublons (i.e., states where two particles occupy the same site) remain frozen
in place, implying that M̄i j = 0 if i and j correspond to the same site being occupied. For all
other initial configurations, interactions effectively do not affect the dynamics, and one can
verify that M̄i j = M̄i+M̄ j , where M̄i denotes the time-averaged magnetic moment in the single-
particle state i. As a result, the “cumulant” Ci j ≡ M̄i j − M̄i − M̄ j takes value −2a2/T when the
initialization i j corresponds to a doublon configuration, and value zero for all other 2-particle
initializations (see Sec. 3.3 for definition of Ci j). We recall from Sec. 3.3 that µ2 = S2T/L2,
where S2 ≡

∑

i< j Ci j T/L2. Since there are L2/a2 distinct doublon configurations, where L
denotes the physical dimension of the lattice, we find that S2 = −2L2/T . Thus, µ2 = −2 in
the limit W = 0, V →∞. From the discussion in Sec. 3, we expect the quantization of µ2 to
persist for finite disorder, W , and finite (but large) values of the interaction strength, V .

The discussion above shows that the model in Eq. (24) is characterized by two distinct
values of the invariant µ2 in the limits where V = 0 and V →∞, respectively. Due to the
robust quantization of µ2, which is protected by 2-particle localization, we hence conclude
that the system supports two distinct topological phases that arise when V � J and V � J ,
respectively. The transition between the phases is separated by a critical point, Vc [42]: when
V is increased past Vc in the thermodynamic limit, the localization length in the two-particle
sector should diverge at V = Vc, while µ2 changes abruptly from 0 to −2.

4.1 Numerical simulations

Here we substantiate the discussion above through numerical simulations of the model: we
first consider the limit of weak interactions, and show that the (quantized) average magnetic
moment per particle remains unaffected by the nonzero interaction strength, as our analytical
discussion predicts for an AFI phase with µ1 = 2. Subsequently, we show that that the model is
characterized by a quantized nonzero value of the invariant µ2, when V is large, demonstrating
that the system is in a CIAFI phase, distinct from the µ1 = 2,µ2 = 0 AFI phase.

4.1.1 Weak interactions: AFI phase with µ1 = 2

We first present data from simulations of the model described above, in the limit of weak in-
teractions. We consider a single disorder realization of the model with parameters W = 2π/T ,
V = 0.1 W , and η = 1/16. From Ref. 37, we expect the model is many-body localized with
these parameters. Since the model is obtained by adding weak interactions to a model of the
AFAI with winding number 2 (see Refs. 30, 31; here the factor of 2 arises because of the spin
degeneracy), we moreover expect the system to be in the µ1 = 2 AFI phase (i.e., with µ` = 0
for ` > 1).
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To probe the topology of the system, we compute the mean magnetic moments of random
time-evolved 4-particle states in a lattice of 6 × 6 sites. The long-time averaged magnetic
moment, introduced in Sec. 3, is defined as M̄ =

∑

p a2m̄p. The mean expectation value of
M̄ , averaged over randomly chosen `-particle states (i.e., states chosen randomly from a given

orthonormal basis) is given by M0[`]≡
�D1
`

�−1
Tr` M̄ , where the binomial coefficient

�D1
`

�

counts
the number of possible `-particle states in the system of D1 = 2L2 single-particle states (here
the factor of 2 arises due to the spin degeneracy, and L = 6 for the case we consider). Using
that Tr`M̄ = z`L

2/T , along with Eq. (18), we can express M0[`] in terms of the topological
invariants µ1 . . .µ`: M0[`] =

L2

T

∑`
ν=1 Aνµν, where Aν =

�D1−ν
`−ν

�

/
�D1
`

�

. For ` = 4 particles, our
expectation that µ1 = 2 while µ` = 0 for ` > 1 hence would lead to

M0 =
4a2

T
, (27)

corresponding to an average magnetic moment per particle of a2/T . This result was previ-
ously established for the noninteracting limit of the model (where the system is in the AFAI
phase) [30]. The discussion above hence shows that the quantized average magnetic moment
per particle in the AFAI is unaffected by interactions, as long as the system remains in the AFI
phase.

To compute M0 in the simulation, we pick as initial states 1972 random configurations
of four particles located on individual sites. We evolve each initialization for 5,000 driv-
ing periods with a fixed disorder realization (the same for all initial states). Fig. 3b shows
the particle density in the resulting final state for one of the realizations, after evolution for
5,000 periods. White dots and arrows indicate the corresponding initial configuration of oc-
cupied sites and spins. Note that the particle density remains non-uniform and confined near
the initial location of the particles, consistent with many-body localization. We compute the
time-averaged magnetic moment 〈M̄〉 for each of the 1972 states, using the time-averaged
bond-currents. The 1972 values of 〈M̄〉 we obtained in this way are plotted in the histogram
in Fig. 3c. Fig. 3d shows the time-averaged bond currents and magnetization density in the
system for the same state used in Fig. 3b, used to calculate the magnetization. The distri-
bution of 〈M̄〉 obtained from these initializations was found to have mean 3.999997 a2/T
and standard deviation δM = 0.001a2/T , resulting in a standard deviation of the mean at
δM/

p
1972≈ 0.00003a2/T . This result is consistent with a µ1 = 2 AFI phase [see Eq. (27)].

4.1.2 Strong interactions: CIAFI phase with (µ1,µ2) = (2,−2)

We now demonstrate that strong interactions drive the model into a CIAFI phase with µ2 = −2.
These data were briefly discussed in Sec. 1. Here we present them in further detail.

To show that large interaction strength drives the model into the CIAFI phase, we keep W
and η fixed, but vary V . We moreover consider a single disorder realization with 18×18 sites.
For each value of V we consider, we obtained the time-evolution over 1000 driving periods for
between 179 and 324 randomly chosen initializations where the two particles were located
on particular sites and had distinct spins14.

To establish the existence of a phase transition between the AFI and CIAFI phase, we con-
sidered the localization length in the system. We measured this using the inverse participation
ratio of the density in the final state that resulted from each of the initializations we consid-
ered, P ≡ (

∑

r |ρr|2)−1, where ρr =
∑

s=↑,↓〈ĉ
†
r,s ĉr,s〉 denotes the particle density on site r in the

14More precisely, the initializations were divided into three classes, that contained initializations where the
two particles were located on the same site, adjacent sites, and all other “on-site” initializations, respectively. The
average magnetization was found through the sum of the obtained mean values of 〈M̄〉within each class, weighted
according to the number of states in the class.
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final state. When each particle is localized on a particular site, P takes the value 1/4 (in the
case of a doublon configuration) or 1/2. In contrast, P = L2/4 indicates full delocalization
(corresponding to ρr = 2/L2 for all r). More generally, P can effectively be seen as 1/4 times
the number of sites where the final state has support. This motivates us to define the effec-
tive localization length of the system, ξIPR, as the average value of

p
4Pa2 obtained from the

initializations we probed.
In Fig. 1d, we plot the above localization length of the system, ξIPR, as a function of V .

As is evident in the figure, the localization length remains small for small values of V . This
indicates that the µ1 = 2 AFI phase at V = 0 remains stable for finite values of the interaction
strength, as was also suggested by the results in Sec. 4.1.1. In the range between V = J and
V = 10J , the localization length diverges, consistent with a phase transition. For V ¦ 10J ,
the localization length becomes small again, indicating the system has transitioned back into
a stable phase. The localization length appears to remain small as V goes to ∞; we hence
expect this new phase to be the µ2 = −2 CIAFI phase.

To verify the existence of two distinct phases (namely the µ1 = 2 AFI and the µ1,µ2 = 2,−2
CIAFI phases), we computed the sum S2 ≡

∑

i< j Ci j , where Ci j = M̄i j − M̄i − M̄ j (see Sec. 3.3
or 1 for definition of these quantities). In Fig. 1c, we plot the value of this sum. The data
shows a clear transition between µ2 = 0 to µ2 = −2 in the range V = J to V = 10J , where
the localization length diverges. This further supports the existence of a µ1,µ2 = 2,−2 CIAFI
phase for strong interactions, which is distinct from the AFI phase.

5 Discussion

In this work, we characterized the topological properties of periodically driven systems of in-
teracting fermions in two dimensions. We established that the quantized magnetization of the
AFAI persists in its interacting generalization, the anomalous Floquet insulator (AFI). As a sec-
ond result, we identified a new class of intrinsically-correlated nonequilibrium phases, namely
the correlation-induced anomalous Floquet insulators (CIAFIs). The topological invariants
characterizing the CIAFIs are encoded in the multi-particle correlations of the time-averaged
magnetization density. While this work focused on driven fermionic models and their bulk
topological invariants, our discussion can be readily extended to bosonic systems with particle
number conservation.

Importantly, the topological protection of the CIAFIs does not require full many-body lo-
calization, but rather relies on k-particle localization, where the system is localized for any
finite number of particles up to a maximum number, k. The existence of k-particle localiza-
tion is well-established [42]. Since the existence of the CIAFI does not rely on full many-body
localization, we may expect the behavior described above to be manifested via experimental
signatures in the prethermal dynamics of systems which eventually thermalize at long times.
Searching for other models that give rise to nontrivial values of these invariants and charac-
terizing the physical properties that they imply will be interesting directions for future studies.

We demonstrated that CIAFIs may be realized in a tight-binding model with Hubbard type-
interactions subject to a stepwise driving protocol. Recently, a noninteracting version of such
a model was experimentally realized with ultracold atoms in optical lattices [47]. The CIAFI
phases may be achieved in a similar experiment by adding Hubbard-type interactions to the
system. We expect this type of interactions is natural to implement with ultracold atoms in
optical lattices. Thus, we speculate that experimental realization of CIAFI phases is feasible
with current experimental platforms.

At this point it is not clear whether the CIAFI phases are compatible with MBL, i.e., if they
can exist in the thermodynamic limit of L → ∞ and k → ∞. (For finite k, localization is
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possible, and the physics described above is rigorously applicable.) In particular, we expect
that CIAFI phases will exhibit dynamics strongly dependent on the initial state. In the model
of Sec. 4, initial states where some large region R is doubly occupied would support chiral
edge states moving around such regions. If the initial state contains such “internal edges,” they
may thermalize and serve as a weak heat bath for the remainder of the system. Next, if the
density of filled regions R in the system is increased, we expect that at some point thermalizing
internal edges will form a connected network, destroying localization. In contrast, initial states
without filled, connected regions are expected to be much more stable, since there are no direct
thermalization processes which involve few nearby particles; thermalization, if it occurs at all,
will proceed either due to rare thermal inclusions, or due to multi-particle tunneling into, e.g.,
a state with “internal edges.”

After the initial posting of this work, another preprint independently classified the bulk
topological properties of two-dimensional MBL systems, when particle number conservation
was present [48]. Interestingly the classification in Ref. 48 did not contain the CIAFI phases,
suggesting that CIAFI phases and MBL may be incompatible. A definite answer for this ques-
tion, however, remains lacking, and will be an interesting direction for future studies. In any
case, the features above suggest that CIAFI phases (rigorously established for finite particle
number) may provide a versatile playground for studying the interplay of weak thermalizing
baths and MBL regions, which is expected to give new insights into the stability of MBL in 2d.

The topological classification we developed in the present work relied on particle number
conservation. Chiral phases of spins and bosons without particle number conservation, which
are close relatives of the AFAI (with higher-order invariants being zero, µ` = 0, ` > 2), were
considered in Ref. 29. It was shown that, when many-body localized, such phases are charac-
terized by a quantized topological index which describes the pumping of quantum information
along the edge over one driving period. Such an index arises from the rigorous classification of
anomalous local unitary operators in one-dimensional systems, developed by Gross et al [49].
It will be an interesting direction of future studies to investigate whether the bulk classification
of the present work can be generalized to systems where particle conservation is not present.

In the future, it will moreover be interesting to investigate how thermalization is mani-
fested in experimentally realistic situations for the CIAFI phases, and what the corresponding
time scales are. With k-particle localization present (for some large k), thermalization must
be driven by correlated processes involving more than k particles. It is natural to expect that
such thermalizing process will be parametrically slow, and therefore signatures of the CIAFI
phases (and the AFI), such as quantization of magnetization, would be observable even if MBL
is eventually destroyed. A systematic study of such thermalization timescales will be an inter-
esting question for future studies, with significance beyond the context of topological phases
we considered here.
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Figure 4: a) Schematic depiction of the argument showing that time-averaged cur-
rent through a cut C between to plaquettes p and q only depends on the cut’s two
end-points. Specifically, since there can be no accumulation of charge over time in
the region between the cuts C and C ′, the same current must pass through the two
cuts, and thus ĪC = ĪC ′ for any two cuts C and C ′ between the plaquettes p and q. b)
The vanishing divergence of current implies that Ipq + Iqr = Ipr .

A Proof of Eq. (4)

In this appendix we establish that the time-averaged current that passes through a cut C be-
tween two plaquettes p and q is determined by two quasilocal operators, m̄p and m̄q, with
support centered at p and q, respectively [see Eq. (4) and Fig. 4]. By considering two pla-
quettes separated by a distance much longer than the localization length, this provides a pre-
scription for uniquely identifying the magnetization density operator m̄p (up to exponentially
small corrections in the distance, which can be of order the system size).

We recall from the main text that the operator corresponding to current through the cut C
is given by

IC(t) =
∑

b∈BC

Ib(t) , (28)

where Ib denotes the bond current operator on bond b, and the sum runs over all bonds that
cross the cut C .

The goal of this Appendix is to find the time-averaged expectation value of the current,
〈〈IC〉〉, resulting from some given initial state |ψ〉. As in the main text, we use
〈〈O〉〉 ≡ limτ→∞

1
τ

∫ τ

0 d t 〈ψ(t)|O(t)|ψ(t)〉. The time-averaged expectation value of the cur-
rent IC may equivalently be computed in the Heisenberg picture as 〈〈IC〉〉 = 〈ψ| ĪC |ψ〉, where
|ψ〉 denotes the initial state of the system. Here, as in the main text, for any Schrödinger
picture operator O(t) [such as IC(t)], Ō denotes the time-average of the current IC in the
Heisenberg picture,

Ō ≡ lim
τ→∞

1
τ

∫ τ

0

dt U†(t)O(t)U(t) . (29)

The time-averaged current operator ĪC is thus obtained by transforming the time-dependent
operator IC(t) in Eq. (28) with evolution operator U(t), and integrating over time as in
Eq. (29).

To explore the properties of ĪC , we consider the time-averaged current for a different cut,
C ′, between the same two plaquettes p and q, see Fig. 4a. We note that IC(t)− IC ′(t) = ṄR(t),
where NR measures the number of particles in the region R between cut C and C ′ (shaded
region in Fig. 4a). Importantly, since NR is bounded by the number of sites in the region R, the
long-time-averaged value of 〈ṄR〉 must vanish. We thus conclude that 〈〈IC〉〉 = 〈〈IC ′〉〉. Since
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this holds for any initial state |ψ〉, we conclude that

ĪC = ĪC ′ . (30)

As a next step, we note from Eqs. (28)that ĪC =
∑

b∈BC
Īb, where Īb denotes the time-

averaged current on bond b [see Eq. (29)]. We note that the operator Ib(t) is local, with
support only on the sites connected by the bond b. For many-body localized systems, this
implies that the operator Īb is a localized integral of motion, with support within a distance
∼ ξl from the bond b, up to an exponentially small correction15. Hence, ĪC is given by a sum
of terms, each of which only has support within a region of radius ξl , centered at a point along
the cut C .

The requirements that ĪC is given by a sum of local terms as described above, while at the
same time taking the same value for all cuts between plaquettes p and q [Eq. (30)], significantly
constrains the form that ĪC can take. In particular, this implies that ĪC = I(p, q), where the
operator I(p, q) only depends on the locations of the two plaquettes p and q (and not on the
details of the cut C). Moreover, for any cut between plaquettes p and q, I(p, q) is given by
a sum of terms which only have support in a region of width ξl around the cut. For any site
located a distance larger than ξl from both plaquettes p or q, we can find a cut that remains
separated from the site by a distance larger than ξl . Therefore the support of operator I(p, q)
can only include sites within a localization length of the endpoints p and q. Hence, we write:

I(p, q) = A1(p, q) + A2(p, q) , (31)

where A1(p, q) has its full support within a region of width ξl around plaquette p, and A2(p, q)
has support around plaquette q. The operators A1(p, q) and A2(p, q) depend only on the loca-
tions of plaquettes p and q, respectively.

By letting the cut from p to q go through an arbitrary plaquette r on the torus (see Fig. 4b),
we conclude from the arguments above the I(p, r) + I(r, q) = I(p, q). This implies

A1(p, r) + A2(p, r) + A1(r, q) + A2(r, q) = A1(p, q) + A2(p, q) . (32)

The only terms on the left hand side with support near plaquette r are the terms A2(p, r), and
A2(r, q), while none of the terms on the right-hand side have support near plaquette r. We
thus conclude that A2(p, r) = −A1(r, q) for any choice of two plaquettes p and q. Hence we
may write A1(r, q) = A(r), and A2(p, r) = −A(r) for some function A(r) which only depends
on the location of plaquette r and has its full support near plaquette r. Using this in Eq. (31),
we find

I(p, q) = A(p)− A(q) . (33)

Identifying A(p) = m̄p, we thus conclude that Eq. (4) holds.

B Derivation of Eq. (10)

Here we derive Eq. (10), which is used to establish the integer quantization of the topological
invariant z`.

To recapitulate, we consider a k-particle localized system, where k may be infinite in the
case of full MBL. For a given `≤ k, we consider the `-particle Floquet eigenstates of the system,
{|ψn〉}, with corresponding quasienergies {εn}, and let ε̃n denote the perturbed quasienergy

15This follows from straightforward generalization of the arguments in Ref. 46 to periodically driven systems.
In particular, note that our assumption of localization by definition precludes the possiblity of resonances between
far-separated sites that cause Īb to have support far away from the bond b (see also Footnote 1).
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corresponding to εn when the weak uniform magnetic field B0 = 2π/L2 is inserted that results
in one flux quantum piercing the torus (see below for details). The goal of this Appendix is to
establish two results. First, we show that for each `-particle Floquet eigenstate, |ψn〉,

ε̃n = εn − B0〈ψn|M̄ |ψn〉+O(L−5/2) . (34)

Here, and in the remainder of this Appendix, O(L−p) indicates a correction which goes to
zero at least as fast as L−p16. (I.e, in the following, we only indicate how rapidly corrections
decrease with system size.) Secondly, we show that, when summed over all `-particle Floquet
states, the corrections of order L−5/2 in Eq. (34) approximately cancel out, yielding a net
correction which is exponentially suppressed in system size:

∑

n

(ε̃n − εn) = −
∑

n

B0〈ψn|M̄ |ψn〉+O(e−L/ξ) , (35)

where O(e−L/ξ) likewise indicates a correction that goes to zero as e−L/ξ in the thermodynamic
limit.

Eqs. (34) and (35) implicitly require that, for each quasienergy level εn of the (unper-
turbed) zero-flux system, it should be possible to identify a unique quasienergy level ε̃n of the
(perturbed) one-flux system which satisfies Eq. (34). In Sec. B.4 below, we confirm that such
a complete one-to-one identification is possible for all but a set of disorder realizations which
has measure zero in the thermodynamic limit.

As noted in the main text, Eq. (35) does not follow trivially from first-order perturbation
theory in the weak magnetic field B0: under a continuous perturbation of the system, the
system’s quasienergy spectrum undergoes exponentially many avoided crossings due to reso-
nances between many-body Floquet eigenstates separated by a large distance in Fock space.
Hence, first-order perturbation theory breaks down for the system. Instead, we establish
Eq. (10) with an alternative approach, using the localization properties of the many-particle
Floquet eigenstates.

In order to follow this approach, we use a succession of auxiliary results which are not
discussed in detail in the main text, but are crucial for the proof of Eqs. (34) and (35). The
line of arguments proceeds as follows: we first show explicitly how the uniform magnetic field
B0 can be implemented in the system (Sec. B.1). Subsequently, in Sec. B.2 we show that,
for a given finite region S of the lattice, it is always possible to choose a gauge where the
Hamiltonian H̃ of the one-flux system resembles the Hamiltonian H of the zero-flux system
locally within S, and likewise for the Floquet operators Ũ and U (Sec. B.3). Using this result,
we demonstrate in Sec. B.4 that the Floquet eigenstates and quasienergies, {|ψn〉} and {εn},
are robust to the perturbation caused by inserting of the weak uniform magnetic field B0, such
that the one-to-one identification described above is possible. From these auxilliary results,
we prove Eq. (34) in Sec. B.5, and finally use Eq. (34) along with the LIOM structure of the
system to establish Eq. (35) (Sec. B.6).

For the sake of brevity, throughout this Appendix we will work with a fixed degree of
localization and particle number, unless otherwise noted. Thus, in the following, k and ` are
fixed constants that refer to the system’s degree of localization and to the number of particles
in the system, respectively. We take `≤ k in the discussion below.

B.1 Implementation of magnetic flux

Here we discuss how the magnetic flux is implemented. The system we consider consists
of interacting fermions on a lattice with the geometry of a torus, of dimensions L × L. The

16Specifically, we require that limL→∞ Lp′O(L−p) = 0 for p′ < p.
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Hamiltonian of the system (in the absence of a flux) takes the form

H(t) =
∑

i j

Ji j(t)ĉ
†
i ĉ j +Hint(t) , (36)

where ĉi annihilates a fermion on site i in the lattice. Here the first term contains both hopping
and on-site potentials, including disorder, with Ji j(t) = J∗ji(t), while the term Hint accounts for
interactions. We allow both parts of the Hamiltonian to be time-dependent, with periodicity
T . To simplify the discussion, we consider the case of a square lattice model with nearest-
neighbour hoppings, and a density-density interaction described by Hint =

1
2

∑

i, j ρ̂iρ̂ jVi j(t),

where ρ̂i = ĉ†
i ĉ j and Vi j(t) = Vji(t) is real. In the general case of a quasilocal Hamiltonian,

the results below can also be derived using similar arguments.
In this subsection we are interested in finding the Hamiltonian H̃(t) of the system when

the uniform magnetic field B0 =
2π
L2 is inserted, corresponding to one flux quantum through

the surface of torus. Having assumed Hint(t) to consist of density-density interactions, only
the first term in Eq. (36) is affected by the magnetic flux. The Hamiltonian H̃(t) thus takes
the form:

H̃(t) =
∑

i j

eiθi j Ji j(t)ĉ
†
i ĉ j +Hint(t) . (37)

Here, the Peierls phases {θi j}, with θi j = −θ ji , must ensure that the total phase acquired by
traversing a closed loop on the torus is given by B0AS (mod 2π), where AS is the area enclosed
by the loop17.

There are (infinitely) many distinct configurations of the phases {θi j} that satisfy this con-
dition, corresponding to different choices of gauge for the one-flux Hamiltonian H̃(t). As the
starting point for the following discussion, we consider the following Landau-type gauge: let
θ x

i denote the Peierls phase for hopping along the bond in the positive x-direction from site
i (and similarly let θ y

i be the Peierls phase for hopping in the positive y-direction), and give
them the values:

θ
y
i = B0 x ia θ x

i = B0 Lyiδx i ,L . (38)

Here x i and yi denote the coordinates of site i (defined with branch cut outside S0), and δi j
denotes the Kronecker delta symbol, such that δx i ,L takes the value 1 if x i = L, while δx i ,L = 0
for all other values of x i . Recall that a is the lattice constant. The phases θ y

i ensure that a
trajectory encircling a plaquette acquires a phase of B0a2, if the trajectory does not cross the
branch cut of the x-position operator between x = L and x = 0. The phase θ x

i , which does
not appear in the Landau gauge in an open geometry, is necessary to ensure that the phase is
also given by B0a2 (mod 2π) for trajectories encircling plaquettes across the branch cut.

The goal of the following is to show that we can choose another gauge where B0 only
weakly perturbs the Hamiltonian within a particular finite region of the lattice, S, which con-
sists of one or more non-overlapping disk-shaped regions, S1, . . . SN , whose combined area,
AS , is much smaller than L2. We reach such a gauge through the following transformation to
the one-flux Hamiltonian with the gauge choice as prescribed in Eq. (37): ĉi → e−iφi ĉi , where
φi = B0 x (n)0 yi for sites i within subregion Sn, and (x (n)0 , y(n)0 ) denotes the center of subregion
Sn. In this case, one can verify that, for sites within subregion n the Peierls phases resulting
from this transformation take the following values:,

θ
y
i = B0(x i − x (n)0 ), θ x

i = 0 . (39)

The later holds since the branch cut of the x-coordinate does not intersect S. Since Sn has disk
geometry and is centered around (x (n)0 , y(n)0 ), we thus find |x i − x (n)0 | ≤

p

AS for sites i within

17The fact that the total flux on the torus is given by an integer multiple of 2π means that this requirement does
not require a specification of the interior region of the loop.

25

https://scipost.org
https://scipost.org/SciPostPhys.10.6.128


SciPost Phys. 10, 128 (2021)

subregion Sn. Hence we confirm that the Peierls phases are all of order
p

ASa/L2 for bonds
within S, and thus much smaller than 1 in the limit AS � L2 specified above.

B.2 Response of the Hamiltonian

An important result we will use extensively in the following is that, for large systems, the
insertion of the uniform field B0 only weakly perturbs the system, up to a gauge transformation.
To see this, we consider the action of the perturbation induced by B0, δH(t)≡ H̃(t)−H(t) (in
the particular gauge we consider), on a state |ψ〉 with an arbitrary number of particles, where
all particles are located in the finite region S that was introduced in the previous subsection.

As a first step, we note that δH(t)|ψ〉= δH(t)PS|ψ〉, where PS projects into the subspace
where all particles are located within S. Using that ĉi PS = 0 if site i is located outside S, we
find

δH(t)PS =
∑

j∈S

∑

i

Ji j(t)ĉ
†
i ĉ j(e

iθi j − 1) . (40)

The Peierls phases {θi j} are as given in Eq. (38) above. Below, we establish an upper bound

for the spectral norm18 of δH(t)PS , ‖δH(t)PS‖. To do this, we use that ‖M‖ ≤
p

Tr(M†M),
such that

‖δHPS‖2 ≤
∑

j1, j2∈S

∑

i1,i2

K∗i1 j1
Ki2 j2Tr(ĉ†

j1
ĉi1 ĉ†

i2
ĉ j2) ,

where Ki j ≡ Ji j(e
iθi j − 1), and we suppressed time-dependence for brevity. Since θi j = 0 for

i = j, terms above are only nonzero when i1 = i2 and j1 = j2. Thus,

‖δHPS‖2 ≤
∑

j∈R

∑

i

|Ji j|2|eiθi j − 1|2 . (41)

We now estimate the maximal scale of the right hand side above. We recall from the
discussion in the end of Subsection B.1 that the Peierls phases {θi j}, as given in Eq. (38), are
of order

p

ASa/L2 or smaller for bonds within the region S. This implies that the value of
each non-vanishing term in the sum in Eq. (41) is of order J2ASa2/L4 or less, where J denotes
the typical scale of the (off-diagonal) tunneling coefficients {Ji j}. To estimate the number of
non-vanishing terms in the sum we recall, from the assumptions made in the beginning of
subsection B.1, that the tunneling coefficients Ji j only couple nearest-neighbor pairs of sites in
the lattice. Hence, for each choice of the index j, Ji j may only be non-vanishing for four choices
of the index j. These considerations show that there are only of order AR/a

2 non-vanishing
terms in the sum above. Using that each non-vanishing term has norm of order ® J2ARa2/L4,
we find that ‖δHPS‖2 ® A2

SJ2 L−4. Here a ® b indicates that a is smaller than b, or of order b.
Thus we conclude that

‖δHPS‖® JAS/L2 . (42)

In the sense of the operator norm, the difference between the Hamiltonians with and without
one flux quantum uniformly piercing the entire torus decays to zero with the inverse of the
total system area, when acting on states confined to the region S, and with a judicious choice
of gauge.

B.2.1 Action on a localized state

Using the above result, we now show that a gauge exists where δH is small when acting on
states which are not strictly confined to the region S of the lattice, but rather only exponentially
localized. Specifically, we consider a state |ψ〉, whose full support is exponentially confined

18Specifically, the spectral norm of an operator M is defined as ‖M‖ ≡ sup|ψ 〉
p

〈ψ|M †M |ψ 〉/ 〈ψ|ψ〉.
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to a region S which consists of one or more disk-shaped subregions of radius r, with the
probability of finding a particle a distance s from the center of the nearest subregion decaying
as e−s/ξl when s > r.

To conveniently quantify the extent to which particles are confined within a subregion of
the lattice, for each j = 1,2 . . ., we let |ψ j〉 denote the component of the wavefunction |ψ〉
where the outermost particle is located in the distance interval between ( j − 1)a and ja from
the nearest subregion of S. Specifically, |ψ j〉 ≡ (Pj − Pj−1)|ψ〉, where Pj denotes the projector
onto the states where all particles are located within a distance ja from the center of the nearest
subregion of S. From this definition one can verify that |ψ〉=

∑∞
j=1 |ψ j〉. Moreover, the using

that Pj Pk = Pmin( j,k), it follows that the components are mutually orthogonal: 〈ψ j|ψk〉= 0 for
j 6= k. From the definitions above, the probability for finding finding a particle more than a
distance ja from the center of R is given by 〈ψ|(1− Pj)|ψ〉 =

∑∞
j′= j+1〈ψ j′ |ψ j′〉. Since the left

hand side must be of order e− ja/ξ for ja > r, and each term in the right hand side is positive,
we must have

〈ψ j|ψ j〉® e− ja/ξl for j > r/a . (43)

We now use the above result to obtain a bound for the state δH|ψ〉. Inserting
|ψ〉 =

∑∞
j=1 |ψ j〉, and using Pj|ψ j〉 = |ψ j〉 one can verify that |ψ〉 = PR|ψ〉+

∑

j>r/a Pj|ψ j〉,
where PS ≡ Pr/a denotes the projector into the subspace where all particles are located within
the region S (for convenience we assume r to be an integer multiple of the lattice constant a).
Using this result along with the triangle inequality and Eq. (43), we hence obtain:

‖δH|ψ〉‖® ‖δHPR‖+
∑

j>r/a

‖δHPj‖e
− ja

2ξl .

The considerations from Sec. B.2 show that we may choose a gauge for H̃ such that
‖δHPS‖ ® JAS/L2, and ‖δHPj‖ ® A2

S j
J/L2 for any choice of j, where AS j

∼ ( ja)2 denotes

the area of the region projected into by Pj . Using that
∑

j> j0
j2e− j/k ∼ j20 e− j0/k when j0 � k,

one can then verify that

∑

j>r/a

‖δHPj‖e
− ja

2ξl ® ASJ/L2e−r/2ξl , (44)

where AS ∼ r2 denotes the area of the region S. Thus, since r � ξl , we find

‖δH|ψ〉‖® JAS/L2 . (45)

B.3 Response of the Floquet operator

We now show that, for any region S in the lattice that consists of one or more disk-shaped sub-
regions, it is possible to find a gauge, the Floquet operators of the one- and zero-flux systems,
Ũ(T ) and U(T ), have nearly identical actions states |ψ〉 localized within S:
Ũ(T )|ψ〉 ≈ U(T )|ψ〉. Here the state is said to be localized within S if the probability of finding
a particle a distance s from the center of the nearest subregion os S decays as e−s/ξl for s > r,
where r denotes the radius of S.

First, we note that ‖(U − Ũ)|ψ〉‖ = ‖(Ũ†U − 1)|ψ〉‖. This follows from the unitarity of Ũ ,
since for any state |Ψ〉, ‖|Ψ〉‖ = ‖Ũ†|Ψ〉‖. Using that Ũ†U − 1 =

∫ T
0 dt ∂t[Ũ†(t)U(t)], along

with δH(t)≡ H̃(t)−H(t), we find

(U − Ũ)|ψ〉= −i

∫ T

0

dt Ũ†(t)δH(t)U(t)|ψ〉 . (46)

27

https://scipost.org
https://scipost.org/SciPostPhys.10.6.128


SciPost Phys. 10, 128 (2021)

Using that ‖|Ψ〉‖= ‖Ũ†|Ψ〉‖ along with the triangle inequality, we thus find

‖(U − Ũ)|ψ〉‖ ≤
∫ T

0

dt ‖δH(t)U(t)|ψ〉‖ . (47)

We now use that U(t) is local at all times 0≤ t ≤ T , due to the finite Lieb-Robinson velocity
v of the system. The locality implies that, for the state U(t)|ψ〉, the probability of finding a
particle a distance s from the center of S decays exponentially when s ¦ r. Using the result in
Eq. (45) from the previous subsection, we thus find

‖δH(t)U(t)|ψ〉‖® JAS/L2 . (48)

Using this in the inequality in Eq. (47), we conclude

‖(U†Ũ − 1)|ψ〉‖® J TAS/L2 . (49)

Thus, ‖(Ũ − U)|ψ〉‖® J TAS/L2.
The result in Eq. (49) shows that, with a judicious choice of gauge, the Floquet operators

of the one- and zero flux systems give nearly identical results when acting on a localized state.
In this sense, the insertion of a uniform magnetic field B0 only weakly modifies the Floquet
operator for large systems.

B.4 Response of Floquet eigenstates and quasienergy spectrum

We now show that, in the subspace with k or fewer particles, the quasienergy spectrum and
Floquet eigenstates of k-particle localized systems are robust to perturbations, and only weakly
affected by the insertion of the uniform magnetic field B0.

In this subsection, it is useful to use notation that relates the quasienergies and Floquet
eigenstates to the LIOM decomposition in Eq. (1) (which is valid in the subspace of up to k
particles, which we consider): in the following we thus let |Ψα1...α`〉 ≡ f̂ †

α1
. . . f̂ †

α`
|0〉 denote the

Floquet eigenstate of the system for which only LIOMs α1 . . .α` take value 1 (see Sec. 2.1 for
definition of f̂ †

α ), and let Eα1...α` denote the corresponding quasienergy.
Using this cutoff length, we show below that for each finite `≤ k, where k denotes the sys-

tem’s degree of localization (which is infinite for MBL systems), the `-particle Floquet eigen-
states {|Ψ̃α1...α`〉} of Ũ can be labeled such that, for each choice of LIOMs (identified by the
LIOM indices α1 . . .α`),

|Ψ̃α1...α`〉= |Ψα1...α`〉+O
�

L−1/2
�

, (50)

and
Ẽα1...α` = Eα1...α` +O

�

L−2
�

. (51)

Eq. (50) thus shows that, in the thermodynamic limit, each eigenstate of Ũ is identical to an
eigenstate of U , up to gauge transformation and a vanishingly small correction, while Eq. (51)
shows that their associated quasienergies similarly are identical up to a vanishing correction.
This establishes the one-to-one correspondence of the quasienergy levels of the zero- and one-
flux systems that we summarized below Eq. (35).

Due to the possibility that the field B0 induces a resonance between two Floquet eigen-
states of U , disorder realizations do exist where one (or more) of the eigenstates of Ũ is a
significantly hybridized combination of two eigenstates of U . In this case, Eq. (50) will hold
for most but not all Floquet eigenstates of the system. However, as we show here, the set of dis-
order realization where such a resonance-induced breakdown of Eq. (50) occurs has measure
zero in the thermodynamic limit. In this way, Eqs. (50) and (51) hold for almost all disorder
realizations, in the thermodynamic limit.

To establish Eqs. (50) and (51), we first consider the case ` = 1 (i.e., we establish the
relationships for each single-particle Floquet eigenstate). Subsequently, in a stepwise fashion,
we generalize this result to states with ` particles, for each `= 2, . . . k.
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B.4.1 Single-particle eigenstates

Here we establish the relationships in Eqs. (50) and (51) for the single-particle case. We
assume that k-particle localization is robust to perturbations, and thus Ũ also describes a k-
particle localized system (we assume k ≥ 1). Thus, in particular, each single-particle eigenstate
|Ψ̃〉 of Ũ has its full support within a finite disk-shaped region S of linear dimension d, with
the probability of finding the particle a distance s outside S decaying as e−s/ξl .

Due to its finite region of support, each single-particle eigenstate of Ũ , |Ψ̃〉, may only
overlap significantly with Floquet eigenstates whose corresponding LIOM centers are located
within a distance ∼ ξl from S. To exploit this fact, we introduce a system-size dependent
length scale d � ξl , which acts as an effective length cutoff for the region of support of a
LIOM. The length d must be much smaller than L, but can otherwise be taken to be arbitrarily
large, as long as d/L vanishes in the thermodynamic limit. From the considerations above
it follows that |Ψ̃〉 only overlaps with the finite number Floquet eigenstates, |Ψα1

〉 . . . |ΨαN1
〉,

whose LIOM centers are located within a distance d from S, (up to a correction exponentially
small in d/ξl :

N1
∑

n=1

|〈Ψαn
|Ψ̃〉|2 = 1+O(e−d/ξl ) . (52)

For the purposes of the following, it is convenient to order the indices n according to the value
of the overlap, such that |〈Ψα1

|Ψ̃〉|2 ≥ |〈Ψα2
|Ψ̃〉|2 ≥ . . . ≥ |〈ΨαN1

|Ψ̃〉|2. Note that the sequence

of LIOM indices α1 . . .αN1
depends on the choice of |Ψ̃〉; this dependence is taken to be implicit

below, for the sake of brevity.
We now show that |Ψ̃〉 only overlaps significantly with one of the eigenstates |Ψα1

〉 . . . |ΨαN1
〉,

while the total weight from all other eigenstates gives a negligible contribution. To show this,
note that |Ψαn

〉 and |Ψ̃〉 are eigenstates of U and Ũ , respectively, and hence

〈Ψαn
|Ψ̃〉=

〈Ψαn
|U†Ũ − 1|Ψ̃〉

e−i(Ẽ−Eαn )T − 1
, (53)

where Ẽ is the quasienergy associated with |Ψ̃〉. Since |Ψ̃〉 is exponentially well localized within
S, Eq. (49) implies that |〈Ψαn

|U†Ũ−1|Ψ̃〉|® J TAS/L2. Moreover, |e−i(Ẽ−Eαn )T −1| ≤ |Ẽ−En|T ,
where the norm | · | is defined modulo 2π/T , i.e. |E| ≡ minz |E + 2πz/T |. Combining these
two inequalities with Eq. (53), we find

|〈Ψαn
|Ψ̃〉|®

JAS/L2T

|Ẽ − Eαn
|

. (54)

We now consider two implications of the above inequality. Firstly, Eq. (52) implies
|〈Ψα1

|Ψ̃〉|2 ¦ 1/N1 −O(e−d/ξl ) (c.f. the labelling of the states {|Ψαn
〉}). Thus,

|Ẽ − Eα1
|®

p

N1JAS/L2T . (55)

Secondly, we note that, for a random choice of |Ψ̃〉, the typical spacing between the N1
quasienergy levels {En} is of order ∆E ∼ W/N1, where W denotes the width of the single-
particle quasienergy spectrum (when the quasienergy spectrum has no gaps, W = 2π/T). In
this case, only one of the quasienergies {Eαn

} (namely Eα1
) is close enough to Ẽ for Eq. (54)

to allow a significant value of 〈Ψn|Ψ̃〉. Thus, |Ψ̃〉 ≈ |Ψ1〉 for a typical choice of |Ψ̃〉.
We now prove that |Ψ̃〉 ≈ |Ψ1〉 for any choice of |Ψ̃〉 in the system (except for a measure-

zero set of disorder realizations in the thermodynamic limit). To establish this result, we first
note

|En − Ẽ| ≥ |Eαn
− Eα1

| − |Ẽ − Eα1
| . (56)
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We now establish a lower bound for |Eαn
−Eα1

|, using the fact the quasienergy levels of nearby
states Eα1

and Eαn
repel each other, and that |Ẽ − Eα1

| satisfies the bound of Eq. (55). Specifi-
cally, note that the Floquet eigenstates |Ψ1〉 and |Ψn〉 have their support within a distance ® d
from each other. The quasienergies Eα1

and Eαn
are hence subject to local level repulsion when

the quasienergy difference δE ≡ |En − E1| is much smaller than the scale of matrix elements
between them with respect to the kinetic part of the Hamiltonian (i.e. δE � Je−d/ξl ). In the
limit where δE� Je−d/ξl , the probability distribution p(δE) for δE should thus resemble the
Wigner-Dyson distribution for the Circular unitary ensemble (CUE) [50]:

p(δE) =
T3

π
δE2 +O(δE4) . (57)

Using the above result, we now compute the expected number of pairs of nearby single-
particle eigenstates |Ψαi

〉 and |Ψα j
〉 in the entire system, for which |Eαi

− Eα j
| is smaller than

some given (small) value δE0. Here “nearby” refers to the eigenstates |Ψαi
〉 and |Ψα j

〉 having
their centers located within a distance ∼ d from each other, such that they may potentially
overlap with the same eigenstate of Ũ . Noting that there are O(L2N1/2a2) distinct pairs of
nearby eigenstates (where a denotes the lattice constant), we have

N(δE0) =
L2d2

2a4

∫ δE0

0

dδE p(δE) , (58)

where we used N1 ∼ (d/a)2. Thus, in the limit where δE0� Je−d/ξl ,

N(δE0) =
L2d2(δE0T )3

6πa4
. (59)

We recall we may take d arbitrarily large as long as d/L→ 0 in the thermodynamic limit.
In the following, it is convenient to let d scale with system-size as d ∼ 1

2ξ` log(L/a) such
that O(e−d/ξl ) ∼ O(L−1/2). (Note that this choice is not unique; other scaling behaviors of
d can be used in the discussion below). Since with this choice of d, Je−d/ξ � a/LT in the
thermodynamic limit [such that Eq. (59) applies to δE0 = a/LT], we conclude that

lim
L→∞

N(a/LT ) = 0 . (60)

We conclude that, in the thermodynamic limit, there are zero pairs of Floquet eigenstates
|Ψαi
〉 and |Ψα j

〉 with LIOM centers within a distance d ∼ 1
2ξ` log(L/a) from each other whose

quasienergies differ by less than a
LT (except for in a measure zero set of disorder realizations).

We conclude, in the thermodynamic limit, and for any choice of |Ψ̃〉,

|Eα1
− Eαn

|>
a

LT
, (61)

for all but a measure zero set of disorder realizations.
Using Eq. (56) along with the fact that |Ẽ − Eα1

| is subleading in L compared to the above
bound for |Eαn

− Eα1
|, we find, for n ≥ 2, |Ẽ − Eαn

| > a
LT . Thus, for all but a measure zero set

of disorder realizations, it holds that, for each choice of |Ψ̃〉,

|〈Ψαn
|Ψ̃〉|<

ASJ T
aL

for n≥ 2 . (62)

Using this result in Eq. (52), we find

1− |〈Ψα1
|Ψ̃〉|2 <

N1A2
SJ2T2

a2 L2
+O(e−d/ξl ) . (63)
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Recall that we take d ∼ 1
2ξl log(L/a). Hence the first term above is subleading in the thermo-

dynamic limit, and we obtain

|〈Ψα1
|Ψ̃〉|2 = 1+O(L−1/2) . (64)

(See Footnote 16). This concludes the proof of Eq. (50) for the single-particle case, when we
assign the label α1 to |Ψ̃〉.

To establish Eq. (51) for the single-particle case, we note from Eq. (54) [with the labelling
for |Ψ̃〉 introduced above] that, for each choice of α,

|Ẽα − Eα|®
JAS/L2

|〈Ψ̃α|Ψα〉|
. (65)

Since |〈Ψ̃α|Ψα〉| ≈ 1, and AS ∼ d2, we conclude |Ẽα − Eα| ® Jd2/L2 ∼ O(L−2) (see Foot-
note 16). This is what we wanted to show.

B.4.2 Two-particle eigenstates

Having established Eq. (50) for single-particle Floquet eigenstates, we now show that it also
holds for all two-particle eigenstates (provided the system is k-particle localized for some
k ≥ 2). In order to do this, we consider a two-particle Floquet eigenstate |ψ̃〉 of the one-flux
system, with quasienergy Ẽ. Since the one-flux system is k-particle localized (for k ≥ 2), the
two-particle eigenstates of Ũ possess a LIOM structure. In the Floquet eigenstate |ψ̃〉, two of
the LIOMs of Ũ , ñ1 and ñ2, are thus “excited” (i.e. ñα|ψ̃〉 = |ψ̃〉 for α = 1,2, while ñα|ψ̃〉 = 0
for α 6= 1,2). In the following, we divide our argumentation into two cases, depending on
whether or not the LIOMs ñ1 and ñ2 are located within a distance d from each other, where
d denotes the arbitrary length scale cutoff for each LIOM’s region of support introduced in
Sec. B.4.1.

Nearby LIOMs — When the centers of the two “excited” LIOMs ñ1 and ñ2 in the state |ψ̃〉 are
separated by a distance less than d, a two-particle Floquet eigenstate |Ψαβ〉 of the zero-flux
system may only significantly overlap with |Ψ̃〉 if the corresponding excited (nonperturbed)
LIOMs n̂α and n̂β are located within a distance d from the centers of ñ1 and ñ2. As a re-

sult, there are only of order N2 ∼
�2d2/a2

2

�

choices of distinct LIOMs α,β for which |Ψαβ〉 can
significantly overlap with |Ψ̃〉.

Using the same arguments as for the single particle case (Sec. B.4.1) one can show that,
for all but a measure-zero set of disorder realizations in the thermodynamic limit, there exists
a unique two-particle eigenstate |Ψαβ〉 of U for each two-particle eigenstate |Ψ̃〉 of Ũ such that
(up to a gauge transformation)

|Ψ̃〉= |Ψαβ〉+O
�

L−1/2
�

, (66)

and
Ẽ = Eαβ +O

�

L−2
�

. (67)

Separated LIOMs — Next, we consider the case where the two excited LIOMs ñ1 and ñ2
are separated by a distance ∆r larger than d. In this case, the LIOM structure of the Floquet
operator Ũ [Eq. (1) in the main text] implies that, up to an exponentially small correction in
the distance ∆r/ξl , |Ψ̃〉 may be written as a direct product of two single-particle eigenstates
|Ψ̃α〉 and |Ψ̃β〉. Here α and β refer to the labeling of the single-particle eigenstates of Ũ that
was established in the previous subsection. Letting Sα and Sβ denote the two non-overlapping
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regions of linear dimension d where the states |Ψ̃α〉 and |Ψ̃β〉 respectively have their support
(up to a correction exponentially small in d/ξl), we have19:

|Ψ̃〉= |Ψ̃α〉Sα ⊗ |Ψ̃β〉Sβ ⊗ |0〉+O(e−d/ξl ) , (68)

where we used ∆r > d. Here |Ψ〉S denotes the restriction of the state |Ψ〉 to the Fock space
of the region S (defined from the projection of |Ψ〉 into the subspace with no particles outside
region S). The state |0〉 refers to the vacuum in the complementary region to Sα and Sβ . Since
the two particles in the state |Ψ̃〉 are separated by a distance much larger than d, the regions
Sα and Sβ do not overlap.

We recall that Eq. (50) was already proven to hold for the single-particle case. Thus |Ψ̃α〉
(the eigenstate in the presence of one flux quantum piercing the system) is approximately
identical to a single-particle eigenstate |Ψα〉 of the zero-flux system’s Floquet operator U (for
all but a measure zero set of disorder realizations). Specifically, up to a gauge transformation,
|Ψ̃α〉 = |Ψα〉+O(L−2). The eigenstate |Ψα〉 moreover has its full support in the same region
Sα as |Ψ̃α〉, up to a correction exponentially small in d/ξl . Letting Vα be the unitary operator
that generates the transformation to the gauge in which Eq. (50) holds for |Ψ̃α〉, we have

|Ψ̃α〉Sα = Vα|Ψα〉Sα +O(L−1/2) , (69)

where we used that we may take d ∼ 1
2ξl log(L/a), such that the correction O(e−d/ξ) scales

with system size as L−1/2 in the thermodynamic limit. Using the relation (69) for the states
|Ψ̃α〉Sα and |Ψ̃β〉Sβ in Eq. (68), we hence obtain

|Ψ̃〉= VαVβ |Ψα〉Sα ⊗ |Ψβ〉Sβ ⊗ |0〉+O(L−1/2) . (70)

Due to the LIOM structure of the Floquet operator U (Eq. (1) in the main text),
|Ψα〉Sα ⊗ |Ψβ〉Sβ ⊗ |0〉 is identical to the Floquet eigenstate |Ψαβ〉 of the zero-flux system, up to

a correction of order e−d/ξl . Since the product of the two gauge transformations Vα and Vβ is
itself a gauge transformation, we thus conclude that, up to a gauge transformation:

|Ψ̃〉= |Ψαβ〉+O(L−1/2) . (71)

The two cases we considered above show that, in the thermodynamic limit, and for all but
a measure zero set of disorder realizations, each two-particle eigenstate |Ψ̃〉 of Ũ is identical
to a unique eigenstate of U , up to a gauge transformation, and a correction of order O(L−1/2).
We may thus label the two-particle eigenstates of Ũ such that Eqs. (50) and (51) hold with
`= 2, and for each choice of the LIOM indices α1 and α2.

B.4.3 `-particle-eigenstates

We finally consider the general case of an `-particle eigenstate |Ψ̃〉 of Ũ , where ` is smaller than
or equal to the system’s degree of localization, k. For this situation, we can apply the same
structure of arguments as for the two-particle case: due to the LIOM structure of the one-flux
Floquet operator Ũ , each `-particle state is constructed by “exciting” ` LIOMs ñ1 . . . ñ`. We
split our line of arguments into two cases, depending on whether or not the LIOMs ñ1 . . . ñ`
can be divided into clusters separated from each other by distances greater than d.

In the case where the excited LIOMs can be divided into clusters in the way above, |ψ̃〉 can
be written as a direct product of eigenstates of Ũ with fewer than k particles, up to a correction

19Here the tensor product |ψ1〉A⊗ |ψ2〉B is defined as Ĉ†
1 Ĉ†

2 |0〉, where C†
1 is the unique combination of fermionic

creation operators that creates the state |ψ1〉A, i.e., |ψ1〉A = C†
1 |0〉A, where |0〉A denotes the vacuum in subsystem

A. C†
2 is defined in a similar fashion.
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of order e−d/ξl . Following the same line of arguments as for the analogous two-particle case,
the relationships (50) and (51) can then be demonstrated to hold for this class of eigenstates
using the fact that Eq. (50) and (51) hold for eigenstates with fewer than ` particles.

In the case where all LIOMs are located in the same cluster, we note that |ψ̃〉 only signif-
icantly overlaps with eigenstates {|Ψα1...α`〉} where the centers of all the LIOMs n̂α1

. . . n̂α` are
located in the region S, consisting of all sites with a distance d from any of the excited LIOM’s
ñ1 . . . ñ`. There only exist a finite number of eigenstates N` with this property. Specifically,

N` ®
�

`d2/a2

`

�

counts the number of distinct configurations of k LIOMs n̂α1
. . . n̂α` whose cen-

ters are located within S. Crucially, N` only depends on the number of particles, `, and d, and
is independent of system size.

Using the same arguments as for the single-particle case, we then find that, for all but a
measure zero set of disorder realizations in the thermodynamic limit, there exists a unique
eigenstate |Ψα1...α`〉 of U such that (up to a gauge transformation),

|Ψ̃〉 = |Ψα1...α`〉+O(L−1/2) , (72)

where, as we described in the beginning of this Appendix, O(L−p) denotes term scaling with
system size as L−p in the thermodynamic limit (see Footnote 16). In addition, when the LIOMs
are located within a distance d from the same point,

Ẽ = Eα1...α` +O
�

L−2
�

. (73)

Thus, Eqs. (50) and (51) hold for the `-particle case in the thermodynamic limit, for any
`= 1, . . . k.

B.5 Relationship between magnetization density and quasienergy

Having established the auxiliary results in Secs. B.1-B.4, we are now ready to prove Eq. (34),
which is the first main goal of this appendix. To recapitulate, we seek to show that, for each
`-particle Floquet eigenstate, |ψn〉, with quasienergy εn, the associated quasienergy for the
one-flux system, ε̃n (see Sec. B.4 for details), satisfies

ε̃n = εn + B0〈ψn|M̄ |ψn〉+O(L−5/2) , (74)

where M̄ denotes the time-averaged magnetization operator (see Sec. 3.2.1 of the main text),
and, as in Sec. B.4 above, O(L−p) denotes a correction of order λL−p or less, where λ is some
system-size independent energy scale that does not play a role for our discussion.

In this step of the derivation it is useful to define a region of support, Sn, for each Floquet
eigenstate |ψn〉. Specifically, for each Floquet eigenstate, |ψn〉, and for some length scale
d � L, we let Sn denote the smallest region of the lattice that ensures the centers of all
nonzero LIOMs in the state |ψn〉, α1 . . .α`, are located within a distance d from the boundary
of Sn. The region of support Sn may consist of one or several disconnected disk-shaped
subregions of linear dimension d, and has area ASn

≤ π`d2. As in Sec. B.4, when taking the
thermodynamic limit L →∞ in the following, we let d increase logarithmically with system
size as d ∼ 1

2ξl log(L/a).
To establish Eq. (74), for a given Floquet eigenstate |ψn〉, we let Ũ be the one-flux Floquet

operator in a gauge where Eq. (49) holds within Sn, and let |ψ̃n〉 denote the eigenstate of Ũ
corresponding to |ψn〉 through Eq. (50). Noting that |ψn〉 and |ψ̃n〉 are eigenstates of U and
Ũ , respectively, we have

〈ψn|U†Ũ |ψ̃n〉= e−i(ε̃n−εn)T 〈ψn|ψ̃n〉 . (75)
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At the same time, the left-hand side above can be written [see Eq. (46)],

〈ψn|U†Ũ |ψ̃n〉= 〈ψn|ψ̃n〉 − i

∫ T

0

d t〈ψn|U†(t)δH(t)Ũ(t)|ψ̃n〉. (76)

We now seek to rewrite the second term above to a form which only relies quantities of the
(unperturbed) zero-flux system. Using that |ψ̃n〉 = |ψn〉 + O(L−1/2) [Eq. (50)], and that
U |ψ〉 = Ũ |ψ〉 +O(L−2) for normalized states |ψ〉 that are exponentially localized within Sn
(such as |ψn〉), we find

Ũ(t)|ψ̃n〉= U(t)|ψn〉+O(L−1/2) . (77)

We recall from Eq. (48) that ‖|δH(t)U(t)|ψn〉‖ ∼ O(L−2), such that, for any state
|ψ〉, |〈ψn|U†(t)δH(t)|ψ〉|®O(L−2)‖|ψ〉‖. Combining this with Eqs. (76) and (77), we find

e−i(ε̃n−εn)T 〈ψn|ψ̃n〉= 〈ψn|ψ̃n〉 − i

∫ T

0

d t〈ψn|U†(t)δH(t)U(t)|ψn〉+O(L−5/2) . (78)

We finally note that 〈ψn|ψ̃n〉 = 1+O(L−2). Dividing through with a factor of 〈ψn|ψ̃n〉, and
again using that ‖〈ψn|U†(t)δH(t)‖ ∼O(L−2), we hence obtain

e−i(ε̃n−εn)T = 1− i

∫ T

0

d t〈ψn|U†(t)δH(t)U(t)|ψn〉+O(L−5/2) . (79)

Expanding the left-hand side to first order in ε̃n−εn, and using ε̃n−εn ∼O(L−2) [see Eq. (73)],
we obtain

ε̃n − εn =
1
T

∫ T

0

d t〈ψn|U†(t)δH(t)U(t)|ψn〉+O(L−5/2) . (80)

Having expressed ε̃n − εn purely in terms of quantities of the zero-flux system, we now
relate the first term on the right-hand side above to the time-averaged magnetization in the
state |ψn〉. To this end, we use the explicit form of H(t) we assumed in Eq. (36) (similar
arguments apply to more general Hamiltonians), finding

δH(t) = i
∑

i j

θi jJi j(t)ĉ
†
i ĉ j +δH(2)(t) , (81)

where δH(2)(t) =
∑

i j[e
iθi j − 1 − iθi j]Ji j(t)ĉ

†
i ĉ j and {θi j} denote the Peierls phases induced

by the uniform magnetic field B0. We identify −i[Ji j(t)ĉ
†
i ĉ j − J ji(t)ĉ

†
j ĉi] as the bond current

operator on the bond from site j to site i, Îb(t), and θi j as the associated Peierls phase (see
also Footnote 9). Hence, i

∑

i j θi jJi j(t)ĉ
†
i ĉ j = −

∑

b θb Ib(t).
To establish a bound for the term in Eq. (80) originating from δH(2)(t), we note that

θi j ∼ O(L−2) within the region of support of the state |ψn〉, Sn. Hence
[e−iθi j − (1 − iθi j)] ∼ O(L−4) for sites i, j within Sn. As a result, ‖δH(2)(t)|ψn〉‖ ∼ O(L−4).
Thus, we obtain

ε̃n − εn =−
∑

b

θb

∫ T

0

dt
T
〈ψn|U†(t) Îb(t)U(t)|ψn〉+O(L−5/2) . (82)

Using that in a Floquet eigenstate the time-averaged expectation value over one period equals
the long-time average, we obtain

ε̃n − εn = −
∑

b

θb〈ψn| Īb|ψn〉+O(L−5/2) , (83)
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where Ō denotes the long-time average in the Heisenberg picture [see Eq. (3)]. Retracing the
arguments in the main text that lead from Eq. (12) to Eq. (13), we find

∑

b θb Īb = M̄B0. Thus,
we conclude

ε̃n − εn = −〈ψn|M̄ |ψn〉B0 +O(L−5/2) . (84)

This establishes Eq. (74), which was the first goal of this Appendix.

B.6 Vanishing sum of corrections

As the final step of this Appendix, we now show that the corrections to Eq. (84) (which indi-
vidually scale with system size, L, as L−4), approximately cancel out when summed over all
quasienergy levels in the `-particle subspace, yielding an exponentially suppressed correction:

∑

n

(ε̃n − εn) = −
∑

n

B0〈ψn|M̄ |ψn〉+O(e−L/ξl ) . (85)

To establish Eq. (85), it is convenient to first express Eq. (84) in terms of the magnetization
densities on each plaquette, {m̄p} by using M̄ =

∑

p a2m̄p:

ε̃n − εn = −
∑

p

a2B0〈ψn|m̄p|ψn〉+O(L−5/2) . (86)

To obtain Eq. (85) from the above result, we exploit the LIOM decomposition of the quasienergy
levels in terms of the quasienergy coefficients εα1

,εα1α2
, . . . [Eq. (1)], and the analogous de-

composition time-averaged magnetization density in term of the magnetization coefficients
m̄p
α1

, m̄p
α1α2

, . . . [Eq. (19)]. By inserting these expansions into Eq. (86) and using that Eq. (86)
holds for each Floquet eigenstate with up to ` particles (i.e., for each combination of up to `
excited LIOMs), one can verify that, for each choice of ` LIOMs, α1 . . .α`,

ε̃α1...α` − εα1...α` = −B0

∑

p

a2m̄p
α1...α`

+O(L−5/2) . (87)

We now seek to compute the sum the left hand side above over all
�D1
`

�

distinct combina-
tions of ` LIOMs, where

�a
b

�

denotes the binomial coefficient and D1 = L2/a2 the dimension of
the system’s single-particle subspace. Specifically, we seek to compute

κ` ≡
∑

α1...α`

(ε̃α1...α` − εα1...α`) . (88)

Since m̄p
α1...α` and εα1...α` may only be nonzero when the LIOMs α1 . . .α` are located within a

distance ∼ ξl from each other, there are of order L2/a2 combinations of ` LIOMs for which
m̄p
α1...α` and εα1...α` may be significant. Summing Eq. (87) over these O(L2) combinations, we

obtain

κ` = −B0

∑

p

∑

α1...α`

a2m̄p
α1...α`

+O(L−1/2) . (89)

To obtain κ`, we use κ1, . . .κ` to express the sum of ε̃n − εn over all `-particle quasienergy
levels. An argument similar to the one made in Sec. 3.3 shows that the sum of ε̃n− εn over all
`-particle quasienergy levels yields

∑

n

(ε̃n − εn) =
∑̀

`′=1

�

D1 − `′

`− `′

�

∑

α1...α`′

κ` . (90)
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Note, in particular, that the sum of ε̃n−εn over all single-particle quasienergy levels is identical
to κ1. Using that

∑

n(ε̃n − εn) must be quantized an integer multiple of 2π/T (see Sec. 3.2.1
in the main text) along with an inductive argument similar to the one below Eq. (18) in the
main text, we conclude that κ` must be an integer multiple of 2π/T for each `≤ k.

Using inductive arguments similar to the ones employed above, using that Tr`′m̄p = Tr`′m̄q
for any two plaquettes p, q in the lattice, for any `′ = 1, . . .`, it follows that,

∑

α1...α`

m̄p
α1...αk

=
∑

α1...α`

m̄q
α1...α`

. (91)

Using this result in Eq. (89) along with L2B0 = 2π, we thus find, for any given plaquette p0 in
the lattice,

κ` = 2π
∑

α1...α`

m̄p0
α1...α`

+O(L−1/2) . (92)

We now consider how the right- and left-hand sides differ from their values in the ther-

modynamic limit, L →∞. Firstly, m̄p0
α1...α` is exponentially suppressed for all but the

�ξ2
l /a

2

`

�

choices of ` LIOMs where all LIOM centers are all located within a distance ∼ ξl from pla-
quette p0. Hence

∑

α1...α`
m̄p0
α1...α` only depends on the details of the system near plaquette p,

and therefore can only differ from its value in the thermodynamic limit by an amount of order
e−L/ξl . From below Eq. (90) we recall that κ` is exactly quantized as an integer multiple of
2π/T . Moreover, Eq. (92) shows that κ` can only differ from

∑

α1...α`
m̄p0
α1...α` by an amount

of order O(L−2). Hence, when L� ξl , κ` must be exactly identical to its value in thermody-
namic limit. We conclude that δ` ≡ κ` − 2π

∑

α1...α`
m̄p0
α1...α` can only differ from its value in

the thermodynamic limit by an amount of order e−L/ξl . Since δ` = 0 in the thermodynamic
limit, we find, for each plaquette in the system, p0,

∑

α1...α`

(εα1...α` − 2πm̄p0
α1...α`

) =O(e−L/ξl ) . (93)

Using M̄ =
∑

p a2m̄p along with the LIOM decompositions in Eqs. (1) and (19), we conclude
that Eq. (85) holds. This was the goal of this subsection, and concludes this Appendix.
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