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Abstract

We investigate the use of the evolutionary NEAT algorithm for the optimization of a policy
network that performs quantum error decoding on the toric code, with bitflip and depo-
larizing noise, one qubit at a time. We find that these NEAT-optimized network decoders
have similar performance to previously reported machine-learning based decoders, but
use roughly three to four orders of magnitude fewer parameters to do so.
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1 Introduction

Over the recent years, machine learning techniques for quantum physics have become more
and more commonplace [1,2]. These techniques provide a rather different paradigm to solv-
ing hard problems than traditional algorithms do. Instead of explicitly constructing algorithms
–taking special care of all possible scenarios that may occur, manually– machine learning tech-
niques are capable of learning what to do autonomously.

It is common to categorize these learning algorithms in three classes, namely those of i)
supervised learning and ii) unsupervised learning, where information is extracted from ex-
ample data, and that of iii) reinforcement learning (RL), where the learner has the ability to
interact with the problem and receive feedback in the form of a reward. Each of these three
classes have seen applications to various physics problems. In particular, supervised learning
and reinforcement learning have proved potentially useful for quantum error correction on 2D
stabilizer codes [3]. The supervised approach is represented by Refs. [4–9], where a dataset of
errors and valid corrections is used to extract what the most likely correction to be performed
is. Compared to hard-coded decoding algorithms for stabilizer codes, these machine learn-
ing based decoders are more like maximum-likelihood decoders [10, 11] than, for instance,
the minimum weight perfect matching (MWPM) algorithm that looks for the lowest energy
correction [12]. In the RL based approach, the decoding problem is formulated as a move-
based single player game [13–16]: the player proposes a local correction, receives back the
new state of the code and wins whenever the error-free state of the code is restored correctly.
These machine learning decoders are mostly limited to small sizes (albeit comparable to a pos-
sible realistic experimental implementation), though scalability through hybrid approaches is
a promising research direction [17]. The flexibility of the machine learning approach has the
interesting prospect of being useful for the decoding of realistic codes in which qubits are not
all identical, suffer from distinct error rates and in which measurements are faulty [18].

This work falls into the class of reinforcement learning approaches. The previous contribu-
tions in this direction mentioned above employed deep Q-learning [19], where a deep network
is used to approximate the so-called Q-function from which the policy (i.e. which correction
to do given the state of the system) can be found. The number of parameters required in deep
Q-function networks can be extremely large however, making training a computationally in-
tensive step that requires the back-propagation algorithm for the network gradient’s evaluation
and fast network evaluation with GPUs.

In this work we investigate a new type of setup where i) a neural network approximates
directly the agent’s policy and ii) optimization is performed with an evolutionary algorithm,
namely that of neuro-evolution of augmenting topologies (NEAT) [20]. The novelty of NEAT
lies in its ability to not only optimize the weights of neural networks, but also the architecture:
it allows for nodes or connections between nodes to be added during optimization (see Fig. 1).
This is made possible by a clever encoding of neural networks in terms of a genome, enabling
a meaningful way to ‘cross-over’ two networks. We find that the NEAT algorithm is easily
capable of finding a decoding strategy that performs similarly to MWPM (as do the previous
RL decoders) on the toric code.

There are several advantages to our approach, compared to using Q-learning. First, since
NEAT automatically optimizes the network architecture, the problem of manually designing
and tweaking the model (i.e. how many layers and neurons) is no longer relevant. Second,
it is a gradient-free optimization technique that is possibly faster than back-propagation [21],
and highly parallelizable (discussed further in Section 2). Third, due to the genome encoding
the networks, a straightforward ‘genome transplant’ allows us to use a trained network from
smaller system sizes as a starting point for larger ones (see Appendix B). Last, we find that the
networks found by NEAT are three to four orders of magnitude smaller than the equivalent
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Figure 1: In the NEAT algorithm, a population (set) of neural networks undergo a
series of mutation, selection and reproduction processes repeated over several gen-
erations (optimization steps). The mutations involve randomly changing the values
of the network parameters (with some probability) as well as randomly modifying
the architecture of the network by adding/removing hidden neurons or connections
between neurons (with some probability). For structural mutations, hidden neurons
are always added by splitting an existing connection, and the set of input and output
neurons are left untouched. Each generation also selects part of the population for
crossover, without which the optimization would be purely reliant on random mu-
tations. Each connection is assigned a unique number (a "genome marker"), which
enables a cross-over procedure where two networks of distinct architectures can be
meaningfully combined into a new network. See Appendix A for more details.

Q-networks. This may be important in applications of these networks, since smaller networks
can be evaluated faster.

The rest of this paper is structured as follows. We continue with the introduction of the
NEAT algorithm for optimizing a policy network. We then introduce the toric code as a move-
based single player game, so that an RL agent (the policy network) can be trained on the
decoding task. Last up is a presentation of the results, and a discussion on some advantages
and disadvantages of our approach compared to previous literature. Future enhancements of
this approach are mentioned at the very end.

2 The NEAT Algorithm

In standard evolutionary strategies, the optimized solution is not found using a gradient based
method. Instead, a population of candidate solutions is evolved over several evolutionary steps
called generations according to heuristics inspired by biological evolution. Each individual in
the population is assigned a fitness (a figure of merit for how well it is doing at solving the task),
and optimization is then done each generation (i) via random mutations of individuals, (ii)
selection and (iii) reproduction of the best performing individuals via crossover between them
that direct the search towards the best fitness. Recent example applications of evolutionary
strategies related to physics are that of combinatorial optimization problems [22] and the
automated discovery of new semiconductor materials [23].

In addition to the mutations that affect the network parameters, structural mutations come
in the form of adding/removing weights and hidden neurons, directly modifying the network
topology, as shown in Fig. 1. Crossover events between networks of different topologies is not
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Algorithm 1: The NEAT algorithm for decoding
Initialize a new population of trivial networks
for num_generations do

foreach network N in the population do
Play Ng games (Algorithm 2)
Fitness = number of won games / Ng
Mutate randomly with probability p

end
Move top individuals to the new generation
Cross-over top individuals per species

end
Return network with the highest fitness

straightforward, and the essential part of the NEAT algorithm is to enable this using an encod-
ing of network topology in a genome [20]. The genome encodes neuron types (input, hidden,
output), neuron biases, their connections (weights) and whether or not a given connection is
enabled. Appendix A discusses this in more detail.

NEAT uses two further tweaks to the standard evolutionary algorithm. First, to counter the
fact that random mutations will decrease the fitness at first, although they may be the begin-
ning of a branch of better individuals in the long-term, similar individuals in the population
are grouped together and are evolved separately. This mechanism enables the protection of
innovation through speciation.

Second, evolution starts with trivial networks containing only the input and output neu-
rons. New architectural components are introduced by mutation and crossover and tested in
isolation thanks to the speciation mechanism; after some time only the most fit species survive.
As a result, the complexity increases only when necessary and results in solutions of minimal
complexity.

Networks optimized using NEAT show excellent performance on different control tasks
benchmarks [20, 24] and are of very small complexity compared to their back-propagation
trained equivalents. The parallelization of the algorithm is straightforward since the fitness of
each network in the population can be evaluated independently, on independent games.

3 Decoding on the toric code as a game

In a nutshell, the toric code represents two logical qubits in the fourfold degenerate ground-
states of a 2D periodic square lattice of physical qubits [25]. The size of the lattice is referred
to as the code distance d 1. The system is governed by the Hamiltonian

H = −
∑

plaquette

P −
∑

star

S , (1)

where the stabilizers P (S) are products of 4 Pauli Z (X ) operators around a plaquette (star),
see Figure 2. The groundstate space is spanned by the states for which all plaquette and star
operators have eigenvalue +1.

If a single bitflip/phaseflip (Pauli X/Z) error occurs on a physical qubit, the two adjacent
plaquette/star operators will measure−1 and will show a syndrome (indicated by the (orange)
circles in Fig. 2). Further errors can move these syndrome endpoints around, forming an

1The code distance is an important quantity that indicates the smallest possible number of physical qubit errors
that would cause a logical error.
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Figure 2: Left Panel: The toric code essentials. Qubits live on the vertices of the
grid, with the plaquette/star operators then being formed by the (darker/lighter)
squares. Bitflip errors and phaseflip errors, indicated by the X and Z operations
on the vertices leave behind error strings with syndrome points at their endpoints.
Right Panel: An example error string and two possible corrections that both would
remove the syndrome. Correction #1 would exactly undo the errors, but correction
#2 would introduce a non-trivial loop resulting in a logical error.

error string. When two syndrome points meet on a plaquette, P again has value +1 and the
syndrome disappears (similarly for S). This is important, because it means that the system
can be brought back to the groundstate space by either perfectly undoing all the errors, or
by closing error strings into trivial (contractable) loops. Only if an error string is closed by
looping around the periodic boundaries (forming a non-contractable loop), does the logical
state encoded in the groundspace incur an error. As long as we can correct the physical qubits
before such a non-trivial loop forms, the logical qubit can be protected.

A single game of the toric code is then played as follows. The system starts out in the
groundstate with no syndrome, on which random errors are introduced with given probabil-
ities perror. We will consider below two types of error models: (i) uncorrelated noise where
Pauli X operators are applied with probability perror on each site and (ii) depolarizing noise
where either Pauli X , Y or Z operators are inserted with probability perror. The game then
progresses by making one move at a time, acting with Pauli operators on qubits to move the
syndrome points around in an attempt to merge them. Finishing the game consists of acting
on the physical qubits one-by-one until no more syndrome points are left. At that point, the
total error strings –including the original errors introduced at the start– are evaluated and if
no logical error is present, the game is won.

We implemented this game as a reinforcement learning problem using the OpenAI Gym [26]
framework, and made it publicly available as part of SciGym [27]. Using this environment we
use the NEAT algorithm to optimize a policy network N(s)→ a that takes as input the state s of
the game and outputs the probability to take action a (which qubit to act on with which Pauli
operator) 2. The state s of the game is taken to be the current measurements of the stabilizer
operators P and S (amounting to 2d2 values), meaning that the input has no memory of the
past. As pointed out in Ref. [15], this implements exponential compression of information.

In principle, the entire action space of possible moves consists of each qubit and which

2The difference with Q-learning lies in that the agent’s policy π(a|s) is obtained as the one that maximizes the
Q-function Q(s, a), i.e. π(a|s) = argmaxaQ(s, a).
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Algorithm 2: The toric code decoding game
Given: A policy network N
Initialize a new toric code state s without errors
Add errors with probability perror per physical qubit
Measure the resulting s yndrome
while s yndrome is not empt y do

foreach perspective Pi of s do
Evaluate network N(Pi) to get move ai

end
if training and best action ai already taken then

terminate and send reward 0
end
Execute best ai , update s

end
Evaluate total error string (including correction)
Reward = +1 if no non-trivial error-string, else 0

Pauli operator to act on it with. Acting on qubits with no adjacent syndrome is not useful in
this scenario however, and combined with the periodicity of the toric code this means we can
use the idea of perspectives from Ref. [14] to restrict the output size of our policy network to
just 12 actions: which of the four neighboring qubits of a centered plaquette/star to act on,
and with which Pauli operator. Hence as input to our network we don’t use a single version
of the game state, but we create different views (perspectives) of the game, one for each
syndrome defect, in which that syndrome is shifted to a central reference location. Finding
the best overall move can then be performed by finding the move with the highest probability
among all the perspectives. A limitation of our approach is that the probability of taking an
action is not normalized over all perspectives. Contrary to Q-learning where the best action is
unambiguously the one with the highest Q-value returned by the Q-network, here the output
of the policy network indicates the best action for a single perspective independently of all the
other perspectives generated from the same error sample. Algorithm 2 shows pseudo-code for
the game steps.

For bit-flip only noise, the input dimension is d2 since we only need to measure the values
the plaquette operators. The output space can then be reduced to 4 actions corresponding to
applying a Pauli-X operator on one of the four qubits neighboring the centered plaquette.

Our approach is not biased towards selecting the smallest error-correcting chain [14,15],
but is aimed at learning the most probable error strings (given a syndrome) like maximum-
likelihood decoders [4,10,11], since our reward is only a function of whether there is a logical
error in the final state or not (and is hence obtained only at the end of a game). During
training, the game also ends in a loss if the agent decides to repeat an already chosen action.
For the performance evaluation of a given neural network, we instead allow the same action
to be taken twice and limit the game through a maximum number of decoding steps. If this
maximum number of steps is reached, the game is lost.

4 Results

A common way to measure the performance of a decoder is to track the logical fidelity, i.e. the
probability of introducing a logical error, against the physical error rate perror. This quantity is
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Figure 3: Logical error probability as a function of physical error rate perror for differ-
ent code distances d, for bitflip noise (left) and depolarizing noise (right). The results
of MWPM are shown in dashed lines. The curves show the best performing policy
network found by NEAT. Evaluation of the logical fidelity is done on 104 independent
random games for each physical error rate.

computed as the ratio of successfully decoded cases (reward +1 returned from Algorithm 2)
over the total number of games played, corresponding also to the fitness of our networks.
Fig. 3 shows the performance, for both types of noise, of the best neural-network found by the
NEAT algorithm after a few hundreds of generations. The optimization was stopped when the
performance of the best network in the population saturated, for which typically about 600
generations sufficed.

An important advantage enabled through the genetic encoding of NEAT is that of being
able to transplant genomes from smaller code distances to larger distances, as described in Ap-
pendix B. The policy networks for d = 5, for example, were initialized using the best genomes
from the optimized d = 3 runs, speeding up the resulting optimization for d = 5.

The decoders found by NEAT have an error threshold. For both types of noise, the perfor-
mance deteriorates as the physical error rate is increased and a crossing of the curves is visible
around pc ≈ 0.08− 0.09 for bitflip noise and pc ≈ 0.13− 0.14 for depolarizing noise, which
is a little worse than MWPM with pc ≈ 0.11 for bitflip noise and pc ≈ 0.15 for depolarizing
noise [11,12]. Nevertheless, the logical fidelity is slightly greater than MWPM for the largest
error rates beyond perror = 0.1.

We expect these differences to be due in large part to the absence of fine-tuning of the
weights, because we observe that performance saturates during the evolution. It could be,
however, that (much) larger networks are required for further small improvements to the
threshold. The NEAT algorithm is not designed to find large networks, though extensions
(such as hyperNEAT [28]) and other genetic algorithms can optimize large-scale neural net-
works [21].

In practice, for this work, we run NEAT separately for different code distances d. We point
out that this makes the algorithmic error threshold somewhat ill-defined, in principle, since
the decoders for different distances are not necessarily constrained to converge to the same
decoding algorithm. The hyperparameters we chose for the mutation rates are reported in
Table 2 in the Appendices.

We are able to reach the same performance as previously reported with RL methods [14–
16] (we note Ref. [15] obtains higher error threshold and fidelity on depolarizing noise),
though these results are obtained with considerably smaller neural-network decoders. Indeed,
as can be seen in Table 1, our policy neural networks have three to four orders of magnitude
fewer parameters than the deep Q-networks used in Q-learning, though it should be noted
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Table 1: Number of parameters of the deep Q-networks and of the policy-neural-
networks found by the NEAT algorithm.

Decoders Noise d = 3 d = 5 d = 7
[14] Bitflip ∼ 500000 ∼ 1200000
[15] Depolarizing ∼ 900000 ∼ 9000000
[16] Bitflip ∼ 640000 ∼ 1700000 ∼ 3200000

[13]
Bitflip /

Depolarizing
∼ 2000000

NEAT Bitflip 32 63 129
NEAT Depolarizing 203 562 1188

that Ref. [13] deals with faulty measurements, which is a considerably harder decoding task.
We also remark that we did not investigate the number of required parameters for a policy
network that is trained to mimics these Q-networks. Our results were obtained without the
use of spatial information that comes with using convolutional neural networks as in Refs. [13–
16]. We remark that accessing larger code distances still becomes increasingly difficult due
to slow convergence, and the genome transplantation procedure was crucial in particular for
depolarizing noise.

Fig. 7 in the Appendix shows the NEAT optimized policy-network for d = 3.

5 Discussion

In summary, we showed that the NEAT algorithm can produce a policy network that results
in a decoding performance similar to MWPM and other RL approaches based on Q-learning.
The NEAT algorithm has the further advantages of being easily parallelizable, it automatically
finds the smallest networks, and is gradient-free. We are hopeful that we can extend these
preliminary results to larger system sizes, in particular through genome transplantation that
allows starting the evolution with a good initial population. Crucially, by performing optimiza-
tion directly in policy space and thanks to the properties of the NEAT algorithm, we were able
to achieve the decoding task with very small neural networks, which represents a gain of the
order of 104 in terms of number of network parameters. Our work shows that very shallow
feed-forward networks are expressive enough to decode the toric code on bitflip noise though
more depth might be needed to get better performance on depolarizing noise.

It would be interesting to see how these performances translate to harder decoding sce-
narios such as fault-tolerant computations. Allowing NEAT to evolve neural networks other
than feed-forward could be a possible direction for improvements. Extensions of NEAT include
the evolution of convolutional [29] or deep [21] neural networks. Performance enhancements
could also be expected from the use of policy gradient methods [30], which may be used to
further improve the weights in a network topology that was found using NEAT. Preliminary
work using the hyperNEAT algorithm of Ref. [28] did not prove conclusive, although in prin-
ciple hyperNEAT would allow one to discover and exploit the symmetries of the problem in an
automatic manner.

All-in-all, we believe that the NEAT algorithm, and evolutionary strategies in general, pro-
vide a competitive and conceptually simple alternative to training deep networks for reinforce-
ment learning [21].

All of the code used to produce these results is publically available in the accompanying
GitHub repository: https://github.com/condensedAI/neat-qec.
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A Extra NEAT info

This appendix is aimed at adding extra details to the NEAT algorithm description in the main
text. Nevertheless, we have eluded some technical details that we leave to the original refer-
ence [20].

Genetic encoding and crossovers. Each neural network of the population is encoded by a
genome as shown in Fig. 4a. The key insight of [20] was to introduce an innovation number
that keeps track of the history of a gene. Every new connection appearing in the population
(see Fig. 4b) via a mutation is assigned a unique identification number (note that weight
mutation does not generate a new innovation number). This crucially enables a simple and
meaningful procedure for the crossover of two neural-networks as shown in Fig. 4c.

Protection of the innovation by speciation. Another key element of NEAT is the design
of a speciation mechanism that allows subgroups of similar neural networks (i.e. species) to
evolve separately from the rest of the population. When the architecture of a neural network
is changed via a mutation, it is likely that it will not perform well at first and a few gener-
ations are needed so that its weights can be adjusted. The issue is that the selection rules
will eliminate these more complex individuals and effectively prevent better topologies to be
found. It is possible to circumvent this issue by creating niches of individuals that share char-
acteristics among themselves but not with the rest of the population, and applying selection
independently on these subgroups. As a result, speciation is able to protect genetic innovation.

In [20], the species are defined via a compatibility distance δwhich simply accounts for the
number of excess E or disjoint D genes between two genomes, as well as the average weight
differences in the matching genes W :

δ = c1
E

Ngenes
+ c2

D
Ngenes

+ c3W , (2)

where the ci are hyperparameters and Ngenes is the number of genes in the largest genome. At
each generation, genomes are sequentially placed in species by checking whether the compat-
ibility δ between the current genome and a genome randomly picked from a given species is
below a threshold distance δc . Additionally, NEAT employs a heuristic called explicit fitness
sharing which favors homogeneity inside the species. The idea is to fight against the tendency
that largely-populated species take over the rest of the species. This works by adjusting the
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Figure 4: The genome of a neural network contains node and connection genes. A
node gene stores an identification number and its type (input (sensor), hidden or
output). A connection gene informs about which nodes it connects (the directional-
ity allows to define recurrent connection that creates a loop in the neural network
structure), the weight value it carries, a Boolean variable allowing for disabling the
connection and, crucially, the innovation number (see main text). All this information
uniquely define a phenotype neural network. Adding a node is done by splitting an
existing connection in two, where the previous connection (here 2→ 3) is disabled
and two new connection genes are created. Crossover is achieved by matching con-
nection genes that share innovation numbers between the two parents (here genes
0 and 1). These matching genes are transmitted to the offspring with a weight and
disabling option that is picked with equal probability from one of the two parents.
The other disjoint genes are inherited randomly by the offspring.
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size N j of species j according to the ratio:

N ′j = N j
f j

f
, (3)

where N ′j is the size of species j for the next generation, f is the fitness averaged over the

entire population and f j averaged over the individuals in species j.

Minimizing dimensionality. The last key insight of [20] is to initialize the population with
neural networks having the simplest topology possible. For instance, neural networks of the
first generation have no hidden nodes. In combination with speciation, this is argued to min-
imize the complexity of the final solution. Indeed, new architectural components are tested
and optimized independently thanks to speciation: if the architectural innovation is proven
to provide a significant performance boost, it is then included in the rest of the population.
This way the complexity of the population only increases when necessary. Starting the evo-
lution with the simplest neural networks hence ensures that the final solution has minimal
complexity.

B Genome transplantation

Because of the perspectives, it is possible to transfer a decoder trained on a small code to a
larger code. This can be done by performing genome transplantation, creating a network N2
for code distance d2 starting from a network N1 for distance d1 < d2. This works by adding
2(d2

2 − d2
1 ) new input neurons to N1 that correspond to new plaquette and star operators. All

the weights connecting these neurons are set to 0, effectively ignoring the region beyond a
distance of d1

2 from the (reference) center. An example resulting transplanted neural network
is showed in Fig. 5 with d2 = 5 and d1 = 3 with N1 being the neural network shown in

Figure 5: A neural network obtained from training at d = 3 (see Fig 7) can be used
as a d = 5 decoder by inserting plaquette input nodes without connection weights
linked to the rest of the neural network.
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Figure 6: Logical fidelity against training time (measured in number of generations)
for the best individual of each generation evaluated on 1000 random syndrome con-
figurations at physical error rates p = 0.01,0.05, 0.1,0.15. This is a typical training
run for the bitflip noise model. The dashed lines correspond to starting the training
procedure with an initially random population, while solid lines correspond to start-
ing with a population of transplanted neural-networks from the best d1 = 3 decoder
for d2 = 5, and the best d1 = 5 decoder for d2 = 7.

Fig. 7. Fig. 5 also shows the performance of such transplanted genomes starting from a neural
network trained at d = 3.

In the limit of small error rates, as can be seen in Fig. 6, the transplanted decoders perform
well. This can be explained by the fact that in that limit there are only a few errors, each
separated by a distance that grows on average with code distance, therefore the fact that the
transplanted neural networks ignore long-distance information does not affect performance in
this error regime. Fig. 6 shows that genome transplantation can accelerate the training quite
significantly, in particular for the largest system sizes.

C Training hyperparameters

The population of neural networks in our runs varied from 100 individuals up to 300 for the
largest code sizes. Each neural network initially has no hidden nodes but is fully connected
from the input layer to the output layer, i.e. every input node is connected to every output
node. The initial values of the connection weights and node biases are sampled from a Gaus-
sian distribution with zero mean and unit standard deviation. The activation functions are all
chosen to be sigmoidal.

During training, at each generation, the fitness of each neural network is evaluated on a
set of 400 puzzles (500 for depolarizing noise) of varying difficulty, obtained from generating
errors at perror ∈ {0.01, 0.05,0.1,0.15} (perror ∈ {0.01,0.05, 0.1,0.15, 0.2} for depolarizing
noise) in equal proportion. In addition to that, to keep track of the best neural network over all
generations, we evaluate the best-performing one from each generation on a separate dataset
of about 5000 puzzles, which was generated independently at generation 0.

The mutation rates and other relevant hyperparameters are listed in Tab. 2.
As input data we have chosen to use the 2d2 values of the stabilizers P and S. Alternatively,
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Table 2: Mutation rates

Hyperparameter Value
Add/remove connection rate 0.1

Add/remove node rate 0.1
Weight mutation rate 0.5

Bias mutation rate 0.1
Enabling/disabling mutation rate 0.01

one can also include the values of the physical qubits – except for the actual error chain –
(projections along z and x axis), increasing the input size by a factor 3. Provided with the
information about qubits, the agent effectively has memory of the past (it can see whether a
Pauli X or Z operators has been applied already) and one may expect that this will improve
performance. However in practice we were not able to find better decoding strategies with
memory; rather, we observe slower training and convergence (in terms of CPU time) due to the
larger networks. We believe that these limitations could originate from the NEAT algorithm,
displaying slow convergence for the optimization of large networks in general.

Regarding the output, we also investigated the implementation of rotation invariance in
the perspectives. This allows a reduction of the number of output neurons to 3 instead of 12,
which corresponds to acting with the three possible Pauli matrices on a single reference qubit.
The perspectives then contain the translated copies of the toric code but also the four rotated
views for each of these, which effectively implements rotation invariance. Here again, we find
that this trick did not improve performance. Instead, we observed that NEAT gets trapped
more easily in local minima.

D Example NEAT network

Figure 7 shows an example network that was evolved using NEAT for d = 3 with bitflip noise,
superimposed on top of a slightly different representation of the toric code.

Figure 7: Architecture of a d = 3 NEAT decoder for bitflip noise, rotated with respect
to Fig. 1 for convenience. The neuron inputs are placed where they are located on
the lattice, as are the four outputs. The width of the edges are proportional to the
corresponding absolute value of the weights. Positive (negative) weighting is shown
with dashed green (solid red) lines.
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