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Abstract

We investigate the behavior of higher-form symmetries at various quantum phase transi-
tions. We consider discrete 1-form symmetries, which can be either part of the general-
ized concept “categorical symmetry" (labelled as Z̃(1)N ) introduced recently, or an explicit

Z(1)N 1-form symmetry. We demonstrate that for many quantum phase transitions involv-

ing a Z(1)N or Z̃(1)N symmetry, the following expectation value 〈(log OC)
2〉 takes the form

〈(log OC)
2〉 ∼ −A

εP + b log P, where OC is an operator defined associated with loop C (or

its interior A), which reduces to the Wilson loop operator for cases with an explicit Z(1)N
1-form symmetry. P is the perimeter of C, and the b log P term arises from the sharp cor-
ners of the loop C, which is consistent with recent numerics on a particular example. b is
a universal microscopic-independent number, which in (2+ 1)d is related to the univer-
sal conductivity at the quantum phase transition. b can be computed exactly for certain
transitions using the dualities between (2 + 1)d conformal field theories developed in
recent years. We also compute the “strange correlator" of OC: SC = 〈0|OC |1〉/〈0|1〉 where
|0〉 and |1〉 are many-body states with different topological nature.

Copyright X.-C. Wu et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 16-02-2021
Accepted 11-08-2021
Published 18-08-2021

Check for
updates

doi:10.21468/SciPostPhys.11.2.033

Contents

1 Introduction 1

2 Systems with dual Z̃ (1)N 1-form symmetry 3
2.1 Example 1: ZN order-disorder transition 3
2.2 Example 2: ZN SPT-trivial transition 7

3 Systems with explicit Z (1)N symmetry 8

3.1 Topological transition at the boundary of a 3d SPT with Z (1)N ×U(1)(0) symmetry 8

3.2 QED(N f ,N ,k) with explicit Z (1)N symmetry and Chern-Simons term 9

4 The “Strange Correlator" of ODO 10

5 Discussion 12

1

https://scipost.org
https://scipost.org/SciPostPhys.11.2.033
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.11.2.033&amp;domain=pdf&amp;date_stamp=2021-08-18
https://doi.org/10.21468/SciPostPhys.11.2.033


SciPost Phys. 11, 033 (2021)

A Clarification of Concepts 12

References 14

1 Introduction

The concept of symmetry is the most fundamental concept in physics, and has profound im-
plications and constraints on physical phenomena. In recent years various generalizations
of the concept of symmetry have been explored. For example, ordinary symmetries in a
d−dimensional system are associated with the global conservation of the symmetry charges,
and the symmetry charges localized within a d−dimensional subsystem of the space can only
change through the Noether current flowing across the surface of the subsystem. In recent
years the concept of 1-form symmetry (more generally higher form symmetry) was proposed
(see for example Ref. [1–9]), and the concept of 1-form symmetry is associated with conserved
“flux" through a (d − 1)−dimensional subsystem; and the flux can only change through the
flowing of a 2-form symmetry current across the edge of the (d − 1)−dimensional subsystem.
The concept of 1-form symmetry was proven highly useful when analyzing gauge fields. Us-
ing this new concept of symmetry and its ’t Hooft anomaly, it was proven that gauge fields
with certain topological term cannot be trivially gapped [10], which is an analogue of the
Lieb-Shultz-Mattis theorem in condensed matter systems [11,12].

Lagrangians are often used to describe a physical system, and the form of the Lagrangian
depends on one’s choice of “local degrees of freedom" of the system, and other degrees of
freedom may become nonlocal topological defects in the Lagrangian. When we select another
set of local degrees of freedom of the same system to construct the Lagrangian, it will take
a new form, and the new form of Lagrangian is related to the original Lagrangian through
a “duality transformation". It was realized in recent years that, in some examples, duality
transformation of the Lagrangian, along with the obvious symmetry of the Lagrangian, could
be embedded into a larger symmetry group [13, 14], which may only emerge in the infrared
limit, and is not explicit unless one takes into account of all the dual forms of the Lagrangian.

Most recently a notion of “categorical symmetry" was developed. For example the 1d
quantum Ising model has two sets of conservations laws: the conservation of Ising spins, and
also conservation of kinks of the Ising spins. The conservation of the Ising spins correspond to
an “explicit symmetry" in the Hamiltonian, while the conservation of kinks is governed by an
“inexplicit symmetry" in our current manuscript (for further explanation of these notions please
refer to the appendix). These two conservation laws can be made both explicit symmetries by
embedding the 1d system as the boundary of a 2d toric code model, and the conservation
laws of the Ising spins and kinks arise from the fusion rules of the e and m anyons in the bulk.
The notion of categorical symmetry unifies the explicit symmetry of a model and the inexplicit
symmetry of its dual model, and treat them on an equal footing [15]. To diagnose the behavior
of the categorical symmetries, and most importantly to diagnose the explicit symmetry and the
inexplicit dual symmetry on an equal footing, a concept of “order diagnosis operator" (ODO)
was introduced, whose expectation value reduces to the correlation function between order
parameters for an explicit 0-form symmetry, and reduces to a Wilson loop for an explicit 1-
form symmetry [16]. The ODO was also referred to as the “patch operator" in Ref. [15]. For
example, the ODO for the Z2 symmetry of the 2d quantum Ising model is Oi j = σz

iσ
z
j , while the

ODO for the dual Z̃ (1)2 1-form symmetry is ÕC =
∏

j∈A,∂A=C σ
x
j , where σz transforms under
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the explicit Z2 symmetry. ÕC creates a domain wall of σz along a closed loop C by flipping the
sign of σz on a patch A, which is the interior of C 1. ODOs for systems with special symmetries
such as subsystem symmetries may have special forms and behaviors, and examples with these
special symmetries were discussed in Ref. [16].

The expectation value of Oi j and ÕC in the 2d quantum Ising system characterizes differ-
ent phases of the system. In the two gapped phases, i.e. the ordered and disordered phase of
σz , the behavior of 〈Oi j〉 and 〈ÕC〉 are relatively easy to evaluate, since they can be computed
through perturbation [18], which is protected by the gap of the phases. In the ordered phase
of σz , 〈Oi j〉 saturates to a constant when |i − j| →∞, and 〈ÕC〉 decays with an area law; in
the disordered phase of σz , 〈Oi j〉 decays exponentially with |i − j|, while 〈ÕC〉 decays with a
perimeter law. But at the critical point of the system, i.e. the (2+ 1)d quantum Ising phase
transition, the behavior of the ODO ÕC is more difficult to evaluate. Ref. [19] evaluated 〈ÕC〉
numerically, and the result indicates that in addition to a leading term linear with the perime-
ter of C, a subleading term which is logarithmic of the perimeter arises for a rectangular shaped
loop C. The logarithmic subleading contribution may be a universal feature of ODO at a critical
point, and the Z2 ODO can be mapped to the 2nd Renyi entanglement entropy of a free bo-
son/fermion system [19]. It is known that there is a corner induced logarithmic contribution
for the Renyi entropy in a general conformal field theory [20–24]. However, for interacting
systems the exact relation between entanglement entropy and ODO is not clear yet.

In this work we demonstrate that, for a 2d quantum system with either an explicit 1-
form symmetry Z (1)N , or an inexplicit symmetry Z̃ (1)N (which is dual to a 0-form ordinary ZN

symmetry), the following quantity 〈(log OC)2〉 or 〈(log ÕC)2〉 take a universal form−A
ε P+b log P

at many quantum critical points. Here P is the perimeter of the loop C. b is a universal
number which arises from a sharp angle of the loop C; b is proportional to the universal
conductivity of the 2d quantum critical point, and it is a universal function of the angle θ .
We demonstrate this result for various examples of quantum critical points. We also comment
on the connection between ODO and entanglement entropy in the end of the manuscript.
A logarithmic contribution from angle/cusp of a Wilson loop was found before for (3 + 1)d
gauge field (see for instance Ref. [25]). Our computation is for quantum critical points (QCP)
in (2+1)d, and the coefficient of the logarithmic contribution is related to a known universal
quantity associated to the QCP. Our result is exemplified with multiple concrete examples, the
desired quantity of some of the examples can be computed exactly using recently developed
duality between (2+ 1)d QCPs.

We also compute a quantity called the “strange correlator" of the 1-form ODO OC . The
strange correlator was introduced as a tool to diagnose the symmetry protected topological
(SPT) states based on the bulk wave function instead of the edge states [26], and it was shown
to be effective in many examples [27–35]. In the current work we study the strange correlator
for one example of 1-form SPT state, but we expect similar studies are worth pursuing for
more general cases.

2 Systems with dual Z̃ (1)N 1-form symmetry

2.1 Example 1: ZN order-disorder transition

We first consider cases when the system has an explicit ZN (0-form) symmetry, and it has an
inexplicit dual Z̃ (1)N 1-form symmetry. The simplest example of quantum phase transition, is
the order-disorder transition of the ZN symmetry. The lattice model with ZN symmetry, can be

1For the case of Ising model, the ODO the dual inexplicit symmetry was also called the disorder operator in
Ref. [17]. For more explanation please refer to the appendix.
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embedded into an ordinary U(1) rotor model:

H =
∑

<i, j>

−t cos(θ̂i − θ̂ j) + V (n̂i)− 2u cos(N θ̂i) , (1)

where [n̂i , θ̂ j] = iδi j , and θ̂ j prefers to take values θ̂ j = 2πk/N with k = 0, · · ·N − 1 due to
the u-term. The potential V (n̂) has a minimum at n̂ = 0. The order-disorder transition of the
ZN symmetry is described by the Landau-Ginzburg action

S =

∫

d2 xdτ |∂Φ|2 + r|Φ|2 + g|Φ|4 + u(ΦN + h.c.) ↔

Sd =

∫

d2 xdτ |(∂ − ia)φ|2 + r̃|φ|2 + g̃|φ|4 + u(MN + h.c.) . (2)

Φ is the complex order parameter. The second line of the equation is the well-known boson-
vortex dual description of the phase transition [36–38], and r ∼ −r̃ is the tuning parameter of
the transition: r0 (r < 0) corresponds to the gapped (condensed) phase of Φ and condensed
(gapped) phase of φ. The ΦN term is the ZN anisotropy on Φ which breaks the U(1) symmetry
of Φ to ZN . The ΦN is dual to the N−fold monopole operator (MN ) in the dual theory. It
is known that when N ≥ 4, the u term (ZN anisotropy) is an irrelevant perturbation at the
(2+ 1)d XY transition, and there will be an emergent U(1) symmetry at the quantum phase
transition.

As was discussed before, a system with ZN symmetry has an inexplicit dual Z̃N 1-form
symmetry. One can embed this system to the boundary of a (3 + 1)d ZN topological order,
and the ZN and Z̃ (1)N symmetry can both be made explicit (as is defined the appendix), and
they together constitute the “categorical symmetry" of the system [15]. In order to describe
the behavior of the Z̃ (1)N symmetry, Ref. [16] introduced the “order diagnosis operator" ÕC .

Represented in terms of lattice operators, the ODO for the dual Z (1)N symmetry reads

ÕC = exp

 

i
2π
N

∑

j∈A
n̂ j

!

, (3)

where ∂A = C is a patch of the 2d lattice enclosed by contractible loop C, and the ODO was
also called patch operator in Ref. [15]. ÕC creates a ZN domain wall. In the ordered and
disordered phase of the ZN symmetry, the expectation value of ÕC decays with an area law
and perimeter law respectively.

At the order-disorder phase transition, to extract the universal feature of the ODO ÕC , we
evaluate 〈(log ÕC)2〉 2, which in the dual theory reduces to

〈(log ÕC)
2〉= −

1
N2

∫

C
dlµ

∫

C′
dl ′ν〈aµ(x)aν(x′)〉 . (4)

The relation between aµ and the original Landau-Ginzburg theory is J = i
2π ∗da, where J is the

current of the emergent U(1) symmetry at the ZN order-disorder transition 3. The correlation

2log is a multivalued function. Since ÕC =
∏

j Õj∈A,∂A=C , where Õj = ei2πn̂ j/N , we define log ÕC =
∑

j∈A log Õj ,
and demand Arg[Õj] = log Õj ∈ (−π,π]∼ 2πn̂ j/N , the V (n̂i) term in the Hamiltonian Eq. 1 restricts n̂ j to largely
fluctuate around its minimum n̂ j ∼ 0.

3In this work we restrict our discussions on systems with ZN or Z (1)N symmetry on the lattice. The desired ODO of
the disordered phase of a system with a ZN symmetry on a 2d lattice, is a loop object, which can also be viewed as
the “disordered operator" [17]. The evaluation of the behavior of the loop object is evaluated in an IR field theory
with an emergent U(1) symmetry, but when a system does have a U(1) symmetry on the lattice, the disordered
phase is driven by the condensation of vortices, rather than a loop object. The physical meaning of ODO with
discrete symmetry is most clear when the lattice symmetry is discrete. Generalization of categorical symmetries to
continuous symmetry is possible, but we leave this to more careful future study.
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of aµ is dictated by the correlation of J whose scaling dimension does not renormalize at
a general conformal field theory. The correlation between currents J is proportional to the
universal conductivity at a (2+ 1)d conformal field theory:

〈Jµ(0)Jν(x)〉= σ
Iµν(x)

|x|4
, (5)

where the matrix Iµν(x) is given by Iµν(x) = δµν − 2xµxν/ |x|
2, and σ is CJ in (for example)

Ref. [39]. The universal conductivity at a (2 + 1)d XY transition was predicted in Ref. [40],
and it can be computed using various theoretical and numerical methods, and also measured
experimentally (see for example Ref [41–49], the universal conductivity in some of the refer-
ences was computed/measured with strong disorder).

It is straightforward to verify that the gauge field propagator can be written as




aµ(0)aν(x)
�

= σπ2
δµν − ζIµν(x)

|x|2
. (6)

The parameter ζ is introduced by a nonlocal gauge fixing term

1
8π6σ

1
1− ζ

∫

d3xd3y
∂µaµ(x)∂νaν(y)

|x− y|2
, (7)

which contributes to a total derivative Iµν(x)/ |x|
2 = 1

2∂µ∂ν log |x|2 in the gauge field propaga-
tor.

In the explicit calculation of Eq. 4, one should be very careful about how to set the UV cut-
off. A hard cut-off on the integration interval |x− x′| along C will spoil the gauge invariance.
To guarantee that C and C′ are both complete loops in the integral (hence gauge invariance
is preserved), a good method is to set a small distance between C and C′ along the temporal
direction by distance τ= ε > 0, and this small splitting serves as a small real-space UV cut-off.
The integral is then performed along the closed loop C (and its duplicate C′) in the x-y plane.
For a smooth loop C with perimeter P, the evaluation of 〈(log OC)

2〉 simply yields a perimeter
law, i.e. proportional to P with a UV-dependent coefficient. For example, when C is a circle
with radius R, the integral in Eq. 4 gives

−〈(log ÕC)
2〉=

σπ2

N2

�

2π2R
ε
− 2π2 +

3π2ε

4R

�

+O(ε2) . (8)

There are two observations. First, the final result is independent of the gauge choice ζ. Second,
the large-R scaling is only given by a linear term which depends on the UV cut-off.

However, if the loop C has sharp corners, the situation is very different, and some universal
feature that does not depend on the UV cut-off emerges. Let us first consider C being a spatial
square with four corners (0, 0) , (L, 0) , (L, L) , (0, L). There are three types of integrals that are
involved. The linear contribution is from the correlation along the same edge of C

∫ L

0

d x

∫ L

0

d x ′
(1+ ζ)(x − x ′)2 + (1− ζ)ε2

((x − x ′)2 + ε2)2
=
πL
ε
− 2(1+ ζ) log(L/ε) +O(1). (9)

It is important to notice that there is a log(L/ε) term, which also shows up in the integral for
two neighboring edges that are perpendicular to each other

∫ L

0

d x

∫ L

0

d y ′
2ζx y ′

(x2 + y ′2 + ε2)2
= ζ log(L/ε) . (10)
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Figure 1: The shape of C with only one angle 0< θ < π. As a concrete example, we
consider a circle with two tangent lines that intersect at a point. Each tangent line
has the length L, the radius of the circle is therefore L tan(θ/2) and the perimeter of
C is given by P = (2+ (π+ θ ) tan(θ/2))L.

The integral from two parallel edges is a finite number which does not grow with L
∫ L

0

d x

∫ L

0

d x ′
(ζ+ 1)(x − x ′)2 + (1− ζ)(L2 + ε2)

−(L2 + (x − x ′)2 + ε2)2
=O(1) . (11)

Combining all contributions together, we find the gauge invariant result

−〈(log ÕC)
2〉=

σπ2

N2

�

π4L
ε
− 8 log(L/ε)

�

+O(1) . (12)

The ζ-independence of the O(1) term has also been verified. This result is similar to the
evaluation of a square Wilson loop for free QED in (3+ 1) dimensions. In both the two cases
above, we find that the linear term in −〈(log ÕC)2〉 is σπ

2

N2
πP
ε where P = 2πR for the circle and

P = 4L for the square.
Let us now generalize Eq. 10 to the case of two straight lines with an arbitrary angle θ with

0 < θ < π. For convenience, we choose the gauge ζ = 0 in the following calculations. We
could parametrize the two straight lines by t(cos(θ/2),− sin(θ/2)) and s(cos(θ/2), sin(θ/2))
where 0 < s, t < L. To extract the angle-dependence of the logarithmic divergence, we use
the trick in Ref. [50,51]

∫ L

0

ds

∫ L

0

d t
− cosθ

s2 + t2 − 2st cosθ + ε2
=

∫ L

0

d`

∫ 1

0

dλ
�

`

`2 + ε2

− cosθ
λ2 + (1−λ)2 − 2λ(1−λ) cosθ

+O(ε2/`3)
�

,

where we have changed the integration variables to s = `λ, t = `(1−λ), and the O(ε2/`3) part
does not contribute to any logarithmic divergence. The λ-integral can be evaluated exactly,
which gives −(π − θ ) cotθ . The log(L/ε) divergence then arises from the `-integral. There
is another logarithmic contribution from correlation within the same line. Combining all the
contributions together, eventually we obtain

−〈(log ÕC)
2〉=

σπ2

N2

�

πP
ε
− f (θ ) log P

�

+O(1) , (13)

f (θ ) = 2(1+ (π− θ ) cot(θ )) , (14)

for any shape of C with a single corner, where P is the perimeter of C. We observe that the uni-
versal logarithmic term vanishes when θ = π, and only the linear term remains, as expected.

6
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Figure 2: The numerical results of −〈(log ÕC)2〉 (in the unit ofσπ2/N2) for the shape
in FIG. 1 with different angles. The UV cut-off is set to be ε= 1. The large-L scaling
is fitted by the function −〈(log ÕC)2〉 = aL/ε + b log L + c/L + d, and the fitting
parameters a, b agree with the analytical expressions Eq. 13 and Eq. 14.

To double check the analytical expression Eq. 13, we consider the shape of C as shown in
FIG. 1, and the numerical evaluation for −〈(log ÕC)2〉 for different angles are shown in FIG. 2.
For fixed values of L,ε, the angle dependence for both the linear and the logarithmic terms
agree with Eq. 13 and Eq. 14.

We computed −〈(log ÕC)2〉, which is the second order expansion of 2〈ÕC〉. We have not
proven whether higher order expansion in 〈ÕC〉 leads to different corner contribution from
〈(log ÕC)2〉 or not. We would also like to mention that the entanglement entropy of a patch A
with corners in a (2+1)d CFT is related to another universal quantity CT from the correlation
of the stress-energy tensor Tµν. As discussed in Ref. [20–24], the entanglement entropy takes
the form S = B

ε P− a(θ ) log P+O(1), where B/ε depends on the UV details, and the universal
coefficient a(θ ) is given by the correlations of Tµν

4 The function a(θ ) proposed and computed
for entanglement entropy [20,21] is also proportional to f (θ ) in our result.

4The leading order contribution to a(θ ) is given by CT ; contribution from higher order correlations between
Tµν was discussed in Ref. [24].
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2.2 Example 2: ZN SPT-trivial transition

Now let us still assume the system has a ZN symmetry, but the system undergoes a transition
between a 2d ZN symmetry protected topological (SPT) state and a trivial state. Both states
are disordered states of the ZN symmetry, hence in both states the ODO ÕC should obey a
perimeter law. Our main interest focuses on the trivial-SPT phase transition, especially the
universal features of ÕC at this transition. This example, and the next few examples will be
described by a class of similar theories:

S =
∫

d2 xdτ
N f
∑

α=1

ψ̄αγ · (∂ − ina)ψα +mψ̄ψ+
ik
4π

ada+ · · · , (15)

with integer N f and n, and in general these theories will be labelled as QED(N f ,n,k). The
trivial-SPT transition corresponds to QED(2,1,0), i.e. N f = 2, n = 1 and k = 0 [52, 53], plus
Chern-Simons terms of background gauge fields which are not written explicitly in Eq. 15.
The trivial-SPT transition needs certain fine-tuning to reach the critical point described by
this field theory, hence this field theory is a multi-critical point between the two states. This
multi-critical point is self-dual [54–56] and also dual to the easy-plane deconfined quantum
critical point [13,14,57,58]. The Dirac fermion mass term m in Eq. 15 is the tuning parameter
between the trivial and SPT phases.

In the theory QED(2,1,0), the current of the U(1) symmetry in which the microscopic ZN

symmetry is embedded, is J = i
2π ∗ da, and the ODO of the system is given by Eq. 3. The

angle dependence of the ODO is still give by Eq. 14, with σ replaced by the counterpart at the
trivial-SPT (multi-)critical point QED(2,1,0). The universal conductivity can be computed using
various methods such as 1/N f expansion.

3 Systems with explicit Z (1)N symmetry

3.1 Topological transition at the boundary of a 3d SPT with Z (1)N ×U(1)(0) sym-
metry

Here we consider an example with an explicit Z (1)N 1-form symmetry. The infrared of this ex-
ample is described by QED(1,2N ,0) of Eq. 15, i.e. it is a single massless Dirac fermion ψ with
charge−2N coupled with a U(1) gauge field. In our construction of theory QED(1,2N ,0) we

also need a charge−N fermion ψ′ in the background, hence the system only has a Z (1)N 1-form
symmetry, i.e. the electric flux of the gauge field through any closed surface is conserved mod
ZN . We also demand that the magnetic flux of the QED(1,2N ,0) is conserved, which corresponds

to another U(1)(0) symmetry. There is a mixed anomaly between the Z (1)N and U(1)(0) symme-
tries. Hence the field theory QED(1,2N ,0) can be realized at the boundary of a 3d SPT state with

Z (1)N and U(1)(0) symmetry [59]. In the following paragraphs we spell out this construction of
the 3d bulk SPT state. 5

To construct the boundary theory QED(1,2N ,0), we first consider a 3d bulk with an ordinary
photon phase of gauge field aµ, and only charge−N and charge−2N fermionic matter field is
dynamical, although all the integer-charge Wilson loops are allowed in the theory. Hence the
system has a Z (1)N 1-form symmetry. All the fermionic matters are in a topologically trivial band
structure in 3d. Then we bind the Dirac monopole of ~a with another gauge neutral boson with
global U(1)(0) conservation, and condense the bound state. The 3d bulk is a SPT state with

5This is one possible construction of the 3d bulk, the field theory QED(1,2N ,0) maybe realized as the boundary
theory of other 3d 1-form SPT states too.
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Z (1)N × U(1)(0) symmetry [59]. The natural 2d boundary of the system is a (2 + 1)d photon
phase. To create a gauge flux at the 2d boundary, one needs to move a Dirac monopole from
outside of the system, into the 3d bulk; since in the 3d bulk the bound state between the Dirac
monopole and the U(1)(0) boson is condensed, the 2πmagnetic flux at the boundary must also
carry the U(1)(0) boson. Hence the photons at the 2d boundary is the dual of the Goldstone
modes of the U(1)(0) symmetry. Notice that the bulk is fully gapped and has no spontaneous
breaking of the U(1)(0) symmetry, because the condensed bound state in the bulk is coupled
to the dual gauge field while carrying the U(1)(0) charge. The condensate is still gapped due
to the Higgs mechanism.

At the 2d boundary, the charge−2N fermion ψ is tuned close to the transition between
a trivial insulator and a Chern insulator with Chern number +1. Due to the fermi-doubling
in 2d, there must be another massive Dirac cone of ψ in the band structure that affects the
dynamics of aµ. Hence we need to design a background band structure of the charge−N
fermion ψ′ with Chern number −2. The Chern-Simons term of aµ generated from ψ′ will
cancel the Chern-Simons term generated by the band structure of fermion ψ.

Now we have arrived at the theory QED(1,2N ,0). The QED(1,2N ,0) is a transition between
two different topological states tuned by the mass of the Dirac fermion ψ, these two topo-
logical orders are described by the CS term for aµ with level k = ±2N2, which is free of

Z (1)N 1-form symmetry anomaly. The ODO for the Z (1)N symmetry is the charge-1 Wilson loop
OC = exp(i

∫

d~l · ~a). In this case the quantity 〈(log OC)2〉 at the critical point m = 0 can be
evaluated exactly, based on the fermion-vortex duality developed recently [60–64]:

QED(1,2N ,0) ↔ χ̄γ · ∂ χ coupled to ZN gauge theory+ · · · (16)

The detailed and exact form of the duality can be found in Ref. [64]. The right hand side of the
duality is a Dirac fermion coupled with a ZN gauge field. The duality relation we will exploit
is

Jχ = i
2N
4π
∗ da , (17)

where Jχ is the current carried by χ. Although χ is coupled with a ZN gauge field, since the
ZN gauge field is gapped, in the infrared the correlation of Jχ is identical to that of the free
Dirac fermion, and can be computed exactly:




Jχ,µ(0)Jχ,ν(x)
�

=
1

8π2

Iµν(x)

|x|4
. (18)

One can determine the propagator of the dual gauge field accordingly. Considering again the
C in FIG. 1, we find

−〈(log OC)
2〉=

1
8N2

�

πP
ε
− f (θ ) log P

�

+O(1) , (19)

where f (θ ) is given in Eq. 14.

3.2 QED(N f ,N ,k) with explicit Z (1)N symmetry and Chern-Simons term

We consider the theory QEDN f ,N ,k with large−N f and level k = qN2, where q is an integer at
the order of N f . QED(N f ,N ,k) with even integer N f , and a CS term with level k being integer

multiple of N2 can be constructed in 2d with Z (1)N 1-form symmetry 6. At low energy, the dy-
namics of gauge field is significantly modified by the one-loop polarization diagram of fermion

6We can verify that the absence of the anomaly associated to the ZN 1-form symmetry in this QED theory by
considering the its massive phases. For example, when a positive mass of the Dirac fermion is turned on, one
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ψ. In the momentum space, the loop diagram integral gives

|aµ(~p)|2
N f N2

16

|p|2δµν − pµpν
|p|

, (20)

which gives an order N f contribution to the gauge field self-energy. To the leading order in
1/N f , the gauge field propagator in the momentum space is given by

16
N f N2

1
|p|

�

cos K̂
|K |

�

δµν − ζ
pµpν

|p|2

�

+
sin K̂
|K |

εµνσpσ
|p|

�

, (21)

where |K | , K̂ denote the magnitude and the angle of the two-dimensional vector K =
(1, −16k

2πN f N2 ). The Fourier transformation to real space gives




aµ(0)aν(x)
�

=
8

N f N2

1

π2 |x|2
×
�

cos K̂
|K |

δµν − ζIµν(x)

|x|2
+

sin K̂
|K |

iπ
2

εµνσxσ
|x|

�

,

which has an imaginary part due to the Chern-Simons term. The parameter ζ is introduced
by gauge fixing.

The ODO for the Z (1)N symmetry is still the charge-1 Wilson loop OC = exp(i
∫

d~l · ~a). As
for the shape of C with a sharp corner in FIG. 1, our calculation leads to the gauge invariant
result

−〈(log OC)
2〉=

8N2N f

64k2 +π2N4N2
f

�

πP
ε
− f (θ ) log P

�

+O(1) , (22)

where f (θ ) is given in Eq. 14. The imaginary antisymmetric part of



aµaν
�

does not con-
tribute, and the final result has the similar form as before. In the large−N f limit the universal
conductivity of the current J = 1

2π ∗ da can be computed exactly.

4 The “Strange Correlator" of ODO

Following the argument from Ref. [65], if a state |Ω〉 is the ground state described by a La-
grangian L(Φ(x)), the matrix elements between |Ω〉 and two different field configurations
|Φ(x)〉 and |Φ′(x)〉 is given by the path integral:

〈Φ(x)|Ω〉〈Ω|Φ′(x)〉 ∼
∫ Φ(x,τ=+∞)=Φ(x)

Φ(x,τ=−∞)=Φ′(x)
DΦ(x,τ)× exp

�

−
∫ +∞

−∞
dτdd x L(Φ(x,τ))

�

, (23)

knowing the matrix element, Ref. [65]was able to derive the ground state wave function based
on the Lagrangian description of various SPT states.

Based on the information of the ground state wave function of SPT state derived from
its Lagrangian, the quantity “strange correlator" was introduced and designed to diagnose

obtains a U(1) CS theory of level (q + Nf /2)N 2. In this massive phase, the ZN 1-form symmetry is generated
by the anyon line operator carrying U(1) charge (q + N f /2)N . When N is odd, we should in fact view the U(1)
gauge field a as a spinc gauge field. Consequently, this charge-(q+Nf /2)N anyon always has bosonic self-statistics,
which indicates the absence of anomaly associated with the ZN 1-form symmetry. When N is even, the QED (and
its massive phases) intrinsically resides in a fermionic Hilbert space. The gauge field a is now a regular U(1) gauge
field. In this case, the charge-(q + N f /2)N anyon can have either bosonic or fermionic self-statistics depending
on the value of (q + Nf /2)N . However, neither case leads to any anomaly associated to the ZN 1-form symmetry
because the self-statistics of the charge-(q+Nf /2)N anyon can be made bosonic by attaching extra neutral fermions
in the Hilbert space.
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a SPT state based on its bulk wave function [26]. Let us assume that |0〉 and |1〉 are the
trivial state and SPT state defined within the same bosonic Hilbert space in a two dimensional
real space, and both systems have the same symmetry. The strange correlator is the quantity
S(x,x′) = 〈0|Φ(x)Φ(x′)|1〉/〈0|1〉, where Φ(x) is the order parameter of the symmetry that
defines the systems.

For a class of Langrangians L, using the derived wave functions for both the SPT state |1〉
and trivial state |0〉, one would see that the strange correlator S(x,x′) cannot have a trivial
short range correlation at least for d = 2. Another picture to see this is that, if the Lagrangian
L has an emergent Lorentz invariant description, after the space-time rotation, the strange
correlator which was purely defined in space, becomes a space-time correlation function at
the one dimensional spatial interface between |0〉 and |1〉. This picture is similar to the con-
struction of fractional quantum Hall wave function using conformal blocks [66]. Because the
spatial interface between |0〉 and |1〉 cannot be trivially gapped, the strange correlator S(x,x′)
must be either long ranged, or have a power-law. Hence the strange correlator can be viewed
as a tool to diagnose a SPT state based on its bulk wave function, and it has been shown to be
effective for many examples [27–35].

ODO is the generalization of correlation functions of 0-form symmetries. Here we gen-
eralize the strange correlator to the ODO of 1-form symmetry i.e. we evaluate the following
quantity

S(C) = 〈0|OC |1〉/〈0|1〉 , (24)

where |0〉 and |1〉 are trivial state and SPT state with 1-form symmetry respectively. SPT states
protected by 1-form symmetries have attracted great interests in the last few years [7, 9, 59,
67–76], we expect this general question of evaluating strange correlator of ODO to be a new
direction that is worth a deep exploration. In the current work we consider a typical 3d SPT
state protected by the Z (1)N 1-form symmetry as an example. This SPT state can be described
by the following Lagrangian [77]

L= 1
g

tr[FµνFµν] +
iΘ

8π2
tr[F ∧ F] . (25)

F is the curvature tensor of the SU(N) gauge field. To guarantee there is a Z (1)N 1-form symme-
try, we only allow dynamical (but massive) matter fields of the SU(N) gauge field which carries
an adjoint representation of the gauge field, while closed Wilson loops with other representa-
tions of the gauge field are still allowed. The SPT state corresponds toΘ = 2π, while the trivial
state corresponds to Θ = 0 in the Lagrangian. The interface between Θ = 0 and Θ = 2π is a
2d topological order described by SU(N)1 Chern-Simons theory with topological degeneracy.
For both Θ = 0 or 2π, the coupling constant g in the Lagrangian is expected to flow to infinity
under renormalization group, hence the Θ−term is what remains in the infrared limit. The
Θ−term is a total derivative, hence

〈A(x)|1〉〈1|A′(x)〉 ∼
∫ A(x,τ=+∞)=A(x)

A(x,τ=−∞)=A′(x)
DA(x,τ)× exp

�

−
∫ +∞

−∞
dτd3 x L(A)g→+∞

�

∼ exp

�∫

d3 x
i

4π
CS[A]−

i
4π

CS[A′]

�

. (26)

Hence the wave function of the SPT state |1〉, and the trivial state |0〉 (corresponds to Θ = 0)
in the limit g → +∞ are schematically

|0〉 ∼
∫

DA|A〉 ,
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|1〉 ∼
∫

DAexp

�∫

d3 x
i

4π
CS[A]

�

|A〉 . (27)

Now the evaluation of the strange correlator of ODO, which is a purely 3d spatial quantity,
is mathematically equivalent to evaluating world lines of anyons in (2+ 1)d SU(N)1 CS field
theory:

S(C)∼
∫

DA tr[ei
∫

C d~l·~A]exp

�∫

d3 x
i

4π
CS[A]

�

. (28)

Then if the ODO is a Wilson loop with the fundamental representation of the gauge group,
and C contains two loops with a link, then this evaluation is identical to the braiding process
of two anyons of the SU(N)1 topological order, and it yields phase exp(i2π/N2) for S(C).

5 Discussion

In this work we studied the behavior of the “order diagnosis operator" of 1-form symmetries
(for either explicit 1-form symmetry, or inexplicit 1-form symmetry as a dual of a 0-form sym-
metry) at various (2 + 1)d quantum phase transitions. We demonstrate that for a class of
transitions there is a universal logarithmic contribution to the ODO arising from the corners of
the loop upon which the ODO is defined. For this class of transitions, the universal logarithmic
contribution is related to the universal conductivity at the critical points, and in some cases
can be computed exactly using the duality between conformal field theories.

This logarithmic contribution is similar to the corner contribution to the entanglement en-
tropy, in fact this relation can be made exact for free boson/fermion systems [19]. For general
systems, the ODO associated with certain 1-form symmetry and the entanglement entropy can
be studied in a unified framework. To study the Renyi entropy, one needs to use the replica
trick, and duplicate n−copies of the system. Then the system is granted an extra “swapping
symmetry" between replica indices. The Renyi entropy reduces to evaluating the ODO of the
1-form dual of the swapping symmetry [78, 79]. Hence we can start with the duplicated sys-
tem, and just study the ODO of all the symmetries of the duplicated system, to extract the
information of both the intrinsic symmetries, and the entanglement entropy simultaneously.
One remark worth making is that, when computing Renyi entropy for ordinary systems with a
Hamiltonian and translation invariance, there is no interaction between different duplicated
systems, hence each duplicated copy has its own conservation laws. 7

In this work we also computed the strange correlator of the 1-form ODO for a particular
example. SPT states protected by 1-form symmetries have attracted great efforts and interests
in the last few years, and we believe the strange correlator of the 1-form ODO can be applied
to many related systems. We will leave the more general discussion of this topic to future
studies.

The authors thank Wenjie Ji and Yi-Zhuang You for very helpful discussions. This work is
supported by NSF Grant No. DMR-1920434, the David and Lucile Packard Foundation, and
the Simons Foundation.

Note: We would like to draw the readers attention to a closely related work by Yan-Cheng
Wang, Meng Cheng and Zi Yang Meng [81] to appear in the same arXiv listing.

7The authors note that a more recent work Ref. [80] demonstrated the corner contribution for correlation
functions integrated over an area is very universal, which bridged the ODO considered here and the entanglement
entropy on general grounds.
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A Clarification of Concepts

The purpose of this appendix is not to discuss new physics or new quantity, but to clarify the
rudimentary concepts used in this manuscript. The standard definition of a global symmetry
of a quantum system is associated with a global conserved quantity Ĝ that commutes with the
entire Hamiltonian of the system. Normally when we say a system has a global symmetry, it
implies the following two qualities of the system:

(1) the dynamics allowed by the symmetry, for example the evolution generated by the
Hamiltonian of the system does not change the quantum number of quantity Ĝ;

(2) states with different quantum numbers of Ĝ are all present in the Hilbert space.
To exemplify these two qualities, let us still start with the basic example of 1d quantum

Ising model with a transverse field: H =
∑

j −Kσz
jσ

z
j+1−hσx

j . Here the conserved quantity of

the Z2 Ising spin symmetry is Ĝ =
∏

j σ
x
j , and any physical process allowed by the symmetry

does not change the quantum number of Ĝ (only processes that flip even number of spins σx
j

are allowed); but states with Ĝ = ±1 all exist in the Hilbert space. Hence both qualities (1)
and (2) mentioned above are perfectly satisfied by the Z2 spin symmetry.

It is often stated that the 1d quantum Ising model is “self-dual" under the Kramers-Wannier
duality, namely if we introduce dual operators τz,x

j̄
as σz

jσ
z
j+1 = τ

x
j̄
, σx

j = τ
z
j̄−1
τz

j̄
, the Hamil-

tonian of the dual model formally takes the form H =
∑

j̄ −Kτx
j̄
− hτz

j̄
τz

j̄+1
. Physically τx is

the kink of the original operator σz . There appears to be another dual Z̃2 symmetry, whose
conserved quantity ˜̂G is formally

∏

j̄ τ
x
j̄
. However, if we take a periodic boundary condition

of the original quantum Ising model, ˜̂G is a trivial quantity in the original Ising spin Hilbert
space, because ˜̂G always equals to +1, or in other words within the original Ising spin Hilbert
space, only states with even number of kinks are allowed. Hence although the “Z̃2 symmetry"
satisfies quality (1) above, it does NOT meet quality (2).

The dual “Z̃2 symmetry", though does not meet quality (2), still leads to nontrivial con-
servation law of kinks of σz: the kink number is unchanged under any physical process for
the Ising model with periodic boundary condition. As was pointed out by previous references
such as Ref. [15], both the Z2 and Z̃2 can be made real symmetries (meaning they both satisfy
qualities (1) and (2)) if we embed the 1d quantum Ising model as the boundary of a 2d toric
code model (of course, there were other previously known ways such as introducing different
boundary conditions to interpret the Z̃2 symmetry, but introducing the bulk as Ref. [15] has
the most natural generalizations to higher dimensions and higher form dimensions). The Ising
spin excitation corresponds to the e anyon of the toric code, and the kink corresponds to the
m anyon. The two sets of conservation laws (quality (1)) of the Ising spins and kinks arise
from the fusion rules of the anyons: e× e = I , m×m= I ; now both the Z2 and Z̃2 symmetries
also satisfy quality (2): both the Ising spin number and the kink number can be either even
or odd at the 1d boundary , because one can create a pair of e (or m) anyons, and move only
one anyon of the pair to the 1d boundary.

Since the original quantum Ising model has conservation laws for dynamics of both the
Ising spins and the kinks, in our main text we call the original Z2 spin symmetry of the quan-
tum Ising model as an explicit symmetry (meaning quality (1) and (2) are both satisfied), while
the Z̃2 symmetry is called an “inexplicit symmetry", as only quality (1) is satisfied. As we men-
tioned in the last paragraph, both Z2 and Z̃2 symmetries can be made explicit by embedding
the system to the boundary of a 2d toric code model.

These definitions and notions can be generalized to higher dimensions with higher form
discrete symmetries. As a practice let us also consider the 2d quantum Z2 gauge theory, which
is often stated to be dual to a 2d quantum Ising model, though these two models have different
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symmetries. To clarify what this duality means exactly, we consider the standard Hamiltonian
for the 2d quantum Z2 gauge theory on a 2d torus: H =

∑

�−K
∏

<i j>∈�σ
z
i j −

∑

<i j> hσx
i j ,

where < i j > is a link of a square lattice; σz,x
i j is a qubit defined on the link.

∏

<i j>∈�σ
z
i j

is a product of σz
i j on the four links around each square plaquette. The Hilbert space of the

quantum Z2 gauge theory is subject to a local constraint
∏

<i j>∈v σ
x
i j = +1, where < i j >∈ v

represent four links around a vertex/site of the square lattice. This model has a Z (1)2 1-form
symmetry, which corresponds to the Z2 conservation of Z2 electric field penetrating any con-
tractible loop C: ĜC =

∏

<i j>⊥C σ
x
i j (< i j >⊥ C corresponds to all the links on loop C and

orthogonal to C locally). But if the system is a torus, then ĜC for a noncontractible loop C
can take values ±1, which can be interpreted as either the topological sector, or the ground
state degeneracy of spontaneous breaking of the Z (1)2 1-form symmetry. Hence the Z (1)2 1-form
symmetry is an explicit symmetry that satisfies both (1) and (2) mentioned previously.

The dual 2d quantum Ising model can be formally derived by introducing the dual opera-
tors on the dual lattice sites ī and j̄, which are located on the center of the plaquette squares
of the original square lattice: τx

ī
=
∏

<i j>around ī σ
z
i j , τ

z
ī
τz

j̄
= σx

i j for < ī j̄ >⊥< i j >. The

dual Hamiltonian reads H =
∑

ī −Kτx
ī
−
∑

<ī j̄> hτz
ī
τz

j̄
. However, the conserved quantity of

the dual Ising model ˜̂G =
∏

ī τ
x
ī

is always +1 in the original Hilbert space of the Z2 gauge
theory, although a physical process can only create even number of τx

ī
(which corresponds to

the m anyon of the original quantum Z2 gauge theory) hence there is a Z2 conservation of τx .
Therefore the dual Ising model has a Z̃2 symmetry that satisfies quality (1) but not (2), hence
according to our convention it is an inexplicit symmetry.

Let us also discuss the converse example, and start with a real 2d quantum Ising spin
model on a square lattice: H =

∑

<i, j>−Kσz
iσ

z
j −

∑

j hσx
j , which is formally dual to a 2d

quantum Z2 gauge theory, with the electric field defined on the dual link < ī j̄ >⊥< i j >
as τx

ī j̄
= σz

iσ
z
j . The 2d quantum Ising model also has two sets of conservation laws: the

conservation of the original Ising spin, and the conservation law of the Ising domain walls.
The latter corresponds to a Z̃ (1)2 1-form “inexplicit symmetry": there is a conservation law of
the dynamics of Ising domain wall, namely the Ising domain walls always penetrate any closed
contractible loop even times (quality (1)); but within the Ising spin Hilbert space the product
of τx

ī j̄
= σz

iσ
z
j with < i j >⊥< ī j̄ > is always +1 along a noncontractible cycle C orthogonal

to the dual lattice link < ī j̄ >. But for a real 2d Z2 gauge theory, as we discussed above, the
corresponding product of electric field can take value ±1, which can be either interpreted as
different topological sectors, or as ground state degeneracy caused by spontaneous breaking
of the Z (1)2 1-form symmetry. Hence in the Ising spin Hilbert space, only the Z2 symmetry

satisfies qualities (1) and (2) together, while Z̃ (1)2 satisfies (1) only. But both Z2 and Z̃ (1)2 can
be made explicit symmetries, i.e. they can satisfy both (1) and (2) when the quantum Ising
model is embedded as the boundary of a 3d topological order.

The quantity order diagnosis operator (ODO) was introduced in Ref. [82] to characterize
the behavior of the explicit and inexplicit symmetries, especially the notion of spontaneous
symmetry breaking of both the explicit and the inexplicit symmetries defined above. The ODO
reduces to previously introduced concepts in specific cases. For example, for the Ising models,
the ODO of the dual inexplicit symmetry is the disorder operator discussed in Ref. [17]. But
the phrase “disorder operator" implies that when it condenses, the original symmetry would be
restored or the system should enter a disordered phase of the original symmetry. This is indeed
true for the Ising spin models. But in some cases that involve higher form symmetries both
the symmetry and the dual symmetry can be spontaneously broken simultaneously, namely
both the explicit symmetry and its dual inexplicit symmetry can enter the ordered phase si-
multaneously under proper generalizations. For example, a (3+ 1)d system with Z (1)2 1-form
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symmetry can enter a gapless photon phase where the Wilson loop and the corresponding “dis-
order operator" of the Z (1)2 1-form symmetry both have perimeter laws, which is the criterion
of spontaneous symmetry breaking of 1-form symmetries. Hence we feel a generalized notion
is necessary. In fact, a notion of “patch operator" was introduced in Ref. [15] as a generaliza-
tion of the the disorder operator to higher form symmetries. The notion of order diagnosis
operator used in this manuscript also reduces to the “patch operator" in Ref. [15] for systems
without subsystem symmetries. But for systems with a more exotic subsystem symmetries [82]
the proper form of the ODO is not always defined on a simple patch of the lattice.
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