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Abstract

The Coulomb Branch Formula conjecturally expresses the refined Witten index for N = 4
Quiver Quantum Mechanics as a sum over multi-centered collinear black hole solutions,
weighted by so-called ‘single-centered’ or ‘pure-Higgs’ indices, and suitably modified
when the quiver has oriented cycles. On the other hand, localization expresses the same
index as an integral over the complexified Cartan torus and auxiliary fields, which by
Stokes’ theorem leads to the famous Jeffrey-Kirwan residue formula. Here, by evaluating
the same integral using steepest descent methods, we show the index is in fact given by a
sum over deformed multi-centered collinear solutions, which encompasses both regular
and scaling collinear solutions. As a result, we confirm the Coulomb Branch Formula for
Abelian quivers in the presence of oriented cycles, and identify the origin of the pure-
Higgs and minimal modification terms as coming from collinear scaling solutions. For
cyclic Abelian quivers, we observe that part of the scaling contributions reproduce the
stacky invariants for trivial stability, a mathematically well-defined notion whose physics
significance had remained obscure.
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1 Introduction

For the purpose of determining the BPS spectrum in supersymmetric field theories or string
vacua with N = 2 supersymmetry in four dimensions, a special class of supersymmetric quan-
tum mechanics known as N = 4 Quiver Quantum Mechanics (QQM) provides an essential
tool. Indeed, it describes the low energy dynamics of a set of K dyons with general, mutu-
ally non-local electromagnetic charges γi , each of them separately saturating the BPS bound,
and interacting through the usual Coulomb, Lorentz, scalar exchange and (when coupled to
gravity) Newton forces. When the dyons have distinct charges γi , QQM is an 0+1 dimen-
sional U(1)K gauge theory with charged matter determined by the Dirac-Schwinger-Zwanziger
pairing κi j = 〈γi ,γ j〉 between the charges of the constituents, encoded in a quiver Q. More

generally, it is a non-Abelian gauge theory with gauge group
∏K

i=1 U(Ni) and bifundamental
matter, whose Lagrangian follows from the usual rules of string theory whenever the dyons
can be viewed as wrapped D-branes [1, 2]. Semi-classically, its moduli space consists of a
Coulomb branch, where the gauge group is broken to the Cartan torus and the scalars ~x i in
the vector multiplet satisfy the same equations as multi-centered BPS black holes in N = 2
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supergravity [2,3],

∀i,
∑

j 6=i

κi j

|~x i − ~x j|
= 2ζi , (1.1)

and a Higgs branch where the ~x i ’s are coincident and non-Abelian degrees of freedom be-
come important. Both branches carry an action of the R-symmetry subgroup SO(3)R, which
corresponds to rotations in spatial directions.

While the quantum dynamics of QQM is complicated, the refined Witten index Ω(γ, y,ζ)
counting supersymmetric ground states weighted by their angular momentum y2J3 (and there-
fore BPS bound states of the K dyons with total charge γ =

∑

i γi), can be evaluated using
localization [4] (see also [5–7]). Crucially, the index depends on the Fayet-Iliopoulos param-
eters ζ and superpotential W , with jumps in real codimension one or two, respectively, when
these data are varied. The former corresponds to the familiar wall-crossing phenomena in
four-dimensional theories with N = 2 supersymmetry (see e.g. [8] and references therein),
while the latter will be irrelevant in this work, where we shall assume W to be generic.

Mathematically, the refined Witten index (also known as refined Donaldson-Thomas invari-
ant) is given by the χy2-genus of the moduli space MQ(γ,ζ) of stable quiver representations
with dimension vector γ = (N1, . . . , NK). The localization computation of [4] (closely related
to the elliptic genus computation in two-dimensional gauged linear sigma models [9]) ex-
presses Ω(γ, y,ζ) as a Jeffrey-Kirwan residue formula, with a contour prescription depending
on the stability parameters ζ. For generic values of ζ away from the walls, Ω(γ, y,ζ) evaluates
to a symmetric Laurent polynomial in y , corresponding to the character of the action of the
rotation y2J3 on BPS ground states, and reduces to the usual Witten index Ω(γ,ζ) as y → 1,
equal (up to sign) to the Euler number of the moduli space of stable quiver representations.

In a series of works by J. Manschot, A. Sen and the third named author [10–14], an alter-
native, heuristic description of the supersymmetric ground states of QQM was proposed, by
localizing the effective supersymmetric quantum mechanics on the Coulomb branch to fixed
points of the rotation J3. Not surprisingly, fixed points of J3 are collinear configurations of
K dyons localized along the z axis, whose relative distances are fixed by a one-dimensional
version of (1.1),

∀i,
∑

j 6=i

κi j

|zi − z j|
= 2ζi . (1.2)

Summing over all possible orderings with a suitable sign, and assigning unit degeneracy
Ω(γi , y) = 1 to each constituent, this prescription produces the correct refined Witten index
for Abelian quivers without oriented cycles. This prescription also extends to non-Abelian
quivers without oriented cycles, provided the dyons are treated as Boltzmannian particles
(i.e. distinguishable) and weighted by an effective rational index Ω̄(γi , y). In contrast, when
the quiver has oriented cycles, this prescription fails to produce a bona-fide character of the
rotation group, rather it produces a rational function of y with a pole at y = 1. This issue
can be traced to the existence of fixed points of J3 which do not correspond to any collinear
configuration, but rather to ‘scaling solutions’, where the centers become arbitrarily close to
each other, with almost vanishing angular momentum [15–17].

In [11], an ad hoc prescription was proposed to rectify this problem, by modifying the naive
count of collinear solutions and introducing new, so called ‘single-centered indices’ ΩS(γ, y)
(also known as ‘pure-Higgs’ or ‘intrinsic Higgs’) counting pointlike configurations with total
charge γ =

∑

i Niγi , whenever the dimension vector γ is supported on a subquiver which
contains an oriented cycle. Unlike the Witten index Ω(γ, y,ζ), the indices ΩS(γ, y) are in-
dependent of the stability parameters ζ. This property also holds for the attractor indices
Ω?(γ, y) introduced in [18], but contrary to attractor indices1, single-centered indices do not

1The attractor indices Ω?(γ, y) are instances of the Witten index in a particular chamber known as the attractor
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yet have a first principle definition, nor a representation theoretic underpinning.2 The general
prescription for recovering Ω(γ, y,ζ) in terms of the single-centered indices ΩS(γ, y) has been
called the Coulomb branch formula (see [14] for a concise review) and was tested in many
examples [12, 17, 23], but it has remained conjectural in general. A notable exception is the
case of quivers without oriented cycles, where all ΩS’s vanish except those associated to the
basis vectors γi [13].

Our aim in this work is to revisit this heuristic prescription, and derive the sum over
collinear configurations and its modifications from the rigorous localization analysis of [4] in
the full QQM. While the the Jeffrey-Kirwan residue prescription in this reference was obtained
by applying Stokes’ theorem to an integral over the complexified Cartan torus and auxiliary
fields, we shall instead evaluate this integral by steepest descent,3. In the absence of oriented
cycles, we show that this yields a sum over collinear fixed points, exactly as specified in [10].
In the presence of oriented cycles, we shall show that there are additional saddle points, which
are solutions to a deformed version of (1.2),

∀i,
∑

j 6=i

κi j

|zi − z j −
πImz
β Ri j|

= 2ζi , (1.3)

where Ri j is the R-charge of the κi j chiral fields charged under U(1)i × U(1) j (chosen such
that oriented cycles have R-charge 2, and defined for all i, j such that R ji = −Ri j), β is the
inverse temperature and z (not to be confused with positions of the centers) is related to the
angular momentum fugacity by y = eiπz . Among these solutions, some (dubbed as regular
collinear solutions) smoothly merge on solutions to (1.2) as β →∞, while others (dubbed
as collinear scaling solutions) have no counterpart in (1.2), but persist for any value the FI
parameters. In particular, they are the only ones remaining in the ‘deep scaling regime’ ζi → 0
considered in [25,26]. We show that these collinear scaling solution complement the regular
ones exactly as specified by the ‘minimal modification hypothesis’ of [11], and in addition
provide the missing single-centered (or pure-Higgs) contribution. We demonstrate this in the
case of Abelian cyclic quivers, where the equations (1.3) for ζi = 0 can be solved explicitly. In
that case, we further observe that the so-called ‘same sign’ scaling solutions exactly reproduce
the stacky invariants with trivial stability condition – a mathematically well-defined notion (see
e.g. [27]), but whose physics significance had remained obscure. Unfortunately, we do not yet
understand the mathematical significance of the remaining ‘unequal sign’ scaling solutions.

The remainder of this article is organized as follows. In §2, we give a brief review of N = 4
quiver quantum mechanics, discuss the conditions for existence of scaling solutions, and recall
the Coulomb Branch Formula in this context. In §3, we recall the localization computation of
the refined Witten index, assemble some useful formulae for dealing with infinite products ap-
pearing in this computation, and evaluate the Witten index for quivers using steepest descent,
both in the absence (§3.3) and presence (§3.4) of oriented cycles. The case of a 3-node quiver
is discussed in §3.4.1. In §4, we consider Abelian cyclic quivers with arbitrary number of nodes,
and obtain generating series for a variety of indices including single-centered indices, attrac-
tor indices, trivial stability indices and scaling indices. Some further computational details are
relegated to appendices.

or self-stability chamber. The Witten index in any chamber can be recovered from those by using attractor flow
tree formulae [18–22].

2It is expected that single-centered indices count harmonic forms in the middle cohomology of the Higgs branch,
but their precise characterization has been elusive.

3This is similar in spirit to the approach developped in [24] in the simplest case of the Kronecker quiver with
rank (1, N), but the details are different, and our method also applies to quivers with oriented loops.
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2 Review of the Coulomb branch formula for quivers

In this section, we briefly review the quiver quantum mechanics (QQM) describing interactions
of half-BPS dyons in supersymmetric field theories or string vacua with N = 2 supersymmetry
in 3+1 dimensions, and the Coulomb branch formula prescription for computing its index.

2.1 N = 4 quiver quantum mechanics

QQM is a 0+1-dimensional gauge theory withN = 4 supercharges [2], gauge group G =
∏K

a=1
U(Na) and κab chiral multiplets in the bifundamental representation of U(Na)× U(Nb). Here
Na are the number of constituents with distinct electromagnetic charges γa, and κab is the
integer-valued Dirac-Schwinger-Zwanziger pairing.

It is convenient to view QQM as a special supersymmetric gauge theory with N = 2 su-
percharges, where the couplings are tuned such as to enhance the supersymmetry to N = 4.
Recall that a N = 4 vector multiplet decompose into N = 2 vector multiplets and N = 2 chiral
multiplets:

(vt , x3,λ−, D)⊕ (σ = x1 + ix2, iλ̄+) . (2.1)

We shall attach an index ass′ to the components of the multiplet in the U(Na) factor, with
s, s′ = 1 . . . Na. Under the Cartan torus U(1)r ⊂ G with r =

∑K
a=1 Na, the off-diagonal compo-

nents of the complex scalar field σs,s′
a carry charge vector V s,s′

a := ea,s − ea,s′ , where the vector
ea,s has component +1 along the direction α= (a, s) inside U(1)r , and 0 along the other direc-
tions. The N = 4 chiral multiplets decompose into N = 2 chiral multiplets and N = 2 Fermi
multiplets in the same representation,

(φ,ψ+)⊕ (ψ−, F) . (2.2)

Since they transform in the bifundamental representation of U(Na)×U(Nb), we shall attach an
index abss′ to the components of the multiplet in the U(Na) factor, with s = 1 . . . Na, s′ = 1 . . . Nb.
Under the Cartan torus U(1)r , the complex scalar fieldsφ i,ss′

ab carry charge vector Ṽ ss′
ab = ea,s−eb,s′

Note that the diagonal U(1) ⊂ G acts trivially, so the rank of the effective gauge group is
`= r − 1, and we can omit one component (say the last) in the charge vectors V and Ṽ , such
that the α index runs only from 1 to `= r − 1.

The Lagrangian of the N = 2 gauge theory depends on the coefficients for the standard
kinetic terms of the vector and chiral multiplets, on the Fayet-Iliopoulos parameters ζa subject
to the condition

∑

a Naζa = 0, as well as on a choice of superpotentials E and J , which are
vector-valued holomorphic functions of the complex scalar fieldsσ,φ in the N = 2 chiral mul-
tiplets, subject to the condition that Tr(J · E) = 0 . In order to enforce N = 4 supersymmetry,
we choose equal coefficients for the kinetic terms of the components (2.1) and (2.2) inside the
N = 4 vector and chiral multiplets, and take

E(σ,φ) = σφ , J(σ,φ) = −dW (φ) , (2.3)

where W is a gauge invariant, holomorphic function of the scalars in the N = 4 chiral mul-
tiplets only. We shall assume that W is a linear combination of traces of products of these
scalars along oriented cycles of the loop, with generic coefficients such that the F-term equa-
tions ∂φW = 0 are independent away from the locus where all φ’s vanish.

With this matter content, the QQM has SU(2)+ × SU(2)− global R-symmetry, with Cartan
torus U(1)+ × U(1)− acting with the following charge assignments

vt x3 λ− D σ λ̄+ φ ψ+ ψ− F
J+ 0 0 1 0 1 0 R

2
R
2 − 1 R

2
R
2 − 1

J− 0 0 0 0 −1 −1 R
2

R
2

R
2 − 1 R

2 − 1
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where R stands for the charges Rab of the chiral fields φab under the U(1)R generator J+ + J−
(for convenience, we define Rba = −Rab). These symmetries hold provided W (φ) transforms
homogeneously with R-charge 2 (in particular, this ensures that the coupling F∂φW in the
Lagrangian is invariant). The U(1)− ⊂ SU(2)− factor corresponds to spatial rotations of the
system of interacting dyons; it is an R-symmetry for the full N = 4 supersymmetry, but an
ordinary global symmetry with respect to the N = 2 subalgebra. In addition, by dimensional
analysis the model is invariant under rescaling

t → t/s , ~x → s~x , λ→ s3/2λ , D→ s2D , ζ→ ζ/s ,
1
e2
→

1
e2
/s3 , β → β/s . (2.4)

If one instead keeps fixed the dimensionful parameters ζ and 1/e2 while scaling the fields in-
verse temperature as in (2.4) and taking the limit s→ 0, one expects theN = 4 supersymmetry
to be enhanced to the superconformal algebra D(2,1; 0) [25,26].

2.2 Semi-classical vacua and BPS states

Semiclassically, the quiver quantum mechanics admits two branches of supersymmetric vacua
[2]:

• On the Higgs branch, the gauge symmetry is broken to the U(1) center by the vevs of
the chiral multiplet scalars φab,A,ss′ , which are subject to the D and F-term relations,

∑

b:κab>0

∑

s′=1...b
A=1...κab

φ∗ab,A,ss′ φab,A,ts′ −
∑

b:κab<0

∑

s′=1...b
A=1...|κab |

φ∗ba,A,s′sφba,A,s′ t = ζa δst ∀ a, s, t

W
∂ φab,A,ss′

= 0 ∀ a, b, A, s, s′ , (2.5)

where 1 ≤ a, b ≤ K , 1 ≤ s, t ≤ Na, 1 ≤ s′ ≤ Nb, 1 ≤ A ≤ κab. As a result, the space
of gauge inequivalent classical supersymmetric vacua coincides with the moduli space
MQ(γ,ζ) of stable representations of the quiver Q, with stability conditions determined
by the FI parameters ζ. Quantum mechanically, BPS states on the Higgs branch are
harmonic forms on MQ(γ,ζ), or equivalently Dolbeault cohomology classes.

• On the Coulomb branch the gauge symmetry is broken to the diagonal subgroup
U(1)

∑K
a=1 Na and all chiral multiplets as well as off-diagonal vector multiplets are massive.

After integrating out these degrees of freedom, the diagonal part ~x i of the scalars in the
vector multiplets must be solutions to Denef’s equations (1.1), with the index i running
over all r =

∑

a Na pairs (a, s) with s = 1 . . . Na, and the corresponding κi j and ζi are
equal to κab and ζa, in such a way that

∑r
i=1 ζi = 0. The space of solutions modulo

common translations is a phase space Mn({κi j , ci}) of dimension 2n−2, equipped with
a natural symplectic form [28], invariant under SO(3) rotations in R3 generated by the
angular momentum

~J =
1
2

∑

i< j

κi j
~x i − ~x j

|~x i − ~x j|
. (2.6)

Quantum mechanically, BPS states are harmonic spinors for the natural Dirac operator
on Mn({κi j ,ζi}), and fit into multiplets of SO(3) [28,29].

For quivers without oriented cycles, the Higgs branch and Coulomb branch give two equiv-
alent descriptions of the same quantum mechanical system, and have isomorphic BPS spectra,
with the action of SO(3) rotations on the Higgs branch side via the Lefschetz action on the
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cohomology of MQ. In contrast, for quivers with oriented cycles, the Coulomb branch de-
scription is incomplete, due to the fact that there exists loci on the phase space Mn({κi j ,ζi})
where the vectors ~x i become arbitrarily close and the chiral fields become almost massless,
such that it is no longer legitimate to integrate them out. These singular solutions are known
as scaling solutions, and they exist under certain conditions on the arrow degeneracies |κab|
which we review in the next subsection.

In order to count supersymmetric ground states, keeping track of the angular momentum
of the corresponding BPS bound states in D = 3+ 1, it is convenient to consider the refined
Witten index

I = TrH(−1)F e2πizJ− e−βH , (2.7)

where H is the Hamiltonian of QQM, F is the fermion number and the chemical potential z is
related to the usual fugacity by y = eiπz . When H is gapped (which holds for generic values of
the FI parameters ζ = (ζ1, . . . ,ζK) and coprime dimension vector γ = (N1, . . . , NK), the index
(2.7) is independent of β , and computes the χy2-genus of the moduli space MQ(γ,ζ) of stable
representations,

I = Ω(γ, y,ζ) :=
d
∑

p=0

hp,q(M) (−1)p+q−d y2q−d , (2.8)

where d is the complex dimension of M = MQ( ~N , ~ζ). Put differently, I gives a weighted
count of BPS states in the Higgs branch description. It also counts BPS states on the Coulomb
branch whenever the latter is well-defined, i.e. in the absence of scaling solutions.

When the dimension vector γ is not primitive, the Witten index (2.7) instead computes the
rational index [7].

I = Ω(γ, y,ζ) :=
∑

d|γ

y − 1/y
d(yd − y−d)

Ω(γ/d, yd ,ζ) , (2.9)

where Ω on the r.h.s. is defined as in (2.8), using L2-cohomology when M is non-compact.

2.3 Scaling solutions

For scaling solutions such that all ~x i become nearly concident, the FI parameters on the r.h.s.
of (1.1) become irrelevant, and the equations reduce to the ‘conformal Denef equations’,

∀i,
∑

j 6=i

κi j

|~x i − ~x j|
= 0 . (2.10)

If they exist, they occur in one-parameter families where all distances are scaled by a factor
of λ > 0. Since the angular momentum (2.6) on solutions to (1.1) evaluates to ~J = 2

∑

i ζi ~x i ,
it follows that scaling solutions carry vanishing angular momentum at the classical level. In
particular, collinear solutions to (2.10)4 exist only for nongeneric values of the κ′i js such that
∑

i< j κσ(i),σ( j) vanishes for some permutation σ.
For K = 3 centers, it is clear that solutions to (2.10) exist if and only if κ12,κ23,κ31 have

the same sign (positive, say) and satisfy the triangular inequality

κ12 + κ23 ≥ κ31 (2.11)

and cyclic permutations thereof. These inequalities ensure that ri j = λκi j correspond to the
distances between an actual configuration of 3 points in R3. We conjecture that a necessary

4We reserve the phrase ‘collinear scaling solutions’ for solutions of the deformed equations (1.3).
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condition for any number of centers K such that the nodes 1, 2, . . . K form an oriented cycle on
the quiver is that5

∑

i< j

κi j ≥ 0 and cyclic perm. . (2.12)

In the case of a cyclic quiver, with κi j = 0 unless j = i+1 (with j = K+1 identified with j = 1)
this condition reduces to

0< κK ,1 < κ12 + κ23 + · · ·+ κK−1,K (2.13)

and cyclic permutations thereof, which is again a trivial consequence of the fact that ri,i+1 =
λκi,i+1 correspond to distances between K points in R3. For a cyclic quiver with one additional
arrow, say κ1,k > 0 with k 6= 2 and k 6= K , one may also demonstrate that (2.12) is a necessary
condition (see Appendix A). We do not know how to show that (2.12) holds in general, but we
observe that this is the most general condition which is linear in the κi j ’s, and which reduces
to the known conditions for a cyclic quiver with one additional arrow. For K = 4, using the
results in ( [18, (4.15)], we can prove by a case-by-case analysis that (2.12) is a necessary
condition for the non-vanishing of the difference Ω?(γ)−ΩS(γ), see below).

Quantum mechanically, we conjecture that the condition for existence of scaling bound
states is strengthened to

∑

i< j

κi j ≥ K − 1 and cyclic perm. , (2.14)

generalizing the known condition for cyclic quivers [12]. This condition is consistent with the
positivity of the expected dimension of the Higgs branch in a chamber where all chiral fields
Φαi j with i > j vanish.

2.4 The Coulomb branch formula

For quivers without oriented cycles, the Coulomb branch formula expresses the rational in-
dex Ω(γ, y,ζ) defined in (2.9) as a sum over all possible unordered decompositions of the
dimension vector γ into a sum of positive dimension vectors αi ,

Ω(γ, y,ζ) =
∑

γ=
∑n

i=1 αi

gC({αi j , ci}, y)

|Aut{αi}|

n
∏

i=1

Ω̄S(αi , y) . (2.15)

Here the rational indices ΩS(αi , y) are zero except when the dimension vector αi has support
on only one node of the quiver, in which case ΩS(αi , y) = (y − 1/y)/[N(yN − y−N )] where
N is the value of α on that node. Said differently, the integer indices ΩS(αi , y) defined as in
(2.9) are equal to one if αi is the unit dimension vector on one node of the quiver, or zero
otherwise. The factor |Aut{αi}| is the usual Boltzmann symmetry factor, i.e. the order of the
subgroup of permutations of n elements which preserve the ordered list {αi , i = 1 . . . n}.

The coefficient gC({αi , ci}, y), known as the Coulomb index, is the equivariant index of
the Dirac operator on the phase space Mn({αi j , ci}), where αi j = 〈αi ,α j〉 and ci = (ζ,αi)
are the FI parameters associated to the constituents. The index was computed by localization
with respect to rotations around a fixed axis in [10, 11, 13]. The fixed points of the action of

5In case there are several oriented cycles passing through all the nodes, these conditions are to be imposed for
each such cycle. In case there is no oriented cycle passing through all the nodes, one should perturb the matrix κi j

such that such a cycle is created.
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J3 on Mn({αi j , ci}) are collinear black hole solutions, with coordinates zi satisfying the one-
dimensional Denef equations (1.2) (with κi j ,ζi replaced by αi j , c j). Denoting by S the set of
such solutions, up to overall translations, one has

gC({γi , ci}, y) =
(−1)n−1+

∑

i< j γi j

(y − y−1)n−1

∑

s∈S

sgn(det ′∂i∂ jW) y
∑

i< j κσ(i)σ( j) , (2.16)

where ∂i∂ jW denotes the Hessian of the function

W({zi}) = −
1
2

∑

i< j

sgn(z j − zi)αi j log |zi − z j| −
∑

i

cizi . (2.17)

When the phase space Mn({αi j , ci}) is compact, which is the case for quivers without oriented
cycles, the sum over fixed points produces a symmetric Laurent polynomial in y , which is the
character of the SO(3) representation spanned by harmonic spinors.

While the formula (2.15) for quivers without oriented cycles is transparent and well es-
tablished [13], its generalization to quivers with oriented cycles is conjectural and more in-
volved [11,13,14]:

Ω(γ, y,ζ) =
∑

γ=
∑n

i=1 αi

gC({αi j , ci}, y)

|Aut{αi}|

n
∏

i=1

Ω̄T(αi , y) , (2.18)

where Ω̄T(αi , y) is constructed in terms of ΩT(αi , y) by a relation similar to (2.9). The factor
gC({αi j ,ζi}, y) is defined by (2.16) just as in the previous case, however it is in general not a
symmetric Laurent polynomial in y , due to the fact that the phase space Mn({αi j , ci}) is not
compact. Indeed, it misses the scaling solutions, which carry zero angular momentum and
should therefore contribute to the sum over fixed points.

As for the ‘total’ invariant ΩT(α, y), it is in turn determined in terms of the single-centered
indices ΩS(β j , y) via

ΩT(α, y) = ΩS(α, y) +
∑

α=
∑m

i=1 miβi

H({βi , mi}, y)
m
∏

i=1

ΩS(βi , ymi ) , (2.19)

where the sums run over unordered decompositions of α into sums of vectors miβi with mi ≥ 1
and βi a linear combination of the αa ’s with positive integer coefficients6. Unlike in the ab-
sence of oriented cycles, the single-centered indices ΩS(α, y) may be non-vanishing on any
dimension vector α whose support spans oriented cycles – in addition to the basic dimension
vectors associated to each node, for which ΩS(α, y) = 1.

The functions H({βi , mi}, y) are supposed to incorporate the missing contributions of scal-
ing fixed points to the equivariant index of Mn({αi j , ci}). While it is not known yet how to
compute them from first principles, an ad hoc prescription, called ‘minimal modification hy-
pothesis, was put forward in [13, 14]. This prescription amounts to replacing the coefficient
f (y) of

∏m
i=1ΩS(βi , ymi ), which is in general a rational function, by its image under the pro-

jection operator [12, (2.9)],

M[ f ](y) =

∮

0

du
2πi

(1/u− u) f (u)
(1− uy)(1− u/y)

, (2.20)

which turns a rational function into a symmetric Laurent polynomial with the same polar terms
in the Laurent expansion at y = 0 or y =∞,

f (y) =
∑

n≥−N

fn yn→ M[ f ](y) =
∑

−N≤n<0

fn(y
n + y−n) + f0 . (2.21)

6If one of the constituents βi is not primitive, all choices (dmi ,βi/d) are counted as distinct contributions.
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Note that the dependence on FI parameters is entirely contained in the Coulomb indices (2.16).
We note that the relations (2.9), (2.18), (2.19) are consistent with assigning a charge mγ

to the indices Ω(γ, yd), ΩS(γ, yd) and their rational counterparts. Therefore, the index can be
written in either of the two forms

Ω(γ, y,ζ) =
∑

γ=
∑n

i=1 miαi

gC({αi , mi ,ζi}, y)
|Aut{αi , mi}|

n
∏

i=1

Ω̄S(αi , ymi ) , (2.22)

Ω(γ, y,ζ) =
∑

γ=
∑n

i=1 miαi

bgC({αi , mi ,ζi}, y)
|Aut{αi , mi}|

n
∏

i=1

ΩS(αi , ymi ) , (2.23)

where the sum runs over unordered decompositions γ=
∑n

i=1 miγi with mi ≥ 1, and Aut{γi ,
mi} denotes the subgroup of Sn which preserves the pairs (γi , mi). We recall that the single
centered indices ΩS(γ, y) can be related to the attractor indices Ω?(γ, y) by evaluating (2.22)
at the attractor point ζ?i = −

∑

j κi jN j [18].

2.4.1 Abelian quivers

Assuming that γ is a linear combination of the basis vectors γa with coefficients at most 1, the
Coulomb branch formula (2.18) simplifies to

Ω(γ, y,ζ) =
∑

γ=
∑n

i=1 αi

bgC({αi ,ζi}, y)
n
∏

i=1

ΩS(αi , y) , (2.24)

where

bgC({γi ,ζi}, y) =
∑

∑n
i=1 γi=

∑m
i=1 αi

αi=
∑mi

j=1 βi, j

gC({αi ,ζi}, y)
m
∏

i=1

H({βi,1, . . . ,βi,mi
}, y) , (2.25)

with the understanding that H({β1}, y) = 1 and H({β1,β2}, y) = 0. The term H(α1, . . . ,αn, y)
with the largest number of arguments is fixed by the minimal modification hypothesis, and is
independent of the moduli.

3 Coulomb branch localisation

After reviewing the result of the localization computation in [4], we evaluate the integral using
steepest descent, and recover the Coulomb branch prescription for Abelian quivers, both in the
absence (§3.3) and presence (§3.4) of oriented cycles. The case of a 3-node quiver is discussed
in §3.4.1.

3.1 Witten index from localisation

As explained in [5–7] and especially in [4], the Witten index (2.7) can be computed by lo-
calization, similar to the case of two-dimensional supersymmetric gauge theories analyzed
in [9,30,31]. This procedure relies on the fact that the kinetic terms for the N = 2 multiplets
are Q-exact, and therefore the functional integral is independent of the values of the kinetic
couplings e and g. In the limit e→ 0, the integral localizes on configurations where the x3’s
are restricted to a common Cartan subalgebra, x ss′

3,a = δ
ss′ x3,a, and moreover x3,a is covariantly

constant,
∇t x3 = 0 , (3.1)
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where∇t = ∂t+ivt is the gauge covariant derivative. In this limit, the one-loop approximation
of the functional integral around configurations with constant u := β

2π(vt−ix3) becomes exact,
and (2.7) reduces to a finite dimensional integral

I =
�

β2

4π2

�`∫
d2`u d`D
(2π)`|W |

g(u, D) det h(u, D) e−βS(D,ζ) , (3.2)

where

S(D,ζ) =
1

2e2

∑

a=1...K
s=1...Na

D2
a,s − i

∑

a=1...K
s=1...Na

ζa Da,s (3.3)

and |W |=
∏

a Na! stands for the order of the Weyl group. In (3.2), the integral runs over the
complex variables uα = ua,s and real variables7 Dα = Da,s with α= 1 . . .`. while the last entry
is fixed by the conditions

∑r
α=1 uα =

∑r
α=1 Dα = 0. The factor g(u, D) is a product of one-loop

determinants,

g(u, D) = sinπz
K
∏

a=1

g(Na)
vector(ua, Da)

∏

a,b=1...K
κab>0

�

g(Na ,Nb)
chiral (ua, ub, Da, Db)

�κab
, (3.4)

where gvector is the contribution of a N = 4 vector multiplet transforming in the adjoint rep-
resentation of U(N),

g(N)vector(u, D) =
1

(sinπz)N
∏

s,s′=1...N
s 6=s′

∏

m∈Z

(m+ us − us′)(m+ ūs′ − ūs + z̄)

|m+ us′ − us + z|2 − iβ2

4π2 (Ds − Ds′)
, (3.5)

while g(N ,N ′)
chiral is the one-loop determinant for a N = 4 chiral multiplet transforming in the

bifundamental representation of U(N)× U(N ′),

g(N ,N ′)
chiral (u, u′, D, D′) =

N
∏

s=1

N ′
∏

s′=1

∏

m∈Z

�

m+ ū′s′ − ūs −
1
2R z̄

� �

m+ us − u′s′ + (
1
2R− 1)z

�

|m+ u′s′ − us −
1
2Rz|2 − iβ2

4π2 (Ds − D′s′)
. (3.6)

The factor sinπz in (3.4) comes as a result of removing the diagonal U(1) factor in G. Finally,
h is a `× ` symmetric matrix coming from saturating the gaugino fermionic zero-modes,

hαβ(u, D) =
∑

a=1...K
s,s′=1...Na

s 6=s′

∑

m∈Z

V s,s′
a,α V s,s′

a,β
�

m+ ūa,s′ − ūa,s + z̄
�

�

|m+ ua,s′ − ua,s + z|2 − iβ2

4π2 (Da,s − Da,s′)
�

+
∑

a,b=1...K
κab>0

s=1...Na
s′=1...Nb

∑

m∈Z

Ṽ s,s′

a,b,αṼ s,s′

a,b,β
�

m+ ūb,s′ − ūa,s −
1
2Rabz̄

�

�

|m+ ub,s′ − ub,s −
1
2Rabz|2 − iβ2

4π2 (Da,s − Db,s′)
� ,

(3.7)

where Ṽ s,s′
a,α and Ṽ s,s′

a,b,α are the components of the charge vectors for N = 2 chiral multiplets
defined in the previous subsection. An important property of (3.4) is

∂ūα g(u, D) = −
iβ2

4π2
hαβ(u, D)Dβ g(u, D) . (3.8)

7The variable D is related to the auxiliary field D by a factor β2/(4π2), which accounts for the prefactor.
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As explained in [4, 9], using the identity (3.8) the integral over u, ū can be cast into a
contour integral in the u-plane, and the integral over D evaluated by computing the residue
at D = 0. The remaining contour integral over u leads to a sum over residues, with a precise
prescription for determining which of them contribute for given value of the FI parameters
ζ, known as the Jeffrey-Kirwan residue. Instead, in order to make contact with the heuristic
localization on the Coulomb branch, we shall evaluate the integral over u, ū, D by directly
saddle point methods.

3.2 Evaluating infinite products and sums

Before proceeding, we shall evaluate the infinite products in (3.6) using trigonometric func-
tions. At D = 0, the infinite product in (3.6) can be computed using the identity

sinπx
πx

=
∏

m 6=0

�

1−
x
m

�

, (3.9)

leading to the well-known expression [4,9],

g(N .N ′)
chiral (u, u′, 0, 0) =

N
∏

s=1

N ′
∏

s′=1

sinπ
�

us − u′s′ + (
1
2R− 1)z

�

sinπ
�

u′s′ − us −
1
2Rz

� . (3.10)

Similarly, the product (3.5) reduces to

g(N)vector(u, 0) =
1

(sinπz)N
∏

s,s′=1...N
s 6=s′

sin[π(us′ − us)]
sin[π(us − us′ − z)]

. (3.11)

For D 6= 0, the infinite product can be computed similarly using the identity

cos2πx − cos2πa
1− cos2πa

=
∏

m∈Z

�

1−
x2

(m+ a)2

�

, (3.12)

which holds since both sides vanish whenever x = ±a+m with m ∈ Z. More generally,

∏

m∈Z

�

1−
x2

(m+ a)2 + b2

�

=
∏

m∈Z

1− x2−b2

(m+a)2

1+ b2

(m+a)2
=

cosh2π
p

b2 − x2 − cos2πa
cosh 2πb− cos 2πa

, (3.13)

which reduces to the previous formula when b→ 0. Applying this identity to the ratio between
the values at D 6= 0 and D = 0, we get we get

g(N ,N ′)
chiral (u, , u′, D, D′)

gchiral(u, u′, 0, 0)
=

N
∏

s=1

N ′
∏

s′=1

∏

m∈Z

|m+ us − u′s′ +
1
2R z|2

|m+ us − u′s′ +
1
2R z|2 − iβ2

4π2 (Ds − D′s′)

=
N
∏

s=1

N ′
∏

s′=1

cosh(2π ImUss′)− cos(2πReUss′)

cosh(2π
Ç

Im2(Uss′)−
iβ2

4π2 Dss′)− cos(2πReUss′)

=
N
∏

s=1

N ′
∏

s′=1

coshβΣss′ − cosβVss′

cosh(β
q

Σ2
ss′ − iDss′)− cosβVss′

,

where

Uss′ = us − u′s′ +
R
2

z =
β

2π
(Vss′ − iΣss′) , Dss′ = Ds − D′s′ . (3.14)
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The infinite sums in (3.7) can similarly be evaluated in terms of trigonometric functions by
using the identity

∑

m∈Z

1
(m+ a+ ib)(m+ a− ib)2

=−
iπ2

2b[sinπ(a− ib)]2
+
π

4b2
[cotπ(a− ib)− cotπ(a+ ib)] .

(3.15)

3.3 Abelian quivers without oriented cycles

In this section, we establish the Coulomb branch formula for quivers without oriented cycles.
We note that the Coulomb branch formula for such quivers has been established previously
in [13,32], by showing its equivalence with Reineke’s formula. Our aim however is to explain
physically the origin of the sum over collinear configurations. For simplicity, we start with
Abelian quivers, before generalizing the argument to the non-Abelian case.

For ranks N = N ′ = 1, (3.5) and (3.6) reduce to

gvector(u, D) =
1

sinπz
,

gchiral(u− u′, D− D′) =
∏

m∈Z

�

m+ ū− ū′ + 1
2R z̄

� �

m+ u− u′ + (1
2R− 1)z

�

|m+ u− u′ + 1
2R z|2 − iβ2

4π2 (D− D′)
. (3.16)

The infinite product in (3.16) can be evaluated using the identity (3.14). In the regime where
β |Σ| � 1 and D is of order |Σ| or less, the hyperbolic cosine in (3.14) dominates over the
trigonometric cosine, so that we can approximate

gchiral(ua − ub, Da − Db)∼ e−β
q

Σ2
ab−iDab+β |Σab| gchiral(ua − ub, 0) , (3.17)

where following (3.14), we have set

Σab = Σa −Σb −
πImz
β

Rab , Σa = −
2π
β

Imu , Dab = Da − Db . (3.18)

The integral (3.2) therefore reduces to

I =
�

β2

4π2

�`∫
d2`u d`D
(2π sinπz)`

 

∏

κab>0

[gchiral(ua − ub, 0)]κab

!

det h(u, D) e−β S(D,Σ) , (3.19)

where

S(D,Σ) =
1

2e2

∑

a

D2
a + i

∑

a

ζaDa −
∑

κab>0

κab

�

|Σab| −
Ç

Σ2
ab − i Dab

�

. (3.20)

The action (3.20) is recognized as the one-loop effective action obtained in [2, (4.2)] after
integrating out massive chiral multiplets, assuming that the transverse scalars σa = xa

1 + ixa
2

in the vector multiplets have vanishing expectation value.
We shall now carry out the integral over D using the saddle point method, which is valid

in the limit β →∞. We make the self-consistent assumption that |Σab|2� |Dab| at the saddle
point, so that the square root can be expanded:

S(D,Σ)∼
1

2e2

∑

a

D2
a + i

∑

a

ζaDa −
i
2

∑

κab>0

κab
Dab

|Σab|
. (3.21)
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Moreover, the prefactor det h(u, D) is polynomially bounded in this regime. Indeed, using
(3.15) we find (identifying the indices αβ and ab)

hab = −
2iπ3

β2

 

δab

∑

c 6=a

κac

Σ2
ac

sgnΣac −
κab

Σ2
ab

sgnΣab

!

. (3.22)

As β →∞, the integral over Da is therefore dominated by a saddle point at

D?a = −i e2

 

ζa −
∑

b 6=a

κab

2|Σab|

!

, (3.23)

where Σab was defined in (3.18). Integrating out D in this manner, and neglecting higher loop
corrections which are suppressed as β →∞, the integral (3.19) reduces to an integral over
u,

I =

�

β2

4π2

�`�
2πe2

β

�`/2∫
d2`u

(2πi sinπz)`

 

∏

κab>0

[gchiral(ua − ub, 0)]κab

!

× det [ih(u, D?)] e
β

2e2

∑

a(D
?)2 . (3.24)

Let us now perform the integral over Σa = −
2π
β Imua. Assuming that gchiral(ua−ub) varies

slowly as a function of Σa, the integral is again dominated for large β by saddle points where
D?(Σ) = 0. For quivers without oriented cycles, the solutions to these equations are inde-
pendent of β in the limit β →∞, with κab/|Σab| and |ζa − ζb| of the same order. We may
approximate Σab = Σa −Σb, such that (3.23) becomes

D?a = −i e2

 

ζa −
∑

b 6=a

κab

2|Σa −Σb|

!

. (3.25)

The conditions β |Σab| � 1 and |Σab|2 � |Dab| require that both β and 1/e2/3 are much
greater than |ζa − ζb|, consistently with the scaling symmetry (2.4). In contrast, for quivers
with oriented cycles, there exists another branch of solutions where |Σab| scales like Imz/β as
β →∞, and Σab can no longer be identified with Σa −Σb. We postpone this issue to §3.4.

Assuming that the approximate version (3.25) of (3.23) is valid, the saddle points for the
integral over Σa must then satisfy

∀a,
∑

b 6=a

κab

|Σa −Σb|
= 2ζa . (3.26)

This is recognized as the one-dimensional reduction of Denef’s equations (1.1), which con-
strain the relative distances of multi-centered BPS black holes in 3+1 dimensions. Here, the
centers are constrained to the z-axis where xa

1 = x b
2 = 0, and the solutions to (3.26) are dis-

crete (except for overal translations Σa → Σa + δ). We denote by S the set of such collinear
solutions, indexed by the allowed orderings s ∈⊂ S`+1 of the centers along the z-axis [10].

Since the solutions to (3.26) satisfy β |Σab| � Imz, the bracketed factor in (3.24) becomes
independent of u in the limit β →∞, justifying a posteriori our assumption that gchiral varies
slowly:

∏

κab>0

�

sin (π(Ua − Ub − z))
sin (π(Ub − Ua))

�κab

∼ (−1)
∑

a<b κab eiπz
∑

a<b κab sgnΣab . (3.27)
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This is recognized as the angular momentum factor y2J3(s) weighting the collinear configura-
tions in [10], where

J3(s) =
1
2

∑

a<b

κab sgnΣab =
1
2

∑

κab>0

κab sgnΣab (3.28)

is the classical angular momentum carried by the configuration. The integral over Re(u) ∈ [0,1]
is then trivial.

In order to carry out the integral around the saddle point at D?(Σ) = 0, we observe that
the matrix hαβ can be reexpressed using (3.22) as

ihab(u
?, 0)∼

4π3

e2β2
∂Σa

iD?b = −
4π3

β2
∂Σa
∂Σb

W , (3.29)

where W is the ‘superpotential’ introduced in [10]

W = −
1
2

∑

a<b

sgn(Σb −Σa)κab log |Σa −Σb| −
∑

a

ζaΣa . (3.30)

Thus, the factor det (ih) on the locus D? = 0 is proportional to the Jacobian of the change of
variables Σ→ iD?(Σ). Since the integral is Gaussian in terms of the variables iD?, we obtain

I =
(−1)

∑

a<b κab

(2iπ sinπz)`

�

β

2π

�3`�2πe2

β

�`/2�
4π3

e2β2

�`

×
∫

d`Σ eπiz
∑

κab>0 κab sgnΣab det
�

∂Σa
iD?b
�

e−
β

2e2

∑

a(iD
?)2

=
(−1)

∑

a<b κab

(2i sinπz)`

�

β

2π

�3`�2πe2

β

�`�
4π2

e2β2

�`
∑

s∈S

e2πizJ3(s)sgn(det∂Σa
iD?b)

=
(−1)`+

∑

a<b κab

(y − 1/y)`
∑

s∈S

y2J3(s) sgn(det∂a∂bW) , (3.31)

where s runs over collinear solutions to Denef’s equations (3.26). The last line reproduces the
prescription of [10] for computing the ‘Coulomb index’ gC({γa,ζa}, y) for K distinguishable
black holes carrying charges γa such that κab = 〈γa,γb〉. Since each center carries unit degen-
eracy ΩS(γa) = 1, this proves the simplest example of the Coulomb branch formula (2.15) for
an Abelian quiver without oriented loops. In §3.4, we shall extend this analysis to the case of
Abelian quivers with oriented cycles.

3.4 Abelian quivers with oriented cycles

As explained in §2.3, in the presence of oriented cycles and subject (conjecturally) to the
inequalities (2.12), there exists non-compact regions where some of the centers can come ar-
bitrarily close. In these regions, the previous analysis must be revisited, since the contribution
proportional to Rab in (3.18) can no longer be ignored and the integrand is no longer inde-
pendent of Re(u). We shall see that the first effect leads to a deformation of the saddle point
equations (3.26), while the integral over Re(u) can, nonetheless, be evaluated exactly in the
case of Abelian cyclic quivers.

For simplicity, we restrict to Abelian quivers with oriented cycles, although we do not yet
impose that the conditions (2.12) for existence of classical scaling solutions are obeyed. Under
the assumption that β |Σ| � 1, the analysis of §3.3 carries through up until (3.24). However,
on performing the integral over Σa in the saddle point approximation, we have to rely on the
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full expression for D?a in (3.23), rather than its simplified version (3.25), since the former has
additional solutions. As a result, we must look for solutions to the ‘deformed Denef equations’

∀a,
∑

b 6=a

κab

|Σa −Σb −
π
β ImzRab|

= 2ζa . (3.32)

In general, these equations admit two branches of solutions, distinguished by their behavior
as β → ∞: ‘regular collinear solutions’ where |Σa − Σb| ∼ 1/|ζa − ζb| � |Imz|/β , which
are described by the usual Denef equations (3.25), and ‘scaling collinear solutions’, are such
that |Σab| scales like8 |RabImz|/β as β →∞; for the latter, the Imz dependent term in the
denominator can no longer be neglected. In §3.4.1, we demonstrate the existence of these
two branches in the case of a cyclic three-node quiver.

The first class of solutions can be treated exactly as in §3.3 and leads to the same result
(3.31),

Ireg =
(−1)`+

∑

a<b κab

(y − 1/y)`
∑

s∈Sreg

y2J3(s) sgn(det∂a∂bW) , (3.33)

where s runs over collinear solutions to Denef’s equations (3.26) and W was defined in (3.30).
For the second class of solutions, we can effectively set ζa = 0 in (3.32),for a in a subset of

nodes, which amounts to taking the ‘deep scaling regime limit’ introduced in [26]. Due to the
non-vanishing value of Rab, the solutions still form a discrete set which we denote by Ssc. The
integral over Σa can still be performed in the saddle point approximation, but contrary to the
previous case, the integral over Re(u) is no longer trivial due to the factors gchiral in (3.24). As
a result, we get

Isc =
∑

s∈Ssc

∫

[0,1]`

(−1)`d`Re(u)
(y − 1/y)`

 

∏

κab>0

[gchiral(ua(s)− ub(s), 0)]κab

!

sgn(det∂a∂b
fW) ,

where fW is the deformed version of (3.30),

fW = −
1
2

∑

a<b

sgn(Σb −Σa −
π
β ImzRba)κab log |Σa −Σb −

π
β ImzRab| −

∑

a

ζaΣa . (3.34)

The integral over Re(u) (for fixed value of Imu determined by the solution s ∈ Ssc) can be
computed by Cauchy’s theorem, or (as we do for cyclic quivers in §4.5) by Taylor expanding
the various factors of gchiral. Note that (3.33) and (3.34) can be combined by summing over
all (regular and scaling) collinear solutions in (3.34).

We claim that the sum of the two branches of collinear solutions reproduces the result
predicted by the Coulomb branch formula:

Ireg + Isc = (gC ({γa,ζa}, y) +H({γa}, y))
K
∏

a=1

ΩS(γa, y) +ΩS

� K
∑

a=1

γa, y

�

. (3.35)

In the next subsection §3.4.1 we shall demonstrate this agreement in the case of a 3-node cyclic
quiver, postponing the case of a general cyclic quiver with K nodes to §4.5. In §3.4.2 we analyze
the deep scaling contribution for general Abelian quivers with multiple oriented cycles We
have also implemented a Mathematica code (included in the package CoulombHiggs.m [33]
which numerically solves the deformed Denef equations (3.32) and then computes the integral
(3.34) (with the sum extended to all collinear solutions) by residue calculus. We have checked
this algorithm correctly reproduces the index computed by the Jeffrey-Kirwan residue formula

8We note that this requires |Imz| to be large, but smaller than β/|ζa − ζb|.
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in a variety of 4-node and 5 node quivers with more than one cycle (see the Mathematica
notebook available from [33]). Unfortunately, the numerical search of solutions to (3.32)
becomes impractical for K > 5, and it would be desirable to develop a recursive algorithm
similar to [13] for assessing the existence of such solutions.

3.4.1 Three-node cyclic quiver

For a 3-node cyclic quiver with a = κ12, b = κ23, c = κ31 with a, b, c > 0 and R12 = R23 = R31 =
2/3, the equations (3.32) become

a
|Σ1 −Σ2 − r|

−
c

|Σ3 −Σ1 − r|
= 2ζ1 ,

b
|Σ2 −Σ3 − r|

−
a

|Σ1 −Σ2 − r|
= 2ζ2 , (3.36)

c
|Σ3 −Σ1 − r|

−
b

|Σ2 −Σ3 − r|
= 2ζ3 ,

where we have set r = 2π
3β Imz. Without loss of generality, we work in the chamber ζ1 > 0,ζ3 < 0

and assume r < 0. Let us define

σ1 = sgn(Σ1 −Σ2 − r), σ2 = sgn(Σ2 −Σ3 − r), σ3 = sgn(Σ3 −Σ1 − r) . (3.37)

For r strictly zero and fixed signs σi , it was shown in [12, §3.1] that a solution s0 exists
whenever the sign of σ3 is opposite to the sign of aσ1 + bσ2 + cσ3. For this solution, the
distances |Σa−Σb| are of order 1/|ζa−ζb|. We claim that for r 6= 0, there exists two branches
of solutions:

• the ‘regular’ branch sreg(r), which exists under the same condition σ3(aσ1+ bσ2+ cσ3)
< 0 and which reduces smoothly to s0 as r → 0,

• the ‘scaling’ branch ssc(r), which exists whenever the sign of r(aσ1 + bσ2 + cσ3) < 0,
and is such that the distances |Σa −Σb| are of order r as r → 0.

To establish this claim, we may proceed as in [12, §3.1]. Let us define

z1 =
a

|Σ1 −Σ2 − r|
, z2 =

b
|Σ2 −Σ3 − r|

, z3 =
c

|Σ3 −Σ1 − r|
. (3.38)

One may eliminate z1, z2 in favor of z3 using (3.36) to in terms of z3, and fix the latter through
the requirement (Σ1 − Σ2 − r) + (Σ2 − Σ3 − r) + (Σ3 − Σ1 − r) = −3r. Thus, solutions to
(3.36) are equivalent to solutions of f (z3) = −3r for z3 ∈ R+, where f is the function defined
in [12, (3.7)].

f (z3) =
aσ1

z3 + 2ζ1
+

bσ2

z3 − 2ζ3
+

cσ3

z3
. (3.39)

For ζ1 > 0,ζ3 < 0, f is regular in ]0,+∞[, blows up at 0 and decays at∞ according to

f (z3)∼
cσ3

z3
(z3→ 0+) , f (z3)∼

aσ1 + bσ2 + cσ3

z3
(z3→ +∞) . (3.40)

For small (negative) r and aσ1+ bσ2+ cσ3 > 0, there is always a solution to f (z3) = −3r
at large z3, given by z3 = −(aσ1 + bσ2 + cσ3)/r. This corresponds to the scaling branch,
obtained by ζa = 0 in (3.32),

Σ1 −Σ2 − r = −
3aσ1

aσ1 + bσ2 + cσ3
r +O(r2ζ) , (3.41)
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and cyclic permutations thereof, where the corrections can be computed systematically as a
Taylor series in rζ.

On the other hand, when the signs of σ3 and aσ1 + bσ2 + cσ3 are opposite, it is clear
that for small enough r, there must exist at least one solution in the range ]0,+∞[. In the
r = 0 case discussed in [12], it was argued that multiple regular solutions cancel in pair in
(3.33), since sgn(det∂a∂bW) will be opposite. This no longer true in the present case, since
they may lead to different contour integrals in (3.34). In particular, when r is small (and
negative), aσ1 + bσ2 + cσ3 > 0 and σ3 < 0, there are two solutions, the scaling solution
z3 = −(aσ1 + bσ2 + cσ3)/r and one of which reduces to the usual solution s0 as r → 0.

After considering the various sign choices, we find that when a, b, c satisfy the triangular
inequalities, there are two regular solutions (with signs σ1,2,3 = ++− and −−+) and four
scaling solutions (with signs +++, +−+, −++, ++−). In contrast, if one of the triangular
inequalities is violated, say c > a+ b, then there are four scaling solutions, with the same signs
+++, +−+, −++, −−+.

In Appendix C, we compute the contour integral (3.34) using residue calculus. After com-
bining the contributions from the 4 possible sign choices, we find that

Isc = ΩS(γ, y) +H({γ1,γ2,γ3}, y) , (3.42)

such that the total index reproduces the standard result from the Coulomb branch formula,

I = [gC({γ1,γ2,γ3}) +H({γ1,γ2,γ3}, y)]Ω(γ1, y)Ω(γ2, y)Ω(γ3, y) +ΩS(γ, y) . (3.43)

It is worth noting that I vanishes in the case where one of the triangle inequalities a < b+ c,
b < c + a, c < a + b is violated, even though the contributions of the four collinear scaling
scolutions are separately non-zero. In fact, I vanishes unless the quantum version (2.14) of
these inequalities holds.9 In §4.5, we extend these results to arbitrary Abelian cyclic quivers,

using a more efficient method for evaluating the the contour integral (3.34).

3.4.2 Abelian quiver with multiple oriented cycles

In the presence of multiple oriented cycles, in addition to the regular collinear solutions there
can exist different types of scaling solutions where a subset C ⊂ Q0 of the centers (which we
call a cluster) can become arbitrarily close. As observed in [34], a necessary condition is that
the subquiver Q′ corresponding to this cluster cannot be decomposed into a disjoint union
Q′A∪Q′B where arrows go only from A to B or B to A. This condition is equivalent to requiring
that Q′ is strongly connected.10 In particular, Q′ must itself have oriented loops.

The distinct scaling regimes therefore correspond to lists of clusters {C (i)P , i = 1 . . . MP}
such that the associated quivers Q(i)P are strongly connected, and P ∈ S labels the possible such
configurations. Upon collapsing all the nodes in each cluster into a single node, we obtain an
Abelian quiver Q(0)P with MP nodes and adjacency matrix αi j =

∑

a∈C (i)P

∑

b∈C ( j)P
κab, which need

not be strongly connected. Accordingly, the total Witten index decompose as I =
∑

P∈S IP .
Note that the trivial configuration P0 where all clusters contain a single element corresponds
to the contribution of regular collinear solutions, IP0

= Ireg.

Now, for each node a in the cluster C (i)P , we separate both ua and Da into a ‘center of
motion’ and a ‘fluctuation’ part

ua = u(i)0 + εa , Da = D(i)0 +δa , with
∑

a∈C (i)P

εa =
∑

a∈C (i)P

δa = 0 . (3.44)

9From the Higgs branch point of view, these conditions are obvious since the expected dimension of the Higgs
branch is a + b − c − 2, or permutations thereof depending on the chamber. From the Coulomb branch point of
view, ΩS vanishes and gC is cancelled by H.

10Recall that a graph is strongly connected if every vertex is reachable from every other vertex.
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In the limit β →∞, εa is much smaller than differences between u(i)0 ’s, and similarly for δa,
it is then straightforward to show that the product of determinants (3.4) factorizes into

g(u, D) = g(0)P (u0, D0)
MP
∏

i=1

g(i)P (ε,δ) , (3.45)

where g(i)P (ui , Di) is the one-loop determinant associated to Q(i)P . Similarly, the ‘classical action’
(3.20) decomposes into

S(D,ζ) = S(0)P (D0,ζP) +
MP
∑

i=1

S(i)P (δ, 0) , (3.46)

where S(i)P (D,ζ) is the action (3.20) for the quiver Q(i)P and the FI parameters ζP are equal to
∑

a∈C (i)P
ζa . Finally, the measure decomposes as

det h(u, D)du dū= det h(0)P (u0, D0)du0 dū0

MP
∏

i=1

det h(i)P (ε,δ)dεdε̄ , (3.47)

where h(i)P the matrix (3.7) for the quiver Q(i)P . We conclude that the integral IP factorizes into

IP = Ireg(Q
(0)
P ,ζP , y)×

MP
∏

i=1

Imax
sc (Q

(i)
P ) , (3.48)

where Ireg(Q
(0)
P ,ζP , y) is the regular part of the Witten index of the quiver Q(0)P with FI param-

eters ζP and Imax
sc (Q

(i)
P ) is the contribution to the index of the sub-quiver Q(i)P from ‘maximally

scaling solutions’ where all centers collide (note that the index of Q(i)P may also receive con-
tributions from scaling solutions where only a subset of the centers collide). This is indeed
of the form predicted by the Coulomb branch formula (2.18), upon identifying I(Q(0)P ,ζP , y)
with the Coulomb index gC({αi j , ci}, y) and Imax

sc (Q
(i)
P ) with the ‘total invariant’ ΩT(αi). The

relation (2.19) can be viewed as a recursive definition of the single-centered invariants, which
unlike ΩT(αi) are bona fide symmetric Laurent polynomials.

3.5 Non-Abelian quivers

In this section, we briefly discuss the case of a general dimension vector γ = (N1, . . . , NK),
restricting to quivers without oriented cycles for simplicity. The fact that Na > 1 leads to two
complications: first, the vector multiplet determinant (3.5) is no longer independent of the
Cartan variables, due to the contributions of roots of U(N) with s 6= s′; and second, we can
no longer assume that β |Σss′ | � 1 in the chiral multiplet determinant (3.14), since there is
no potential preventing the Cartan variables within one U(N) factor to coincide. Nonetheless,
we shall argue that the problem separates into a product of SU(m) non-Abelian dynamics as-
sociated to m nearly coincident Cartan variables, which can be treated using the usual Jeffrey-
Kirwan residue prescription, and the Abelian dynamics of the center of motion in each SU(m)
factor, which can be treated as in the previous section. One way of separating these variables
is to apply the Cauchy-Bose identity for each of the U(Na) vector multiplet determinants, as
explained in [35], and then recombine the corresponding sum over permutations into a prod-
uct of U(m) determinants. However, it is more economical to proceed as follows, similarly to
the case of of Abelian quivers with multiple cycles in §3.4.2.

Consider all possible partitions P of Na =
∑Ma

k=1 mk
a for each a = 1, . . . , K . The partition

P splits the Cartan variables {uα,α = 1 . . . r} = {ua,s} into clusters {uα,α ∈ Pa,k} of size mk
a.
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We shall decompose the domain of integration in (2.7) into regions MP where the differences
|Σα −Σα′ | with Σα = −

2π
β Imuα are greater than 1/β whenever α and α′ belong to different

clusters, and smaller than 1/β when they are in the same cluster. Thus the integral (3.2)
decomposes as I =

∑

P IP .
Now, for a given partition P, in each cluster we separate both uβ and Dβ into a ‘center of

motion’ and ‘fluctuation’ part

uα = u(a,k)
0 + εα , Dα = D(a,k)

0 +δα , with
∑

α∈Pa,k

εα =
∑

α∈Pa,k

δα = 0 . (3.49)

In the limit β →∞, εα is much smaller than differences between u(a,k)
0 ’s, and similarly for

Dβ . It is then straightforward to show that the product of determinants (3.4) factorizes into

g(u, D) = gabelian(u0, D0)
K
∏

a=1

Ma
∏

k=1

g̃
(mk

a)
vector(ε,δ) , (3.50)

where gabelian(u0, D0) is the one-loop determinant associated to an Abelian quiver QP with
∑K

a=1 Ma nodes and adjacency matrix κ(a,k)(b,k′) = mk
a mk′

b κab, while g̃(m)vector is equal to g(m)vector
in (3.5) multiplied by sinπz). Similarly, the ‘classical action’ (3.20) decomposes into

S(D,ζ) = Sabelian(D0,ζP) +
1

2e2

K
∑

a=1

Ma
∑

k=1

∑

α∈Pa,k

ε2
α , (3.51)

where the FI parameters ζP are equal to mk
aζa, and the measure as

det h(u, D)du dū= det habelian(u0, D0)du0 dū0

K
∏

a=1

Ma
∏

k=1

det hSU(mk
a)
(ε,δ)dεdε̄ , (3.52)

where the (m− 1)× (m− 1) matrix hSU(m) is defined similarly to the first term of (3.7). We
conclude that the integral IP factorizes into

IP =

∏K
a=1

∏Ma
k=1 mk

a!
∏K

a=1 Na!
IQP
×

K
∏

a=1

Ma
∏

k=1

Ω̄SU(mk
a)

, (3.53)

where IQP
is the index of the quiver QP with FI parameters ζP , Ω̄SU(m) is the index of QQM

with a single node of rank m, and the prefactor in (3.53) comes from the factors of 1/|W |
in the integral representations of IP and ΩSU(m). The latter was first computed in [36], and
rederived in the Jeffrey-Kirwan formalism in [37]

Ω̄SU(m) =
y − 1/y

m(ym − y−m)
. (3.54)

This is recognized as the rational index Ω̄S(αi) for a dimension vector αi to equal m times
a basic dimension vector (0, . . . , 1, 0, . . . ) associated to the i-th node of QP (for any i). After
collecting all partitions with the same shape, the total index can therefore be written as

I =
∑

γ=
∑n

i=1 αi

ΩQ({αi})

|Aut{αi}|

n
∏

i=1

Ω̄S(αi) , (3.55)

where Q({αi}) is the Abelian quiver QP defined above, |Aut{αi}| is the order of the subgroup
of permutations of n elements which preserve the ordered list { ~Ni , i = 1 . . . n} andΩ(αi) equals
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to (3.54) whenever αi is m times a basic vector, or 0 otherwise. Thus, we have reproduced the
Coulomb formula (2.15). for non-Abelian quivers without oriented cycles.

Unfortunately, the derivation above remains heuristic, since we have not justified the im-
plicit assumption that all contributions originate from a region where εα � u0. It would
also be interesting to extend these arguments to non-Abelian quivers with oriented cycles,
and elucidate the origin of the ‘partial’ single-centered invariants’ introduced in our previous
work [35, §5.4].

4 Cyclic quivers with generic superpotential

Our goal in this section is to compute the scaling index (3.34) for cyclic quivers with an arbi-
trary number K of nodes, and a` ≥ 1 arrows from ` to ` + 1 with the node K + 1 identified
with the first node. Before doing so however, we shall expand on some known results for the
single-centered and attractor invariants for such quivers, derive the so-called stacky invariants
for trivial stability (which turn out to have an interesting connection to the scaling invariant),
and also comment on an intriguing connection to the combinatorics of derangements. The
hurried reader only interested in the scaling index may skip ahead to §4.5.

In order to state the indices associated to all such quivers at once, it is useful to define the
generating series, e.g. for single-centered indices

ZS({x1, . . . , xK}, y) =
∞
∑

a=1

· · ·
∞
∑

aK=1

ΩS({a1, . . . , a`}, y) xa1
1 . . . xaK

K . (4.1)

Moreover, we denote by τ` the elementary symmetric functions in the x`’s, namely τ1 =
∑

x`,
τ2 =

∑

`<m x`xm, etc.

4.1 Single-centered indices

The generating functions of single-centered indices ΩS({a`}, 1) was computed in [12, Eq.
(4.29)]:

ZS({x`}, y) :=
1
2

(y − 1/y)
�

y
∏K
`=1

x`
1+y x`

+ y−1
∏K
`=1

x`
1+x`/y

�

y
∏K
`=1(1+ x`/y)− y−1

∏K
`=1(1+ y x`)

(4.2)

+
1
2

K
∑

k=1

1− x2
k

(1+ y xk)(1+ xk/y)

∏

`=1...K
6̀=k

x`
(1− x`/xk)(1− x`xk)

.

While this formula is manifestly invariant under y → 1/y and under permutations of the x i ’s,
it is rather unwieldy, since it appears to have poles at x` = y and x` = 1/y , while the single-
centered indices must be Laurent polynomials in y . In Appendix B, we show that this formula
can be rewritten as

ZS({x`}, y) =
K
∏

`=1

x`
(1+ x`/y)

�

1
y∆K({x`}, y)

+
PK({x`},−1/y)

∏

1≤k<`≤K(1− xk x`)

�

, (4.3)

where ∆K is the symmetric polynomial

∆({x`}, y) =
y
∏K
`=1(1+ x`/y)− y−1

∏K
`=1(1+ y x`)

y − 1/y
= 1−

K−1
∑

`=1

κ(`)τ`+1 , (4.4)
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where κ(`) = y`−y−`

y−1/y , while PK is a symmetric polynomial satisfying the recursion

PK({x1, . . . , xK}, w) =
w

w− xK
(4.5)

×

�

PK−1({x1, . . . , xK−1}, w)
K−1
∏

`=1

(1− x`xK)− PK−1({x1, . . . , xK−1}, xK)
K−1
∏

`=1

(1−wx`)

�

,

with P2({x1, x2}, w) = w. Just like ∆K , the polynomial PK is independent of K , given by

PK({x`}, w) = w
�

1−wτ3 +τ4(w
2 − 1+wτ1 −w2τ4)

+τ5

�

−w3 + (1−w2)τ1 −wτ2
1 +wτ2 +w2τ3 +w(w2 − 1)τ4 +w2τ1τ4

+τ5(−1+w(1−w2)τ1 −w2τ2 +w2τ5)
�

+ . . .
�

, (4.6)

where the dots vanish when K ≤ 5.
While the two terms in (4.3) separately have poles at x` = −y , their sum does not, thanks

to the property
xkPK({x`}, 1/xk) =

∏

1≤m<`≤K
m 6=k, 6̀=K

(1− xm x`) . (4.7)

Moreover, the sum is in fact invariant under y → 1/y , due to the identity

PK({x1, . . . , xK}, w)
K
∏

`=1

(1− x`/w)− PK({x1, . . . , xK}, 1/w)
K
∏

`=1

(1− x`w)

= (w− 1/w)
∏

1≤m<`≤K

(1− xm x`) , (4.8)

which follows from (4.7) after setting w = 1/xK . In fact, one can rewrite (4.3) in a form that
makes both properties manifest:

ZS({x`}, y) =
NK({x`}, y)

∏K
`=1 x`

∆K({x`}, y)
∏

k<`(1− xk x`)
, (4.9)

where NK is again a universal symmetric polynomial, given for K ≤ 5 by

NK({x`}, y) = τ3 −τ1τ4 +τ5(τ
2
1 −τ2 +τ4)−τ1τ

2
5

+(y + 1/y)
�

τ4 −τ2
4 −τ1τ5 +τ3τ5 +τ1τ4τ5 −τ2τ

2
5

�

+(y2 + 1+ 1/y2)
�

τ5 −τ4τ5 +τ1τ
2
5 −τ

3
5

�

+ . . . . (4.10)

The leading asymptotic growth of Ω({a`}, y) as a` →∞ is governed by the factor ∆K in the
denominator. In the special case where all a` are all equal to a, the unrefined single-centered
index can be shown to grow as [12].

ΩS({a`}, 1)∼ a
1−K

2 (K − 1)Ka . (4.11)

4.2 Attractor indices

The attractor indices Ω?(γ, y) are defined as the Witten index Ω(γ, y,ζ?) for special value of
the FI parameters ζ?a = −κabNb, where κab is the skew-symmetric adjacency matrix and Na is
the dimension vector [18,34]; in particular, they satisfy

∑

a Naζ
?
a = 0. They differ from single-

centered indices ΩS(γ) precisely due to multicentered solutions which have scaling regions.
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For cyclic quivers, the refined index Ω(γ, y,ζ) was computed in [12, (4.21)] in a particular
chamber C where ζi > 0 for i = 1 . . . K − 1, ζK < 0. After subtracting the contributions with
aK = 0, one obtains11

ZC =

�

y
∏K−1
`=1 (1+ x`/y)− y−1

∏K−1
`=1 (1+ y x`)

y
∏K
`=1(1+ x`/y)− y−1

∏K
`=1(1+ y x`)

− 1

� K−1
∏

`=1

x`
(1+ x` y)(1+ x`/y)

=

� ∑K
`=1 κ(`)τ`

1−
∑K−1
`=1 κ(`)τ`+1

− xK

� K
∏

`=1

x`
(1+ x` y)(1+ x`/y)

, (4.12)

where we used the same notation κ(`) as in (4.4). In the unrefined limit, this reduces to

ZC(1) = −
xK

1+ xK

K−1
∏

`=1

x`
(1+ x`)2

+

�

1−
K
∑

`=1

x`
1+ x`

�−1 K
∏

`=1

x`
(1+ x`)2

. (4.13)

The chamber C coincides with the attractor chamber when aK is the largest of all a`’s Other
cases can of course be gotten by permuting the x`’s. It is thus straightforward in principle to
construct the generating series of attractor indices Z?. In practice however, it is complicated
and we have computed it only for K = 3 and 4. For K = 3, we find

Z? =
x2

1 x2
2 x2

3

�

2− x1 x2 − x2 x3 − x3 x1 + x2
1 x2

2 x2
3

�

(1− x1 x2)(1− x2 x3)(1− x3 x1)(1+ x1 x2 x3)2(1−τ2 − (y + 1/y)τ3)
. (4.14)

The result for K = 4 can be found in Appendix B.3. The main point is that the generating series
is symmetric under permutations of the x`’s, and has a factor of ∆K(y) in the denominator,
which implies the same exponential growth as (4.11) when a`→∞. The difference between
Z? and ZS is free from this factor, in agreement with the fact that it stems from scaling solutions,
whose index grows only polynomially, e.g. for K = 3

Z? − ZS =
τ2

3

(1− x1 x2)(1− x2 x3)(1− x3 x1)(1+ yτ3)(1+τ3/y)
. (4.15)

It is easy to check that the Taylor coefficients are non-vanishing only when a, b, c satisfy the
triangular inequalities.

4.3 Invariants for trivial stability

For later purposes, it will be useful to compute yet a different set of chamber-independent
indices associated to cyclic quivers: namely the stacky invariants for trivial stability condition
ζ = 0. While their physical meaning is a priori obscure (see however the next section), they
are mathematically well defined, and computable from the DT invariants in any given chamber
by the Reineke formula (see Appendix B).

Recall that stacky invariants are related to the rational DT invariants by [27]

A(γ; w) =
∑

∑k
i=1 αi=γ,

µ(αi )=µ(γ)

1
k!

k
∏

i=1

�

Ω(αi;−w−1)
w−w−1

�

, (4.16)

11For K = 2, this reduces to ZC = x2
1 x2/[(1+ x1 y)(1+ x1/y)(1− x1 x2)], whose Taylor coefficients vanish for

a1 < b1 and are given by the Poincaré-Laurent polynomial of the projective space Pa1−a2−1 for a1 ≥ b1. This is in
agreement with the fact the Higgs branch is the intersection of a2 hyperplanes inside Pa1−1. In contrast, the series
ZS for K = 2 vanishes since τk = 0 for k > 2.
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where µ(β) is the ‘slope’ of the dimension vector β =
∑

a naγa, defined by

µ(β)≡
∑

a ζana
∑

a na
. (4.17)

Recall that the parameters ζ` are chosen to satisfy
∑

a ζaNa = 0, hence µ(γ) = 0. For generic
stability parameters and dimension vector such that Na ≤ 1, Eq. (4.16) reduces to

A(γ; w) =
Ω(γ;−w−1)

w−w−1
, (4.18)

hence A(γ; w) contains the same information as Ω(γ, y,ζ) with w = −1/y . For vanishing
superpotential, the stacky invariant at trivial stability is easily calculated, e.g. by counting
representations over finite fields,

AW=0
0 (γ; w) =

w
∑

a:`→k N`Nk−
∑

` N2
`

∏K
`=1

∏N`
j=1(1−w−2 j)

. (4.19)

In our case however, the superpotential is non-trivial and (4.19) does not apply. Instead, by
using Reineke’s formula we show in Appendix B that the generating series of stacky invariants
A0(γ; w) for trivial stability condition is given by

ZA0
= ZAW=0

0
−

w
(w− 1/w)∆K(−1/w)

K
∏

`=1

x`
(1−wx`)

, (4.20)

where ZAW=0
0

is the generating series of the invariants (4.19),

ZAW=0
0
=
�

w
w− 1/w

�K K
∏

`=1

x`
(1−wx`)

. (4.21)

As for the generating series of single-centered indices and attractor indices, (4.20) is symmetric
under permutations of x i ’s and exhibits the conspicuous factor 1/∆K(y) which is responsible
for the exponential growth as a` →∞. In contrast to the previous ones however, ZA0

is not
invariant under y → 1/y . Defining the generating series of ‘trivial stability indices’

Ztriv(y) = (y − 1/y) ZA0
(−1/y) , (4.22)

we find that the difference between trivial stability and single-centered indices is given by

ZS − Ztriv =
K
∏

`=1

x`
(1+ x`/y)

�

−
y−K

(y − 1/y)K−1
+

PK({x`};−1/y)
∏

1≤k<`≤K(1− xk x`)

�

. (4.23)

4.4 Connections to derangements

A common in all generating series discussed above is the factor∆K({x`}, y) in the denominator,
where ∆K is the symmetric polynomial in (4.4). As noted in [15, §3.5] in the case K = 3, and
in [12, §4.3] for any K , the inverse of this factor 1/∆K({x`}, 1) in the unrefined limit has
a simple combinatorial meaning: it is the generating series of the number of derangements
D({a`}) of a set of N =

∑

` a` objects consisting of a1 objects of color 1, a2 objects of color 2,
etc. Here, we generalize this observation to the refined case.

Recall that derangements of a set are permutations σ ∈ SN such that no object of color
c(i) ends up in a slot formerly occupied by an object of the same color: c(σ((i)) 6= c(i) for
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all i = 1 . . . N . To see that 1/∆K(1) is the generating series of the number of derangements
D({a`}) [38,39],12 notice that ∆K({x`}, 1) can be written as a K × K determinant

∆K({x`}, 1) = det [δi j − ai j x j] , (4.24)

where ai j = 1 if i 6= j or 0 if i = j. On the other hand, MacMahon’s ‘master formula’ states that
the coefficient of xa1

1 . . . xaK
K in the Taylor expansion of the inverse of the above determinant is

equal to the coefficient of the same term in the expansion of

(a11 x1 + · · ·+ a1K xK)
a1 (a21 x1 + · · ·+ a2K xK)

a2 . . . (aK1 x1 + · · ·+ aKK xK)
aK . (4.25)

Equivalently, the inverse determinant can be interpreted as the generating series of (possibly
disconnected) closed circuits on a quiver with K nodes and arrows between each pair of nodes,
where each edge i→ j in the circuit is weighted by ai j x j . For ai j = 0 when i = j, circuits with
fixed points cancel out and thus correspond to derangements, counted with unit weight when
ai j = 1 for i 6= j. This combinatorial interpretation makes it clear that the Taylor coefficients
of the generating series of single-centered and attractor indices vanish unless the a`’s satisfy
the polygonal inequalities (2.13).13

In order to interpret the factor 1/∆K({x`}, y) appearing in the generating series of refined
single-centered indices, it suffices to note that it can be rewritten in the same form as (4.24),
where ai j = y if i > j, 1/y if i < j or 0 if i = j [38]. It follows that the Taylor coefficients of
1/∆K(y) are given by

D({a`}, y) =
∑

σ

yn+(σ)−n−(σ) , (4.26)

where σ runs over derangements of N =
∑K
`=1 a` colored objects, n+(σ) is the number of i

such that c(σ(i)) > c(i) and n−(σ) is the number of i such that c(σ(i)) < c(i) (note that
c(σ(i)) 6= c(i) by the derangement condition). Here we use the standard coloring, with
c(i) = 1 for i = 1 . . . a1, c(i) = 2 for i = a1 + 1 . . . a1 + a2, etc, up to c(N) = K . For example,
when all ai ’s are set to 1, corresponding to derangements of distinct objects, one finds

D1 = 0, D2 = 1, D3 = κ(2) = y + 1/y,

D4 = κ(3) + 6κ(1)2 = y2 + 7+ 1/y2

D5 = κ(4) + 20κ(1)κ(2) = y3 + 21y + 21/y + 1/y3, . . .

D6 = κ(5) + 30κ(1)κ(3) + 20κ(2)2 + 90κ(1)3 = y4 + 51y2 + 161+ 51/y2 + 1/y4

(4.27)

where κ(m) = (ym− y−m)/(y−1/y) = ym−1+ ym−3+ · · ·+ y1−m. Note this refinement of the
number of derangements differs from the one considered in [40], which (unlike the present
one, to our knowledge) admits a simple q-deformed version of the classic recursion formulae

DK = (K − 1) (DK−1 + DK−2) ⇒ DK = K DK−1 + (−1)K . (4.28)

4.5 Scaling solutions for Abelian cyclic quivers

Let us consider the case of a cyclic quiver with K nodes and κ`,`+1 = a` > 0 arrows from vertex
` to vertex `+ 1, with ` ∈ Z/KZ. The equations (3.32) reduce to

a`
|Σ`,`+1|

−
a`−1

|Σ`−1,`|
= 2ζ` , `= 1, . . . , K . (4.29)

12We are grateful to P. di Francesco and J-B. Zuber for discussions on derangements, and to M. Ismaïl for bringing
the important reference [38] to our attention after the first release of this work.

13Just as in the K = 3 case [15], the additional factors of (1− xk x`) appearing in (4.9) imply that they in fact
vanish unless the strong constraints (2.14) are satisfied.
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The existence of solutions can be analyzed using the same method as in §3.4.1, and amounts
to deforming the equation f (zK) = 0 in [12, §4.1] into f (zK) = −

2π
β Imz. We focus on the

scaling branch in the deep scaling regime ζ` = 0. The solution is then given by

|Σ?`,`+1|= −
2πImz
β

a`
∑K
`=1σ`a`

, (4.30)

with14 σ` = sgnΣ?
`,`+1. Since the left hand side of (4.30) is positive, the signs σi must be cho-

sen such that sgn(
∑n
`=1σ`a`) = −sgn Imz, which selects 2n−1 out of total 2n possible choices

of sign contribute. For definiteness, we shall choose Imz < 0 , such that only solutions with
∑K
`=1σ`a` > 0 contribute.

The next task is to perform the integral over Re(u). It is useful to define the complex
variables

v`,`+1 = e2iπU`,`+1 = eiβ(V`,`+1−iΣ?
`,`+1) , (4.31)

with fixed modulus |v`,`+1|= eβΣ
?
`,`+1 . The product of these variables satisfies

K
∏

`=1

v`,`+1 = y2 , (4.32)

in view of the definition of U in (3.14) and the fact that R-charges of chiral fields in an oriented
cycle sum up to R= 2. In terms of the variables (4.31), for a cyclic quiver with K nodes, (3.34)
becomes

Isc =
�

−1
y − 1/y

�K−1∑

s∈S

sgn(det∂a∂bfW )

∮ K−1
∏

`=1

dv`,`+1

2πi v`,`+1

� K
∏

`=1

�

gchiral(v`,`+1, 0)
�a`

�

,

(4.33)
where the integral runs over the product of the circles |v`,`+1| = eβΣ

?
`,`+1 , and gchiral is the

meromorphic function

gchiral(v`,`+1, 0) = −y−1 v`,`+1 − y2

v`,`+1 − 1
. (4.34)

The variable vn,1 is understood to be substituted in terms of the remaining v`,`+1’s using (4.32).
The sign appearing in (4.33) can be evaluated using (3.22) leading to

sgn(det∂a∂bfW ) = (−1)K−1sgn

� K
∑

i=1

aiσi

� K
∏

`=1

σ` . (4.35)

Since the integrand in (4.33) is holomorphic in v`,`+1, the integral may be evaluated by
residues, with the modulus of |v`,`+1| dictating which poles contribute. We carry out this com-
putation for K = 3 in Appendix C. Here we adopt a different approach, which easily extends
to any K .

In order to evaluate the integral over the phase of v`,`+1, we simply expand each of the
factors, in the limit v`,`+1→∞ whenever Σ?

`,`+1 > 0 or v`,`+1→ 0 whenever Σ?
`,`+1 < 0. Both

cases are covered by the formula

gchiral(v`,`+1, 0) = −
∑

α=±1
m≥0

y−σ`α v
−σ`(m+ 1−α

2 )
`,`+1 . (4.36)

14We assume that
∑K
`=1σ`a` never vanishes. Non-generic cases where

∑K
`=1σ`a` vanishes for some choices of

signs can be treated by perturbing the a`’s. We expect that the index is a continuous function of the a`’s such that
the result is independent of the choice of perturbation.
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Performing this expansion for each factor in (4.33), the integrand becomes

(−1)
∑K
`=1 a`

∑

~m1,..., ~mK∈N
~α1,...,~αK∈{±1}

(−1)
∑K
`=1

a`−A`
2 y−

∑K
`=1σ`A`−2σK

�

MK+
aK−AK

2

�

×
K−1
∏

`=1

v
σK

�

MK+
aK−AK

2

�

−σ`
�

M`+
a`−A`

2

�

`,`+1 , (4.37)

where the notations are as follows: each ~m` is a a`-dimensional vector with entries in non-
negative integers, while each ~α` is a a`-dimensional vector with entries in ±1. Moreover, M`

and A` are the sums of the components of ~m` and ~α`, respectively. The integral over phases
picks up terms with vanishing powers of all v`,`+1’s, i.e. such that

σ`

�

M` +
a` − A`

2

�

= σK

�

MK +
aK − AK

2

�

∀`= 1, . . . , K − 1 . (4.38)

To proceed, we distinguish two different types of contributions, whether all signs σi are equal
or not. Correspondingly,

Isc = Isame + Iuneq , (4.39)

where Isame and Iuneq are as follows.

• If the signs σi are not all equal, the expressions inside parentheses in (4.38) are non-
negative, and therefore (4.38) is satisfied if and only if the expressions inside parentheses
vanish individually. Since M` and a`−A` are non-negative, we see that all the entries of
the vectors ~m` and ~α` are 0 and 1, respectively. For these solutions,

Iuneq({a`}, y) =
(−1)

∑K
`=1 a`

(y − 1/y)K−1

∑′

σ`=±1
∑K
`=1 a`σ`>0

� K
∏

`=1

σ`

�

y−
∑K
`=1 a`σ` , (4.40)

where the prime indicates that the term with equal signs σ` is excluded.

• If all signsσ` are equal, then the constraints (4.38) are less stringent, and simply require
that M` +

a`−A`
2 is the same for all `= 1, . . . K . We denote by M this common value,

M` +
a` − A`

2
= M ∀`= 1, . . . , K . (4.41)

Introducing p` =
a`−A`

2 , the integrand (4.37) becomes

(−1)
∑K
`=1 a`

∑

~m1,..., ~mK∈N
~α1,...,~αK∈{±1}

(−1)
∑K
`=1 p` y−

∑K
`=1(a`−2p`)−2M

K
∏

`=1

δM` , M−p`

= (−y)−
∑K
`=1 a`

∑

~m1,..., ~mK∈N
~α1,...,~αK∈{±1}

y−2M
K
∏

`=1

(−y2)p`δM` , M−p` . (4.42)

The sum over ~m`, ~α` can be traded for a sum over M ≥ 0 and p` ≥ 0, at the cost of
introducing a measure factor

�

a
p

�

�M−p+a−1
a−1

�

, coming from the number of choices of
~α` and ~m`, respectively. For (σ1, . . . .,σK) = (1, . . . , 1) (the appropriate choice when
Imz < 0), we get

Isame =
(−y)−

∑K
`=1 a`

(y − 1/y)K−1

�

1+
∞
∑

M=1

y−2M
K
∏

`=1

Na`(M ; y)

�

, (4.43)
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where

Na(M ; y) =
a
∑

p=0

a(M + a− p− 1)!
p! (a− p)! (M − p)!

(−y2)p . (4.44)

Given that the object (4.44) governs the dominant contribution to the index for large ai ’s,
it is worth commenting on its properties. By relaxing the constraint p ≤ a in the sum, it can
be expressed as a hypergeometric series and in turn recognized as a Jacobi polynomial,

Na(M , y) =
a(M + a− 1)!

a!M ! 2F1

�

−a,−M ; 1− a−M ; y2
�

=
(−1)aa

M
P(−a−M ,−1)

a (1− 2y2) . (4.45)

This expression holds only for M > 0, whereas for M = 0 one has Na(0, y) = 1 for any a.
Another useful representation is

Na(M , y) = a(1− y2)Ma−1(M − 1, 2,1/y2) , (4.46)

where Mn(x ,β , c) =2 F1 (−n,−x;β; 1− 1/c) are the Meixner polynomials [38], which are
discrete analogues of the generalized Laguerre polynomials Lαm(x). Thus, the infinite sum in
(4.43) can be viewed as the refined counterpart of the integral representation of the unrefined
index for cyclic quivers in chamber C,

Ω({a`}, 1) = (−1)1+
∑K
`=1 a`

�K−1
∏

`=1

a` −
∫ ∞

0

ds e−s
K
∏

`=1

L1
a`−1(s)

�

. (4.47)

This formula generalizes [41, (E.2)] to the case of cyclic quivers with an arbitrary number of
nodes, and can be derived from (4.13) by representing the second term as an integral,

ZC(1) = −
xK

1+ xK

K−1
∏

`=1

x`
(1+ x`)2

+

∫ ∞

0

ds e−s
K
∏

`=1

x`
(1+ x`)2

e−s−
∑K
`=1

sx`
1+x` (4.48)

and Taylor expanding the exponential using e−
sx

1−x

(1−x)α+1 =
∑∞

n=0 Lαn (s)x
n.

4.6 Generating series for scaling invariants

While the formulae above are easily evaluated for specific choices of a`’s, it will be useful to
obtain generating series of the above contributions, similar to §3.4. For this purpose we need
the generating series of (4.44). For M > 0 this is easily obtained by exchanging the sums,

∞
∑

a=1

Na(M , y) xa =
∞
∑

p=0

∞
∑

m=0

(p+m)(M +m− 1)!
p!m!(M − p)!

(−y2 x)p xm

=
x(1− y2)

(1− x)(1− x y2)

�

1− x y2

1− x

�M

. (4.49)

For M = 0 the r.h.s. should be replaced by x/(1− x).
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From (4.43) we can compute the generating function

Zsame =
1

(y − 1/y)K−1

� K
∏

`=1

(−x`/y)
1+ x`/y

+
∞
∑

M=1

y−2M
K
∏

`=1

x`(y − 1/y)
(1+ x`/y)(1+ x` y)

�

1+ x` y
1+ x`/y

�M
�

=
1

(y − 1/y)K−1





K
∏

`=1

(−x`/y)
1+ x`/y

+

� K
∏

`=1

x`(y − 1/y)
(1+ x`/y)(1+ x` y)

�

×
y−2

∏K
`=1

1+x` y
1+x`/y

1− y−2
∏K
`=1

1+x` y
1+x`/y





=
1

(y − 1/y)K−1

�

(−1/y)K +
y−1(y − 1/y)K

y
∏K
`=1(1+ x`/y)− 1/y

∏K
`=1(1+ x` y)

� K
∏

`=1

x`
1+ x`/y

.

(4.50)

It is worth remarking that this is precisely the generating function (4.22) of trivial stability
indices. We shall return to this observation below.

We now turn to the contribution (4.40) from unequal signs. While it is possible to compute
the generating function for low values of K (see appendix §D), it seems hard to construct it
for any K . Instead, a more efficient strategy is to combine Zuneq with the generating series Zreg
for regular collinear solutions. The contribution from regular collinear solutions at finite ζ, in
the chamber C where ζ1, . . . ,ζK−1 > 0,ζK < 0, is given by [12, (4.13)]:

Ireg({a`}, y) =
(−1)K−1+

∑K
`=1 a`

(y − 1/y)K−1

∑

σ`=±1

sgn(
∑K
`=1 a`σ`)=−sgn(σK )

�K−1
∏

`=1

σ`

�

y
∑K
`=1 a`σ` , (4.51)

where the contribution from equal signs trivially vanishes. Rewriting (4.40) as

Iuneq({ai}, y) = −
(−1)K−1+

∑K
i=1 ai

(y − 1/y)K−1

∑′

σi=±1
∑K

i=1 aiσi<0

� K
∏

i=1

σi

�

y
∑K

i=1 aiσi (4.52)

we see that the contributions with σK = +1 cancel in the sum of unequal sign and regular
contributions. This leaves only the contribution from σK = −1, and σ` not all equal to −1,
with no condition on the sign of

∑K
`=1 a`σ`:

Ireg({a`}, y) + Iuneq({a`}, y) =
(−1)K−1+

∑

a`

(y − 1/y)K−1

∑

σ`=±1
(σ1,...,σK−1)6=(−1,...,−1)

�K−1
∏

`=1

σ`

�

y−aK+
∑K−1
`=1 a`

=
(−1)K−1+

∑

a`

(y − 1/y)K−1
y−aK

�K−1
∏

`=1

(ya` − y−a`)− (−1)K−1 y−(a1+···+aK−1)

�

. (4.53)

The generating series of Ireg + Iuneq is easily constructed,

Zreg + Zuneq = −
1
y

K
∏

`=1

x`
(1+ x`/y)(1+ x` y)

�

(1+ xK y)−
(−1/y)K−1

(y − 1/y)K−1

K
∏

`=1

(1+ x` y)

�

.

(4.54)

Collecting all contributions and after some algebra, we finally arrive at

Zreg + Zuneq + Zsame = −xK

K−1
∏

l=1

x l

(1+ x l/y)(1+ x l y)

∏K−1
`=1 (1+ x`/y)−

∏K−1
`=1 (1+ x` y))

y
∏K
`=1(1+ x`/y)− 1/y

∏K
`=1(1+ x` y)

=

�

y
∏K−1
`=1 (1+ x`/y)− y−1

∏K−1
`=1 (1+ y x`)

y
∏K
`=1(1+ x`/y)− y−1

∏K
`=1(1+ y x`)

− 1

� K−1
∏

`=1

x`
(1+ x` y)(1+ x`/y)

, (4.55)
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which precisely matches (4.12). We conclude that that the sum of the deep scaling and regular
contributions produces the correct total index, including contributions from single-centered
and scaling solutions.

In fact, we claim that the deep scaling region alone produces the single-centered index, up
to a contribution from the minimal modification hypothesis,

Isame + Iuneq = ΩS+H , (4.56)

where H is defined as the minimal modification of the Coulomb index gC({γ1, . . .γK}), or
equivalently as the minimal modification of the regular part Ireg. Since Isame coincides with
the stacky invariant for trivial stability A0 (after dividing by y−1/y and changing y →−1/w),
this is equivalent upon using (B.14) to

Zuneq − ZH =
K
∏

`=1

x`
(1+ x`/y)

�

−
y−K

(y − 1/y)K−1
+

PK({x`};−1/y)
∏

1≤k<`≤K(1− xk x`)

�

. (4.57)

In §D we verify this identity explicitly for K = 3 and K = 4.
We conclude with a remark for the mathematically minded reader. Since H is in the ker-

nel of the projection operator (2.20) and since ΩS is a symmetric Laurent polynomial, hence
unaffected by this projection, it follows from Eq. (4.56) that

ΩS = M [Isame] +M
�

Iuneq

�

. (4.58)

Now, recall that our observation below (4.50) that Isame is equal (up to redefinition y → 1/w
and a factor (y−1/y) ) to the stacky invariant with trivial stability A0, which is a well-defined
mathematically. Hence, in order to put ΩS on solid mathematical footing, it would suffice to
establish the mathematical meaning of the still mysterious part Iuneq.
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A Geometric condition on existence of scaling solutions

In this section, we show that the condition (2.12) for existence of scaling solutions holds in
the case of a cyclic quiver with one additional arrow, say κ1,k > 0 with k 6= 2 and k 6= K . In
that case, it is straightforward to show that scaling solutions exist if and only if

∀ j < k ,
∑

i=1...K
i 6= j

κi,i+1 > κ j, j+1 + κ1,k ,

∀ j ≥ k ,
∑

i=1...K
i 6= j

κi,i+1 > κ j, j+1 − κ1,k .
(A.1)

To establish this, we note that the equations (2.10) imply that the ratios λi =
κi i+1
ri i+1

with
ri j : |~x i − ~x j| can take only two values, namely λi = λ1 for 1 ≤ i < k and λi = λk for
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k ≤ i ≤ K . Moreover λk − λ1 = κ1k/r1k > 0. The existence of the k-sided polygon with
vertices ~x1, ~x2, . . . , ~xk requires

k−1
∑

i=1

ri i+1 ≥ r1 k and ∀ j < k ,
k−1
∑

i=1

ri i+1 + r1 k ≥ 2r j j+1 , (A.2)

and similarly the existence of the (n+2−k)-sided polygon going through the points ~x1, ~xk, ~xk+1,
. . . , ~xK requires

K
∑

i=k

ri i+1 ≥ r1 k and ∀ j ≥ k ,
K
∑

i=k

ri i+1 + r1 k ≥ 2r j j+1 . (A.3)

Expressing the distances in terms of λ1,λk, these constraints become

∀ j < k
k−1
∑

i=1

κi i+1 +κ1 k ≥ aκ1 k ≥ 2κ j j+1 −
k−1
∑

i=1

κi i+1 +κ1 k ,

∀ j ≥ k
K
∑

i=k

κi i+1 ≥ aκ1 k ≥ 2κ j j+1 −
K
∑

i=k

κi i+1 ,

(A.4)

where a = λk
λk−λ1

> 1. The existence of a number aκ1k satisfying both inequalities implies the
two conditions in (A.1). QED.

B Computing indices for cyclic quivers

B.1 Trivial stability invariants

The Reineke formula expresses the stacky invariants A(γ; w) for stability ζ (defined in (4.16))
in terms of the stacky invariants A0(γ; w) for trivial stability condition as follows [27]:

A(γ; w) =
∑

α1+···+αk=γ,k≥1

µ(
∑m

j=1 α j )>µ(γ), m=1,...,k−1

(−1)k−1 w−
∑

i< j〈αi ,α j〉
k
∏

j=1

A0(α j , w) . (B.1)

Conversely, if we know the invariants A(γ; w) for a given stability condition ζ, we can use it
to compute the stacky invariants for trivial stability.

To perform this computation for a cyclic quiver with dimension vector γ= (1,1, . . . , 1), we
use the following observation from [12]: for vanishing superpotential, the stacky invariants
in the chamber C are given by

A0(γ1 + · · ·+ γK) =
waK

∏K−1
`=1 (w

a` −w−a`)

(w− 1/w)K
, (B.2)

corresponding to the fact that the quiver moduli space is a product of projective and affine
spaces

∏K−1
`=1 P

a`−1 × CaK . This result follows by applying (B.1) with h(α j , w) substituted by
AW=0

0 (αi; w) given by (4.19),

AW=0
0 (γ1 + · · ·+ γK) =

w
∑K
`=1 a`

(w− 1/w)K
. (B.3)
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Since AW=0
0 (α, j, w) = A0(α j , w) for vectors which are not supported on all nodes (as the

superpotential constraint become trivial in such cases), it follows that

A(γ1 + · · ·+ γK)−A0(γ1 + · · ·+ γK) =AW=0(γ1 + · · ·+ γK)−AW=0
0 (γ1 + · · ·+ γK) . (B.4)

Since we already know the generating series of A from (4.12), it suffices to compute the
generating series of ∆A :=AW=0 −AW=0

0 . The latter is given by

Z∆A(x i , w) =

∏K
`=1 wx`

(w− 1/w)K
∏K
`=1(1−wx`)

−
w
∏K
`=1 x`

(1−wxK)(w− 1/w)
∏K−1
`=1 (1−wx`)(1− x`/w)

=
w
∏K
`=1 x`

(w− 1/w)
∏K
`=1(1−wx`)

�

wK−1

(w− 1/w)K−1
−

1
∏K−1
`=1 (1− x`/w)

�

. (B.5)

Now, from (4.12) it follows that

ZA(x i , w) =

∏K−1
`=1 x`

(w− 1/w)
∏K−1
`=1 (1− x`w)(1− x`/w)

×

�

1/w
∏K−1
`=1 (1− x`w)−w

∏K−1
`=1 (1− x`/w)

1/w
∏K
`=1(1− x`w)−w

∏K
`=1(1− x`/w)

− 1

�

. (B.6)

We therefore deduce the stacky invariants for generic superpotential and trivial stability,

ZA0
(x i , w) = ZA(x i , w) + Z∆A(x i , w) (B.7)

=

∏K
`=1 x`

∏K
`=1(1−wx`)

�

wK

(w− 1/w)K
+

w

1/w
∏K
`=1(1−wx`)−w

∏K
`=1(1− x`/w)

�

,

which is manifestly symmetric under permutations. Using the identities

K
∏

`=1

(1−wx`) =
K
∑

`=0

(−w)`τ` , (B.8)

w
∏K
`=1(1− x`/w)− 1/w

∏K
`=1(1−wx`)

w− 1/w
= 1+

K−1
∑

`=1

(−w)` − (−w)−`

w− 1/w
τ`+1 , (B.9)

where τ` are the symmetric functions of x i (with τ0 = 1), we finally obtain

ZA0
(x i , w) =

K
∏

`=1

x`
(1−wx`)





�

w
w− 1/w

�K

−
w

(w− 1/w)
1

1+
∑K−1
`=1

(−w)`−(−w)−`
w−1/w τ`+1



 .

(B.10)

Since the first term is ZAW=0
0

, this establishes (4.20).

B.2 Comparison to single-centered indices

Let us now compare ZA0
with the generating series of single-centered indices given in (4.2).

Setting ZAS
(x i , w) = ZS(x i ,−1/w)/(w− 1/w) we find

ZAS
− ZA0

= −
�

w
w− 1/w

�K K
∏

`=1

x`
(1−wx`)

+
1
2

K
∏

`=1

x`
(1−wx`)(1− x`/w)

(B.11)

+
1

2(w− 1/w)

K
∑

k=1

1− x2
k

(1−wxk)(1− xk/w)

∏

`=1...K
6̀=k

x`
(1− x`/xk)(1− x`xk)

.
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One can check that the poles at w = 1/x` cancel between the second and third terms, and
so do the poles at xk = x` in the third term. Indeed, the third term can be viewed as the
contribution of the poles at u= xk in the contour integral

∮

C h(u)du with

h(u) =
(u− 1/u)2

2(w− 1/w)(1− uw)(1− u/w)

K
∏

`=1

x`
(1− ux`)(1− x`/u)

. (B.12)

This function satisfies h(1/u) = u2h(u), is regular at u = 0 and u =∞ for K ≥ 2 and has
simple poles at u = x`, u = 1/x`, u = w, u = 1/w, with opposite residues at x and 1/x , or w
and 1/w. Singularities as x` and w vary can only arise when the contour is pinched. Since the
contour C surrounds all x`’s, there can be non singularities at xk = x`. Moreover, the second
term in (B.11) arises by extending the contour such that it includes the pole at u = w, so the
sum of the second and third terms must be regular as x` = w. Let us define

PK({x`}, w) =
1
2
(w− 1/w)

∏

1≤k<`≤K(1− xk x`)
∏K
`=1(1− x`/w)

+
1
2

K
∑

k=1

1/xk − xk

1− xk/w

∏

`=1...K
6̀=k

1− x`w
1− x`/xk

∏

1≤`<m≤K
6̀=k,m 6=k

(1− x`xm) , (B.13)

so that

ZAS
− ZA0

=
K
∏

`=1

x`
(1−wx`)

�

−
�

w
w− 1/w

�K

+
PK({x`}, w)

(w− 1/w)
∏

1≤k<`≤K(1− xk x`)

�

. (B.14)

We shall now prove that PK satisfies the same recursion and initial value as (4.5). and is
therefore the polynomial introduced in that equation.

To show this, let us define

AK =
1
2

K
∏

`=1

x`
(1−wx`)(1− x`/w)

(B.15)

+
1

2(w− 1/w)

K
∑

k=1

1− x2
k

(1−wxk)(1− xk/w)

∏

`=1...K
6̀=k

x`
(1− x`/xk)(1− x`xk)

.

It is straightforward to show that

AK+1 =
xK+1 AK

(1−wxK+1)(1− xK+1/w)
(B.16)

+
1

2(w− 1/w)

∑

k=1...K+1

1− x2
k

(1−wxK+1)(1− xK+1/w)
xK+1

xk

∏

`=1...K+1
6̀=k

x`
(1− x`/xk)(1− x`xk)

.

Expressing PK in terms of AK , this implies that

PK+1 =

∏K
`=1(1− x`xK+1)

1− xK+1/w
PK

+
xK+1

∏K
`=1(1−wx`)

2(1− xK+1/w)

∑

k=1...K+1

�

1− 1/x2
k

�

∏

1≤`<m≤K+1
6̀=k,m6=k

(1− x`xm)
∏

`=1...K+1
6̀=k
(1− x`/xk)

. (B.17)
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Let us define the symmetric function

SK({x`}) =
1
2

∑

k=1...K

�

1− 1/x2
k

�

∏

1≤`<m≤K
6̀=k,m 6=k

(1− x`xm)
∏

`=1...K
6̀=k
(1− x`/xk)

, (B.18)

such that

PK+1 =
PK
∏K
`=1(1− x`xK+1)− xK+1 SK+1

∏K
`=1(1−wx`)

1− xK+1/w
. (B.19)

Remarkably, the two terms coming from (1− 1/x2
k) in (B.18) produce the same result,

SK({x`}) =
∑

k=1...K

∏

1≤`<m≤K
6̀=k,m 6=k

(1− x`xm)
∏

`=1...K
6̀=k
(1− x`/xk)

. (B.20)

Moreover, one can show that SK is regular at x` = xk, hence is symmetric polynomial in
variables x1, . . . , xK . For K ≤ 8, we find

SK = 1−τ4 +τ5(τ1 −τ5) +τ6

�

1−τ2
1 +τ2 +τ4 +τ1τ5 +τ6(−1−τ2 +τ6)

�

+τ7

�

τ1 +τ
3
1 − 2τ1τ2 +τ3 −τ1τ4 −τ2

1τ5 + 2τ2τ5 + 2τ1τ6 +τ1τ2τ6 −τ3τ6

−2τ5τ6 −τ1τ
2
6

�

+τ2
7

�

−2−τ2
1 −τ

2
2 +τ1τ3 +τ4 +τ1τ5 +τ6 +τ2τ6

�

+τ3
7

�

−τ1 −τ3 +τ7)
�

+O(τ8) . (B.21)

Furthermore, comparing to (B.13), we see that

PK({x1, . . . , xK}, w) = wSK+1({x1, . . . , xK , w}) . (B.22)

Thus, (B.19) is in fact a recursion for PK , identical to (4.5). Using (B.21) and (B.22), we see
that the initial data for P2 coincide, and therefore the object PK defined in (B.13) is also the
one introduced in (4.3).

B.3 Generating series of attractor indices

The same idea used to compute the stacky invariants for trivial stability can also be applied to
construct the generating series of attractor indices. For vanishing superpotential, the stacky
invariants in the attractor chamber coincide with those in the chamber C given by (B.2), pro-
vided aK is the largest of all a`’s. More generally, they are given by

AW=0
? (γ1 + · · ·+ γK) =

wmax(a`)
∏K
`=1(w

a` −w−a`)

(w− 1/w)K(wmax(a`) −w−max(a`))
. (B.23)

We can then compute the generating series ZAW=0
?

, and obtain the generating series ZA? for
generic superpotential from the identity A?−A0 =AW=0

? −AW=0
0 , similar to (B.4). For K = 3,

we find, in absence of superpotential,

ZAW=0
?

=
wτ3

�

1−τ1τ3 + 2τ2
3 − 2τ3w+τ2τ3w−τ3

3w
�

(w− 1/w)(1−wτ3)(1−τ3/w)
∏

i(1−wx i)
∏

i< j(1− x i x j)
(B.24)

and therefore, for generic superpotential,

ZA? =
τ2

3

�

2−τ2 +τ2
3

�

(w− 1/w)(1−wτ3)(1−τ3/w)(1−τ2 + (w+ 1/w)τ3)
∏

i< j(1− x i x j)
. (B.25)
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We can check that ZA? − ZA0
has no derangement factor in the denominator as expected, but

the numerator is unilluminating. The difference ZA? − ZAS
has also no derangement factor in

the denominator but a much simpler numerator, see (4.15).
For K = 4, one finds

ZA? =
τ4F4(x i , w)

(w− 1/w)
∏

1≤l<m≤4
(1− x l xm)

∏

1≤l<m<n≤4
(1−wx l xm xn)(1− x l xm xn/w)

×
1

(1−τ4)(1−τ4w2)(1−τ4/w2)(1−τ2 + (w+ 1/w)τ3 − (w2 + 1+ 1/w2)τ4)
,

(B.26)

where F4 is a complicated symmetric polynomial in x i ’s. The result for the difference is some-
what simpler, but still complicated:

ZA? − ZAS
=

−τ4 G4(x i , w)
(w− 1/w)

∏

1≤l<m≤4
(1− x l xm)

∏

1≤l<m<n≤4
(1−wx l xm xn)(1− x l xm xn/w)

×
1

(1−τ4)(1−τ4w2)(1−τ4/w2)
,

(B.27)

with

G4(x i , w) =

τ3τ4 +τ
2
4

�

1/w+w− 2τ1 − 2(w+ 1/w)τ2 −τ3(1/w
2 +w2) +τ3(1/w+w)τ1

+τ3τ2 − (1/w+w)τ2
3 −τ1τ

2
3 +τ

3
3

�

+τ3
4

�

2(1/w+w) + (1+ 3/w2 + 3w2)τ1 + (w+ 1/w)3τ2 + 2τ1τ2 − (w+ 1/w)2τ3

−2τ2τ3 −τ1τ
2
3 +τ

3
3

�

−τ4
4

�

4/w3 + 7/w+ 7w+ 4w3 + (w+ 1/w)4τ1 + (w+ 1/w)3τ2
1 + (1+ 2/w2 + 2w2)τ1τ2

+(w+ 1/w)τ2
2 − (7+ 5/w2 + 5w2)τ3 − (1/w3 + 5/w+ 5w+w3)τ1τ3

−(2+ 1/w2 +w2)τ2
1τ3 − (−2+ 1/w2 +w2)τ2τ3 − (1/w+w)τ1τ2τ3

+2(w+ 1/w)τ2
3 + (w+ 1/w)2τ1τ

2
3 + (w+ 1/w)τ2τ

2
3

�

+τ5
4

�

1/w5 + 5/w3 + 8/w+ 8w+ 5w3 +w5 + (10+ 3/w4 + 5/w2 + 5w2 + 3w4)τ1

+(2/w3 + 3/w+ 3w+ 2w3)τ2
1 −τ2(1/w

3 + 1/w+w+w3) + (2+ 1/w2 +w2)τ1τ2

+(w+ 1/w)τ2
1τ2 + 2(w+ 1/w)τ2

2 − (2/w
4 + 7/w2 + 9+ 7w2 + 2w4)τ3

−(4/w3 + 6/w+ 6w+ 4w3)τ1τ3 − (w+ 1/w)2τ2
1τ3 + (2+ 1/w2 +w2)τ2τ3

+(1/w+w)τ1τ2τ3 + (2/w
3 + 3/w+ 3w+ 2w3)τ2

3 + (2+ 1/w2 +w2)τ1τ
2
3

�

−τ6
4

�

2(1/w5 + 1/w3 + 4/w+ 4w+w3 +w5) + (2/w4 + 7/w2 + 9+ 7w2 + 2w4)τ1

+2(w+ 1/w)τ2
1 −τ

3
1 + (1/w

3 + 1/w+w+w3)τ2 − (w2 − 2+ 1/w2)τ1τ2

+(w+ 1/w)τ2
2 − (10+ 3/w4 + 5/w2 + 5w2 + 3w4)τ3 − (1/w3 + 5/w+ 5w+w3)τ1τ3

+τ2
1τ3 + (1+ 2/w2 + 2w2)τ2τ3 + (w+ 1/w)3τ2

3

�
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+τ7
4

�

1/w5 + 5/w3 + 8/w+ 8w+ 5w3 +w5 + (7+ 5/w2 + 5w2)τ1 +τ
3
1 − 2τ1τ2

−(w+ 1/w)4τ3 −τ2
1τ3 − 2τ2τ3

�

−τ8
4

�

4/w3 + 7/w+ 7w+ 4w3 + (w+ 1/w)2τ1 + (w+ 1/w)τ2
1

−(w+ 1/w)3τ2 −τ1τ2 − (1+ 3/w2 + 3w2)τ3 − (1/w+w)τ1τ3

�

+τ9
4

�

2(w+ 1/w)− (w2 + 1/w2)τ1 − 2(w+ 1/w)τ2 − 2τ3

�

+
�

1/w+w+τ1

�

τ10
4 .

(B.28)

The Taylor expansion of both ZA? and ZAS
starts at order x7

i , with the first nontrivial terms
corresponding to the following values of {a`} (up to permutations),

Ω?({1, 2,2, 2}) = 2 , ΩS({1,2, 2,2}) = 1 ,

Ω?({2, 2,2,2}) = 0 , ΩS({2,2, 2,2}) = y + 1/y ,

Ω?({1, 3,3,3}) = 0 , ΩS({1,3, 3,3}) = y + 1/y . (B.29)

C Residue computation for three-node abelian cyclic quiver

We consider the 3-node cyclic quiver with κ12 = a1,κ23 = a2,κ31 = a3. As explained in (3.34),
the contribution of collinear scaling solutions is given by the following residue:

Isc =
∑

σ1,σ2,σ3=±1
σ1a1+σ2a2+σ3a3<0

sgn(σ1a1 +σ2a2 +σ3a3)
(y − 1/y)2

∮

dv1

v1

∮

dv2

v2

×
�

y − v1/y
v1 − 1

�a1
�

y − v2/y
v2 − 1

�a2
�

v1v2 − 1
y − v1v2/y

�a3

, (C.1)

where the sum runs over the possible signs σ` = sgnΣ?
`,`+1 with ` ∈ {1, 2,3}. Defining

v3 = y2/(v1v2) so as to expose the symmetry of the integrand, the integral runs over the
two-torus spanned by the phases of v` subject to the constraint v1v2v3 = y2, while the moduli
are fixed to |v`| = e2πa`σ`λImz with fixed λ > 0. In contrast to the body of the paper, here we
shall assume that Imz > 0; the result for Imz < 0 can be obtained by flipping the signs σ`.

We shall first perform the integral over v2. There are 4 poles at v2 ∈ {0, 1, y2

v1
,∞}. The

pole at 0 is always included inside the contour while the pole at∞ never is. Whether or not
the other two are inside the contour depends on the modulus of v2:

• if |v2|> 1 (which occurs when σ2 = +1) the pole at v2 = 1 is included.

• if |v2|> |y2/v1| (which occurs when σ3 = −1) the pole at v2 = y2/v1 is included.

Next we integrate over v1. If the first residue over v2 was taken at 0 or∞, the result has only
3 poles at v1 ∈ {0, 1,∞}. If instead the first residue was taken at v2 = 1 or y2/v1, then there
is an extra pole at v1 = y2. While the pole at v1 = 0 is always included inside the contour and
the one at v1 =∞ never is, the remaining ones depend on the modulus of v1:

• If |v1|> 1 (which occurs when σ1 = +1) the pole at v1 = 1 is included,

• if |v1|> |y2| (which occurs when σ2a2 +σ3a3 < 0) the pole at v1 = y2 is included.

Moreover, out of the 8 possible choices of sign (σ1,σ2,σ3), only 4 contribute, depending
whether the triangular inequalities are obeyed or not. We introduce the notation Rv2,v1

for the
corresponding residue.
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In the triangular inequalities are violated, say a1 > a2 + a3, the following sign choices
contribute (omitting an overall factor of (y−1/y)2) The contribution from equal signs always
contributes, irrespective of the triangular inequalities:

(−,−,−) : R0,0 + R y2/v1,0 + R y2/v1,y2 ,

(−,+,+) : R0,0 + R1,0 ,

(−,+,−) : −R0,0 − R1,0 − R y2/v1,0 ,

(−,−,+) : −R0,0 . (C.2)

Note that in the third line, there are two additional residues R1,y2 + R y2/v1,y2 contributing
when a2 < a3, but their sum vanishes. Summing up these four contributions, only one residue
remains:

Isc = R y2/v1,y2/(y − 1/y)2

=
1

(y − 1/y)2
Resv1=y2Resv2=y2/v1

1
v1v2

�

y − v1/y
v1 − 1

�a1
�

y − v2/y
v2 − 1

�a2
�

v1v2 − 1
y − v1v2/y

�a3

=
1

(y − 1/y)2
1

(a3 − 1)!
Resv1=y2

�

d
dv2

�a3−1 � 1
v1v2

�

y−v1/y
v1−1

�a1
�

y−v2/y
v2−1

�a2
�

v1v2−1
−v1/y

�a3
�

|v2=y2/v1
.

(C.3)

In this expression the possible pole at v1 = y2 comes from (y−v1/y)a1

(v2−1)a2 . The maximum order

possible for this pole arises when all derivatives act on (y−v1/y)a1

(v2−1)a2 so we obtain

(y − v1/y)a1

(v2 − 1)a2+a3−1|v2=y2/v1

=
(v1/y)a1(y2/v1 − 1)a1

(y2/v1 − 1)a2+a3−1
= (v1/y)a1(y2/v1 − 1)a1−a2−a3+1 .

Since a1 > a2 + a3 , there is no pole and the residue vanishes. Therefore, the scaling index
(C.1) vanishes when triangular inequality are violated.

Let us now turn to the case where the triangular inequality are obeyed, a1 < a2 + a3 ,
a2 < a1 + a3 , a3 < a1 + a2. In that case, the following sign choices contribute:

(−,−,−) : R0,0 + R y2/v1,0 + R y2/v1,y2 ,

(+,−,−) : −R0,0 − R0,1 − R y2/v1,0 − R y2/v1,y2 − R y2/v1,1 ,

(−,+,−) : −R0,0 − R1,0 − R y2/v1,0 ,

(−,−,+) : −R0,0 . (C.4)

As before, in the third line, there are two additional residues R1,y2 + R y2/v1,y2 contributing
when a2 < a3, but their sum vanishes. Summing up these contributions, we get

(y − 1/y)2 Isc = −2R0,0 − R1,0 − R0,1 − R y2/v1,0 − R y2/v1,1 . (C.5)

By deforming the contours adequately, we see that

−R0,0 − R1,0 − R y2/v1,0 = R∞,0

−R0,1 − R y2/v1,1 = R∞,1 + R1,1 (C.6)

R∞,0 + R∞,1 = −R∞,∞

so that only three residues remain,

(y − 1/y)2 Isc = R1,1 − R∞,∞ − R0,0 . (C.7)
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Two of them are easily computed as follows:

R0,0 = Resv1=0Resv2=0
1

v1v2

�

y − v1/y
v1 − 1

�a1
�

y − v2/y
v2 − 1

�a2
�

v1v2 − 1
y − v1v2/y

�a3

= (−y)a1+a2−a3 . (C.8)

R∞,∞ = Resv1=∞Resv2=∞
1

v1v2

�

y − v1/y
v1 − 1

�a1
�

y − v2/y
v2 − 1

�a2
�

v1v2 − 1
y − v1v2/y

�a3

= Resṽ1=0Resṽ2=0
1

ṽ1 ṽ2

�

ṽ1 y − 1/y
1− ṽ1

�a1
�

y ṽ2 − 1/y
1− ṽ2

�a2
�

1− ṽ1 ṽ2

ṽ1 ṽ2 y − 1/y

�a3

= (−y)−a1−a2+a3 . (C.9)

These two contributions sum up to the Coulomb index

R∞,∞ + R0,0 = Ireg =
(−y)a1+a2−a3 + (−y)a3−a1−a2

(y − 1/y)2
, (C.10)

in the chamber C where ζ1 > 0,ζ2 > 0,ζ3 < 0. The last one, R1,1 is recognized as the Jeffrey-
Kirwan residue ΩQ computing the full index in the same chamber. Therefore, the scaling index
is equal to the sum of the single-centered index and the minimal modification part,

Isc = I − Ireg = ΩS+H . (C.11)

D Generating series for scaling indices

In this section, we evaluate the generating series for the scaling part Isc = Isame+Iuneq of the
Witten index, for cyclic quivers with K = 3 or K = 4 nodes. Since the generating series of
Zsame was evaluated in §4.6 for arbitrary K , it remains to evaluate the generating series Zuneq
in (4.52).

For K = 3, the generating series can be evaluated using

∞
∑

a1=1

∞
∑

a2=1

∞
∑

a3=1

Θ(a1 + a2 − a3)x
a1
1 xa2

2 xa3
3 =

x1 x2 x3(1+ x3 − x1 x3 − x2 x3)
(1− x1)(1− x2)(1− x1 x3)(1− x2 x3)

, (D.1)

and suitable permutations thereof (where Θ(a) = 1 for a ≥ 0 and 0 for a < 0). While the
resulting expression for Zuneq is unilluminating, we find that the sum of equal and unequal
sign contributions nicely combines into

Zsame + Zuneq = ZS+ ZH , (D.2)

where

ZS =
x2

1 x2
2 x2

3

(1− x1 x2)(1− x1 x3)(1− x2 x3)(1− x1 x2 − x1 x3 − x2 x3 − (y + y−1)x1 x2 x3)
(D.3)

is the generating series of single-centered invariants, a special case of (4.9), while

ZH = −
2

(y − y−1)2
Zeven +

y + y−1

(y − y−1)2
Zodd ,

Zeven =
x1 x2 x3(x1 + x2 + x3 − 2x1 x2 x3)
(1− x1 x2)(1− x1 x3)(1− x2 x3)

,

Zodd =
x1 x2 x3

(1− x1 x2)(1− x1 x3)(1− x2 x3)
. (D.4)
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Noting that the Taylor coefficients of Zeven (respectively, Zodd) are equal to one for monomials
xa1

1 x b1
2 x c1

3 obeying the triangle inequalities with a1 + a2 + a3 even (respectively odd), we see
that ZH is the generating series of the minimal modification term for 3-node quivers [11]

H({γ1,γ2,γ3}) =
1

(y − 1/y)2

¨

−2 , a1 + a2 + a3 even

y + 1/y , a1 + a2 + a3 odd
. (D.5)

Similarly, for cyclic quivers with 4 nodes, using

∞
∑

a1,...,a4=1

Θ(a2 + a3 + a4 − a1)x
a1
1 . . . xa4

4 =
x3

1 x2 x3 x4

(1− x1)(1− x1 x2)(1− x1 x3)(1− x1 x4)
∞
∑

a1,...,a4=1

Θ(a1 + a2 − a3 − a4)x
a1
1 . . . xa4

4

=
x1 x2 x3 x4

�

1+ x2
1 x2 x3 x4 − x1 x2(x4 + x3(1− x2 x4 − x4))

�

(1− x1)(1− x1 x3)(1− x2 x3)(1− x1 x4)(1− x2 x4)(1− x3)(1− x4)
(D.6)

we find that the generating series for Zuneq nicely combines with Zsame into ZS + ZH , where ZS
is given by (4.9) while

ZH =
τ4

�

τ3 −τ1 + (y + 1/y)(1−τ4)
�

(y − 1/y)2
∏

1≤i< j≤4(1− x i x j)
. (D.7)

The Taylor coefficients of ZH turn out to reproduce the minimal modification of the Coulomb
index, for 4-node cyclic quivers, given in the chamber C for a2 + a3 + a4 > a1 > a2 > a3 > a4
by [12, (4.13)]

g({γ1, . . . ,γ4}) =
(−1)1+a1+···+a4

(y − 1/y)3
(D.8)

×

¨

ya1+a2+a3−a4 − ya1+a2−a3−a4 − ya1+a3−a2+a4 − ya2+a3−a1−a4 − (y → 1/y)
ya1+a2+a3−a4 − ya1+a2−a3−a4 − ya1+a3−a2+a4 − (y → 1/y)

,

where the first and second lines correspond to a2 + a3 > a1 + a4 and a2 + a3 < a1 + a4,
respectively. Indeed, applying the projection operator (2.20) we find

H({γ1, . . . ,γ4}) =
(−1)1+a1+···+a4

(y − 1/y)3
(D.9)

×



















−a4(y2 − 1/y2) , a2 + a3 > a1 + a4 , a1 + · · ·+ a4 even

−2a4(y − 1/y) , a2 + a3 > a1 + a4 , a1 + · · ·+ a4 odd
a1−a2−a3−a4

2 )(y2 − 1/y2) , a2 + a3 < a1 + a4 , a1 + · · ·+ a4 even

(a1 − a2 − a3 − a4)(y − 1/y) , a2 + a3 < a1 + a4 , a1 + · · ·+ a4 odd

.
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