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Abstract

The manipulation of many-body systems often involves time-dependent forces that cause
unwanted heating. One strategy to suppress heating is to use time-periodic (Floquet)
forces at large driving frequencies. For quantum spin systems with bounded spectra,
it was shown rigorously that the heating rate is exponentially small in the driving fre-
quency. Recently, such exponential suppression of heating has been observed in an ex-
periment with ultracold atoms, realizing a periodically driven Bose-Hubbard model. This
model has an unbounded spectrum and, hence, is beyond the reach of previous theoret-
ical approaches. Here, we study this model with two semiclassical approaches valid, re-
spectively, at large and weak interaction strengths. In both limits, we compute the heat-
ing rates by studying the statistical probability to encounter a many-body resonance, and
obtain a quantitative agreement with the exact diagonalization of the quantum model.
Our approach demonstrates the relevance of statistical arguments to Floquet perther-
malization of interacting many-body quantum systems.
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1 Introduction

The study of periodically driven systems has a long history, tracing back to the work of Floquet
on classical systems governed by linear equations of motion [1]. Floquet showed that these
equations can be solved using a time-independent unitary matrix, UF , which captures the evo-
lution over one period of the drive, τ. Remarkably, because the time evolution of quantum
systems is determined by a linear equation (namely, the Schrödinger equation), Floquet theory
can be used to study any quantum system, even in the presence of interactions. The practical
applicability of Floquet theory is hindered by the fact that finding UF , and diagonalizing it, is
generically very difficult. This difficulty is especially acute for many-body quantum systems,
where the size of UF grows exponentially with the number of degrees of freedom. At large
driving frequencies, UF can be derived using a controlled analytical approximation, the Mag-
nus expansion [2]. The first term of this expansion is UF ≈ e−iHavτ, where Hav = τ−1

∫ τ

0 H(t)dt
is the time-averaged Hamiltonian. The other terms are integrals of commutation relations of
the Hamiltonian at different times 1.

Using the Magnus expansion, Refs. [3–7] were able to obtain rigorous constraints on the
time evolution of periodically driven quantum many-body systems. These rigorous theorems
apply to quantum spin systems that satisfy a local norm bound: their Hamiltonians consist of
sums of local operators whose matrix elements are smaller than a given energy scale J . For
these systems, the heating rate Φ was shown to be exponential suppressed at large driving
frequencies Ω= 2π/τ, according to

Φ(Ω)<
AJ
ħh

exp
�

−
ħhΩ
BJ

�

, (1)

where ħh is the Plank’s constant, A and B are unitless constant. This exponential suppression
was observed in several numerical studies [8–11] and in an experiment with dipolar spin
chains [12].

The rigorous bound of Eq. (1) can be understood using a perturbative argument [3]: Due
to the local norm bound, a single application of the driving field can change the energy of the
system by J , at most. On the other hand, the absorption of a quantum of energy from the
pump injects energy ħhΩ. Hence, the absorption of energy from the pump requires the product
of n= ħhΩ/J operators and is governed by the nth order perturbation theory. Refs. [4–7] used
the Magnus expansion to extend this argument and demonstrate that Eq. (1) is a rigorous
bound, valid to all orders. Interestingly, in the limit of ħh→ 0, this bound applies to classical
systems with a bounded spectrum [13,14].

Many physical systems escape the regime of validity of the aforementioned rigorous bounds.
For example, massive particles with momentum p have a kinetic energy p2/2m that is un-
bounded from above. Ref. [15] demonstrated that systems of interacting particles can, nev-
ertheless, show an exponential suppression of heating. They considered a canonical model of
coupled kicked rotors [16–19] and showed that, for appropriate initial conditions, the system
shows an exponentially long-lived prethermal plateau with vanishing energy absorption. This
effect was explained in Ref. [21] using the following statistical argument: At large driving
frequencies, the heating rate is small and the time-averaged energy of the system is (quasi)
conserved. If the system is ergodic, the state of the system can be approximated by the Boltz-
mann distribution function,

P = Z−1 exp
�

−
Hav

kB T

�

, (2)

1See, for example, Ref. [20] for an introduction
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where Z is the partition function, kB is the Boltzmann constant, and the temperature T is
determined by the initial energy of the system, measured with respect to the time-averaged
Hamiltonian Hav. If other quantities, such as the total momentum or the total number of par-
ticles are conserved, the appropriate Lagrange multipliers need to be taken into account. The
resulting distribution can then be used to estimate the heating rate by computing the proba-
bility to incur into a many-body resonance [22]. Under physical assumptions, this probability
is exponentially small, leading to a statistical Floquet prethermalization [21].

Having introduced the concepts of rigorous and statistical Floquet prethermalization, we
now move to the focus of this article, namely the periodically driven Bose-Hubbard model,
described by

H(t) =
U
2

∑

i

n2
i − J(t)

∑

〈i, j〉

�

b†
i b j +H.c

�

, (3)

with J(t) = J0 + δJ cos(Ωt). Here, bi and b†
i are canonical bosonic operators, ni = b†

i bi is
the number of particles on site i and 〈i, j〉 are nearest neighbors. The U term describes onsite
repulsion and the J term hopping. Importantly, the U term is unbounded from above, making
the rigorous bounds of Ref. [3–7] unapplicable.

Floquet prethermalization in the Bose-Hubbard model was studied theoretically in Ref. [23]
using a self-consistent quadratic approximation. This work employed the concept of many-
body parametric resonance [24] to predict the existence of a frequency threshold above which
the system does not absorb energy. However, in reality, terms that are neglected in the quadratic
approximation lead to finite heating rates at all frequencies. Reference [3] predicted that
at large driving frequency, the heating rate should be rigorously bounded by a stretched
exponential 2. In the limit of a large number of particles per site (n̄� 1), the model can be
mapped to a system of classical rotors, where the heating rate is exponential suppressed [21].

Recently, the heating rate of the Bose-Hubbard model with one particle per site (n̄= 1) was
studied by Ref. [25], using three methods: (i) the numerical calculation of the linear response
of the model; (ii) the experimental measurement of single-site excitations (doublons or holes);
(iii) the experimental measurement of the system’s temperature. The experiments were per-
formed using ultracold atoms in one and two-dimensional optical lattices. The time-periodic
drive was obtained by modulating the intensity of the laser fields that generate the lattice 3.
The findings of Ref. [25] demonstrate that the heating rate is exponentially suppressed as a
function of Ω in all dimensions. As explained, this observation cannot be accounted by the
available theoretical methods.

In this article, we present two semiclassical approximations that capture the exponential
suppression of the heating in two opposite limits. The first limit is strong interactions (U � J),
where we link the heating suppression to the low probability of finding many particles on a
single site. The second limit is weak interactions (U � J), where we can perform a controlled
expansion of the heating rate in orders of U . For both cases, we use a statistical approach to
compute the heating rate to lowest order in the strength of the periodic drive (∼ δJ2) and
compare it with the exact numerical diagonalization of the model.

2To the best of our knowledge, the proof of this claim is not publicly available.
3See Ref. [26] for a review of earlier experiments on periodically driven ultracold atoms. Note that a modulation

of the laser field makes U time dependent as well and, for small δJ/J0, the relative oscillations of U and J are
comparable.
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2 Strong interactions (U � J)

In the regime of strong interactions, U � J , we can describe the system in terms of semiclas-
sical particles hopping on a lattice. The periodic drive moves one particle from one site to a
neighboring one. This process changes the value of the on-site interaction by

∆E =
U
2

�

(ni ± 1)2 + (n j ∓ 1)2
�

−
U
2

�

(ni)
2 + (n j)

2
�

= U[±(ni − n j) + 1] , (4)

where the upper (or lower) sign refers to a particle hopping from site j to site i (or vice versa).
Following Ref. [21], we need to identify the many-body resonances of the model. Here, a
resonance occurs when Eq. (4) equals to an integer multiple of the frequency of the drive
(in units of Schrödinger’s equation constant ħh), or ∆E = mħhΩ, where m is an integer. For
high-frequency drives, the heating rate is dominated by the lowest-order available resonance,
which corresponds to m = ±1. Without loss of generality, we assume that ni > n j , such that
when a particles moves from j to i (or vice versa) the interaction energy increase (decreases).
The resonance condition ∆E = ±ħhΩ becomes ±(ni − n j) + 1= ±nΩ, or

n j = ni − nΩ ± 1 , (5)

where we defined nΩ = ħhΩ/U . Here, the upper (or lower) sign refers to the absorption (or
emission) of energy. Note that this condition can be matched only if nΩ is integer. If the
maximal occupation of each site is limited to ni ≤ 2, such as in the case of spin-1/2 fermions,
the resonant condition can be satisfied only for nΩ = 1 [27]. In contrast, for bosons, ni is
unbounded and energy can be resonantly absorbed at arbitrarily high frequencies. Because
the probability to find sites with large ni is exponentially small, so is the probability to satisfy
the resonance condition, leading to suppressed heating rates. The goal of this article is to put
this intuitive argument on solid mathematical ground.

The probability to satisfy Eq. (5) is determined by Pi, j(ni , n j), the joint distribution function
to find ni and n j particles in sites i and j, according to

P±(Ω) =
∑

n

Pi, j (n, n− nΩ ± 1) . (6)

This expression needs to be multiplied by a factor of 2 to take into account the case of ni < n j .
In a d dimensional square lattice, we need to further multiply the result by the coordination
number d 4.

Evaluating the distribution function Pi, j(ni , n j) in a (pre)thermal state described by Eq. (2)
is a formidable task in many-body quantum physics. In what follows, we focus on the regime
of large temperatures T � J , where we can neglect quantum fluctuations and describe the
prethermal state by

Pi, j(ni , n j) = Pi(ni)Pj(n j) , (7)

with

Pi(n) = Pj(n) = Z−1
0 exp

�

−
U

2kB T
n2 −

µ

kB T
n
�

. (8)

4According to our approach, the dimensionality does not affect the exponential suppression of the heating rate,
in agreement with the experimental observations of Ref. [25]. This is in contrast to their theoretical expectation,
where the rigorous approach is used to derive a stretched exponential with exponent of the form exp(Ωα) with
α= (1+ d)/2d.
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Here, in addition to the quasi-conservation of the energy in the prethermal state, we took into
consideration the conservation of the total number of particles, through the chemical potential
µ. The values of Z0 and µ are determined by the constraints

∑

n Pi(n) = 1 and
∑

n nPi(n) = n̄.
These constraints, along with the numerical solution of Eqs. (6)-(8) enable us to compute

the semiclassical heating rate of the Bose-Hubbard model, Φ. The total heating rate is given
by the probability to incur into a resonance (P+ − P−), times the heating rate of an individual
resonance. According to the linear response theory, one obtains

ħhΦ(Ω) = (δJ)2(P+ − P−)δ(ħhΩ−∆E) , (9)

where the delta function δ(ħhΩ−∆E) imposes the relevant resonance condition. To regularize
this function, one needs to take into account the effects of small, but finite, J/U: the hopping
term in Eq. (3) transforms the single particle states into “conduction bands” of width Λ= 4dJ .
To model this effect, we substitute the delta function in Eq. (9) by a square function of width
2Λ, namely δ(ħhω) = [Θ(ħhω > −Λ)−Θ(ħhω > Λ)]/(2Λ), where Θ is the Heaviside function.
In Fig. 1, we plot the resulting heating rates in d = 1, obtained from the numerical solution of
our semiclassical approach, Eq. (6)-(9), for different values of the temperature 5. We find that
the heating rate is exponentially suppressed for all temperatures and, at large temperatures,
inversely proportional to the temperature.

To gain physical insight into this result, we now develop an analytical high-temperature
expansion. In the limit of T → ∞, the distribution function is solely determined by the
conservation laws and

Pi(n) = Z−1
0 exp

�

−
µn
kB T

�

≡ Z−1
0 zn , (10)

with Z−1
0 = 1− z and z = n̄/(1+ n̄) 6. By combining Eqs. (6) and (10), we obtain

P+ = (1− z)2
∞
∑

n=nΩ

z2n−nΩ+1 =
1− z
1+ z

zħhΩ/U+1 , (11)

P− = (1− z)2
∞
∑

n=nΩ+1

z2n−nΩ−1 =
1− z
1+ z

zħhΩ/U+1 . (12)

Note that the two sums have different lower limits because P+ can occur only if n j ≥ 1, while
P− occurs for all n j ≥ 0. Because P+ = P−, the net energy absorption is zero, Φ= 0. This result
is not surprising: infinite temperature ensembles do not absorb energy!

We can use this result as the starting point of a perturbative analysis. By approximating
Eq. (8) as P ≈ Z−1

0

�

1− Un2/(2kB T )
�

e−µn 7 we obtain

P± = Z−2
0

∑

ni−n j=nΩ±1

�

1−
U

2kB T
(n2

i + n2
j )
�

zni zn j , (13)

leading to (see symbolic script in appendix B)

P+ − P− =
ħhΩ
kB T

1− z
1+ z

zħhΩ/U+1 . (14)

5The script used to generate this figure is given in Appendix A.
6Eq. (10) can be formally derived by considering Eq. (8) in the limit T →∞, at a fixed µ/T , such that U � T

can be neglected.
7Here we are neglecting the corrections due to the renormalization of the partition function, Z0. These correc-

tions are identical in P+ and P− and cancel out.
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Figure 1: Heating rate of the Bose-Hubbard model at n̄= 1 for J/U = 0.05: (i)
High-temperature expansion, Eq. (15) (dashed line); (ii) Semiclassical approxima-
tion based on Eqs. (6) - (8) (dotted lines); (iii) Exact diagonalization of N = 9 par-
ticles on L = 9 sites (continuous curves).

In particular, at n̄= 1 (z = 1/2), we obtain

Φ(Ω) =
(δJ)2Ω
24JkB T

exp
�

− log(2)
ħhΩ
U

�

. (15)

Eq. (15) shows that, in the regime of U � J and at very high temperatures, the heating rate of
the Bose-Hubbard model is an exponential function of the ratio between the driving frequency
and the onsite interaction. At intermediate temperatures, the heating rate is additionally sup-
pressed by the fact Un2/(2kB T ) in Eq. (8), leading to a faster-than-exponential decay of Φ(Ω),
see Fig. (1). Hence, Eq. (15) can be considered as an upper bound of the heating rate at all
temperatures.

We now compare the results of our semiclassical approximation with the exact diagonal-
ization of the Bose-Hubbard model. At finite temperatures, linear response gives [25]

ħhΦ(Ω) =
δJ2

2L

∑

m,n

|〈ψn|V |ψm〉|
2δ(En − Em −ħhΩ)

1
Z

�

e−Em/kB T − e−En/kB T
�

. (16)

Here |ψn〉 and En are, respectively, the eigenstates and eigenvalues of the average Hamiltonian
Hav at n̄ = 1 and V =

∑

〈i, j〉 b†
i b j + H.c. is the time-dependent perturbation. We evaluate

this quantity numerically for N = 9 particles on a one dimensional lattice with L = 9 sites
(n̄ = N/L = 1) and open boundary conditions 8. To mitigate the effects due to the finite
dimension of the lattice, we have regularized the delta function of Eq. (16) using the above-
mentioned square function with Λ = 2J . Because the maximal number of particles per site
is always smaller or equal to the total number of particles N , we need to restrict ourselves to
frequencies Ω, such that nΩ < N , or ħhΩ < NU 9. As shown in Fig. 1, for all temperatures
T > U the results of our numerical calculations are well approximated by the semiclassical
description.

8The numerical calculation was performed using QuSpin package, [28, 29], version 0.3.3 for Python2.7 on a
personal computer with an Intel core i7 (8th generation) CPU and 24 GB RAM. The script used to generate Fig. 1 is
given in appendix C and required approximately 2 seconds, 30 seconds, 15 minutes, 6 hours for N = L = 6,7, 8,9,
respectively

9Finite size effects are further studied in Appendix D, where we show the results of the calculation for N = 2
to N = 9 particles
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3 Weak interactions (U � J)

We now turn to the other extreme limit, where the interactions are small in comparison to the
kinetic energy and can be treated perturbatively. The periodically driven Bose-Hubbard model
of Eq. (3) can be written as the sum of a time-independent part H = H0 +Hint and a periodic
drive, δJ cos(Ωt)V , with

H0 =
∑

k

(εk −µ)b
†
k bk , (17)

Hint =
U
2

∑

p′,k′,p

b†
p′ bk′ b

†
p bp+p′−k′ ,

V =
∑

k b†
k bk, and (in d = 1) εk = 2J0 [1− cos(k)], bk = L−1/2

∑

x eikx bx . Using this notation,
the heating rate of Eq. (9) takes the form

ħhΦ(Ω) =
(δJ)2

2ħhL

∫ ∞

0

dτ e−iΩτ〈[V (t +τ) , V (t)]〉T , (18)

where the square brackets denote a commutator and 〈...〉T is the expectation value with respect
to a thermal state of the time-independent Hamiltonian H0 + Hint at temperature T . This
expression can be computed numerically using path integrals techniques, either as the analytic
continuation of an imaginary-time correlator, or as a real-time (Keldysh) response function.

In what follows, we present a semiclassical approach, aimed at computing Φ for U � J .
As we will show below, our approach captures the correct scaling laws of Φ and highlights
its exponential suppression at large frequencies. We treat the eigenstates of H0 as classical
particles (quasiparticles), that are created by the interaction term Hint. The probability to
observe a process involving the nth order of Hint is given by

P(n) =
1
n!

�

U
J

�n

. (19)

Here, the factor n! derives from the nth order Taylor expansion of the exponent used in the
perturbation theory. At zero temperature, this process creates up to nqp = n/2+ 1 quasipar-
ticles. This relation is justified by the diagrams shown in Fig. 2, which demonstrate that the
leading order contribution to the creation of nqp quasiparticles involves n= 2nqp−2 vertexes.
From a semiclassical perspective, this relation indicates that the second order perturbation
creates two quasiparticles (nqp = 2 for n= 2), and that the number of quasiparticles increases
by one for every two additional orders of perturbation.

We now use the statistical approach of Eq. (9) to compute the heating rate. A many-body
resonance condition is satisfied when the total energy is conserved, namely if ħhΩ=

∑nqp

j=1 εk j
<

4Jnqp. Hence, the lowest order resonance is obtained for n∗qp = dΩ/4Je, where d...e is the ceil

function. The heating rate is, then, given by ħhΦT=0 = (δJ)2P(n)/J , or

ħhΦT=0(Ω) =
(δJ)2

J(2n∗qp − 2)!

�

U
J

�2n∗qp−2

. (20)

In Fig. 3(a) we compute ΦT=0(Ω) as a function of U/J using the exact diagonalization of a
finite-size system (L = N = 9) and show that Eq. (20) captures the correct scaling behavior.
As one increases the driving frequency Ω, the heating rate is dominated by higher orders of
perturbation theory in U/J . Hence, at a fixed U/J < 1, the heating rate decreases exponen-
tially with Ω. To see this effect, we consider a smooth version of Eq. (20) by approximating
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Figure 2: Representative diagrams for the leading contributions in the second (n= 2)
and fourth (n= 4) orders of the perturbative expansion. The annihilation (creation)
operators are denoted by outgoing (incoming) arrows, from left to right. The maxi-
mal number of simultaneous quasiparticles is nqp = 2 and nqp = 3 for the second and
fourth orders, respectively. All other diagrams of the same order (i.e. with the same
number of vertexes) create less quasiparticles. The generalization to higher order
diagrams is straightforward and shows that the nth-order perturbation can create up
to nqp = n/2+ 1 quasiparticles.

dxe ≈ x + 1/2 and substituting n!→ Γ (n), leading to

ħhΦ(Ω) =
(δJ)2

JΓ (ħhΩ/2J − 1)

�

U
J

�
ħhΩ
2J −1

. (21)

This expression is found to be in quantitative agreement with the exact diagonalization calcu-
lations, see Fig. 3(b).

Figure 3: (a) Heating rate (normalized by ΦN ≡ Φ(U/J = 0.1)) as a function of
U/J for different values of Ω: the analytical result, Eq. (20) (dashed curves) is in
quantitative agreement with the exact diagonalization of the Bose-Hubbard model,
for N = L = 9 (dots).(b) Heating rate as a function of Ω, for different values of U/J :
the analytic result, Eq. (21) (dashed curves) is in quantitative agreement with the
exact diagonalization result (continuous curves).

We now study the temperature dependence of the heating rate by considering the statistical
properties of the aforementioned semiclassical quasiparticles. For simplicity, we approximate
the band structure ε(k) as two plateaus, one at εk=0 = −2J and one at εk=π = 2J . In this sim-
plified model, the creation of a quasiparticle involves an energy jump of∆ε = 4J . This event is
possible only if the k = 0 state is full and the k = π state is empty. The probability to excite nqp
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Figure 4: Heating rate as a function of Ω, for different values of the temperature
T : the analytical result, Eq. (22) (dashed lines) agrees quantitatively with the exact
diagonalization for a wide range of temperatures, up to kB T/J ¦ J/U .

quasiparticles simultaneously is, then, [ fk=0(1− fk=π)− fk=π(1− fk=0)]
nqp = ( fk=0− fk=π)

nqp ,
where fk = (e(ε−µ)/kB T − 1)−1 is the Bose-Einstein distribution function and the chemical po-
tential µ is determined by the condition fk=0 + fk=π = 1. The resulting heating rate is

Φ(Ω) = ΦT=0(Ω)
�

1
e−µ/kB T − 1

−
1

e(4J−µ)/kB T − 1

�
ħhΩ
4J +

1
2

, (22)

where ΦT=0 is given in Eq. (21). As shown in Fig. 4, Eq. (22) (dashed lines) agrees well
with the numerical solution for a wide range of temperatures. At very large temperatures,
when kB T/J approaches J/U , the sub-leading orders of our perturbative approach become
non-negligible and the analytical expression deviates from the exact numerical results. Note
that as the temperature increases, the thermal weight in the square brackets of Eq. (22) goes
to zero. Consequently, the zero-temperature expression Eq. (21) provides an upper bound for
the exponential suppression, which persists at all temperatures.

4 Conclusion

To summarize, we discussed the differences between rigorous [3–7] and statistical [21] Floquet
prethermalization. The former approach relies on the boundedness of quantum operators and
applies to spin models only. See also Ref. [30], where it was shown that the rigorous approach
applied to systems of interacting particles with an unbounded spectrum does not lead to expo-
nential bounds on diffusion rates. The latter approach relies on the statistical description of the
prethermal state and applies to a wider range of models, including interacting particles in a lat-
tice and in the continuum [31]. A key difference between these two approaches is that, while
the rigorous approach is independent on the initial state, the statistical approach depends on
the initial state, through its (quasi)conserved quantities, such as energy and particles’ number.

In this article, we applied the statistical argument to the periodically driven Bose-Hubbard
model, which has been recently realized experimentally [25]. We developed two semiclassical
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descriptions of Floquet prethermal states, valid in two extreme regimes. The first limit corre-
sponds to strong interactions and large temperatures (U > kB T � J), where the suppressed
heating rate is the outcome of the low probability to find many particles on a single site. The
second limit corresponds to low temperatures and weak interactions (kB T < U � J) and is
relevant to the experiment of Ref. [25]. Here, the exponential suppression results from the
low probability to create simultaneously many quasiparticles in momentum space. In both
limits, we described the system semiclassically and applied statistical arguments to derive an
analytical expressions for the heating rate Φ as a function of the driving frequency Ω and of
the temperature T . These expressions are found to match the results of the exact diagonaliza-
tion of the model, without any fitting parameter. Importantly, we demonstrated that in both
regimes, the exponential suppression of the heating persists at all temperatures.

In this aspect, the Bose-Hubbard model differs from the coupled rotors model of Refs. [15–
19,21], where the exponential suppression of heating disappears at large temperatures, even-
tually leading to a runaway from the prethermal regime. This fundamental difference stems
from the nature of the conserved quantities of the two models: In the rotor model, the con-
served quantity, namely the momentum of the rotors pi , is a continuous variable and can ac-
quire both positive and negative values. At large temperatures, the fluctuations of pi diverge
making the exponential suppression of heating ineffective. In contrast, in the Bose-Hubbard
model, the conserved quantity, namely the particles’ number is non-negative. If the expecta-
tion value of ni is kept fixed, the fluctuations of this quantity remain finite and the heating
rate is suppressed at all temperatures. The prediction of the two models coincide when the
average number of particles per site is taken to infinity (n̄→∞).

Our semiclassical approach disregards effects associated with quantum coherence. In the
case of a single kicked rotor, quantum coherence strongly suppresses heating through dynam-
ical localization in energy space [32, 33]. Accordingly, it was recently shown that dynamical
localization can lead to ergodicity breaking in many-body kicked models, such as coupled ro-
tors [34] and the Bose-Hubbard model [35]. However, as conjectured in Ref. [36], dynamical
localization is probably restricted to kicked models and, hence, is not relevant to the present
study, where we considered a sinusoidal time dependence.
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A Matlab script used to plot the semiclassical approximation in
Fig. 1

1 c l o s e a l l ; c l e a r a l l
2 syms n ; syms U; syms mu
3

4 %Temperature i s s e t to one
5 H = U n^2/2 + mu n
6 myUs=logspace(− log10 (100) ,− log10 (0.01) ,5)
7 %myUs=logspace ( −3 ,0 ,4)
8

9 %myUs=myUs( length (myUs) : −1:1)
10
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11 Nmax=60;
12

13 PP=zeros ( length (myUs) ,Nmax 2 /3 ) ;
14

15 f o r u=1: length (myUs)
16 myU=myUs(u)
17 Z = @(mymu) sum( double ( subs ( exp(−subs ( subs (H,U,myU) ,mu,mymu) ) ,n

, 0 :Nmax) ) ) ;
18 avn = @(mymu) sum( double ( subs (n exp(−subs ( subs (H,U,myU) ,mu,mymu

) ) ,n , 0 :Nmax) ) ) ;
19 avn2 = @(mymu) sum( double ( subs (n^2 exp(−subs ( subs (H,U,myU) ,mu,

mymu) ) ,n , 0 :Nmax) ) ) ;
20 eqn = @(mymu) avn (mymu)/Z(mymu)−1;
21

22 mymu = f z e ro (eqn ,1 )
23 myavn2(u)= avn2 (mymu)/Z(mymu)
24 P=exp(−subs ( subs (H,U,myU) ,mu,mymu) ) ;
25

26 f i g u r e (2)
27 semilogy ( subs (P , n , 0 :Nmax) ) ;
28 hold on
29 mylegend{u}=[ ’ k_BT/U= ’ , num2str (1/myU) ] ;
30

31 a l l P=double ( subs ( exp(−subs ( subs (H,U,myU) ,mu,mymu) ) ,n , 0 :Nmax) )/Z
(mymu) ;

32

33 f o r nOmega=1:(Nmax 2 /3 )
34 nn=nOmega :Nmax;
35 Pplus=sum( a l l P (1+nn) . a l l P (1+nn−nOmega+1)) ;
36 %add 1 because the f i r s t item of a l l P corresponds to n=0;
37 nn=(nOmega+1) :Nmax;
38 Pminus=sum( a l l P (1+nn) . a l l P (1+nn−nOmega−1)) ;
39 PP(u , nOmega)=2 ( Pplus−Pminus ) ;
40 end
41

42 f i g u r e (3)
43 semilogy ( [0 ,1 : (Nmax 2 /3 ) ] , [0 , PP(u , : ) /myU . ( 1 : Nmax 2 /3 ) ] , ’

l i newid th ’ , 1 .0 , ’ marker ’ , ’ . ’ , ’ markers ize ’ ,15 .0)
44 hold on ;
45 end
46

47 save ( ’ PP . mat ’ , ’ PP ’ , ’myUs ’ ) ;
48

49 nn=0:Nmax;
50 p lo t (nn , nn . ^ 2 . exp(− log (2) nn) /3 , ’ k−− ’ , ’ l i newid th ’ , 1 .0 , ’ marker ’ , ’ . ’

, ’ markers ize ’ ,15 .0) ;
51 mylegend{u+1}= ’ Eq . (13) ’ ;
52 rubio %p l o t s the i n s e t of F ig . 7 of Ref . [22] ( v2 )
53

54 x l a b e l ( ’ ${\ i t \Omega~~[U/\hbar ]}$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
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55 y l a b e l ( ’ $\Phi {\ i t k_B T~~[U^2/\hbar ]}$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
56 xlim ([0 ,45]) ; yl im ([1E−8 ,1]) ;
57

58 s e t ( gca , ’ fontname ’ , ’ t imes ’ ) ;
59 s e t ( gca , ’ f o n t s i z e ’ ,12) ;
60 s e t ( gca , ’ x t i c k ’ ,0 :10:50) ;
61 s e t ( gca , ’ y t i c k ’ ,10.^(−8:2:0) ) ;
62 legend ( mylegend , ’ l o c a t i o n ’ , ’ nor theas t ’ , ’ box ’ , ’ o f f ’ , ’ f o n t s i z e ’

,10)
63

64 s e t ( gcf , ’ c o l o r ’ , ’ white ’ ) ;
65 s e t ( gcf , ’ p o s i t i o n ’ ,[100 100 500 300]) ;
66 saveas ( gcf , ’ numerics . eps ’ , ’ epsc ’ )

B Matlab symbolic script used to derive Eqs. (11), (12), and (14)
1 syms a ; syms n ; syms nOmega
2 assume (a>0 & a<1)
3

4 symsum( â n , n ,0 , I n f )
5 s i m p l i f y ((1−a) ^2symsum(a^(2 n−nOmega+1) ,n , nOmega , I n f ) )
6 s i m p l i f y ((1−a) ^2symsum(a^(2 n−nOmega−1) ,n , nOmega+1, I n f ) )
7 Pplus=(1−a) ^2symsum((n^2+(n−nOmega+1)^2) a^(2 n−nOmega+1) ,n , nOmega

, I n f )
8 Pminus=(1−a) ^2symsum((n^2+(n−nOmega−1)^2) a^(2 n−nOmega−1) ,n ,

nOmega+1, I n f )
9 s i m p l i f y ( Pplus−Pminus )

C Python script used to plot the exact diagonalization in Fig. 1
1 #Study the temperature dependence of the heat ing ra t e in the Bose−

Hubbard model
2

3 from __future__ import p r in t _ func t i on , d i v i s i o n
4 import sys , os
5 import s c i py . io as sp io
6 import seaborn as sns
7

8 from quspin . opera tor s import hamil tonian # Hamiltonians and
opera tor s

9 from quspin . opera tor s import quantum_LinearOperator # opera tor s
10 from quspin . b a s i s import boson_basis_1d # bosonic H i l b e r t space
11 import time
12 import numpy as np # genera l math func t i on s
13 import ma tp lo t l i b . pyp lo t as p l t # p l o t t i n g l i b r a r y
14 #
15 #p l t . rcParams [ " fon t . fami ly " ] = " Times New Roman"
16

17 ##### def ine model parameters
18 # i n i t i a l seed f o r random number generator
19 np . random . seed (0) # seed i s 0 to produce p l o t s from QuSpin2 paper
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20 # s e t t i n g up parameters of s imula t ion
21 L = 8 # length of chain
22 N = L # number of s i t e s
23 nb = 1 # dens i t y of bosons
24 sps = L+1 # number of s t a t e s per s i t e
25

26 J_par = 0.05; U = 1 .0 ; gamma=2 J_par ; Emax=9.5; Nomega=200;mylim=[1
e−10 ,2]; a l l T =[100 ,10 ,1 ,0.1 ,0.01] ; un i t= ’U ’ ; PBC=Fa l se

27

28 p l t . f i g u r e (1 , f i g s i z e =(5 ,5) )
29 sp=sns . c o l o r _ p a l e t t e ( ’ j e t _ r ’ ,5) ;#dark#rainbox
30 p l t . subp lo t (212)
31

32 #### Numerics : D iagona l i z ing Hamiltonian
33 f i lename = " /data/ED3_JoU "+s t r ( J_par/U)+" _N"+s t r (N)+" _PBC "+s t r (PBC)
34 i f not os . path . e x i s t s ( f i lename+" a l l E . npy " ) :
35 p r i n t ( " Running " , f i lename )
36 t i c=time . time ()
37 ##### s e t up Hamiltonian and observab le s
38 i n t _ l i s t _ 1 = [[ −0 .5 U, i ] f o r i in range (N) ] # i n t e r a c t i o n $−U/2

\sum_i n_i$
39 i n t _ l i s t _ 2 = [ [ 0 . 5 U, i , i ] f o r i in range (N) ] # i n t e r a c t i o n : $U

/2 \num_i n_i 2̂$
40 i f PBC :
41 h o p _ l i s t = [[−J_par , i , ( i+1)%N] f o r i in range (0 ,N,1 ) ] # PBC
42 e l s e :
43 h o p _ l i s t = [[−J_par , i , i+1] f o r i in range (0 ,N−1,1) ] # OBC
44 hop_ l i s t _hc = [[ J . conjugate () , i , j ] f o r J , i , j in h o p _ l i s t ] # add

h . c . terms
45 # s e t up s t a t i c and dynamic l i s t s
46 s t a t i c = [
47 [ "+−" , h o p _ l i s t ] , # hopping
48 [ "−+" , hop_ l i s t _hc ] , # hopping h . c .
49 [ " nn " , i n t _ l i s t _ 2 ] , # U n_i 2̂
50 [ " n " , i n t _ l i s t _ 1 ] # −U n_i
51 ]
52

53 #Note tha t " pe r tu rba t ion " i s p ropor t i ona l to J_par −−> need to
devide Phi by J_par 2

54 per tu rba t ion = [
55 [ "+−" , h o p _ l i s t ] , # hopping
56 [ "−+" , hop_ l i s t _hc ] # hopping h . c .
57 ]
58 dynamic = [] # no dynamic opera tor s
59

60 b a s i s = boson_basis_1d (N, nb=nb , sps=sps )
61 p r i n t ( " t o t a l H−space s i z e : {} " . format ( b a s i s . Ns) )
62

63 H_BHM = hamil tonian ( s t a t i c , dynamic , b a s i s=bas i s , dtype=np .
complex128 )
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64 a l lE , a l l V=H_BHM. eigh ()
65 hop=hamil tonian ( per turbat ion , dynamic , b a s i s=bas i s , dtype=np .

complex128 )
66 matrix_elem2=np . power (np . abs (( hop . ro ta te_by ( a l lV , generator=

Fa l se ) ) . toa r ray () ) ,2) ;
67

68 np . save ( f i lename+" a l l E . npy " , a l l E )
69 np . save ( f i lename+"me. npy " , matrix_elem2 )
70 toc=time . time () ; p r i n t ( " Time : " , toc−t i c )
71

72 e l s e :
73 p r i n t ( ’ Loading ’ , f i lename )
74 a l l E=np . load ( f i lename+" a l l E . npy " )
75 matrix_elem2=np . load ( f i lename+"me. npy " )
76

77

78 #### Numerics : Computing the spectrum
79 allomega=np . l i n s p a c e (0 ,Emax , Nomega) ;
80

81 f o r c in range ( len ( a l l T ) ) :
82

83 T=a l l T [ c ]
84 t i c=time . time ()
85 f i lename2 = f i lename+" _T "+s t r (T)+"_gamma"+s t r (gamma)+" _Emax "+

s t r (Emax)+" _Nomega "+s t r (Nomega)
86

87 i f not os . path . i s f i l e ( f i lename2+" . npy " ) :
88 p r i n t ( ’ Running ’ , f i lename2 )
89 a l l P h i=np . zeros (Nomega) ;
90

91 Ej , Ek = np . meshgrid ( a l lE , a l l E ) ;
92

93 Z=np . sum(np . exp(−( a l lE−a l l E [0 ]) /T) ) ;
94 P j = np . exp(−(Ej−a l l E [0 ]) /T)/Z ;
95 Pk = np . exp(−(Ek−a l l E [0 ]) /T)/Z ;
96

97 P0 = (Pk−P j ) matrix_elem2
98 f o r w in range (Nomega) :
99 del taE=Ej−Ek−allomega [w]

100 a l l P h i [w]=np . sum(( P0 ( deltaE<gamma) ( deltaE>−gamma)/
gamma/2) )

101

102 toc=time . time ()
103 p r i n t ( " Time : " , toc−t i c )
104 np . save ( f i lename2+" . npy " , a l l P h i ) ;
105 e l s e :
106 p r i n t ( ’ Loading ’ , f i lename2 )
107 a l l P h i=np . load ( f i lename2+" . npy " ) ;
108

109 p l t . semilogy ( allomega , T a l l P h i /(1e−15+allomega )/ J_par 2 / L/2 ,

14

https://scipost.org
https://scipost.org/SciPostPhys.11.2.040


SciPost Phys. 11, 040 (2021)

l a b e l="T/U= "+s t r (T) , co lo r=sp [ c ] ) ;#sp ( c o l o r i [ c ] ) ) ;
110

111

112 #### S e m i c l a s s i c a l approximation ( laoding from Matlab )
113 mat = sp io . loadmat ( ’ . . / PP . mat ’ , squeeze_me=True )
114 PP=mat [ ’ PP ’ ]
115 myUs=mat [ ’myUs ’ ]
116 p r i n t ( ’ Loaded theory f o r T/U ’ ,1/myUs)
117 sh=PP . shape
118 Nmax=sh [1 ] ;
119

120 f o r s in [1 ,2 ] :
121 ax=p l t . subp lo t (210+ s )
122 nn=np . ar ray ( range (1 ,45) )
123 p l t . semilogy (nn , 1 / 3 np . power (1/2 ,nn/U)/2/gamma, ’ k . : ’ , l a b e l=" Eq .

(13) " )
124 nn=np . ar ray ( range (1 ,Nmax+1))
125 f o r i in range ( sh [0 ]) :
126 p l t . semilogy (nn , PP [ i , : ] /myUs[ i ]/nn/2/gamma, ’ . : ’ , l a b e l=r ’

$k_B T/ ’+un i t+ ’= ’+s t r (1/myUs[ i ] )+" $ " , co lo r=sp [ i ] )#sp (
c o l o r i [ i ] ) ) ;

127 p l t . x l a b e l ( r " $\Omega\ [ "+un i t+" /\hbar ]$ " ) ;
128 p l t . y l a b e l ( r " $ \ l e f t (\ Phi k_B T\ r i g h t )\ /\ (\ Del ta J^2\ \Omega)

\ [\ hbar/ "+un i t+" ]$ " ) ;
129 box = ax . g e t _ p o s i t i o n ()
130 p r i n t ( box )
131 p l t . yl im (mylim) ;
132 ax . s e t _ p o s i t i o n ( [ box . x0+0 .05 box . width , box . y0+0 .05 box . he ight

(3 − s ) , box . width , 0 . 9 5 box . he ight ] )
133 p l t . y t i c k s ([1 e−10,1e−8,1e−6,1e−4,1e−2 ,1])
134

135 p l t . subp lo t (211)
136 p l t . xl im ( [0 ,Nmax+5]) ;
137 p l t . legend ( loc=1)
138 p l t . subp lo t (212)
139 p l t . xl im ( [0 ,Emax] ) ;
140 p l t . s a v e f i g ( " . . / "+f i lename [5:]+ " . pdf " )
141 p l t . show ()
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D Finite size effects
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Figure 5: Same as Fig. 1 for N particles on L sites. No fitting parameter is used. The
semiclassical approximation matches the exact results for frequencies ħhΩ< N/U and
temperatures kB T > U .
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