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Abstract

We analyze CP symmetry in symplectic modular-invariant supersymmetric theories. We
show that for genus g ≥ 3 the definition of CP is unique, while two independent pos-
sibilities are allowed when g ≤ 2. We discuss the transformation properties of moduli,
matter multiplets and modular forms in the Siegel upper half plane, as well as in invari-
ant subspaces. We identify CP-conserving surfaces in the fundamental domain of moduli
space. We make use of all these elements to build a CP and symplectic invariant model of
lepton masses and mixing angles, where known data are well reproduced and observable
phases are predicted in terms of a minimum number of parameters.
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1 Introduction

Fermion masses, mixing angles and CP violating phases are tightly linked together in the
present picture of particle interactions. Yet a fundamental principle explaining their origin and
allowing a more economical and basic description is still lacking. The most widely explored
approach to the problem is based on flavour symmetries invoked to constrain Lagrangian pa-
rameters [1]. No exact flavour symmetry does the job, however, and realistic models should
rely heavily on the properties of the symmetry breaking (SB) sector, comprising a set of scalar
fields whose vacuum expectation values (VEV) are suitably oriented in flavour space. To re-
duce the vast arbitrariness associated with this construction, where both the flavour group and
the SB sector are essentially unrestricted, we recently proposed a framework defined by a set
of geometrical data [2]. Scalars responsible for SB span a moduli space, a symmetric space of
the type G/K , G being a noncompact continuous group and K a maximal compact subgroup
of G. A discrete, modular subgroup Γ of G, acting on G/K , plays the role of flavour symmetry.
In this way both the flavour symmetry group and the SB sector are closely linked and cannot
be arbitrarily chosen. Modular invariant supersymmetric field theories [3, 4] are a particular
case of this general setting, related to the choice G = SL(2,R), K = SO(2) and Γ = SL(2,Z).
The moduli space G/K is the upper half plane and Yukawa couplings are classical modular
forms [5].

This bottom-up proposal is evidently inspired by top-down considerations from string the-
ory. In string theory Yukawa couplings are indeed field dependent quantities, specified by the
background over which the string propagates. A substantial part of this background is of geo-
metrical origin and is described by moduli, scalar fields belonging to the moduli space, which
is often a symmetric space of the type G/K [6]. A wealth of theoretical activity has in fact its
focus on the study of Yukawa couplings in realistic string theory compactifications [7–17] and
their modular properties [18–38]. Moreover, in string theory finite modular invariance is in
general only a component of a bigger Eclectic Flavour Group, which also involves CP and an
ordinary flavour group leaving moduli invariant [39–44].

Inclusion of CP transformations is an important step in a comprehensive description of
particle properties. If the theory is CP-invariant, CP violation can arise only as a consequence
of the choice of the vacuum. Then, in the previously discussed class of theories, CP properties
depend on the chosen point in moduli space, which simultaneously controls particle masses
and mixing angles. In this context most of the observed features of the fermion spectrum might
be determined mostly by the vacuum, rather than by Lagrangian parameters. Moreover, the
origin of fermion masses, mixing angles and phases can be fully unified.

In the presence of a discrete symmetry like the modular one, a consistent definition of
CP is not granted and requires the existence of nontrivial automorphisms of the symmetry
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group [45–47]. Consistent CP transformations in modular invariant supersymmetric theo-
ries dealing with a single modulus have been discussed in refs. [39, 40]. In particular, CP
transformation laws of the modulus τ, of chiral matter multiplets and of modular forms have
been determined [48] and several models where CP is spontaneously broken have been con-
structed [48–54]. Within the more general case of a multidimensional moduli space, consistent
CP definitions have been examined recently in the context of symplectic modular invariant
theories, where the relevant flavour group is the Siegel modular group [55, 56]. Ref. [55]
discusses also CP-conserving vacua in Calabi-Yau compactifications.

In this work, we reconsider CP invariance in symplectic modular invariant theories, from
a bottom-up perspective. We examine thoroughly all candidate CP definitions, arising as
non-trivial automorphisms of the Siegel modular group Γ = Sp(2g,Z), which coincides with
SL(2,Z) when g = 1. We show that for genus g ≥ 3 there is a unique automorphism suitable
to be interpreted as CP, coinciding with the one identified in refs. [55,56]. On the other hand,
for genus g ≤ 2 two possibilities are allowed 1. Moreover, beyond the action of CP on moduli
space, we analyze also the correct CP transformations properties of matter multiplets and of
Siegel modular forms. We also show that, beyond the surface Re(τ) = 0, there are infinite CP-
invariant points on the boundary of the Siegel fundamental domain. These are the ingredients
needed to build concrete multi-moduli CP-invariant models and, in the final part of our paper,
we propose one such model describing the lepton sector at genus g = 2. By making use of a
minimum number of Lagrangian parameters (five, to describe twelve observable quantities),
our model reproduces all known data and predicts the CP violating lepton phases, with moduli
intriguingly close to a point of enhanced symmetry in moduli space.

Our paper consists of seven Sections. In Section 2, we start by reviewing the formalism of
symplectic modular-invariant supersymmetric theories. In Section 3, we provide an extensive
discussion of the possible CP definitions in such theories. In Section 4 we study CP-conserving
points in moduli space and in Section 5 we formulate the correct definition of CP when the
theory is restricted to an invariant subspace of the entire moduli space. Our model is built and
analyzed in Section 6. In a final Section we present our conclusion.

2 Symplectic Modular Invariance

In the class of theories under consideration here, both the flavour symmetry and the fields
responsible for SB have the same origin [2]. Scalars driving SB take values in a symmet-
ric space of the type G/K , G being some noncompact continuous group and K a maximal
compact subgroup of G. The flavour symmetry group is a discrete, modular subgroup Γ of
G, acting on G/K . Symplectic modular invariant supersymmetric theories are based on the
choice G = Sp(2g,R), K = Sp(2g,R) ∩ O(2g,R) = U(g) and Γ = Sp(2g,Z). The integer g
(g = 1, 2, ...) is called genus. The moduli space Hg = Sp(2g,R)/U(g) is the Siegel upper half
plane, a natural generalization of the well-known complex upper half plane H. The Siegel
modular group Γ = Sp(2g,Z) arises as the duality group in string Calabi-Yau compactifica-
tions [57–64]. Siegel modular forms are relevant in the context of string one-loop corrections
[65,66].

The elements of the symplectic group Sp(2g,R) are 2g × 2g real matrices of the type

γ=

�

A B
C D

�

, (1)

1For g = 1, this alternative had already been emphasized in ref. [50].
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satisfying γt J γ= J , where J is the symplectic form:

J =

�

0 1g
−1g 0

�

. (2)

For g = 1, the symplectic condition on a matrix is satisfied if and only if the determinant is
one, so that we have Sp(2,R) = SL(2,R). An element τ of the moduli space Hg is described
by a symmetric complex g × g matrix τ with positive definite imaginary part:

Hg =
¦

τ ∈ GL(g,C)
�

�

� τt = τ, Im(τ)> 0
©

. (3)

Similarly to the case G = SL(2,R), the action of Sp(2g,R) on τ is defined as:

τ→ γτ= (Aτ+ B)(Cτ+ D)−1 . (4)

As modular group Γ we can choose a discrete subgroup of Sp(2g,R). A reference choice is the
Siegel modular group Γg = Sp(2g,Z), obtained from Sp(2g,R) by restricting the elements of
the matrices A, B, C and D in eq. (1) to integer values. A set of generators for Γg is {S, Ti}:

S =

�

0 1g
−1g 0

�

, Ti =

�

1g Bi
0 1g

�

, (5)

where {Bi} is a basis for the g×g integer symmetric matrices and S coincides with the invariant
symplectic form J satisfying S2 = −12g . In particular, for g = 1, the Siegel modular group
Sp(2,Z) coincides with the special linear group SL(2,Z) and the generators of Γ1 are

S =

�

0 1
−1 0

�

, T =

�

1 1
0 1

�

. (6)

For the case of g = 2, it is convenient to choose the generators of Γ2 as

S =

�

0 12
−12 0

�

, T1 =

�

12 B1
0 12

�

, T2 =

�

12 B2
0 12

�

, T3 =

�

12 B3
0 12

�

, (7)

with

B1 =

�

1 0
0 0

�

, B2 =

�

0 0
0 1

�

, B3 =

�

0 1
1 0

�

. (8)

Under S and Ti transformations, we find:

τ
S
−→−τ−1, τ

Ti−→ τ+ Bi . (9)

Other discrete subgroups of G = Sp(2g,R), of direct interest here, are the principal congruence
subgroups Γg(n) of level n, defined as:

Γg(n) =
¦

γ ∈ Γg
�

�

� γ≡ 12g modn
©

, (10)

where n is a generic positive integer, and Γg(1) = Γg . The group Γg(n) is a normal subgroup
of Γg , and the quotient group Γg,n = Γg/Γg(n), which is known as finite Siegel modular group,
has finite order [67,68].
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2.1 Fundamental domain

Symplectic modular invariance can be seen as a gauge symmetry related to the redundancy
of the description of physical vacua. Thus it is useful to introduce a fundamental domain Fg
describing the set of inequivalent vacua. This is essentially the quotient between Hg and Γg .
More precisely, a fundamental domain Fg in Hg for the Siegel modular group Γg is a connected
region of Hg such that each point of Hg can be mapped into Fg by a Γg transformation, but
no two points in the interior of Fg are related under Γg . It is considerably more complicated
than the g = 1 case. A fundamental domain Fg for the action of Γg on Hg can be defined as
follows [69]:

Fg =











τ ∈Hg

�

�

�

�











Im(τ) is reduced in the sense of Minkowski,

|det(Cτ+ D)| ≥ 1 for all γ ∈ Γg ,

|Re(τi j)| ≤ 1/2 ;











. (11)

Here Minkowski reduced means that Im(τ) satisfies the two properties:

1) htIm(τ)h ≥ Im(τ)kk (∀h = (h1, . . . , hg) ∈ Zg) for 1 ≤ k ≤ g whenever h1, . . . , hg are
coprime ;

2) Im(τ)k,k+1 ≥ 0 for 0≤ k ≤ g − 1.

In his book [69] Siegel proved that for any genus g such a fundamental domain is determined
by only finitely many inequalities of the form |det(Cτ + D)| ≥ 1 and with the Minkowski
condition. The boundary ∂Fg is defined as the set of points in Fg , where at least one of the
relations in eq. (11) is realized as an equality. In general points lying on the boundary ∂Fg
are related by Siegel modular transformations. The boundary of the fundamental domain Fg
for g > 1 is very complex. At genus g = 2 we parametrize the moduli τ as

τ=

�

τ1 τ3
τ3 τ2

�

. (12)

The fundamental domain F2 can be defined by the following inequalities [70,71]:

F2 =



















τ ∈H2

�

�

�

�



















|Re(τ1)| ≤ 1/2, |Re(τ3)| ≤ 1/2. |Re(τ2)| ≤ 1/2 ,

Im(τ2)≥ Im(τ1)≥ 2Im(τ3)≥ 0 ,

|τ1| ≥ 1, |τ2| ≥ 1, |τ1 +τ2 − 2τ3 ± 1| ≥ 1 ,

|det(τ+ Ei)| ≥ 1 ,



















, (13)

where the set {Ei} includes the following 15 matrices:
�

0 0
0 0

�

,

�

±1 0
0 0

�

,

�

0 0
0 ±1

�

,

�

±1 0
0 ±1

�

,

�

±1 0
0 ∓1

�

,

�

0 ±1
±1 0

�

,

�

±1 ±1
±1 0

�

,

�

0 ±1
±1 ±1

�

. (14)

When one of these inequality is satisfied as an equality, we recover a polynomial equation in
Re(τi) and Im(τi), defining a real 5-dimensional wall. From eq. (13) we count 28 walls, that
determine the boundary ∂F2 of the domain F2.
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2.2 Siegel modular forms

Another important building block of the theory are the Siegel modular forms, holomorphic
complex functions of the variables τ, enjoying good transformation properties under the Siegel
modular group Γg . They are specified by the genus g, the weight k and the level n, k and n
being non-negative integers. Siegel modular forms Y (τ) of integral weight k and level n at
genus g are holomorphic functions on the Siegel upper half plane Hg transforming under
Γg(n) as

Y (γτ) = [det(Cτ+ D)]kY (τ) , γ=

�

A B
C D

�

∈ Γg(n) . (15)

When n= 1,2, we have −12g ∈ Γg(n) and the above definition gives [2]:

Y (−12gτ) = Y (τ) = (−1)kg Y (τ) . (16)

Therefore Siegel modular forms at genus g of weight k and level n = 1, 2 vanish if kg is odd.
The complex linear space Mk(Γg(n)) of Siegel modular forms of given weight k, level n and
genus g is finite dimensional and there are no non-vanishing forms of negative weight [72].

Similarly to the case g = 1 [5], it is possible to choose a basis {Yi(τ)} in the space
Mk(Γg(n)) such that the action of Γg on the elements of the basis is described by a unitary
representation ρr of the finite Siegel modular group Γg,n = Γg/Γg(n):

Yi(γτ) = [det(Cτ+ D)]kρr(γ)i jYj(τ), γ=

�

A B
C D

�

∈ Γg . (17)

At variance with eq. (15), where only transformations of Γg(n)were considered, in the previous
equation the full Siegel modular group Γg is acting. Eq. (17) shows that the Siegel modular
forms {Yi(τ)} of given weight, level and genus have good transformation properties also with
respect to Γg .

2.3 Symplectic modular invariant supersymmetric theory

To build a symplectic modular invariant supersymmetric theory, we have to specify the action
of Γg on the matter multiplets ϕ of the theory, which can belong to separate sectors {ϕ(I)}. To
this purpose we choose a particular level n. Both the genus g and the level n are kept fixed
in the construction. The supermultiplets ϕ(I) of each sector I are assumed to transform in a
representation ρ(I) of the finite Siegel modular group Γg,n, with a weight kI

2.

¨

τ→ γτ= (Aτ+ B)(Cτ+ D)−1 ,

ϕ(I)→ [det(Cτ+ D)]kIρ(I)(γ)ϕ(I) ,
γ=

�

A B
C D

�

∈ Γg . (18)

In the case of rigid supersymmetry, the action S of an N = 1 symplectic modular invariant
supersymmetric theory, restricted to Yukawa interactions, reads

S =
w

d4 xd2θd2θ̄ K(Φ, Φ̄) +
w

d4 xd2θ w(Φ) + h.c. , (19)

and its invariance under eq. (18) requires the invariance of the superpotential w(Φ) and the
invariance of the Kahler potential up to a Kahler transformation:

¨

w(Φ)→ w(Φ)

K(Φ, Φ̄)→ K(Φ, Φ̄) + f (Φ) + f (Φ̄)
. (20)

2We restrict to integer modular weights. Fractional weights are in general allowed, but require a suitable
multiplier system [41,73].

6

https://scipost.org
https://scipost.org/SciPostPhys.10.6.133


SciPost Phys. 10, 133 (2021)

The invariance of the Kähler potential can be easily accomplished. A minimal Kähler potential
is:

K = Kτ + Kϕ , (21)

where:
Kτ = −h Λ2 logdet(−iτ+ iτ†), h> 0 , (22)

with h a dimensionless constant and Λ some reference mass scale. Kτ is invariant under the
full symplectic group Sp(2g,R) up to a Kähler transformation. The minimal Kähler potential
Kϕ for matter multiplets ϕ(I) is invariant only under transformations of Γg :

Kϕ =
∑

I

[det(−iτ+ iτ†)]kI |ϕ(I)|2 . (23)

The requirement of symplectic modular invariance for the superpotential is better appreciated
by expanding of w(Φ) in power series of the supermultiplets ϕ(I):

w(Φ) =
∑

n

YI1...In
(τ) ϕ(I1)...ϕ(In) . (24)

For the p-th order term to be modular invariant the functions YI1...Ip
(τ) should transform as

Siegel modular forms with weight kY (p) in the representation ρ(Y ) of Γg,n:

YI1...Ip
(γτ) = [det(Cτ+ D)]kY (p)ρ(Y )(γ) YI1...Ip

(τ) , (25)

with kY (p) and ρ(Y ) such that:

1. The weight kY (p) should compensate the overall weight of the product ϕ(I1)...ϕ(Ip):

kY (p) + kI1
+ ....+ kIp

= 0 . (26)

2. The product ρ(Y ) ×ρ(I1) × ...×ρ(Ip) contains an invariant singlet.

This framework can be easily extended to the case of local supersymmetry.

2.4 A constraint on modular transformations

Before discussing the inclusion of CP in this class of theories, we comment about a con-
straint applying to their transformation laws under the Siegel modular group Γg . The element
S2 = −12g commutes with all elements of Γg , therefore by Schur’s Lemma the representation
matrix ρr(S2) of the finite modular group Γg,n is proportional to a unit matrix, for any rep-
resentation r. Furthermore, we have S4 = 12g and ρr(S4) = 1, which implies ρr(S2) = ±1.
Consider modular forms Y (τ) and matter multiplets ϕ at genus g and level n transforming in
the same irreducible representation ρr(γ) of Γg,n under γ ∈ Γg :

Y (γτ) = [det(Cτ+ D)]kYρr(γ)Y (τ) , γ=

�

A B
C D

�

∈ Γg , (27)

ϕ
γ
−→ [det(Cτ+ D)]kϕρr(γ)ϕ . (28)

By choosing γ= S2 and observing that Y (S2τ) = Y (τ), we get:

Y (τ) = [det(−1g)]
kYρr(S

2)Y (τ) . (29)

If Y (τ) does not vanish, this implies:

(−1)gkYρr(S
2) = 1r . (30)
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Similarly, by considering twice the transformation S2 on the matter multiplet ϕ, we get:

ϕ
S2

−→ (−1)gkϕρr(S
2)ϕ

S2

−→ [(−1)gkϕρr(S
2)]2ϕ = ϕ , (31)

and we find:
(−1)gkϕρr(S

2) = ±1r . (32)

The matrix ρr(S2) is independent from k, since it reflects a property of the group Γg,n. There-
fore, for any genus g, eqs. (30) and (32) provide a set of constraints on the weights kY and
kϕ, once the representations ρr is chosen. It is instructive to analyze the mutual consistency
of eqs. (30) and (32). If the genus g is even, the only value of ρr(S2) compatible with eq. (30)
is ρr(S2) = 1. Let RM F denote the set of all irreducible representations of Γg,n in (27) for all
possible integer values of the weight kY . This set might not coincide with R , the set of all
irreducible representations of Γg,n. If R −RM F is not empty, there are representations of Γg,n,
to which matter fields can be assigned, such that ρr(S2) = −1. If the genus g is odd, eq. (30)
and eq. (32) become (−1)kYρr(S2) = 1 and (−1)kϕρr(S2) = ±1, respectively. We see that they
can be compatible, provided the weights of the matter fields kϕ satisfy: (−1)kϕ = ±(−1)kY . For
example, let us consider g = 1 and the level n= 4. The inhomogeneous finite modular group
is isomorphic to S4, which has five irreducible representations 1, 1′, 2, 3 and 3′. In the doublet
representation ρ2(S2) = 12. Even weight for matter fields in the doublet representation are
possible, if we choose the plus sign in eq. (32). However, odd weights for matter multiplets in
the doublet representation are allowed as well, and eq. (32) is satisfied with the minus sign.
On the contrary, only even weight modular forms can transform in the doublet representation.

As we shall see, the relations (30) and (32) play an important role in the definition of a
consistent CP transformation law for matter multiplets and modular forms at genus g = 1 and
g = 2.

3 Consistent CP transformations

In a theory invariant under Γg = Sp(2g,Z), consistent CP transformations correspond to outer
automorphism u(γ) of Γg [46,47]:

CP γ CP−1 = u(γ) . (33)

Each automorphism u(γ) of Γg can be described by [74]:

u(γ) = χ(γ) U γ U−1 , U ∈ Γ ∗g , (34)

where Γ ∗g = GSp(2g,Z) denote the extended Siegel modular group, consisting of all integral
matrices U satisfying U t JU = ±J . The map χ(γ), called character of the Siegel modular group,
is a homomorphism of Γg into {±1}. The group Γ ∗g is generated by {S, Ti , U}, where the matrix

U , satisfying U J U−1 = −J , is defined as:

U =

�

−1g 0
0 1g

�

. (35)

The Siegel modular group Γg is a subgroup of Γ ∗g and each element U of the group Γ ∗g not
belonging to Γg can be uniquely decomposed as:

U = Uγ′ , γ′ ∈ Γg . (36)
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Hence outer automorphisms u(γ) of Γg are recovered from eq. (34) by replacing the generic
element U of Γ ∗g either with the generator U or with the identity:

u(γ) = χ(γ) U γ U−1 and u(γ) = χ(γ)γ . (37)

Non-trivial characters χ(γ) exist only for g = 1,2 [74,75]:

i) g = 1

χ(γ) = {1 , ε(γ)} , where ε(S) = ε(T ) = −1 . (38)

ii) g = 2

χ(γ) = {1 , θ (γ)} , where θ (S) = 1 , θ (Ti) = −1 . (39)

iii) g ≥ 3

χ(γ) = 1 . (40)

For genus g = 1,2 they give rise to two independent outer automorphisms u1,2 = χ1,2(γ)×
U γ U−1, satisfying the following relations:

u2
1 = u2

2 = (u1u2)
2 = 1 . (41)

Thus, the outer automorphism group is isomorphic to a Klein group K4 = {u1, u2, u3 =
u1u2, u4 = 1} 3. For genus g > 2 the outer automorphism group is isomorphic to Z2 =
{u, u4 = 1}. From eqs. (35) and (37) and the relation

U γ U−1 =

�

A −B
−C D

�

, (42)

we can derive the action of the outer automorphisms on the generators of Γg .

g = 1 :



















u1(S) = S−1 , u1(T ) = T−1 ,

u2(S) = −S−1 , u2(T ) = −T−1 ,

u3(S) = −S , u3(T ) = −T ,

u4(S) = S , u4(T ) = T ,

(43)

g = 2 :



















u1(S) = S−1 , u1(Ti) = T−1
i ,

u2(S) = S−1 , u2(Ti) = −T−1
i ,

u3(S) = S , u3(Ti) = −Ti ,

u4(S) = S , u4(Ti) = Ti ,

(44)

g ≥ 3 :

¨

u1(S) = S−1 , u1(Ti) = T−1
i ,

u4(S) = S , u4(Ti) = Ti .
(45)

We should select among these possibilities the good candidates to represent physical CP trans-
formations. Notice that the automorphism u is involutive for both u = u1 and u = u2:
ui(ui(γ)) = γ (i = 1,2).

3We denote by 1 the identity element of the outer automorphism.
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3.1 CP transformation of moduli τ

We assume that the CP transformation of moduli τ is linear and, for convenience, we write 4:

τ
CP
−→ (CP)τ≡ τCP = X τ∗ X t , (46)

where X is an invertible g × g matrix such that Im(τCP) > 0. The inverse CP transformation
reads:

τ
CP−1

−−−→ τCP−1 = (X−1 τ (X t)−1)∗ . (47)

By enforcing the relation (33) on the generators S and Ti of Γg , for the automorphisms ua(γ)
(a = 1, ..., 4), we get:

X X t (−τ−1) X X t = ua(S)τ ,

τ+ X BiX
t = ua(Ti)τ . (48)

The elements u1 and u2 have the same action on τ and similarly for u3,4. As a consequence
eq. (48) reduces to:

X X t (−τ−1) X X t = −τ−1 , X BiX
t = −ηBi , (49)

where η = +1 for u1,2 and η = −1 for u3,4. Since Bi form a set of basis of integral symmet-
ric matrices, we see that the second set of relations is solved by X = ±i1g when u1,2 and by
X = ±1g for u3,4. These solutions imply, respectively, X X t = −1g and X X t = 1g , both satisfy-
ing the first equation in (49). Since Im(τCP) > 0, the only consistent choice is X = ±i1g and
we find:

τ
CP
−→ τCP = −τ∗ , (50)

as admissible CP transformation of the matrix τ. This represents the correct transformation
law of the moduli for both u1,2 outer automorphisms. We should instead discard u3,4. If we
combine eq. (50) with a modular transformation:

τ
γ
−→ (Aτ+ B)(Cτ+ D)−1 CP

−→ (γ ◦ CP)τ= (−Aτ∗ + B)(−Cτ∗ + D)−1 , (51)

we get another allowed CP transformation. Since the theory is invariant under Γg , this choice
should not be view as independent from (50), which we take as representative element in the
class (51).

By combining CP and the Siegel modular transformations we get the extended Siegel mod-
ular group Γ ∗g = GSp(2g,Z) and the full symmetry transformation of the complex moduli is

τ→ (Aτ+ B)(Cτ+ D)−1 for γt Jγ= J ,

τ→ (Aτ∗ + B)(Cτ∗ + D)−1 for γt Jγ= −J , (52)

where γ =

�

A B
C D

�

and the CP transformation is represented by the matrix U in eq. (35).

Notice that the action of γ and −γ on τ is the same and the full symmetry group acting on
moduli is isomorphic to PGSp(2g,Z)≡ GSp(2g,Z)/{±12g}.

4We see at the end of this Section that also non-linear actions of CP are allowed. They are however equivalent
to the linear one.
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3.2 CP transformations of matter chiral multiplets ϕ

We consider a generic matter chiral supermultiplet ϕ, transforming as in eq. (28) under the
Siegel modular group. We assume the following action of C P on ϕ:

ϕ(x)
CP
−→ Xrϕ(xP) , (53)

where Xr is a unitary matrix, and a bar denotes hermitian conjugation. By realizing the con-
dition (33) on the matter field space, we find:

[det(C(τ∗)CP−1 + D)]kϕXr ρ
∗
r (γ) X−1

r ϕ = χ(γ)gkϕ [det(−Cτ+ D)]kϕρr(u(γ)) ϕ , (54)

where we made use of the relation:

u(γ) = χ(γ)

�

A −B
−C D

�

. (55)

We conclude that:
Xr ρ

∗
r (γ) X−1

r = χ(γ)gkϕ ρr(u(γ)) . (56)

When the automorphism u1 is chosen, from the previous equation we find:

Xr ρ
∗
r (S) X−1

r = ρr(S
−1) , Xr ρ

∗
r (Ti) X−1

r = ρr(T
−1
i ) . (57)

By making use of eqs. (38-39) and (43-44), for the automorphism u2 we get

χ2(S)
gkϕ ρr(u2(S)) = [(−1)gkϕρr(S

2)]gρr(S
−1)

χ2(Ti)
gkϕ ρr(u2(Ti)) = [(−1)gkϕρr(S

2)]ρr(T
−1
i ) . (58)

We exploit the results of Section 2.4 and discuss separately the cases g = 1 and g = 2. When
g = 1, the matrix Xr depends on both ρr(S2) and kϕ

5 and we distinguish two cases:

• (−1)kϕ ρr(S2) = +1r
By combining eqs. (56) and (58), we get eq. (57) also for the automorphism u2:

Xr ρ
∗
r (S) X−1

r = ρr(S
−1) , Xr ρ

∗
r (Ti) X−1

r = ρr(T
−1
i ) . (59)

• (−1)kϕ ρr(S2) = −1r
In this case Xr obeys:

Xrρ
∗
r (S)X

−1
r = −ρr(S

−1), Xrρ
∗
r (T )X

−1
r = −ρr(T

−1) . (60)

Note that each of these two conditions can be realized for any representation r, with a suitable
choice of kϕ.

On the contrary, when g = 2, the representations r of the finite modular group fall into
two classes:

• ρr(S2) = +1r
By combining eqs. (56) and (58), we get again eq. (57):

Xr ρ
∗
r (S) X−1

r = ρr(S
−1) , Xr ρ

∗
r (Ti) X−1

r = ρr(T
−1
i ) . (61)

5We should more precisely denote Xr as Xr(kϕ), but in the text we leave the dependence on kϕ understood.
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• ρr(S2) = −1r
In this case Xr obeys:

Xrρ
∗
r (S)X

−1
r = ρr(S

−1), Xrρ
∗
r (T )X

−1
r = −ρr(T

−1) . (62)

Now Xr is completely determined by ρr(S2) and does not depend on kϕ.
The automorphism u2 has been discussed in [50], for g = 1. The CP transformation defined

by eqs. (60) and (62) can possibly be consistently implemented if:

1. The level n is even, which follows from taking the n−th power of the second relation in
eqs. (60, 62).

2. The dimension of representation ρr is even, which follows from eqs. (60, 62) by taking
determinants.

3. The traces of ρr(T ) and, for g = 1, ρr(S) should vanish, which follows from eqs. (60,
62) by taking traces.

It is not inconceivable to build a model with these properties [50]. We do not deal with such
case here and, in the rest of our paper, we discuss the automorphism u2, focusing on the
solution (−1)gkϕρr(S2) = +1r. Then, both u1 and u2 satisfy eq. (57), that can be regarded as
a set of consistency conditions on the unitary matrix Xr. Indeed, multiplying from the right
each member of the previous equations by Xr, we get linear equations in the unknown Xr,
which admits a unique solution, up to an overall phase factor.

The action of CP in the moduli space, eq. (50), is involutive, that is CP2τ= τ. This is not
necessarily the case in field space. From (33), by applying twice CP , we get:

CP2 γ CP−2 = u(u(γ))≡ γ , (63)

showing that CP2 is an inner automorphism, which can be induced by an element γCP2 satis-
fying:

γCP2 γ γ−1
CP2 = γ . (64)

Therefore γCP2 belongs to the center of Γg : {12g , S2}. By realizing the equality (63) in the
matter field space, we obtain:

det(Cτ+ D)kϕXrX
∗
r ρr(γ) X−1∗

r X−1
r ϕ = det(Cτ+ D)kϕρr(γ)ϕ . (65)

By the Schur’s Lemma, the product XrX
∗
r is proportional to the identity. It acts without conju-

gating the matter fields and represents the element γCP2 or, more precisely, the element of the
finite group Γg,n that corresponds to γCP2 . As a consequence we have:

XrX
∗
r = 1r or XrX

∗
r = ρr(S

2) = ±1r . (66)

The latter equality follows from S4 = 12g . Hence, the unitary matrix Xr is either symmetric
or antisymmetric. The indicator Indr =

1
|Γg,n|

∑

γ∈Γg,n
Tr(ρr(γu1(γ))) provides a criterion for

deciding whether XrX
∗
r = 1r or XrX

∗
r = −1r [47]. The indicator Indr is 1 and −1 for positive

and negative sign respectively.
When XrX

∗
r = 1r, it is always possible to move to a basis where CP is canonical: Xr = 1r.

Then, the consistency conditions of eq. (57) imply that both ρr(S) and ρr(T ) are symmetric
in this basis: ρ t

r (S) = ρr(S) and ρ t
r (Ti) = ρr(Ti). Conversely, when ρr(S) and ρr(T ) are

symmetric, the relations (57) unify into 6:

Xr ρ
∗
r (γ) X−1

r = ρ t
r (γ
−1) , (67)

6It follows from γ= Sα1 · · · Tβp
i implying ρ t

r (γ
−1) = ρ t

r (S
−α1) . . .ρ t

r (T
−βp
i ) = ρr(S−α1) . . .ρr(T

−βp
i ) =

ρr(S−α1 . . . T
−βp
i ) = ρr(u1(γ)) in a symmetric basis.
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which is solved by Xr = 1r and the action of CP is involutive also in the field space. We see
that u(γ) lies in the same conjugacy class as γ−1 in the finite Siegel modular group. In other
words u(γ) is a class-inverting automorphism of the finite Siegel modular group Γg,n.

When XrX
∗
r = ρr(S2) = −1r, Xr is a unitary antisymmetric matrix. In this case, the dimen-

sion of the representation ρr has to be even. By performing a field redefinition we can go to a
basis where Xr takes the form [76]

Xr =





iσ2
. . .

iσ2



 , (68)

where σ2 is the second Pauli matrix. Examples of non-involutive CP transformations on the
field space have been given in ref. [77]. In most of our discussion, we focus on the involutive
case.

3.3 CP transformations of modular forms Y (τ)

Consider a multiplet Y (τ) of modular forms at genus g, level n and weight kY , transforming
as in eq. (27) under the Siegel modular group. In general, there can be several linearly inde-
pendent such multiplets. We start by examining the case where there is only one. Under CP it
transforms as:

Y (τ)
CP
−→ Y (−τ∗) . (69)

We would like to establish the relation between Y (−τ∗) and XrY
∗(τ), where Xr is the matrix

specifying the transformation law under CP of a matter multiplet ϕ at the same genus g,
level n, weight kϕ = kY and irreducible representation ρr(γ), see eqs. (28) and (53). Note
that in this case the matrix Xr satisfies necessarily the consistency condition associated with
(−1)gkϕρr(S2) = +1r. Indeed the other sign choice is only possible for r belonging toR−RM F ,
when g is even and kϕ 6= kY , when g is odd. Thus, among all possible matrices Xr, here the
only relevant ones are the solution of the consistency conditions (57). We define:

eY (τ) = X−1∗
r Y ∗(−τ∗) . (70)

We see that under γ ∈ Γg , eY (τ) transforms as:

eY (γτ) = X−1∗
r Y ∗(−(γτ)∗)

= X−1∗
r Y ∗(u(γ)(−τ∗))

= X−1∗
r [det(Cτ+ D)]kχ(γ)gkρ∗r (u(γ)) Y ∗(−τ∗)

= [det(Cτ+ D)]k ρr(γ) eY (τ) , (71)

where, in the last equality, we have used eq. (56). Since eY (τ) and Y (τ) transform in the
same way and, by assumption, there is only one linearly independent such modular form, we
conclude that they are proportional, that is:

Y (−τ∗) = λ XrY
∗(τ) . (72)

By performing an additional CP transformation we have Y (τ) = |λ|2 XrX
∗
r Y (τ) = |λ|2 Y (τ),

where we have made use of eq. (66). Note that only the solution XrX
∗
r = +1r applies in this

case. The non vanishing constant λ can be absorbed by an appropriate choice of phase of the
whole multiplet Y (τ). In such a basis of modular forms Y (τ) we have:

Y (−τ∗) = XrY
∗(τ) , (73)
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which reproduces the same CP transformation law of matter fields.
If there are N linearly independent multiplets Y a(τ) (a = 1, ..., N) transforming as in (27),

eq. (71) holds individually for all eY a(τ) = X−1∗
r Y a∗(−τ∗) and we have:

Y a(−τ∗) = λa
b XrY

b∗(τ) , (74)

where λa
cλ
∗c

bXrX
∗
r = δ

a
b1r. From eq. (66), now we can only deduce λa

cλ
∗c
b = ±δ

a
b, the sign

plus (minus) applying when the action of Xr is (is not) involutive. When Xr is involutive and
λa

cλ
∗c

b = δ
a
b, it is always possible to factorize the matrix λ into λ= η−1η∗ and we obtain7:

ηa
bY b(−τ∗) = Xr[η

a
bY b]∗(τ) . (75)

We see that, by performing the change of basis Y a(τ) → ηa
bY b(τ), eq. (73) holds indepen-

dently for each multiplet Y a(τ). In applications we will use such basis of modular forms.
The linear space Mk(Γg(n)) of weight k modular forms for Γg(n) is finite dimensional and

decomposes into the sum of invariant subspaces, each carrying an irreducible representation
(ρaI

rI
)iI jI of Γg,n of dimension dI . Here aI is an index describing the degeneracy of the represen-

tation ρrI
and the indices (iI , jI) run from 1 to dI . Let {(F aI

rI
)iI (τ)} denote a basis in Mk(Γg(n)).

Our result (74) implies:

(F aI
rI
)iI (−τ

∗) = δI
Jλ

aI
bJ
(XrJ
) jI

iI
(F bJ

rJ
)∗jI (τ) , (76)

or, omitting indices,
F(−τ∗) = XF F∗(τ) . (77)

From the properties of λa
b and Xr, it follows that

XF X ∗F = 1 , XFρ
∗(γ)X−1

F = ρ(u1(γ)) , (78)

where ρ(γ) is the direct sum of the representations {ρaI
rI
}.

Actually, we could reverse the logic of this section and start by proving eqs. (77) and (78)
and finally conclude that eq. (74) should hold. Indeed, for any element γ of Γg(n), a basis
{F(τ)} of Mk(Γg(n)) obeys

F∗(−(γτ)∗) = F∗([A(−τ∗)− B][−C(−τ∗) + D]−1) = [det(Cτ+ D)]kY F∗(−τ∗) , (79)

showing that F∗(−τ∗) belongs to Mk(Γg(n)), which is the content of eq. (77). As a conse-
quence, the following relation should be fulfilled:

F(τ) = [F∗(−(−τ∗)∗)]∗ = [X ∗F F(−τ∗)]∗ = XF X ∗F F(τ) , (80)

which leads to XF X ∗F = 1. Finally, by performing a Siegel modular transformation γ ∈ Γg on
both sides of eq. (77) and using the identity −(γτ)∗ = u(γ)(−τ∗), we obtain

XFρ
∗(γ)X−1

F = χ(γ)
gkYρ(u(γ)) = ρ(u1(γ)) , (81)

where ρ(γ) = diag(ρ1
r1
(γ), . . . ,ρm1

r1
(γ), . . . ,ρ1

rp
(γ), . . . ,ρmp

rp
(γ)) is generally reducible. Then

eq. (74) follows by projecting (77) on invariant subspaces.

7If (1+ λ) is invertible, we take η = (1+ λ)−1, then λη∗−1 = η−1. If (1+ λ) is not invertible, we can always
find a complex number u with |u|= 1 such that −u2 is not an eigenvalue of λ. Hence, λ+u21 is invertible. In this
case, we take η= (u−1λ+u1)−1, then λη∗−1 = η−1. This construction was given by Prof. Marc van Leeuwen [78].
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3.4 Condition for CP invariance

We have seen that the transformation properties of moduli, matter multiplets and modular
forms are given by:











τ
CP
−→−τ∗ ,

ϕ(x)
CP
−→ Xrϕ(xP) ,

Y a(τ)
CP
−→ Y a(−τ∗) = λa

bXrY
b∗(τ) ,

(82)

with λa
cλ
∗c
bXrX

∗
r = δ

a
b1r. For both automorphism u1 and the positive branch (−1)gkϕρr(S2) =

+ 1r of u2, the unitary matrix Xr solves the consistency conditions (57) and is determined up
to an arbitrary phase. When the action of CP on the field space is involutive, it is convenient
to move to the basis where Xr = 1. Here the matrices ρr(S) and ρr(T ) are symmetric and it is
possible to work with modular forms Y a(τ) where λa

b = δ
a
b. The minimal Kähler potential,

eqs. (22) and (23), is always invariant under CP. For the superpotential, the condition for
CP invariance simplifies when i) Xr = 1, ii) the Clebsh-Gordan coefficients are all real in the
adopted basis and iii) the modular forms Y (τ) are in a basis where (73) holds. In this case
the superpotential is CP invariant when its free parameters are real.

4 Points of residual CP symmetry

There are points of the moduli space Hg where CP is conserved. The theory is invariant under
Γg . Moreover the inequalities (11) defining the fundamental domain Fg do not change when
we map τ into −τ∗. Thus it is sufficient to look for the CP invariant points belonging to Fg . If
τ belongs to the interior of Fg , the CP invariant points are the solutions of:

−τ∗ = τ , (83)

that is the moduli τ of the fundamental domain with vanishing real part. Points of the bound-
ary ∂Fg of Fg , where at least one of the relations in eq. (11) is realized as an equality, are
related by modular transformations. The requirement of CP conservation for any point τ of
the boundary is the existence of a modular transformation γ, such that:

−τ∗ = γτ . (84)

Indeed the composition of a CP transformation with a modular transformation is an equivalent
CP transformation in our theory. By applying two consecutive such combinations, we obtain
the condition:

u(γ)γτ = τ . (85)

We make use of the identity [72]

(Cτ∗ + D)tIm(γτ)(Cτ+ D) = Im(τ) . (86)

If τ satisfies eq. (84), we have Im(γτ) = Im(−τ∗) = Im(τ) and

(Cτ∗ + D)tIm(τ)(Cτ+ D) = Im(τ) . (87)

By taking the determinant of both sides and noticing Im(τ)> 0, we get

|det(Cτ+ D)|= 1 . (88)
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By comparing eq. (88) with eq. (11), we see that indeed τ belongs to the boundary ∂Fg . We
can distinguish two cases where eq. (88) is satisfied: C = 0 and C 6= 0. The elements of Γg
having C = 0 are of the type:

γ =

�

A M
0 At−1

�

, (89)

where A is an unimodular 8 integral matrix and M is a symmetric modular matrix. In this case
the relation (84) becomes:

−Re(τ) = A(Re(τ) +M)At

Im(τ) = AIm(τ)At . (90)

If we consider A = 1g , we get: 2Re(τ) + M = 0. Since |Re(τ)| ≤ 1/2, this relation is solved
by:

Re(τ) = 0, and Re(τ i j) = ±
1
2

, (91)

for M = g and M = ±Bi respectively. If C 6= 0, we consider as an example the choice γ = S.
The condition eq. (84) becomes:

τ∗ = τ−1 . (92)

For genus g = 1, this is the arc |τ|2 = 1. In the case of g = 2, the CP conserved values
of τ satisfy the conditions |τ1|2 + |τ3|2 = |τ2|2 + |τ3|2 = 1, τ1τ

∗
3 + τ

∗
2τ3 = 0, which are

|τ1|2 = |τ2|2 = 1, τ3 = 0 in the fundamental domain F2. We might ask whether all points
of the boundary ∂Fg (g ≥ 2) enjoy CP invariance, as is the case for genus one. All points of
∂Fg satisfying |Re(τi j)| = 1/2, for at least one pair (i j), are easily shown to be CP conserv-
ing, since the relation (84) is satisfied by a translation γ. For points satisfying the condition
|det(Cτ+D)|= 1 with C 6= 0, it is more difficult to establish, in general, if they are CP conserv-
ing or not. Showing this amounts to prove that, for a generic τ satisfying |det(Cτ + D)| = 1
with C 6= 0, we can always determine a modular transformation γ such that eq. (84) holds.
To our best knowledge this is still an open problem.

In summary, in the interior of the Fg , a point τ is CP conserving if and only if its real part
is vanishing. There are additional CP conserving points on the boundary of Fg , but we were
not able to prove that any point belonging to ∂Fg is CP conserving.

4.1 Implications of residual CP symmetry

Consider a point τ of the fundamental domain where CP is conserved. Then there is an element
γ of Γg such that −τ∗ = γτ. As we have seen, eq. (88), the combination

D = det(Cτ+ D) (93)

is a pure phase. Assume that the lepton sector is described by the superpotential:

W = −Ec
i Y

e
i j(τ)L jHd −

1
2Λ

LiYνi j(τ)L jHuHu , (94)

where under the group element γ the matter multiplets ϕ (ϕ = Hu,d , Ec , L) transform as:

ϕ
γ
−→Dkϕρϕ(γ)ϕ . (95)

8(|det A|= 1).
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The weights kEc ,L carry a flavour index and DkEc ,L are diagonal unitary matrices in flavour
space. The invariance of the W under the modular transformation γ implies:

Y e(γτ) = D−kHdρ†
Hd
(γ) D−kEcρ∗Ec (γ) Y e(τ) ρ†

L(γ)D
−kL ,

Yν(γτ) = D−2kHuρ2†
Hu
(γ) D−kLρ∗L(γ) Y

ν(τ) ρ†
L(γ)D

−kL . (96)

On the other hand, the invariance of W under a CP transformation requires:

Y e(−τ∗) = X †
Hd

X ∗Ec Y e∗(τ) X †
L ,

Yν(−τ∗) = X 2†
Hu

X ∗L Yν∗(τ) X †
L . (97)

By combining eqs. (96) and (97), at the point τ enjoying residual CP symmetry we get:

Y e∗(τ) = ΩHd
ΩT

Ec Y e(τ) ΩL ,

Yν∗(τ) = Ω2
Hu
ΩT

L Yν(τ) ΩL , (98)

where we have defined unitary matrices:

Ωϕ = ρ
†
ϕ(γ)D

−kϕXϕ , (ϕ = Hu,d , Ec , L) . (99)

The charged lepton and neutrino mass matrices are given by Me = Y evd and Mν = Yνv2
u/Λ

for the minimal Kähler potential (23). Thus at the point τ enjoying residual CP invariance we
have

Ω†
L M†

e (τ)Me(τ)ΩL =
�

M†
e (τ)Me(τ)

�∗
,

Ω†
L M†

ν(τ)Mν(τ)ΩL =
�

M†
ν(τ)Mν(τ)

�∗
. (100)

We see that the hermitian combination of the neutrino and charged lepton mass matrices
M†
νMν and M†

e Me are invariant under a common transformation of the left-handed charged
leptons and the left-handed neutrinos, which represents a combination of CP and modular
transformations. The unitary matrix ΩL should be symmetric otherwise the neutrino and the
charged lepton mass spectrum would be constrained to be partially degenerate [45]. Further-
more, the conditions eq. (100) fulfilled at the CP fixed point imply that both Dirac and Majo-
rana CP phases are trivial [45]. Therefore values of moduli deviating from residual CP sym-
metry fixed points are required to accommodate the observed non-degenerate lepton masses
and a non-trivial Dirac CP.

5 CP action in invariant subspaces

The supersymmetric modular invariant theory of Section 2 can be consistently defined even
when τ belongs to an invariant subspace Ω of the Siegel moduli space Hg . In this case the
full Siegel modular group Γg is replaced by a convenient subgroup N(H). The points τ in Ω
are fixed points of the subgroup H of Γg [79–81], while N(H), the normalizer of H, leaves Ω
invariant as a whole. The elements γ of N(H) satisfy the relation γ−1Hγ = H. Depending on
H, the complex dimensionality of the invariant subspace Ω can range from zero to g(g+1)/2.

Under these conditions, eq. (50) might not be suitable to describe the action of CP on τ,
since we are not guaranteed that −τ∗ belongs to Ω. To remedy this situation, we can adopt
the definition of CP given in eq. (51), where a modular transformation γ is followed by the
canonical CP transformation

τ→ (γ ◦ CP)τ= (−Aτ∗ + B)(−Cτ∗ + D)−1 , (101)
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Table 1: The generalized CP transformation in the modular subspace in Siegel
upper half plane H2. The complex moduli are denoted by τ1 ,τ2 ,τ3, and
ζ= e2πi/5, η= 1

3(1+ i2
p

2), ω= e2πi/3.

Fixed points τ CP s Fixed points τ CP s
�

τ1 0
0 τ2

�

CP
�

τ1 τ3
τ3 τ1

�

CP
�

i 0
0 τ2

�

CP
�

ω 0
0 τ2

�

T−1
1 ◦ CP

�

τ1 0
0 τ1

�

CP
�

τ1 1/2
1/2 τ1

�

T3 ◦ CP
�

τ1 τ1/2
τ1/2 τ1

�

CP
�

ζ ζ+ ζ−2

ζ+ ζ−2 −ζ−1

�

((ST3)3T3)−1 ◦ CP
�

η 1
2(η− 1)

1
2(η− 1) η

�

ST3(T1T2)−1S ◦ CP
�

i 0
0 i

�

CP
�

ω 0
0 ω

�

(T1T2)−1 ◦ CP i
p

3
3

�

2 1
1 2

�

CP
�

ω 0
0 i

�

T−1
1 ◦ CP —

and require for any τ ∈ Ω:
(γ ◦ CP)τ= τ′ ∈ Ω . (102)

Since each point of Ω is fixed under H, the transformation (γ ◦ CP) should obey:

(γ ◦ CP) ◦ H = H ◦ (γ ◦ CP) . (103)

This condition determines γ up to a modular transformation γ′ of the normalizer N(H), given
that it is satisfied by both (γ ◦ CP) and (γ′γ ◦ CP). Therefore, it is sufficient to choose a rep-
resentative CP transformation in this class, and we denote it as CP s. For the case of g = 2,
all independent invariant subspaces and the corresponding CP transformations are summa-
rized in table 1, where all CP s are chosen to be involutive with (CP2

s )τ = τ. There are 6
zero-dimensional invariant subspaces. The unique point belonging to each of these regions is
CP invariant. In the modular subspaces of complex dimension one and two there are infinite
CP-conserving points. We list below the CP-conserving points satisfying (CP s)τ= g−1

i τ, where
gi stand for the generators of N(H). This request can be equivalently cast in the form9:

(gi ◦ CP s)τ= τ . (104)

1.

�

τ1 0
0 τ2

�

:



























G1 ◦ CP s : Re(τ1) = 0 , |τ2|= 1 ,

G′1 ◦ CP s : Re(τ2) = 0 , |τ1|= 1 ,

G2 ◦ CP s : |Re(τ1)|= 1/2 ,Re(τ2) = 0 ,

G′2 ◦ CP s : |Re(τ2)|= 1/2 ,Re(τ1) = 0 ,

G3 ◦ CP s : Re(τ1) = −Re(τ2),Im(τ1) = Im(τ2) .

9Given any CP conserving point τ of gi ◦ CP s, (CP s)τ would be the fixed point of g−1
i ◦ CP s.
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2.

�

τ1 τ3
τ3 τ1

�

:



















G1 ◦ CP s : |Re(τ1)|= 1/2 ,Re(τ3) = 0 ,

G2 ◦ CP s : |Re(τ3)|= 1/2 ,Re(τ1) = 0 ,

G3 ◦ CP s : |τ1|= 1 ,τ3 = 0 ,

G4 ◦ CP s : Re(τ1) = Im(τ3) = 0 .

3.

�

i 0
0 τ2

�

:











R ◦ CP s : Re(τ2) = 0 ,

G1 ◦ CP s : |τ2|= 1 ,

G2 ◦ CP s : |Re(τ2)|= 1/2 .

4.

�

ω 0
0 τ2

�

:











R ◦ CP s : Re(τ2) = 0 ,

G1 ◦ CP s : |τ2|= 1 ,

G2 ◦ CP s : |Re(τ2)|= 1/2 .

5.

�

τ1 0
0 τ1

�

:











R1 ◦ CP s : Re(τ1) = 0 ,

G1 ◦ CP s : |τ1|= 1 ,

G2 ◦ CP s : |Re(τ1)|= 1/2 .

6.

�

τ1 1/2
1/2 τ1

�

:











G1 ◦ CP s : Re(τ1) = 0 ,

R ◦ CP s : |Re(τ1)|= 1/2 ,

G2R ◦ CP s : (Re(τ1)± 1/2)2 + (Im(τ1))2 = 1/2 .

7.

�

τ1 τ1/2
τ1/2 τ1

�

:











G1 ◦ CP s : |τ1|= 2/
p

3 ,

G2 ◦ CP s : (Re(τ1)± 2/3)2 + (Im(τ1))2 = 4/9 ,

G′2 ◦ CP s : Re(τ1) = 0 .

Here G1, G2, G′1, G′2, R in each case are the generators of N(H) associated with the two bidi-
mensional and the five unidimensional invariant subspaces shown in table 1. Their matrix
representation in a convenient basis is given in ref. [2].

6 A model with CP invariance at genus 2

In a CP-invariant theory, CP violation can arise only as a consequence of the choice of the
vacuum. If in addition the theory enjoys flavour modular invariance, the properties of the
observed fermion spectrum such as masses, mixing angles and phases could be determined
mostly by the vacuum, rather than by Lagrangian parameters. These features are parts of an
appealing framework for the unification of flavor, CP and modular symmetries, advocated in
recent works [39–44] in a top-down perspective. In a bottom-up approach we can hope to
explore some aspect of this ideal framework.

In this spirit, here we present an example of how CP and flavour symmetries can be com-
bined and enforced in a supersymmetric theory, where the properties of the mass spectrum
depend in a non-trivial way on a multidimensional moduli space. When a single modulus
exists, analogous studies have been carried out in refs. [48, 50–53]. We focus on the lepton
sector, where we have 12 relevant observables. We show that all measured mass combinations
and mixings can be correctly described in terms of five Lagrangian parameters and by a con-
venient point in moduli space 10. The theory is CP invariant and all 3 CP violating phases arise

10Note that the most economic modular-invariant flavour models describe the lepton sector by making use of
five parameters.
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spontaneously as a consequence of a small departure of τ from a CP-symmetric point.
It is convenient to base our construction on the invariant subspace τ1 = τ2 at genus

g = 2 [2]. At level 2, the modular group N(H) 11 is S4 × Z2, whose generators G1 = T1T2,
G2 = T3 and G3 = S are shown in appendix A, in a convenient basis. We adopt u(γ) = u1(γ)
as the automorphism defining CP. In terms of Gi (i = 1, 2,3), the consistency conditions of
eq. (57) become:

Xrρ
∗
r (Gi)X

−1
r = ρr(u(Gi)) = ρr(G

−1
i ) , (105)

where we have used the identity u(G1) = u(T1T2) = T−1
1 T−1

2 = T−1
2 T−1

1 = G−1
1 . Since in

the adopted basis all the generators G1, G2 and G3 are represented by unitary and symmetric
matrices, we can choose the canonical CP, Xr = 1r. Moreover, the Clebsh-Gordan coefficients
are all real in this basis, and we will work with modular forms Y (τ) for which eq. (73) holds.
By choosing minimal kinetic terms, we conclude that the theory is CP invariant when all La-
grangian parameters are real.

We choose the same field content and the same weight and representation assignment as
in Lepton model II of ref. [2]. The matter chiral multiplets consist of three SU(2)L singlets Ec ,
three doublets L, two Higgs doublets Hu,d , transforming as

ρEc = 2⊕ 1, ρL = 3′, ρHu
= ρHd

= 1 ,

kHu
= kHd

= 0, kEc
D
= −3, kEc

3
= kL = −1 . (106)

Neutrino masses are described by the Weinberg operator. The superpotential of the lepton
sector includes:

we = α(E
c
D LY (4)3′a )1Hd + β(E

c
D LY (4)3′b )1Hd + γ(E

c
3 LY3′)1Hd ,

wν =
g1

Λ
(LLY3′)1HuHu +

g2

Λ
(LLY1)1HuHu . (107)

The phases of parameters α,γ and g1 are unphysical and can be always removed, even before
enforcing CP invariance.

We impose CP invariance, requiring also β and g2 to be real. At this level, the predictions of
the model depend on five Lagrangian parameters plus the complex values of τ1 and τ3. From
the superpotential and from the Clebsh-Gordan coefficients of S4× Z2, the charged lepton and
neutrino mass matrices read:

Me =

 

α(
p

2Y (4)
3′a,2
−2Y (4)

3′a,3
)+β(

p
2Y (4)

3′ b,2
−2Y (4)

3′ b,3
)

p
2αY (4)

3′a,1
+
p

2βY (4)
3′ b,1

−2αY (4)
3′a,1
−2βY (4)

3′ b,1

−
p

2αY (4)
3′a,1
−
p

2βY (4)
3′ b,1

α(
p

2Y (4)
3′a,2
+2Y (4)

3′a,3
)+β(

p
2Y (4)

3′ b,2
+2Y (4)

3′ b,3
) 2αY (4)

3′a,2
+2βY (4)

3′ b,2
γY1 γY2 γY3

!

vd ,

Mν =





g1(
p

2Y2 + Y3) + g2Y4
p

2g1Y1 g1Y1p
2g1Y1 g1(−

p
2Y2 + Y3) + g2Y4 g1Y2

g1Y1 g1Y2 −2g1Y3 + g2Y4





v2
u

Λ
. (108)

Here Y3′ = (Y1, Y2, Y3) and Y1 = Y4 are weight 2 modular forms, while Y (4)3′a = (Y
(4)
3′a,1, Y (4)3′a,2, Y (4)3′a,3)

and Y (4)3′b = (Y
(4)
3′b,1, Y (4)3′b,2, Y (4)3′b,3) are weight 4 modular forms. Their explicit expressions in terms

of the second order theta constants are given in appendix B. We find a good agreement between
the model predictions and the experimental data, for the following choice of parameters:

τ1 = −0.03376+ 1.11329i , τ3 = −0.02376+ 0.50670i ,

β/α= −0.83991 , γ/α= 0.01176 , g2/g1 = 1.58030 ,

αvd = 39.87894 MeV , g2
1 v2

u/Λ= 6.07771 meV . (109)

11With an abuse of language we keep denoting by N(H) also the projection of N(H) at level two.
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Table 2: The best fit values and the 1σ ranges of the charged lepton mass ratios
and the lepton mixing parameters. The charged lepton mass ratios averaged over
tanβ [5] are taken from ref. [82], and we adopt the values of the lepton mixing
parameters from NuFIT v5.0 with Super-Kamiokanda atmospheric data for normal
ordering [83].

Parameters Best fit value and 1σ error
me/mµ 0.0048± 0.0002
mµ/mτ 0.0565± 0.0045

∆m2
21/10−5eV2 7.42+0.21

−0.20
∆m2

31/10−3eV2 2.517+0.026
−0.028

δC P/π 1.0944+0.1500
−0.1333

sin2 θ12 0.304+0.012
−0.012

sin2 θ13 0.02219+0.00062
−0.00063

sin2 θ23 0.573+0.016
−0.020

The experimental 1σ ranges shown in table 2, with the exclusion of that referring to the Dirac
CP phase δC P/π, are the input data in our fit. Accordingly, the lepton masses and mixing
parameters are determined to be:

sin2 θ12 = 0.3040 , sin2 θ13 = 0.02217 , sin2 θ23 = 0.5428 , δC P = 1.57π ,

α21 = 0.19π , α31 = 1.13π , me/mµ = 0.00480, mµ/mτ = 0.05735 ,

m1 = 9.22 meV , m2 = 12.62 meV , m3 = 52.07 meV ,

mβ = 12.77 meV , mββ = 10.74 meV , (110)

mβ and mββ being the effective neutrino masses in beta decay and neutrinoless double beta
decay, respectively. Note that the model predicts a Dirac CP phase δC P close to 3π/2. The neu-
trino masses are of normal hierarchy type and they are quite tiny. All the experimental bounds
from neutrino oscillations [83], tritium beta decays [84], neutrinoless double decay [85] and
cosmology [86] are satisfied. We can make a further step and restrict the complex moduli to
the one-dimensional invariant subspace τ3 = τ1/2 = τ2/2 contained in the region τ1 = τ2.
We find that the observed lepton masses and mixing angles can still be accommodated 12. The
best fit values of the remaining input parameters are given by:

τ1 = −0.02827+ 1.17613i , (τ1 = τ2 = 2τ3)

β/α= −1.02608 , γ/α= 0.01695 , g2/g1 = 1.42981 ,

αvd = 38.52395 MeV , g2
1 v2

u/Λ= 6.77168 meV . (111)

The masses and mixing parameters of leptons are predicted to be:

sin2 θ12 = 0.3036 , sin2 θ13 = 0.02215 , sin2 θ23 = 0.5291 , δC P = 1.41π ,

α21 = 0.17π , α31 = 1.13π , me/mµ = 0.00480, mµ/mτ = 0.05801 ,

m1 = 10.08 meV , m2 = 13.26 meV , m3 = 51.26 meV ,

mβ = 13.40 meV , mββ = 11.26 meV . (112)

We have comprehensively explored the parameter space of the model, within the invariant
subspace τ1 = τ2 = 2τ3. Requiring the three lepton mixing angles and neutrino squared mass

12Notice that another possible one-dimensional subspace, τ3 = 0, can also fit the data well, except that sin2 θ23

is slightly smaller than the 3σ lower bound of the experimental value.
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Figure 1: The correlations among the input free parameters, neutrino mixing angles
and CP violating phases in the model discussed in the text, where the moduli τ are
restricted to the subspace with τ1 = τ2 = 2τ3. The zero-dimensional fixed point
τ= ip

3

�

2 1
1 2

�

is marked by pink triangle in the τ1 plane .

splittings ∆m2
21, ∆m2

31 to lie in the experimentally allowed 3σ regions [83], we get the corre-
lations between the free parameters and observable quantities shown in figure 1. It is worth
noting that τ1 = −0.02827+ 1.17613i is close to 2i/

p
3 ≈ 1.1547i and the VEVs of moduli

that best reproduce the data are all clustered near the zero-dimensional fixed point ip
3

�

2 1
1 2

�

.

This point preserves CP and a Z2 residual symmetry generated by (ST )2T SV . We see that a
small deviation from the CP-conserving point is sufficient to generate a sizable amount of CP
violation.

In this model we can look numerically for the points preserving CP and compare them with
those discussed analytically in the previous Section. By varying the value of τ in the modular
subspaces with τ1 = τ2,τ3 = 0 or τ1 = τ2 = 2τ3, while keeping all other parameters fixed to
their best fit values, we present the CP violating quantity∆C P ≡

1
3(| sinδC P |+ | sinα21|+ | sinα31|)

as two heatmap plots in figure 2. The colors of the points in the figure change from blue to red,
indicating that the ∆C P is increasing: ∆C P = 0 corresponds to CP conservation and ∆C P = 1
corresponds to maximal CP violation. The CP conserved points (shown with dark blue colour)
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Figure 2: The distribution of CP violation measured by the average of the three CP
phases ∆C P in the subspace with τ1 = τ2,τ3 = 0 (left panel) and τ1 = τ2 = 2τ3
(respectively right panel). In the subspace with τ3 = 0, |Re(τ1)| = 0,1/2 and
|τ1| = 1 are CP-conserving points. In the subspace with τ3 = τ1/2, |Re(τ1)| = 0
and |τ1|= 2/

p
3 are CP-conserving points. The zero-dimensional fixed points

�

i 0
0 i

�

,
�

ω 0
0 ω

�

and ip
3

�

2 1
1 2

�

are marked by pink dot, hexagonal star and triangle, respec-
tively.

are indeed consistent with our analytic results. It is remarkable that significant CP violation
can be induced for small deviation of τ from the zero-dimensional fixed points

�

i 0
0 i

�

,
�

ω 0
0 ω

�

and ip
3

�

2 1
1 2

�

.

7 Discussions

CP symmetry and its violation are key elements of a correct description of particle interactions.
They are also crucial in explaining the baryonic asymmetry of the universe. CP violation has
been observed in a rich variety of physical processes, but it is traceable to a unique source: a
single observable phase in the CKM mixing matrix. A similar, yet-to-be-discovered, source can
reside in the lepton mixing matrix, thus closely linking the asymmetry between the properties
of particles and antiparticles to the features of the fermionic mass spectrum. CP transforma-
tions are a basic ingredient of any description of particle interactions. In theories invariant
under the action of a local, continuous, gauge group, the existence of CP transformations,
inverting the sign of commuting gauge charges is always guaranteed [87]. In general, up
to topological terms, pure gauge interactions are automatically CP invariant, while Yukawa
interactions are not. Nonetheless, the possibility that CP is a symmetry of the entire theory,
including the Yukawa sector, is very appealing. The observed degree of CP violation would
arise as a consequence of the choice of the vacuum and not from the adjustment of ad-hoc free
parameters.

There is an interesting class of flavour models where the vacuum plays a key role in the
description of fermion masses and mixing angles. Here both the flavour group and the SB sec-
tor have a common root. SB is parametrized by moduli, scalars taking values in a symmetric
space of the type G/K . A discrete, modular subgroup Γ of G, acting on G/K , plays the role of
flavour symmetry. The symmetry associated with Γ is a gauge symmetry and is related to the
redundancy of the vacuum description. Physically inequivalent vacua are described by a fun-
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damental domain (G/K)/Γ . Thus the vacuum is specified by a point in the multidimensional
moduli space, up to a discrete modular transformation. To preserve the structure of (G/K)/Γ ,
CP transformations are to be searched among the nontrivial automorphisms of Γ . The exis-
tence of such automorphisms allows to enforce CP invariance and to provide a common origin
of fermion masses, mixing angles and CP violating phases.

Pursuing a bottom-up approach, we have analyzed the allowed CP definitions in symplectic
modular invariant theories, where G = Sp(2g,R) and K = U(g), starting from a complete
classification of the automorphisms of the symplectic modular group Γ = Sp(2g,Z). Notice
that the symplectic modular group Sp(2g,Z) coincides with SL(2,Z) for the smallest genus
g = 1. A unique possibility emerges when g ≥ 3, while two are allowed for g ≤ 2. We have
also discussed the action of CP transformations on moduli, matter multiplets and modular
forms, the building blocks for the construction of flavour models. In these theories, physically
inequivalent vacua are described by a fundamental domain Fg in the Siegel upper half plane,
whose explicit construction is known only at genus one and two. We have shown that in the
interior of Fg CP is preserved only on the surface Re(τ) = 0, while on its boundary there
are infinite CP-conserving points. An interesting open problem is to establish whether all the
points of the boundary are CP-conserving, like in genus one, or not.

Finally, we have shown how to combine all the previously discussed elements in the con-
struction of a CP and symplectic invariant model of lepton masses at genus two. In the adopted
framework, where the Kähler potential is minimal, the representations of the finite modular
group are symmetric, the Clebsh-Gordan coefficients are all real and a suitable basis of modu-
lar forms is chosen, CP invariance is enforced by requiring that all Lagrangian parameters are
real. In our model we manage to correctly reproduce the observed lepton masses and mixing
angles by using five real free parameters. Neutrinos are Majorana particles, with a normally
ordered mass spectrum. The model predicts all the three CP-violating phases, with the value
of δC P approaching 3π/2.

In our analysis, we have not attempt to determine dynamically the vacuum [88–90].
Rather, we have treated the moduli VEV as additional free parameters, optimized to maximize
the agreement between data and predictions, with the hope of gaining some insight into the
nature of the preferred vacuum. It is remarkable that the best values of moduli obtained in this
way are very close to a point of enhanced symmetry, where both CP and some finite modular
transformations are preserved. Thus, it suffices a small departure from a CP-conserving vac-
uum to generate sizable CP-violating effects. This confirms an intriguing behaviour already
noticed in genus one constructions [91–93], where also the charged fermion hierarchy can
benefit from the proximity to one such vacuum [94,95]. If the previously outlined scenario is
acceptable and provides a good enough description of the real world, we are confronted with
a fascinating question: why is our universe living so close to a critical point?

A The finite Siegel modular group S4 × Z2

The finite modular group S4 × Z2 can be generated by three generators: G1 ≡ T1T2 , G2 ≡ T3 ,
G3 ≡ S satisfying the multiplication rules:

G2
1 = G2

2 = G2
3 = (G1G2)

2 = (G1G3)
3 = (G1G2G3)

4 = 1 . (113)

The S4 and Z2 subgroups are generated by S = G1, T = (G3G2)4 and V = (G3G2)3 respectively,
which obey the relations:

S2 = T 3 = (ST )4 = 1, V2 = 1, SV = VS, T V = VT . (114)

The generators G1,2,3 can be expressed in terms ofS, T andV as G1 = S, G2 = ((ST )2T S)3T V ,
G3 = (ST )2T S.
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The group S4×Z2 has four singlet representations 1, 1′, 1̂, 1̂′, two doublet representations
2, 2̂, and four triplet representations 3, 3′, 3̂ and 3̂′. When constructing a CP and symplectic
modular invariant model, it is more convenient to work in the basis of Xr = 1r. Since the
indicator Indr = +1 in all representations r, such a basis can really be achieved. For the singlet
representations, we have

1 (1̂) : S = T = 1, V = 1 (−1) ,

1′ (1̂′) : S = −1, T = 1, V = 1 (−1) . (115)

In the doublet representations, the generators are represented by

2 (2̂) : S = 1
2

�

1 −
p

3
−
p

3 −1

�

, T = 1
2

�

−1
p

3
−
p

3 −1

�

, V = 12 (−12) . (116)

For the doublet representations, the generators are

3 (3̂) : S = 1
6





−3
p

3 2
p

6p
3 −5 2

p
2

2
p

6 2
p

2 2



 , T = 1
2





−1 −
p

3 0p
3 −1 0

0 0 2



 , V = 13 (−13) ,

3′ (3̂′) : S = −1
6





−3
p

3 2
p

6p
3 −5 2

p
2

2
p

6 2
p

2 2



 , T = 1
2





−1 −
p

3 0p
3 −1 0

0 0 2



 , V = 13 (−13) .(117)

It is easy to check that the representation matrices of G1, G2 and G2 are unitary and symmetric
in all irreducible representations. As a consequence, the CP symmetry for the automorphism
u1 is exactly the canonical CP in this basis with Xr = 1r, as shown in Section 6.

The decomposition rules of the Kronecker product of two irreducible representations are
necessary in model construction. We report the Kronecker products and the Clebsch-Gordan
coefficients in the above CP basis in table 3. The notations αi and βi refer to the elements of
the first and the second representation of the product respectively.

B Siegel modular forms of genus g = 2 at level n= 2

There are five linearly independent Seigel modular forms p0,1,2,3,4 at weight k = 2 and level
n= 2, and they are form a quintet of the finite modular group Γ2,2

∼= S6 [96]:

p0 = Θ[00]4(τ) +Θ[01]4(τ) +Θ[10]4(τ) +Θ[11]4(τ) ,

p1 = 2
�

Θ[00]2(τ)Θ[01]2(τ) +Θ[10]2(τ)Θ[11]2(τ)
�

,

p2 = 2
�

Θ[00]2(τ)Θ[10]2(τ) +Θ[01]2(τ)Θ[11]2(τ)
�

,

p3 = 2
�

Θ[00]2(τ)Θ[11]2(τ) +Θ[01]2(τ)Θ[10]2(τ)
�

,

p4 = 4Θ[00](τ)Θ[01](τ)Θ[10](τ)Θ[11](τ) , (118)

where Θ is the second order theta constant defined by:

Θ[σ](τ) =
∑

m∈Zg

e2πi(m+σ/2)τ (m+σ/2)t , (119)

where σ = (σ1,σ2, . . . ,σg) are row vectors with σi = 0,1. When we restrict τ to the two-
dimensional modular subspace with τ1 = τ2, the relation p1(τ) = p2(τ) is fulfilled, thus
the modular forms space of weight 2 collapses into a four-dimensional subspace. The Siegel

25

https://scipost.org
https://scipost.org/SciPostPhys.10.6.133


SciPost Phys. 10, 133 (2021)

Table 3: The Kronecker products and Clebsch-Gordan coefficients of the S4 × Z2
group.

1⊗ 2= 1̂⊗ 2̂= 2 , 1⊗ 2̂= 1̂⊗ 2= 2̂ 1′ ⊗ 2= 1̂′ ⊗ 2̂= 2 , 1′ ⊗ 2̂= 1̂′ ⊗ 2= 2̂

2 , 2̂∼
�

αβ1
αβ2

�

2 , 2̂∼
�

αβ2
−αβ1

�

1⊗ 3= 1′ ⊗ 3′ = 1̂⊗ 3̂= 1̂′ ⊗ 3̂′ = 3 , 1⊗ 3′ = 1′ ⊗ 3= 1̂⊗ 3̂′ = 1̂′ ⊗ 3̂= 3′ ,

1⊗ 3̂= 1′ ⊗ 3̂′ = 1̂⊗ 3= 1̂′ ⊗ 3′ = 3̂ 1⊗ 3̂′ = 1′ ⊗ 3̂= 1̂⊗ 3′ = 1̂′ ⊗ 3= 3̂′

3 , 3̂∼





αβ1
αβ2
αβ3



 3′ , 3̂′ ∼





αβ1
αβ2
αβ3





2⊗ 2= 2̂⊗ 2̂= 1s ⊕ 1′a ⊕ 2s , 2⊗ 2̂= 1̂⊕ 1̂′ ⊕ 2̂

1s , 1̂ ∼ α1β1 +α2β2
1′a , 1̂′ ∼ α1β2 −α2β1

2s , 2̂ ∼
�

α1β2 +α2β1
α1β1 −α2β2

�

2⊗ 3= 2̂⊗ 3̂= 3⊕ 3′ , 2⊗ 3̂= 2̂⊗ 3= 3̂⊕ 3̂′ 2⊗ 3′ = 2̂⊗ 3̂′ = 3⊕ 3′ , 2⊗ 3̂′ = 2̂⊗ 3′ = 3̂⊕ 3̂′

3 , 3̂∼





p
2α1β2 −

p
2α2β1 − 2α1β3p

2α1β1 +
p

2α2β2 + 2α2β3
2α2β2 − 2α1β1





3′ , 3̂′ ∼





−
p

2α1β1 −
p

2α2β2 + 2α2β3)
−
p

2α2β1 +
p

2α1β2 + 2α1β3)
2α2β1 + 2α1β2





3 , 3̂∼





−
p

2α1β1 −
p

2α2β2 + 2α2β3)
−
p

2α2β1 +
p

2α1β2 + 2α1β3)
2α2β1 + 2α1β2





3′ , 3̂′ ∼





p
2α1β2 −

p
2α2β1 − 2α1β3p

2α1β1 +
p

2α2β2 + 2α2β3
2α2β2 − 2α1β1





3⊗ 3= 3′ ⊗ 3′ = 3̂⊗ 3̂= 3̂′ ⊗ 3̂′ = 1⊕ 2⊕ 3⊕ 3′ , 3⊗ 3′ = 3̂⊗ 3̂′ = 1′ ⊕ 2⊕ 3⊕ 3′ ,

3⊗ 3̂= 3′ ⊗ 3̂′ = 1̂⊕ 2̂⊕ 3̂⊕ 3̂′ 3⊗ 3̂′ = 3′ ⊗ 3̂= 1̂′ ⊕ 2̂⊕ 3̂⊕ 3̂′

1 , 1̂∼ α1β1 +α2β2 +α3β3

2 , 2̂∼
�p

2α2β1 +
p

2α1β2 − 2α1β3 − 2α3β1p
2α2β2 −

p
2α1β1 + 2α2β3 + 2α3β2

�

3 , 3̂∼





α3β2 −α2β3
α1β3 −α3β1
α2β1 −α1β2





3′ , 3̂′ ∼





p
2α1β2 +

p
2α2β1 +α1β3 +α3β1p

2α1β1 −
p

2α2β2 +α2β3 +α3β2
α1β1 +α2β2 − 2α3β3





1′ , 1̂′ ∼ α1β1 +α2β2 +α3β3

2 , 2̂∼
� p

2α2β2 −
p

2α1β1 + 2α2β3 + 2α3β2

−
p

2α2β1 −
p

2α1β2 + 2α1β3 + 2α3β1)

�

3 , 3̂∼





p
2α1β2 +

p
2α2β1 +α1β3 +α3β1p

2α1β1 −
p

2α2β2 +α2β3 +α3β2
α1β1 +α2β2 − 2α3β3





3′ , 3̂′ ∼





α3β2 −α2β3
α1β3 −α3β1
α2β1 −α1β2





modular forms of weight 2 and level 2 can be arranged into a singlet and a triplet of the finite
Siegel modular subgroup S4 × Z2:

3′ : Y3′(τ) =





p
3
�

p0(τ)− 2p1(τ)− p3(τ)− 2p4(τ)
�

p0(τ)− 2p1(τ)− p3(τ) + 6p4(τ)p
2 (−p0(τ)− 4p1(τ) + p3(τ))



≡





Y1(τ)
Y2(τ)
Y3(τ)



 ,

1 : Y1(τ) = p0(τ) + 3p3(τ)≡ Y4(τ) . (120)
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The weight four Siegel modular forms can be constructed from the tensor product of Y1(τ)
and Y3′(τ). Using the Clebsch-Gordan coefficients listed in table 3, we find

1 :

�

Y (4)1a = Y1Y1 = Y 2
4 ,

Y (4)1b = (Y3′Y3′)1 = Y 2
1 + Y 2

2 + Y 2
3 ,

2 : Y (4)2 = (Y3′Y3′)2 =

�

2
p

2Y1Y2 − 4Y1Y3p
2(Y 2

2 − Y 2
1 ) + 4Y2Y3

�

,

3 : Y (4)3 = (Y3′Y3′)3 = (0, 0,0)T ,

3′ :















Y (4)3′a = Y1Y3′ = Y4(Y1, Y2, Y3)T ,

Y (4)3′b = (Y3′Y3′)3′ =





2
p

2Y1Y2 + 2Y1Y3p
2(Y 2

1 − Y 2
2 ) + 2Y2Y3

Y 2
1 + Y 2

2 − 2Y 2
3



 ,
(121)

where Y (4)3′a and Y (4)3′b denote the two independent weight 4 modular forms in the representation
3′.
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[27] R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realis-
tic intersecting D-brane models, Annu. Rev. Nucl. Part. Sci. 55, 71 (2005),
doi:10.1146/annurev.nucl.55.090704.151541.

[28] S. A. Abel and M. D. Goodsell, Realistic Yukawa couplings through instantons in in-
tersecting brane worlds, J. High Energ. Phys. 10, 034 (2007), doi:10.1088/1126-
6708/2007/10/034.

[29] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string com-
pactifications with D-branes, orientifolds and fluxes, Phys. Rep. 445, 1 (2007),
doi:10.1016/j.physrep.2007.04.003.

[30] F. Marchesano, Progress in D-brane model building, Fortschr. Phys. 55, 491 (2007),
doi:10.1002/prop.200610381.

[31] I. Antoniadis, A. Kumar and B. Panda, Fermion wavefunctions in magnetized
branes: Theta identities and Yukawa couplings, Nucl. Phys. B 823, 116 (2009),
doi:10.1016/j.nuclphysb.2009.08.002.

[32] T. Kobayashi, S. Nagamoto and S. Uemura, Modular symmetry in magnetized/intersecting
D-brane models, Prog. Theor. Exp. Phys. 023B02 (2017), doi:10.1093/ptep/ptw184.

[33] T. Kobayashi and H. Otsuka, Classification of discrete modular symmetries in type IIB flux
vacua, Phys. Rev. D 101, 106017 (2020), doi:10.1103/PhysRevD.101.106017.

[34] D. Cremades, L. E. Ibanez and F. Marchesano, Computing Yukawa couplings from mag-
netized extra dimensions, J. High Energ. Phys. 05, 079 (2004), doi:10.1088/1126-
6708/2004/05/079.

[35] H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Non-Abelian discrete flavor symme-
tries from magnetized/intersecting brane models, Nucl. Phys. B 820, 317 (2009),
doi:10.1016/j.nuclphysb.2009.05.024.

[36] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi and H. Uchida, Revisiting modular
symmetry in magnetized torus and orbifold compactifications, Phys. Rev. D 102, 105010
(2020), doi:10.1103/PhysRevD.102.105010.

[37] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, Modular symmetry by
orbifolding magnetized T2×T2: realization of double cover of ΓN , J. High Energ. Phys. 11,
101 (2020), doi:10.1007/JHEP11(2020)101.

[38] A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rep.
244, 77 (1994), doi:10.1016/0370-1573(94)90070-1.

[39] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Unification of flavor, CP, and
modular symmetries, Phys. Lett. B 795, 7 (2019), doi:10.1016/j.physletb.2019.03.066.

[40] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, A string theory of flavor and
CP , Nucl. Phys. B 947, 114737 (2019), doi:10.1016/j.nuclphysb.2019.114737.

[41] H. P. Nilles, S. Ramos-Sánchez and P. K. S. Vaudrevange, Eclectic flavor groups, J. High
Energ. Phys. 02, 045 (2020), doi:10.1007/JHEP02(2020)045.

[42] H. P. Nilles, S. Ramos–Sánchez and P. K. S. Vaudrevange, Lessons from eclectic flavor sym-
metries, Nucl. Phys. B 957, 115098 (2020), doi:10.1016/j.nuclphysb.2020.115098.

29

https://scipost.org
https://scipost.org/SciPostPhys.10.6.133
https://doi.org/10.1146/annurev.nucl.55.090704.151541
https://doi.org/10.1088/1126-6708/2007/10/034
https://doi.org/10.1088/1126-6708/2007/10/034
https://doi.org/10.1016/j.physrep.2007.04.003
https://doi.org/10.1002/prop.200610381
https://doi.org/10.1016/j.nuclphysb.2009.08.002
https://doi.org/10.1093/ptep/ptw184
https://doi.org/10.1103/PhysRevD.101.106017
https://doi.org/10.1088/1126-6708/2004/05/079
https://doi.org/10.1088/1126-6708/2004/05/079
https://doi.org/10.1016/j.nuclphysb.2009.05.024
https://doi.org/10.1103/PhysRevD.102.105010
https://doi.org/10.1007/JHEP11(2020)101
https://doi.org/10.1016/0370-1573(94)90070-1
https://doi.org/10.1016/j.physletb.2019.03.066
https://doi.org/10.1016/j.nuclphysb.2019.114737
https://doi.org/10.1007/JHEP02(2020)045
https://doi.org/10.1016/j.nuclphysb.2020.115098


SciPost Phys. 10, 133 (2021)

[43] H. P. Nilles, S. Ramos–Sánchez and P. K. S. Vaudrevange, Eclectic flavor scheme from
ten-dimensional string theory – I. Basic results, Phys. Lett. B 808, 135615 (2020),
doi:10.1016/j.physletb.2020.135615.

[44] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sánchez and P. K. S. Vaudrevange, The
eclectic flavor symmetry of the Z2 orbifold, J. High Energ. Phys. 02, 018 (2021),
doi:10.1007/JHEP02(2021)018.

[45] F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP
symmetries, J. High Energ. Phys. 07, 027 (2013), doi:10.1007/JHEP07(2013)027.

[46] M. Holthausen, M. Lindner and M. A. Schmidt, CP and discrete flavour symmetries, J.
High Energ. Phys. 04, 122 (2013), doi:10.1007/JHEP04(2013)122.

[47] M.-C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz and A. Trautner, CP violation from
finite groups, Nucl. Phys. B 883, 267 (2014), doi:10.1016/j.nuclphysb.2014.03.023.

[48] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, Generalised CP symme-
try in modular-invariant models of flavour, J. High Energ. Phys. 07, 165 (2019),
doi:10.1007/JHEP07(2019)165.

[49] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida,
C P violation in modular invariant flavor models, Phys. Rev. D 101, 055046 (2020),
doi:10.1103/PhysRevD.101.055046.

[50] P. P. Novichkov, J. T. Penedo and S. T. Petcov, Double cover of modular S4 for flavour model
building, Nucl. Phys. B 963, 115301 (2021), doi:10.1016/j.nuclphysb.2020.115301.

[51] X.-G. Liu, C.-Y. Yao and G.-J. Ding, Modular invariant quark and lepton mod-
els in double covering of S4 modular group, Phys. Rev. D 103, 056013 (2021),
doi:10.1103/PhysRevD.103.056013.

[52] C.-Y. Yao, X.-G. Liu and G.-J. Ding, Fermion masses and mixing from the double cover
and metaplectic cover of the A5 modular group, Phys. Rev. D 103, 095013 (2021),
doi:10.1103/PhysRevD.103.095013.

[53] C.-Y. Yao, J.-N. Lu and G.-J. Ding, Modular Invariant A4 models for quarks and leptons
with generalized CP symmetry, (2020), arXiv:2012.13390.

[54] H. Okada and M. Tanimoto, Spontaneous CP violation by modulus τ in A4 model of lepton
flavors, J. High Energ. Phys. 03, 010 (2021), doi:10.1007/JHEP03(2021)010.

[55] K. Ishiguro, T. Kobayashi and H. Otsuka, Spontaneous CP violation and symplectic modular
symmetry in Calabi-Yau compactifications, (2020), arXiv:2010.10782.

[56] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sánchez and P. K. S. Vaudrevange, Siegel
modular flavor group and CP from string theory, Phys. Lett. B 816, 136176 (2021),
doi:10.1016/j.physletb.2021.136176.

[57] S. Cecotti, S. Ferrara, and L. Girardello, Geometry of type II superstrings and the
moduli of superconformal field theories, Int. J. Mod. Phys. A 04, 2475 (1989),
doi:10.1142/S0217751X89000972.

[58] S. Cecotti, Homogeneous Kahler manifolds andT-algebras in N = 2 supergravity and su-
perstrings, Commun. Math. Phys. 124, 23 (1989), doi:10.1007/BF01218467.

30

https://scipost.org
https://scipost.org/SciPostPhys.10.6.133
https://doi.org/10.1016/j.physletb.2020.135615
https://doi.org/10.1007/JHEP02(2021)018
https://doi.org/10.1007/JHEP07(2013)027
https://doi.org/10.1007/JHEP04(2013)122
https://doi.org/10.1016/j.nuclphysb.2014.03.023
https://doi.org/10.1007/JHEP07(2019)165
https://doi.org/10.1103/PhysRevD.101.055046
https://doi.org/10.1016/j.nuclphysb.2020.115301
https://doi.org/10.1103/PhysRevD.103.056013
https://doi.org/10.1103/PhysRevD.103.095013
https://arxiv.org/abs/2012.13390
https://doi.org/10.1007/JHEP03(2021)010
https://arxiv.org/abs/2010.10782
https://doi.org/10.1016/j.physletb.2021.136176
https://doi.org/10.1142/S0217751X89000972
https://doi.org/10.1007/BF01218467


SciPost Phys. 10, 133 (2021)

[59] S. Cecotti, N = 2 supergravity, type IIB superstrings, and algebraic geometry, Commun.
Math. Phys. 131, 517 (1990), doi:10.1007/BF02098274.

[60] L. J. Dixon, V. S. Kaplunovsky and J. Louis, On effective field theories describing (2,2) vacua
of the heterotic string, Nucl. Phys. B 329, 27 (1990), doi:10.1016/0550-3213(90)90057-
K.

[61] P. Candelas and X. C. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355,
455 (1991), doi:10.1016/0550-3213(91)90122-E.

[62] A. Strominger, Special geometry, Commun. Math. Phys. 133, 163 (1990),
doi:10.1007/BF02096559.

[63] S. Ferrara, C. Kounnas, D. Lüst and F. Zwirner, Duality-invariant partition functions and
automorphic superpotentials for (2,2) string compactifications, Nucl. Phys. B 365, 431
(1991), doi:10.1016/S0550-3213(05)80028-8.

[64] A. Font, Periods and duality symmetries in Calabi-Yau compactifications, Nucl. Phys. B 391,
358 (1993), doi:10.1016/0550-3213(93)90152-F.

[65] P. Mayr and S. Stieberger, Moduli dependence of one-loop gauge couplings in (0,2) com-
pactifications, Phys. Lett. B 355, 107 (1995), doi:10.1016/0370-2693(95)00683-C.

[66] S. Stieberger, (0,2)Heterotic gauge couplings and their M-theory origin, Nucl. Phys. B 541,
109 (1999), doi:10.1016/S0550-3213(98)00770-6.

[67] M. Koecher, Zur theorie der modulfunktionen n-ten grades, Mathematische Zeitschrift 59,
399 (1954), http://eudml.org/doc/169400.

[68] A. Fiorentino, On modular and cusp forms with respect to the congruence subgroup, over
which the map given by the gradients of odd Theta functions in genus 2 factors, and related
topics, Sapienza Universita Di Roma, PhD Thesis, (2013).

[69] C. L. Siegel, Symplectic Geometry, Am. J. Math. 65, 1 (1943), doi:10.2307/2371774.

[70] E. Gottschling and U. Göttingen, Explizite Bestimmung der Randflächen des Fundamen-
talbereiches der Modulgruppe zweiten Grades, Mathematische Annalen 138, 103 (1959),
doi:10.1007/BF01342938.

[71] J. Frauendiener, C. Jaber and C. Klein, Efficient computation of multidimensional theta
functions, J. Geom. Phys. 141, 147 (2019), doi:10.1016/j.geomphys.2019.03.011.

[72] J. H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of modular forms,
Springer Berlin Heidelberg, ISBN 9783540741176 (2008), doi:10.1007/978-3-540-
74119-0.

[73] X.-G. Liu, C.-Y. Yao, B.-Y. Qu and G.-J. Ding, Half-integral weight modular forms
and application to neutrino mass models, Phys. Rev. D 102, 115035 (2020),
doi:10.1103/PhysRevD.102.115035.

[74] I. Reiner, Automorphisms of the symplectic modular group, Trans. Amer. Math. Soc. 80, 35
(1955), doi:10.1090/S0002-9947-1955-0073603-1.

[75] I. Reiner, Real linear characters of the symplectic modular group, Proc. Amer. Math. Soc.
6, 987 (1955), doi:10.1090/S0002-9939-1955-0075212-2.

31

https://scipost.org
https://scipost.org/SciPostPhys.10.6.133
https://doi.org/10.1007/BF02098274
https://doi.org/10.1016/0550-3213(90)90057-K
https://doi.org/10.1016/0550-3213(90)90057-K
https://doi.org/10.1016/0550-3213(91)90122-E
https://doi.org/10.1007/BF02096559
https://doi.org/10.1016/S0550-3213(05)80028-8
https://doi.org/10.1016/0550-3213(93)90152-F
https://doi.org/10.1016/0370-2693(95)00683-C
https://doi.org/10.1016/S0550-3213(98)00770-6
http://eudml.org/doc/169400
https://doi.org/10.2307/2371774
https://doi.org/10.1007/BF01342938
https://doi.org/10.1016/j.geomphys.2019.03.011
https://doi.org/10.1007/978-3-540-74119-0
https://doi.org/10.1007/978-3-540-74119-0
https://doi.org/10.1103/PhysRevD.102.115035
https://doi.org/10.1090/S0002-9947-1955-0073603-1
https://doi.org/10.1090/S0002-9939-1955-0075212-2


SciPost Phys. 10, 133 (2021)

[76] G. Ecker, W. Grimus and H. Neufeld, A standard form for generalised CP transformations,
J. Phys. A: Math. Gen. 20, L807 (1987), doi:10.1088/0305-4470/20/12/010.

[77] C. C. Nishi, Generalized C P symmetries in ∆(27) flavor models, Phys. Rev. D 88, 033010
(2013), doi:10.1103/PhysRevD.88.033010.

[78] A problem on a complex matrix complex conjugate to its inverse, Maths Stack Ex-
change, https://math.stackexchange.com/questions/501992/a-problem-on-a-complex-
matrix-complex-conjugate-to-its-inverse

[79] E. Gottschling, Über die Fixpunkte der Siegelschen Modulgruppe, Math. Ann. 143, 111
(1961), doi:10.1007/BF01342975.

[80] E. Gottschling, Über die Fixpunktuntergruppen der Siegelschen Modulgruppe, Math. Ann.
143, 399 (1961), doi:10.1007/BF01470754.

[81] E. Gottschling, Die Uniformisierbarkeit der Fixpunkte eigentlich diskontinuier-
licher Gruppen von biholomorphen Abbildungen, Math. Ann. 169, 26 (1967),
doi:10.1007/BF01399530.

[82] G. G. Ross and M. Serna, Unification and fermion mass structure, Phys. Lett. B 664, 97
(2008), doi:10.1016/j.physletb.2008.05.014.

[83] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints:
updated global analysis of three-flavor neutrino oscillations, J. High Energ. Phys. 09, 178
(2020), doi:10.1007/JHEP09(2020)178.

[84] KATRIN Collaboration, Improved upper limit on the neutrino mass from a di-
rect kinematic method by KATRIN, Phys. Rev. Lett. 123, 221802 (2019),
doi:10.1103/PhysRevLett.123.221802.

[85] KamLAND-Zen Collaboration, Search for Majorana neutrinos near the inverted
mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117, 082503 (2016),
doi:10.1103/PhysRevLett.117.082503.

[86] Planck Collaboration, Planck 2018 results, Astron. Astrophys. 641, A6 (2020),
doi:10.1051/0004-6361/201833910.

[87] W. Grimus and M. N. Rebelo, Automorphisms in gauge theories and the definition of CP
and P, Phys. Rep. 281, 239 (1997), doi:10.1016/S0370-1573(96)00030-0.

[88] H. Abe, T. Kobayashi, S. Uemura and J. Yamamoto, Loop Fayet-Iliopoulos terms in
T2/Z2 models: Instability and moduli stabilization, Phys. Rev. D 102, 045005 (2020),
doi:10.1103/PhysRevD.102.045005.

[89] T. Kobayashi and H. Otsuka, Challenge for spontaneous C P violation in Type IIB orientifolds
with fluxes, Phys. Rev. D 102, 026004 (2020), doi:10.1103/PhysRevD.102.026004.

[90] K. Ishiguro, T. Kobayashi and H. Otsuka, Landscape of modular symmetric flavor models,
J. High Energ. Phys. 03, 161 (2021), doi:10.1007/JHEP03(2021)161.

[91] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Trimaximal neutrino mixing from
modular A4 invariance with residual symmetries, Phys. Lett. B 793, 247 (2019),
doi:10.1016/j.physletb.2019.04.043.

32

https://scipost.org
https://scipost.org/SciPostPhys.10.6.133
https://doi.org/10.1088/0305-4470/20/12/010
https://doi.org/10.1103/PhysRevD.88.033010
https://math.stackexchange.com/questions/501992/a-problem-on-a-complex-matrix-complex-conjugate-to-its-inverse
https://math.stackexchange.com/questions/501992/a-problem-on-a-complex-matrix-complex-conjugate-to-its-inverse
https://doi.org/10.1007/BF01342975
https://doi.org/10.1007/BF01470754
https://doi.org/10.1007/BF01399530
https://doi.org/10.1016/j.physletb.2008.05.014
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1103/PhysRevLett.123.221802
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1016/S0370-1573(96)00030-0
https://doi.org/10.1103/PhysRevD.102.045005
https://doi.org/10.1103/PhysRevD.102.026004
https://doi.org/10.1007/JHEP03(2021)161
https://doi.org/10.1016/j.physletb.2019.04.043


SciPost Phys. 10, 133 (2021)

[92] G.-J. Ding, S. F. King, X.-G. Liu and J.-N. Lu, Modular S4 and A4 symmetries and their fixed
points: new predictive examples of lepton mixing, J. High Energ. Phys. 12, 030 (2019),
doi:10.1007/JHEP12(2019)030.

[93] X. Wang and S. Zhou, Explicit perturbations to the stabilizer τ= i of modular A′5 symmetry
and leptonic CP violation, (2021), arXiv:2102.04358.

[94] H. Okada and M. Tanimoto, Modular invariant flavor model of A4 and hier-
archical structures at nearby fixed points, Phys. Rev. D 103, 015005 (2021),
doi:10.1103/PhysRevD.103.015005.

[95] F. Feruglio, V. Gherardi, A. Romanino and A. Titov, Modular invariant dynamics and
fermion mass hierarchies around τ= i, (2021), arXiv:2101.08718.

[96] F. Dalla Piazza and B. van Geemen, Siegel modular forms and finite symplectic groups, Adv.
Theor. Math. Phys. 13, 1771 (2009), doi:10.4310/ATMP.2009.v13.n6.a4.

33

https://scipost.org
https://scipost.org/SciPostPhys.10.6.133
https://doi.org/10.1007/JHEP12(2019)030
https://arxiv.org/abs/2102.04358
https://doi.org/10.1103/PhysRevD.103.015005
https://arxiv.org/abs/2101.08718
https://doi.org/10.4310/ATMP.2009.v13.n6.a4

	Introduction
	Symplectic Modular Invariance
	Fundamental domain
	Siegel modular forms
	Symplectic modular invariant supersymmetric theory
	A constraint on modular transformations

	Consistent CP transformations
	CP transformation of moduli 
	CP transformations of matter chiral multiplets 
	CP transformations of modular forms Y()
	Condition for CP invariance

	Points of residual CP symmetry
	Implications of residual CP symmetry

	CP action in invariant subspaces
	A model with CP invariance at genus 2
	Discussions 
	The finite Siegel modular group S4Z2
	Siegel modular forms of genus g=2 at level n=2
	References

