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Abstract

Understanding multipartite entanglement is vital, as it underpins a wide range of
phenomena across physics. The study of transformations of states via Local Operations
assisted by Classical Communication (LOCC) allows one to quantitatively analyse entan-
glement, as it induces a partial order in the Hilbert space. However, it has been shown
that, for systems with fixed local dimensions, this order is generically trivial, which pre-
vents relating multipartite states to each other with respect to any entanglement mea-
sure. In order to obtain a non-trivial partial ordering, we study a physically motivated
extension of LOCC: multi-state LOCC. Here, one considers simultaneous LOCC transfor-
mations acting on a finite number of entangled pure states. We study both multipar-
tite and bipartite multi-state transformations. In the multipartite case, we demonstrate
that one can change the stochastic LOCC (SLOCC) class of the individual initial states
by only applying Local Unitaries (LUs). We show that, by transferring entanglement
from one state to the other, one can perform state conversions not possible in the single
copy case; provide examples of multipartite entanglement catalysis; and demonstrate
improved probabilistic protocols. In the bipartite case, we identify numerous non-trivial
LU transformations and show that the source entanglement is not additive. These results
demonstrate that multi-state LOCC has a much richer landscape than single-state LOCC.
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1 Introduction

Multipartite entanglement is a central phenomenon across quantum theory, underpinning
large swathes of physical phenomena. In condensed matter physics, entanglement charac-
teristics of many-body systems can be utilized to study phase transitions [1] and to derive
numerical algorithms using tensor network states [2–4]. Within quantum information the-
ory, entanglement is considered to be the resource which allows quantum technologies to
outperform their classical counterparts. That is, having access to an entangled state enables
quantum information-processing tasks that cannot be achieved classically, such as teleporta-
tion [5], measurement-based quantum computation [6] and entanglement-based quantum
communication [7, 8]. Despite its importance, we are still far from a complete understand-
ing of entanglement. Any new insight into this intriguing property of quantum systems will
provide deeper understanding of its relevant applications and advance the fields related to it.

The predominant feature of entanglement is that it cannot be created locally. For this
reason, entanglement is often studied in the physical framework of the “distant labs” model, in
which individual labs, which share a multipartite state, are spatially separated and constrained
to apply Local quantum Operations, possibly assisted by Classical Communication (LOCC). As
entanglement cannot be created or enhanced using LOCC, if a state can be transformed into
another via LOCC, it has to be at least as entangled as the final state. As a consequence, LOCC
induces a partial order on the Hilbert space and any entanglement measure, i.e. any function
quantifying the entanglement resource of states, has to be non-increasing under LOCC [9].
This order is only partial as there exist pairs of states which are incomparable under LOCC,
i.e. neither can reach the other via LOCC. States which can be generated locally (if no super-
selection rules or the like are imposed [10]) can be described as a convex combination of
product states and are called separable states. Hence, in the resource theory of entanglement,
the free states are separable states and the free operations are precisely LOCC [9,11–13].

The characterization of pure-state entanglement was particularly successful in bipartite
systems, for which Nielsen’s celebrated majorization criterion [14] gives a necessary and suf-
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ficient condition for the existence of LOCC transformations between pure states. Moreover, as
a direct consequence of Nielsen’s criterion, there exists (up to local unitaries) only one max-
imally entangled state, from which the whole Hilbert space is accessible via LOCC. Further-
more, although entangled states that are not maximally entangled cannot be deterministically
transformed into the maximally entangled state of the Hilbert space, such a transformation
is always possible via a Stochastic LOCC (SLOCC) protocol, i.e. an LOCC protocol with non-
vanishing probability of success. Therefore, all entangled bipartite states (with the same local
ranks) form a single SLOCC equivalence class [15]. Finally, in the asymptotic limit, copies of
a bipartite state can be deterministically and reversibly converted into maximally entangled
states at a rate given by the Von Neumann entropy of the reduced state [16,17]. Consequently,
both in the single copy regime and in the asymptotic limit, one can study pure-state bipartite
entanglement through maximally entangled states. The intermediate regime of a finite num-
ber of copies was studied [18] and an optimal protocol for entanglement concentration was
provided [19].

Although LOCC has, by definition, a very complicated mathematical structure [12, 20],
with a possibly unbounded number of rounds of communication between the parties, bipar-
tite LOCC protocols can always be reduced to simple one-round protocols [21]. This is not the
case for multipartite LOCC, for which it has been shown that certain LOCC protocols require
an unbounded number of communication rounds [22]. Similarly, even though most known
multipartite LOCC transformations are all-deterministic (i.e. do not need any probabilistic in-
termediate steps) [23,24], it was shown that some LOCC transformations cannot be achieved
without probabilistic steps [25]. This results in multipartite LOCC being much more compli-
cated to characterize than bipartite LOCC [12,20].

Even in three-qubit systems, there are considerable differences to bipartite systems. There
exist two distinct SLOCC classes of fully-entangled three-qubit states [15]. This means that
there are two different (and incomparable) types of entanglement for three-qubit states, in
contrast to the single type of bipartite entanglement. This also implies that there does not
exist a single maximally entangled state of three qubits. The maximally entangled state of
bipartite systems can be generalized into a set [26], called the Maximally Entangled Set (MES),
containing the minimal number of states required to reach the whole Hilbert space via LOCC
transformations. Though of zero measure in the Hilbert space of three-qubit states, this set
nevertheless contains an infinite number of states [26].

The problem only worsens with larger system sizes and/or higher dimensions. First, there
is generically an infinite number of SLOCC classes [27]. Second, for homogeneous systems
(i.e. multipartite systems with subsystems of equal dimension) of at least four parties, almost
all pure states are isolated under LOCC [26,28–30]. That is, almost all pure states can neither
be reached from, nor transformed into, any other pure state via LOCC. As a consequence, the
partial order induced by LOCC is generically trivial and the MES is of full measure in the Hilbert
space. These results show that, given an arbitrary multipartite state (from a homogeneous
system), it is generically impossible to find another state which is less entangled with respect
to all entanglement measures. Moreover, the optimal resource, i.e. the MES, has full measure
in the considered Hilbert space.

Nonetheless, the identification of the optimal resource is crucial in recognizing new appli-
cations of multipartite entanglement. In this sentiment, various approaches have been pursued
to identify an optimal resource, and both mathematically [31–34] and physically [35–38]mo-
tivated extensions of LOCC have been considered. Here, we focus on a physical extension,
which is to characterize LOCC in the multi-state (non-asymptotic) setting. This setting is in-
deed very practical as, assuming the parties have access to a quantum memory, it amounts to
several labs trying to combine the resources of several shared states by acting simultaneously
(though still locally) on them. Even though one would, in such a practical setting, inevitably
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have to deal with mixed states, we focus here on pure state transformations for two reasons.
First, from a theoretical point of view, understanding pure state transformations is a necessary
step towards the study of mixed state transformations. Second, for experimental states that are
“close” enough to pure states, the pure state transformations hold up to a certain fidelity of the
final states. Consider an impossible transformation |ψ〉9LOCC |ψ̄〉, with |ψ〉 , |ψ̄〉 elements of
the same Hilbert space, H. Appending an auxiliary state |φ〉 (which does not necessarily be-
long toH), as an additional resource, may enable the transformation |ψ〉⊗|φ〉 →LOCC |ψ̄〉⊗|φ̄〉
for some state |φ̄〉 (see Fig. 1). Multi-state LOCC transformations have been studied in vari-
ous contexts, such as in catalytic transformations, where the auxiliary state must be preserved
through the transformation [39]. Diverting from deterministic transformations, also SLOCC
catalysis has been investigated in [40].

Figure 1: Illustration of an LOCC transformation between the states |ψ〉 and |φ〉 that
is not possible in the single-state regime, but that becomes possible in the multi-state
regime, by adding the auxiliary state, |ψ̄〉. Locality is now defined to include parts
of both states. Note that transformations of the target state under LOCC are clearly
a subset of transformations of the target state under multi-state LOCC.

There are several remarks in order. First, if new transformations from k copies of a state to
k copies of another state can indeed be achieved, one could sort the entanglement contained
in the states according to the ordering achieved in this specific multi-state setting, which could
now be non-trivial. Second, note that this new order depends on the dimension of the Hilbert
space to which the auxiliary state belongs. Note further that, even though transformations in
the higher dimensional Hilbert space will generically still not be possible (for homogeneous
systems), this does not imply that a multi-state transformation is generically not possible.
The reason for this is that the multi-states are of measure zero in the whole Hilbert space.
Finally, multi-state transformations could allow one to reach a state inside the MES from states
outside the MES, which could imply that the multi-state equivalent of the MES is strictly smaller
than the MES. Characterizing such a multi-state MES could be a step towards its reversible
asymptotic version, called the Minimal Reversible Entanglement Generating Set (MREGS),
introduced and studied in Ref. [41].

In this paper, we investigate LOCC multi-state transformations, both in the multipartite
and bipartite settings. In both cases, we focus on two-state LOCC and investigate new trans-
formations that arise in this setting. We show that, already in that case, the multi-state regime
provides a much richer landscape of LOCC transformations than the single-state regime.

For multipartite states, we illustrate how much more powerful LOCC is in the multi-state
regime by describing important new types of transformations this regime enables. For instance,
even if the overall tensor products of the initial and final states are in the same SLOCC class,
we show that a multi-state transformation can deterministically change the SLOCC class of the
individual states with only Local Unitaries (LUs). In light of this possibility, it appears that one
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has to consider, as potential final states, states belonging to a different SLOCC class (which
generically means an infinite number of possibilities). As a consequence, the tools used to
study LOCC transformations in the single-state regime cannot be used in the multi-state case.
This suggests that characterizing all possible multi-state transformations is a formidable chal-
lenge. We nevertheless demonstrate important new features of multi-state transformations.
For instance, we show that a state from the MES can be reached from two copies of a state
outside the MES and that multipartite catalytic transformations can be achieved. In the event
a multi-state transformation cannot be performed deterministically, we demonstrate that the
maximum success probability of a joint multi-state transformation can be greater than the
probability of transforming both states independently. Furthermore, we show it can be greater
than even the maximum probability of either single-state transformation. Therefore, the multi-
state regime also provides an advantage in probabilistic settings.

Regarding bipartite states, they have the big advantage that their entanglement can be
studied through Schmidt coefficients, which naturally extends to the multi-state regime. Since
Nielsen’s majorization criterion also extends to the characterization of multi-state LOCC trans-
formations of bipartite states, one could think that such transformations are simple to char-
acterize. However, the difficulty stems from sorting the products of Schmidt coefficients that
one gets in the multi-state regime (which is necessary for verifying the majorization condi-
tion). Such transformations have only been characterized assuming extra constraints, such as
considering catalytic transformations [39, 42, 43]. In order to start systematically investigat-
ing bipartite entanglement in the multi-state regime, we focus here on LU transformations.
Multi-state LU transformations have also been studied in the context of entanglement embez-
zlement [44]. In this paper, we give a full characterization of all possible transformations of
a 2-qubit state (using an auxiliary state of arbitrary dimension) under LUs acting on the two
states. This result then allows us to show that such LUs provide non-trivial transformations in
almost all pairs of bipartite systems. Using then some of these non-trivial transformations, we
demonstrate that the source entanglement [45] is a non-additive entanglement measure.

The remainder of the paper is structured as follows. In Section 2, we set up mathemati-
cal notations for the rest of the paper and review known results regarding multipartite LOCC
transformations. In Section 3, we set the stage for our investigations of multi-state transfor-
mations. Section 4 is dedicated to multi-state multipartite LOCC transformations. We then
consider bipartite multi-state transformations in Section 5. We finally draw conclusions in
Section 6.

2 Preliminaries

In this section, we set out our notations and introduce mathematical tools that we will
use throughout this paper. We also recall some important previous results about the char-
acterization of LOCC state transformations. We consider multipartite states from the Hilbert
space, H ∼=

�

Cd
�⊗n

, i.e. n-partite states with local dimension d. Two states |ψ〉 and |φ〉
are in the same SLOCC (resp. LU) class if they can be inter-converted via an SLOCC (LU)
protocol. Stated mathematically, this is the case if and only if there exists a set of invert-
ible operators {g(i) ∈ GL(d,C)}ni=1 (resp. unitary operators {g(i) ∈ U(d,C)}ni=1 ), such that
⊗n

i=1 g(i) |ψ〉= |φ〉 [15]. Throughout this paper, we will use superscripts to denote the subsys-
tem local operators act on.

Not all SLOCC equivalence classes possess the same properties; they are classified in three
different orbit types [46–49]. An SLOCC class is called polystable if it contains a critical state,
i.e. a state for which all the single-party reduced density operators are maximally mixed.
Critical states, such as the 3-qubit GHZ state, |GHZ〉 ≡ 1p

2
(|000〉 + |111〉), can be regarded
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as highly entangled in the sense that they maximize many entanglement monotones [49]. In
contrast, an SLOCC class from the null-cone contains entangled states, such as the 3-qubit W
state, |W〉 ≡ 1p

3
(|001〉+ |010〉+ |100〉), for which the aforementioned monotones vanish. The

last type of SLOCC class corresponds to classes which contain the so called strictly semistable
states (see Appendix A for more details). Because LU operations are a trivial kind of LOCC,
that can be applied to any state, we consider LOCC transformations that consist only of LUs
as trivial transformations and ignore them in the following. Stated differently, we study LOCC
transformations between LU equivalence classes of states. We restrict ourselves to studying
transformations between fully-entangled states. That is, states for which all the single-party
reduced density matrices ρi have full rank, i.e. for which rank (ρi) = d, ∀i ∈ {1, . . . , n}.

As will become apparent below, the local symmetries of states are central in the study of
possible LOCC transformations. For each SLOCC class, we choose a representative state |ψ〉,
called a seed state, and relate all the other states of the SLOCC class to |ψ〉 via local invertible
operators. Given a seed state |ψ〉, we define the stabilizer of |ψ〉, Sψ, as the set of local
invertible matrices that leave |ψ〉 invariant, i.e.

Sψ =
�

S =
n
⊗

i=1

S(i) ∈ GL(d,C)⊗n : S |ψ〉= |ψ〉
	

. (1)

Note that this set is not necessarily finite and that, from the stabilizer of a state, it is easy
to determine the stabilizer of all SLOCC-equivalent states. We also define the set Nψ as the
set of local singular matrices which annihilate |ψ〉, i.e.

Nψ =
�

N =
n
⊗

i=1

N (i) ∈Mat(d,C)⊗n : N |ψ〉= 0
	

. (2)

As explained in the introduction, multipartite LOCC has a complex mathematical struc-
ture. However, LOCC is a (strict [50–52]) subset of the mathematically considerably more
tractable class of Separable maps (SEP). A linear, completely positive, trace preserving map
from the set of bounded linear operators acting on H to itself, Λ : B(H) → B(H), is in SEP
if it admits a Kraus decomposition in which all Kraus operators are separable [53]. That is,
Λ is in SEP if Λ(X ) =

∑m
i=1 MiX M†

i for some {Mi}mi=1 ⊂ B(H) such that
∑m

i=1 M†
i Mi = 1 and

for all i, Mi = ⊗n
j=1M ( j)i for some {M ( j)i }

n
j=1. It is important to note that, in contrast to LOCC

transformations, SEP maps do not have a physical interpretation, as it has been realized that
not all SEP maps may be implemented through an LOCC protocol. Nonetheless, as an LOCC
transformation is also a SEP transformation, we can use SEP transformations as a superset of
the physical LOCC transformations.

In Refs. [29, 53], it was shown that, when restricted to transformations between fully-
entangled pure states, a state g |ψ〉 = ⊗n

i=1 gi |ψ〉 can be mapped to another state in the same
SLOCC class, h |ψ〉= ⊗n

i=1hi |ψ〉, via SEP if and only if there exists a set of probabilities {pi}mi=1
such that

1
r

m
∑

i=1

piS
†
i HSi + g†

∑

j

N †
j N j g = G , (3)

where Si ∈ Sψ, N j ∈ Ngψ, H = h†h, G = g† g and r = ||h |ψ〉 ||2/||g |ψ〉 ||2. We will use this
notation of G and H throughout this paper, with g and G always referring to the initial state,
and h and H always referring to the final state of the transformation. The invertible Kraus
operators of this SEP map are given by Mi = (

p

pi/r)hSi g
−1, and thus each Kraus operator

can be identified with a unique element of the stabilizer.
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If a SEP transformation is possible without the use of operators which annihilate the initial
state, then the transformation is said to be possible via SEP1. It must then satisfy

1
r

m
∑

i=1

piS
†
i HSi = G . (4)

It was shown in Ref. [29] that, considering pure state transformations, LOCCN protocols (those
which terminate after a finite number of rounds) are a strict subset of SEP1. However, it
remains an open question whether LOCC is a subset of SEP1.

As we already pointed out, Eq. (3) highlights the importance of local symmetries for SEP
(and therefore LOCC) transformations. In particular, in [28], it was shown that if the stabilizer
of a state |ψ〉 is trivial (i.e. Sψ = {1}), then no LOCC transformation from this state to any
other pure state is possible. Moreover, all states in the SLOCC class of |ψ〉 are then isolated
under LOCC, in the sense that they can neither be reached from, nor be transformed into, any
other state.

This has considerable implications for entanglement theory, as it was shown in [28, 30]
that in homogeneous systems of at least four parties (five parties for qubit systems), states are
generically in an SLOCC class with trivial stabilizer. Consequently, in these systems, almost all
states are isolated under LOCC and the MES is therefore of full measure.

In light of these results, LOCC transformations between multipartite states appear to be
rather exceptional. For this reason, one might want to relax some of the constraints and
consider, for example, probabilistic transformations. This has been done for both SEP and
LOCC transformations in the literature [53]. We highlight here some important results about
the maximum success probability of such transformations. Considering a probabilistic SEP
transformation from a state g |ψ〉 to another state h |ψ〉, and using the same notations as
before, the maximum probability of success for this transformation, pSEP

max, is given by1 [53]

pSEP
max =max

¨

∑

i

pi : rG −
∑

i

piS
†
i HSi ∈ sep

«

, (5)

where sep denotes the set of separable operators.
Adding some additional assumptions can make this success probability easier to compute.

For instance, if the stabilizer of g |ψ〉 is finite and unitary, then the previous equation reduces
to

pSEP
max =max

¨

p : rG −
p
|Sψ|

∑

i

S†
i HSi ∈ sep

«

, (6)

where |Sψ| is the number of elements in the stabilizer of |ψ〉.
Alternatively, if the stabilizer of a normalized seed state is unitary, then the maximum

success probability of reaching the seed state (i.e. H = 1) from any state g |ψ〉 is given by [53]:

pSEP
max (g |ψ〉 7→ |ψ〉) = λmin

�

G
||g |ψ〉 ||2

�

, (7)

where λmin [M] corresponds to the minimum eigenvalue of the operator M .
It was further shown in Ref. [28] that, if the stabilizer of |ψ〉 is trivial (as is particularly

relevant, as states in homogeneous systems generically have trivial stabilizer), then this trans-
formation can be implemented by an LOCC one-successful-branch protocol (OSBP) with prob-
ability equal to pSEP

max. Thus, for these transformations, we have pSEP
max = pLOCC

max . Note further

1Note that although they do not appear in the formula for computing pSEP
max, this result also holds when taking

into account operators from Ngψ, i.e. operators that annihilate the initial state. This is because, for probabilistic
SEP transformations, these singular operators can be included in a branch of the transformation that fails.
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that, thus, Eq. (7) fully characterizes the maximal success probability of any transformation
within an SLOCC class with trivial stabilizer.

This concludes our review of the tools that will be used throughout this paper. In the next
section, we give further details about the multi-state extension of LOCC that we investigate in
this paper.

3 Setting the stage and General observations

As mentioned in the introduction, the main goal of this paper is to investigate LOCC trans-
formations on multiple states as an extension of LOCC. We refer to this as the multi-state
regime. In this regime, given a target state |ψ〉, from some Hilbert space H, we want to inves-
tigate which state |φ〉 the state |ψ〉 can be transformed into if we append to it, as an additional
resource, an auxiliary state |ψ̄〉 and perform joint LOCC on the two states (see Fig. 1).

In a multi-state transformation, each party is still constrained to act locally, i.e. only on the
particles they control, and can classically communicate their measurement outcomes to the
other parties. Such a regime is physically motivated: if the n parties have access to a quantum
memory, they may store resourceful auxiliary states and then use them to transform the target
state. We impose only that the state-splitting is preserved after the transformation, i.e. that
the transformation takes the form

|ψ〉 ⊗ |ψ̄〉 → |φ〉 ⊗ |φ̄〉 , (8)

for some state |φ̄〉. If such a transformation is possible, we say that |ψ〉 is LOCC transformable
to |φ〉 with the help of an auxiliary system. As our intent is to better understand the mul-
tipartite entanglement contained in |ψ〉 and/or to relate it to the one contained in |φ〉, we
consider both states to belong to the same Hilbert space2. Note that specific types of multi-
state transformations may be used to induce a new partial order. Specifically, if, for some |ψ〉
that cannot be transformed to |φ〉, k copies of |ψ〉 can be transformed to k copies of |φ〉, then
considering LOCC under k copies will induce a different partial order in the Hilbert space than
single-state LOCC. Alternatively, if we constrain the auxiliary state to remain invariant, then
the transformation corresponds to entanglement catalysis (which has been extensively studied
for bipartite states [43,54]). Let us emphasize at this point that, contrary to other approaches
(see for instance Refs. [34,40]), we are working in the deterministic, non-asymptotic regime.

To achieve a multi-state transformation, we could in principle use auxiliary states |ψ̄〉 and
|φ̄〉 from an arbitrary Hilbert space, H̄, not necessarily identical toH. As mentioned before, the
new transformations that become possible in this regime (compared to the single-state regime)
would then naturally depend on the dimension of this Hilbert space, H̄. If dim(H̄)> dim(H),
we have to take into account LOCC protocols transforming an auxiliary state |ψ̄〉 from the
higher dimensional Hilbert space H̄ to a state |φ〉 of the smaller dimensional Hilbert space H,
as such transformations would straightforwardly lead to a multi-state transformation from |ψ〉
to |φ〉. However, considering such transformations constitutes a different problem, that was
put forward in Ref. [35]. As in the single-copy LOCC regime, our aim is to sort the entangle-
ment contained in states belonging to the same Hilbert space, we do not want to focus on such
transformations here. However, we will make use of interesting results from that setting later.
For this reason, we choose to consider auxiliary states belonging to the same Hilbert space
as the target state3, or to a Hilbert space H̄ that corresponds to finitely many copies of the
target state. This is physically motivated by the fact that, if one can store one auxiliary state

2This is also why we focus on the setting where the final target and auxiliary state factorize.
3We could also consider an auxiliary state from a Hilbert space H̄ with dim(H̄) < dim(H), but this would

exclude considering target states of qubits, which we want to avoid here.
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to perform a multi-state transformation, one may also be able to store finitely many auxiliary
states.

In this setting, if a state, |ψ〉, can be transformed into a state, |φ〉, using k − 1 auxiliary
states from the same Hilbert space, we say that |ψ〉 can be transformed into |φ〉 via k-LOCC. In
any k-LOCC protocol, we can always consider a transformation that swaps the target state with
one of the auxiliary states. Such a transformation does not combine the resources of the target
and auxiliary states to achieve a new transformation but merely replaces the target state by a
possibly more resourceful auxiliary state. For this reason, we consider such transformations
as trivial and ignore them in the following. Let us also note here that, for sufficiently large k,
k–LOCC transformations become trivial, as the auxiliary states can be used to distill Bell pairs
between the parties, which can then be utilized to generate an arbitrary final target state via
teleportation. However, such transformations are completely independent of the initial target
state (implying that we cannot gain any additional knowledge about the entanglement con-
tained in the state), utilize only bipartite entanglement and consume many resources. Thus,
we also disregard them in the following work.

We expect that multi-state LOCC provides new non-trivial transformations. That is, for
some impossible transformations, |ψ〉 9LOCC |φ〉, we expect that there exists a state, |ψ̄〉
(that cannot be transformed into |φ〉 by LOCC), which enables the transformation in Eq. (8).
One question which immediately reveals itself is whether these new transformations reduce
the set of states required to reach all states in the Hilbert space, i.e. whether it makes the MES
smaller. Before discussing other relevant questions in this context, let us address this one first:
Is it possible that any reasonable generalisation of the MES to k-LOCC (i.e. a set of states that
reaches all states and which is in some sense minimal) is different from the original MES.

The bipartite setting already reveals a feature of such a generalized MES; namely, that it
may not be unique. Indeed, for bipartite states, it is well-known that the maximally entangled
state can be reached via LOCC from two identical copies of a non-maximally entangled state
(provided that this state is sufficiently entangled). Therefore, any bipartite state (of the same
Hilbert space) can be reached from these two copies, and any set consisting only of one such
non-maximally entangled state could be a 2-MES for this system. With this in mind, we define
a multi-state MES as follows. A set Mk (not necessarily finite) containing states from a Hilbert
space H, is a k-MES if (a) any state of H can be reached via k-LOCC from k (not necessarily
distinct) states chosen in Mk; and (b) it is minimal, in the sense that no strict subset of Mk
satisfies (a).

Naturally, the 1-MES corresponds to the original MES from Ref. [26]. In that work, it was
noted that the MES can equivalently be defined as the set containing all states that are not
reachable via LOCC (from a different initial state) in a given Hilbert space. However, this
equivalence of definitions is valid only for single-state transformations, and the alternative
definition cannot be used for k > 1. Indeed, as our previous discussion of bipartite multi-state
transformations indicates, the maximally entangled state (and thus any bipartite state) can be
reached via a non-trivial multi-state LOCC transformation. This implies that the alternative
definition for the k-MES of bipartite systems would lead to an empty set for all k ≥ 2.

We also note here that a k-MES can always be chosen as a subset of the 1-MES. Indeed,
the 1-MES allows one to reach all states via 1-LOCC, and therefore also via k-LOCC. We then
obtain a k-MES by finding a minimal subset of the 1-MES preserving this property for k-LOCC.
However, depending on the situation, one might prefer to chose a k-MES consisting of less-
entangled states outside the MES, as they may be easier to produce experimentally. Finally,
taking the discussion on distilling Bell pairs one step further, note that for sufficiently large k,
the k-MES may always be chosen as a set containing only a single state.

In the general framework of multi-state transformations, several important questions arise.
Is it possible to non-trivially change the SLOCC class of the target state? Are there unexpected
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new transformations, such as transformations allowing one to reach a state from the MES from
states that do not belong to the MES? Does k-LOCC always provide new transformations of a
given target state? Does the multi-state regime also improve probabilistic transformations?

We answer the first question in Section 4.1 by showing that, in fact, the SLOCC class of
the target state can be non-trivially changed via a multi-state LU transformation. This result
implies that multi-state transformations cannot be fully characterized by using only the tools
that have been developed to study single-state LOCC transformations. It also reveals that the
multi-state regime provides a much richer set of new transformations. In Section 4.2, we
answer the second question by showing that the 3-qubit GHZ state (which is in the MES) can
be reached from two states that are not in the 3-qubit MES. In this section, we also show that
certain combinations of target and auxiliary states can only achieve trivial transformations,
which hints towards a negative answer to the third question. Finally, we provide a positive
answer to the fourth question, by showing that the maximum success probability of a multi-
state transformation transforming two states simultaneously can be greater than the maximum
success probability of transforming these two states independently; in fact, we show it can even
be greater than the maximum success probability of either single-state transformation.

In the following, special emphasis is given to transformations in which the final auxiliary
states are fully-entangled. Such transformations exclude the trivial possibility of using tele-
portation, and have the advantage of not being wasteful with entanglement, in the sense that
all states remain fully-entangled after the transformation. We study such transformations in
the next section, where we investigate how the additional resource of 2-LOCC affects LOCC
transformations of multipartite target states.

4 Multi-state Multipartite LOCC

We study here, for multipartite states, the problem of 2-LOCC transformations, posed in
Eq. (8). Throughout the following sections, we highlight several features of multi-state LOCC
showing that, already in the two-state regime, multi-state LOCC offers a much richer land-
scape of transformations than single-state LOCC. We start, in the next section, by discussing
how multi-state LOCC allows one to non-trivially change the SLOCC class of the target state.
We naturally exclude the trivial possibility of changing the SLOCC class of a state through a
projective measurement, as such a transformation would merely destroy some of the entan-
glement of the state, and not genuinely change its type of entanglement.

4.1 Changing SLOCC class

We show here that multi-state LOCC allows one to deterministically change the SLOCC
class of the target state with only LUs. As stated below, we show in addition that it is possible
to change the orbit type of the SLOCC class of the target state.

Observation 1. It is possible to change the SLOCC class of the initial states under multi-state
LU transformations. Furthermore, the orbit type of the SLOCC class of these states can also be
changed.

This can be seen by considering a transformation of the form of Eq. (8), with

|ψ〉= |GHZ〉⊗2 , (9)

|ψ̄〉= |W〉⊗2 , (10)

|φ〉= |φ̄〉= |GHZ〉 |W〉 . (11)
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All these states should be understood as three-partite states which are shared among the
parties as shown in Fig. 2. In this transformation, the target state has changed SLOCC class.
This can be seen by observing the target state has in fact changed SLOCC orbit type: |GHZ〉⊗2 is
a critical state, whereas |GHZ〉 |W〉 belongs to the null-cone (see the preliminaries). The proof
of the observation follows then by noticing that such a transformation can be achieved with
LU operations that permute the basis states of all parties in such a way that some of the local
dimensions are swapped between the target and auxiliary states (see Fig. 2). We refer to such
a transformation as a “sub-SWAP” transformation. In Appendix A, we present more details on
how the orbit type of SLOCC classes may change under multi-state LU transformations.

Figure 2: Example of a multi-state transformation changing the SLOCC class of the
initial states using LU operations. The initial states both consist of a tensor product
of two states. By applying LUs (indicated by beige boxes), one can SWAP one of the
GHZ states with one of the W states, yielding two copies of a new state that is in a
different SLOCC class to both initial states.

Clearly, more involved instances transforming states that are genuinely entangled across
all local dimensions can be easily generated from this example by adding LUs acting on the
target and auxiliary states separately, before and after the transformation given here.

This first observation confirms that LOCC in the multi-state regime is more complex than in
the single-state regime, and one cannot simply transfer over the methods from the single-state
case. In the single-state case, transformations within an SLOCC class can be parameterized by
using a single seed state and local invertible operators. As this result shows, in the multi-state
case we generically have to consider an infinite number of possible seed states representing
the possible SLOCC classes of the final states. Thus, there is no natural way to implement the
condition that the final target and final auxiliary states factorize. For these reasons, a complete
characterization of multi-state LOCC transformations seems very challenging.

Despite all that, it would be interesting to know whether this setting also enables new
transformations of the target state within its SLOCC class. In particular, it is important to
investigate whether states from the MES can be reached in the multi-state regime. We answer
this question in the next section.

4.2 Transformations within the same SLOCC class

In this section, we consider multi-state transformations in which the individual states all
belong to the same SLOCC class. In this case, it is handy to relate all the states to the same seed
state |ψ〉, through local invertible operators. In this framework, we look for transformations
of the form

g1 |ψ〉9LOCC h1 |ψ〉
g1 |ψ〉 ⊗ g2 |ψ〉 →LOCC h1 |ψ〉 ⊗ h2 |ψ〉 , (12)

where g1,2 and h1,2 are local invertible operators.
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As mentioned in the preliminaries section, local symmetries play an essential role in LOCC
transformations of multipartite states. States without non-trivial local symmetries are isolated
under SEP and LOCC, which is a generic property among multipartite states [28,30]. However,
in the multi-state case, even if the target and auxiliary states have a trivial stabilizer, their
tensor product could have non-trivial symmetries, which could lead to a non-trivial multi-state
transformation. For the case we consider in this section, in which the target and auxiliary states
are in the same SLOCC class, the seed state |ψ〉 ⊗ |ψ〉 has always at least one additional local
symmetry: SWAP⊗n (which corresponds to permuting the target and auxiliary seed states, and
which we refer to in the following simply as SWAP). In the following theorem, we show that
this additional symmetry alone is not enough to provide new LOCCN transformations.

Theorem 2. Given a fully-entangled state |ψ〉 such that

Sψ⊗2 = {1, SWAP} , (13)

all transformations of the form

g1 |ψ〉 ⊗ g2 |ψ〉 →LOCCN h1 |ψ〉 ⊗ h2 |ψ〉 (14)

are necessarily trivial. Moreover, if the final states are identical, i.e. h1 = h2, then the statement
also holds for LOCC.

Proof. First, we show that via LOCCN, there are only trivial transformations. As discussed
in the preliminaries, if a transformation is possible via LOCCN, it is possible via SEP1 [29].
Therefore, by Eq. (4) we have:

pH1 ⊗H2 + (1− p)H2 ⊗H1 = G1 ⊗ G2 . (15)

As G1,2 are strictly positive operators, we have tr G1,2 6= 0. Therefore, by taking the partial
traces of Eq. (15), we can express G1 and G2 in terms of p, H1, H2. Re-inserting this into
Eq. (15) yields either G1∝ H1 and G2∝ H2, or G1∝ H2 and G2∝ H1. Thus, the transfor-
mation is trivial.

Second, we show there are no non-trivial LOCC transformations if the final states are iden-
tical, i.e. if h1 = h2. If the transformation is possible via LOCC, it is possible via SEP. Therefore,
we consider Eq. (3) (with r = 1, as the elements of the stabilizer are unitary4). Acting with
both sides of this equation on |ψ〉⊗2 yields:

(G−1
1 ⊗ G−1

2 )(H1 ⊗H1) |ψ〉
⊗2 = |ψ〉⊗2 . (16)

Therefore, (G−1
1 H1⊗G−1

2 H1) is a local invertible symmetry of |ψ〉 and thus must belong to the
stabilizer Sψ⊗2 . Moreover, it is separable in the state splitting. Therefore it must be equal to
1. Thus, it has to hold that, G1∝ G2∝ H1. Hence, the transformation is trivial.

This theorem indicates that, given a state |ψ〉, if the stabilizer of |ψ〉⊗2 consists of only
1 and SWAP, then only trivial transformations are possible. Consequently, we refer to such
stabilizers (i.e. those satisfying Eq. (13)) as trivial. We will give an explicit example of a
state with a trivial stabilizer in Section 4.4. To find non-trivial transformations within a single
SLOCC class in the multi-state regime, one should consider SLOCC classes represented by a
seed state |ψ〉, such that |ψ〉⊗2 has a non-trivial stabilizer. As we show now, SLOCC classes
of generalized GHZ states satisfy precisely this requirement, making them good candidates to
study multi-state transformations.

4When all the elements of the stabilizer are unitary, Eq. (3) implies r = tr(H)/tr(G). Without loss of generality,
we can thus choose to normalize the operators H and G so that r = 1.
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A generalized GHZ state for n parties with local dimension d, that we denote by |GHZn
d〉,

corresponds to the state

|GHZn
d〉=

1
p

d

d−1
∑

i=0

|i · · · i
︸︷︷︸

n

〉 . (17)

Such states have the useful property that k copies of them can be re-expressed as another
generalized GHZ state with the same number of parties but higher local dimensions. The k
copies |GHZn

d〉
⊗k are indeed equivalent, up to a local relabeling of the computational basis

states, to the state |GHZn
dk〉.

As a consequence, computing the stabilizer of a generalized GHZ state for any local dimen-
sion is sufficient to obtain the stabilizer of any number of copies of a generalized GHZ state.
This stabilizer can easily be computed and is given in the following lemma (see Appendix B
for the proof).

Lemma 3. A local invertible operator is a symmetry of the state |GHZn
d〉 (with d ≥ 2 and n≥ 3)

if and only if it can be written

S =
�

D(~γ(1))⊗ · · · ⊗ D(~γ(n))
�

X⊗n
σ , (18)

where

D(~γ(i)) = diag(γ(i)1 ,γ(i)2 , . . . ,γ(i)d ) , (19)

γ
(n)
j =

�n−1
∏

i=1

γ
(i)
j

�−1

, ∀ j ∈ {1, ..., d} (20)

Xσ =
d−1
∑

k=0

|σ(k)〉 〈k| , (21)

with σ ∈ Sd any permutation of d elements, ~γ(i) = (γ(i)1 , . . . ,γ(i)d ) ∈ C
d for i = 1, . . . , n− 1.

Knowing the symmetries of all states |GHZn
d〉, we can fully characterize single-state LOCC

transformations among states in a subset of their SLOCC classes. We will later use this to prove
some interesting properties of the multi-state regime. In particular, we show in Theorem 5,
that LOCC transformations between states of the form

1⊗ · · · ⊗1⊗ g |GHZn
d〉 , (22)

with g = diag(g1, . . . , gd) any invertible diagonal matrix, obey a majorization condition (just
like for bipartite states). Recall, a real vector a = (a1, ..., am)T majorizes another real vector
b = (b1, ..., bm)T , denoted as a � b, if

k
∑

i=1

a↓i ≥
k
∑

i=1

b↓i , ∀ k ∈ {1, ..., m} , (23)

with equality in the case of k = m, and where a↓ = (a↓1, ..., a↓m)
T , b↓ = (b↓1, ..., b↓m)

T correspond
to the vectors a and b resorted into descending order. We now present a matrix reformulation
of a theorem by Rado [55]:

Theorem 4 ( [55]). Given two real diagonal matrices A = diag(a1, . . . , ad) and
B = diag(b1, . . . , bd) of dimension d, there exists a probability distribution, {pk}mk=1, such that

m
∑

k=1

pkXσk
AX †

σk
= B , (24)
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where each index k represents a permutationσk ∈ Sd , with associated permutation operator, Xσk
,

if and only if
(a1, ..., ad)

T � (b1, ..., bd)
T . (25)

This theorem is the central tool for proving the following result:

Theorem 5. Let g = diag(g1, . . . , gd) and h= diag(h1, . . . , hd) be two invertible, complex, diag-
onal matrices such that tr(g† g) = tr(h†h). Then the transformation

1⊗ · · · ⊗1⊗ g |GHZn
d〉

LOCC
−→ 1⊗ · · · ⊗1⊗ h |GHZn

d〉 , (26)

exists if and only if
(|h1|2, . . . , |hd |2)T � (|g1|2, . . . , |gd |2)T .

Proof. (only if) If the transformation is possible via LOCC, it is necessarily also possible via
SEP. Therefore, we may consider the necessary and sufficient conditions for the existence of a
SEP transformation, given in Eq. (3). In this case, because tr(g† g) = tr(h†h) and the GHZ state
is normalised, it is easy to see that we must have r = 1. From this operator equation, let us
consider the sum of matrix elements

∑d−1
i=0 〈l, . . . , l|·|i, . . . , i〉, for some l ∈ {0, . . . , d−1} . On the

LHS, the second sum vanishes because any operator N j g annihilates the state
∑d−1

i=0 |i, . . . , i〉 ∝ |GHZn
d〉, and we get

m
∑

k=1

pk

d−1
∑

i=0

〈l, . . . , l|S†
k(1⊗ · · · ⊗1⊗H)Sk|i, . . . , i〉 . (27)

Evaluating this for the symmetries as given in Eq. (18) yields:

m
∑

k=1

pk〈l|X †
σk

HXσk
|l〉 . (28)

From this equation, we see that this sum of matrix elements is independent of the diagonal
part of the symmetries, D(~γ(i)). For the RHS, as G is a diagonal matrix, the same sum of matrix
elements merely reads 〈l|G |l〉. Since these equations are valid for all l = 1, . . . , d, and H and
G are diagonal, combining the left- and right-hand sides yields the matrix equation

m
∑

k=1

pkX †
σk

HXσk
= G , (29)

which by Theorem 4 implies (|h1|2, . . . , |hd |2)T � (|g1|2, . . . , |gd |2)T .

(if) By Theorem 4, we know that there exist probabilities {pk ≥ 0}mk=1 with
∑m

k=1 pk = 1
such that

m
∑

k=1

pkXσk
HX †

σk
= G . (30)

Since the permutation operators Xσk
, are symmetries of the seed state |GHZn

d〉, this implies that
the transformation can be done by SEP1 (see Eq. (4) in the preliminaries). To conclude the
proof, we observe this transformation can also be achieved by an LOCC protocol in which the
last party applies a measurement with measurement operators {ppkhXσk

g−1}mk=1 and then,
depending on the outcome k, all the other parties apply the unitary operation Xσk

.
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As already mentioned, generalized GHZ states have a structure that extends nicely to the
multi-state regime. In fact, GHZ-like states of the form given in Eq. (22) admit a direct
generalization of the bipartite Schmidt decomposition [56,57]. Using this generalized Schmidt
decomposition, it was mentioned in Ref. [56] that the bipartite entanglement concentration
protocol presented in [17] can straightforwardly be extended to concentrate the entanglement
of GHZ-like states into perfect GHZ states (with an optimal asymptotic rate).

Using Theorem 5, we now show that, in the multi-state regime, it is possible to start with
a target state and an auxiliary state that are outside the MES and use the auxiliary state to
transform the target state into a state that is inside the MES5.

To do so, we consider the following two-state transformation in the SLOCC class of two
copies of the three-qubit GHZ state, |GHZ〉 ≡ |GHZ3

2〉 (note that the subsequent discussion can
be immediately generalized to n> 3 parties):

| g̃〉 ⊗ | g̃〉
LOCC
−→ |h̃1〉 ⊗ |h̃2〉 , (31)

with

| g̃〉= (1⊗1⊗ g̃ ) |GHZ〉 , (32)

|h̃i〉=
�

1⊗1⊗ h̃i

�

|GHZ〉 (i = 1,2) , (33)

where G̃ = g̃† g̃ = 1/2+δσz and H̃i = h̃†
i h̃i = 1/2+αiσz (i = 1, 2), with δ,α1,α2 ∈ [0,1/2).

Observe that, by Theorem 5, the smaller the value of δ,α1 or α2, the more entangled the
corresponding state (see also [23]). In addition, it has been shown in Ref. [26] that, among
states of this form, only the GHZ state is in the MES of three-qubit states.

In the LOCC transformation given in Eq. (31), the two copies of the GHZ state can equiv-
alently be replaced by the state |GHZ3

4〉, yielding a transformation of the same form as in
Theorem 5, with the 4-dimensional invertible local matrices g = g̃ ⊗ g̃ and h = h̃1 ⊗ h̃2. As,
by construction, we have tr( g̃† g̃ ⊗ g̃† g̃) = tr(h̃†

1h̃1 ⊗ h̃†
2h̃2) = 1, we can apply Theorem 5. It is

easy to see that the corresponding majorization condition is satisfied if and only if

δ ≤

√

√

�

α1 +
1
2

��

α2 +
1
2

�

−
1
2

. (34)

Note, that by Eq. (34), if we wish to reach two copies of a GHZ state (i.e. α1 = α2 = 0), then
we must begin from two copies of a GHZ state (δ = 0). Alternatively, setting α1 = 0 (which
corresponds to transforming only the target state into the GHZ state) yields:

δ|α1=0 ≤

√

√

�

α2

2
+

1
4

�

−
1
2
≤ α2 . (35)

This inequality has solutions ∀α2 ∈ (0, 1/2). Therefore, provided Eq. (35) is satisfied by
the initial states, we can transform the target state into the GHZ state. That is, in the multi-
state regime, we can transform a state that is outside the MES to a state that is inside the
MES.

Note that a simple teleportation-like protocol does not allow one to obtain |GHZ〉. That is a
protocol in which the two initial states are first transformed into bipartite states by projectively
measuring one particle. This may be easily seen by considering the entropies of the local
reduced density matrices. Clearly, when considering more than three particles this holds all
the more.

Note further that Eq. (35) tells us that, if we transform the target state to the GHZ state,
then α2 ≥ δ. That is, after the transformation, the auxiliary state is less entangled (this is

5See [58] for a similar work investigating these types of transformations for the state |W 〉⊗2.
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not surprising as the overall transformation is an LOCC transformation). Therefore, in the
multi-state regime, it is possible to squeeze entanglement from one state to another.

As another consequence of this result, when considering the 2-MES of three-qubit states
as in Section 3, a choice of the 2-MES that contains a state | g̃〉 as in Eq. (32), but not |GHZ〉 is
thinkable. In fact, in Ref. [35] it was shown that |GHZ3

3〉 may be transformed into any three-
qubit state by LOCC. Hence, {|GHZ〉} is a 2-MES for three-qubit states. Moreover, as two copies
of | g̃〉may be converted into |GHZ3

3〉 (see Theorem 5 with slight modification allowing for non-
invertible operators) as long as δ ≤ 1/

p
3 − 1/2 ≈ 0.077, the corresponding sets {| g̃〉} also

form a 2-MES for three-qubit states. This fact resembles the freedom in choosing the 2-MES
in the bipartite case discussed in Section 3. Let us also remark here that—in contrast to the
three-qubit system considered here—not for all system sizes it is possible to find a finite set
forming a 2-MES. Indeed, a simple counting argument shows that for sufficiently large n, a
finite set of states in

�

C4
�⊗n

does not suffice to even probabilistically obtain all n-qubit states.
Recall that, as explained in the preliminaries, each Kraus operator in a SEP map is associ-

ated with a unique invertible symmetry from the stabilizer. Consequently, whether a transfor-
mation is possible under LOCC is intrinsically connected to the stabilizer of the state. Thus,
one might ask: which are the relevant symmetries enabling a certain LOCC transformation?
Novel transformations in the multi-state regime will naturally need local operations that act
jointly on the two copies of the initial state, i.e. that are non-local in the state splitting. As
discussed above, two copies of a state have at least one symmetry that is non-local in the state
splitting: SWAP. As the stabilizer of |ψ〉⊗2 always contains the symmetries that can be gener-
ated by SWAP and the single-copy symmetries of |ψ〉, we refer to these symmetries as trivial.
These trivial symmetries in fact form a subgroup of the stabilizer, which we will refer to as the
trivial subgroup S0

ψ⊗2 . Additionally, we refer to symmetries that cannot be generated by SWAP
and the single-copy symmetries of |ψ〉 as emergent. As we will see in the following, the trivial
subgroup does allow novel transformations in the multi-state regime. It is now natural to ask:
is S0

ψ⊗2 sufficient to implement all multi-state LOCC transformations?
We now show the answer to this question is no. That is, there are LOCC transformations

which require emergent symmetries. To this end, we again consider transformations as in
Eq. (31), but now only allowing measurement operators corresponding to elements of the
trivial subgroup. Following the arguments in the proof of Theorem 5, Eq. (29) must hold for
a transformation to be possible, where the sum is now over permutation matrices from the
following subgroup of the trivial subgroup:

S̃0
GHZ⊗2 = {1, X ⊗1, 1⊗ X , X ⊗ X , SWAP, SWAP.(X ⊗1) ,

SWAP.(1⊗ X ), SWAP.(X ⊗ X )} ⊆ S0
GHZ⊗2 , (36)

which is a group of order 8, in contrast to the full permutation group of four elements, which
is of order 24. Here, X denotes the Pauli X and should be understood as X⊗3, just as SWAP.

Evaluating Eq. (29) over this symmetry subgroup yields the following bound:

δ ≤
p

α1,α2 . (37)

Thus, we see that if we want to transform the target state to the GHZ state, i.e. α1 = 0,
then δ must also be zero. That is, if we are restricted to trivial symmetries, we can only reach
the GHZ state by starting with it6.

As a final comment, note that all transformation saturating the inequality in Eq. (37) can be
decomposed into a particularly simple two round protocol which only uses trivial symmetries.

6i.e. in order to reach |GHZ〉, we need non-local symmetries such as X(13) = |0〉 〈0|+ |3〉 〈1|+ |2〉 〈2|+ |1〉 〈3|.
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Let λ = pα1α2/(α1 + α2) ∈ (0, 1/2). First, the last party applies a measurement with the
following measurement operators:

M1
1 =

Æ

1/2 h′
�

g−1 ⊗ g−1
�

(38)

M1
2 =

Æ

1/2 h′ SWAP
�

g−1 ⊗ g−1
�

, (39)

where h′ =
p

H ′ with:

H ′ =
�

1
2
+λ

�

H̃1 ⊗ H̃2 +
�

1
2
−λ

�

X H̃1X ⊗ X H̃2X . (40)

Using Eq. (29), it is easy to verify that {M1
i }

2
i=1 forms a valid measurement. In the event of

outcome 1, the parties do nothing, and, in the event of outcome 2, parties 1 to 2 apply a
SWAP. Thus, this first round of the LOCC protocol deterministically transforms the initial state,
1 ⊗ 1 ⊗ (g ⊗ g) |GHZ3

4〉, into the state 1 ⊗ 1 ⊗ h′ |GHZ3
4〉 (which, we might note, is not state

separable). Next, the last party applies a second measurement with measurement operators:

M2
1 =

Æ

1/2+λ
�

h̃1 ⊗ h̃2

�

h′−1 (41)

M2
2 =

Æ

1/2−λ
�

h̃1 ⊗ h̃2

�

(X ⊗ X ) h′−1 , (42)

which by construction satisfies the completeness relation. In the event of outcome 1, the parties
do nothing, and, in the event of outcome 2, parties 1 and 2 apply X⊗X . Thus, the second round
deterministically transforms the state 1⊗1⊗h′ |GHZ3

4〉 to the final state, 1⊗1⊗(h̃1⊗h̃2) |GHZ3
4〉.

Observe, all measurements throughout the protocol only depend on trivial symmetries from the
subgroup, S̃0

GHZ⊗2 . Moreover, although the symmetries used are separable, each measurement
is non-local in the state splitting.

4.3 Multipartite LOCC Catalysis

Theorem 5 shows that for a class of GHZ-like states, LOCC transformations are fully charac-
terized by a majorization condition, just like they are for bipartite states. We can therefore use
this fact to provide, to our knowledge, the first examples of multipartite catalytic transforma-
tion. In the following we present an explicit example. Let us consider two 4-dimensional GHZ-
like states over n parties |ψ1〉 and |ψ2〉, characterized by the matrices
g = diag(

p
0.45,

p
0.35,

p
0.12,

p
0.08) and h = diag(

p
0.56,

p
0.21,

p
0.17,

p
0.06), respec-

tively, as in Theorem 4. Theorem 5 shows that |ψ1〉 and |ψ2〉 are LOCC incomparable. As
catalyst, we consider another 4-dimensional GHZ-like state over n parties |φc〉, characterized
by the diagonal matrix c = diag(

p
0.63,

p
0.27,

p
0.07,

p
0.03). Using the fact that the tensor

product state |GHZn
d〉 ⊗ |GHZn

d〉 is equivalent to the higher dimensional state |GHZn
d2〉, we see

that the catalytic transformation |ψ1〉 ⊗ |φc〉
LOCC
−→ |ψ2〉 ⊗ |φc〉 is equivalent to the transfor-

mation 116 ⊗ · · · ⊗ 116 ⊗ (g ⊗ c) |GHZn
16〉

LOCC
−→ 116 ⊗ · · · ⊗ 116 ⊗ (h⊗ c) |GHZn

16〉. For the latter
transformation, Theorem 5 applies and it is straightforward to verify that the corresponding
majorization condition indeed holds.

Because of the relation to majorization, we can transfer another interesting result from
bipartite state transformations to multipartite states. In Ref. [18], it has been shown that there
exist bipartite states |ψ〉 and |φ〉 such that neither |ψ〉 →LOCC |φ〉 nor |φ〉 →LOCC |ψ〉, yet
|ψ〉⊗k →LOCC |φ〉

⊗k for some k ∈ N. As in the multipartite catalysis example above, choosing
g̃, h̃ in Eqs. (32, 33) appropriately, we can reproduce these features in the multipartite case.
Note, as discussed in the introduction, this implies the multi-state regime can induce a different
partial order on the Hilbert space.
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4.4 Multi-state probabilistic transformations

Finally, one might wonder whether the multi-state regime provides an advantage in prob-
abilistic transformations. Such an advantage has been demonstrated for bipartite state trans-
formations [18], where a simple expression for the maximal success probability of transforma-
tions is available [59]. However, the multipartite setting is naturally more complicated. Using
results from Ref. [53] (see the preliminaries), we now demonstrate that the multi-state regime
does indeed provide an advantage in probabilistically transforming two states together. More-
over, we demonstrate that the maximum success probability of the multi-state transformation
can even be greater than the maximum success probability of either single-state transforma-
tion. Let us remark that, of course, the deterministic multi-state transformations presented
above are already an example of this (with the success probability being 1 in the multi-state
regime compared to strictly smaller than 1 otherwise). However, as Theorem 2 indicates, there
may be states for which the multi-state regime allows no additional, non-trivial, deterministic
transformations. We present an explicit example that demonstrates that, in such cases, prob-
abilistic multi-state LOCC can still provide an advantage over probabilistic single-state LOCC.

Let |ψ〉 be a normalised state such that the stabilizer of |ψ〉⊗2 only contains 1 and SWAP
(note that, therefore, the stabilizer of |ψ〉 contains only 1), and let:

|ψi〉= 1⊗ · · · ⊗1⊗ hi |ψ〉 , (43)

and ni = || |ψi〉 ||. Then by Eq. (6) [53] in the preliminaries we have:

pSEP
max

�

|ψ〉⊗2 7→ |ψ1〉 ⊗ |ψ2〉
�

(44)

=max
¦

p st1⊗n−1 ⊗
�

1−
p
2

H1 ⊗H2 +H2 ⊗H1

(n1n2)2

�

is sep
©

(45)

= λ−1
max

�

H1 ⊗H2 +H2 ⊗H1

2(n1n2)2

�

. (46)

Now consider the following choices for Hi:

H1 =

�

1 0
0 ε

�

, H2 =

�

ε 0
0 1

�

, (47)

with ε ∈ (0, 1). Then we have:

λ−1
max

�

H1 ⊗H2 +H2 ⊗H1

2(n1n2)2

�

=
2

1+ ε2
(n1n2)

2 > (n1n2)
2 = λ−1

max

�

H1

n2
1

�

λ−1
max

�

H2

n2
2

�

. (48)

Therefore, for all ε ∈ (0,1), the maximum success probability of transforming both states at the
same time is greater than the product of the maximum probabilities of each individual trans-
formation by a factor of 2/(1+ε2). Note that the probability of the transformation depends on
the norm of the final state, ni , which in turn depends on ε. We will discuss this further when
we give a concrete example. First, we show that this maximum probability can be achieved
via a multi-state probabilistic LOCC protocol. The LOCC protocol is given as follows: party n
performs a measurement with the following three measurement operators:

M1 =

√

√ 1
1+ ε2

�

1⊗n−1 ⊗ (h1 ⊗ h2)
�

(49)

M2 =

√

√ 1
1+ ε2

�

1⊗n−1 ⊗ (h2 ⊗ h1)
�

(50)

M3 =
Ç

1−
�

M†
1 M1 +M†

2 M2

�

, (51)
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where M3 is positive semi-definite by virtue of Eq. (48). The last step of the protocol depends
on the outcome of this measurement. If party n gets outcome one, all parties do nothing; if
they get outcome two, all parties apply a local SWAP; if they get outcome three, the protocol
fails. As a consequence, the multi-state regime can provide an advantage in probabilistic LOCC
transformations.

Taking a concrete example, we now illustrate how powerful the multi-state regime is in
probabilistic transformations. Consider the state (from [30]):

|ψ〉=
1
p

22

�p
7 |00000〉+

p
5 |11111〉+ |00111〉+ |01011〉+ |01101〉+ |01110〉+ |10011〉

+ |10101〉+ |10110〉+ |11001〉+ |11010〉+ |11100〉
�

. (52)

It can be verified that, in this case, Sψ⊗2 = {1, SWAP}. Moreover, ni =
p

(1+ ε)/2 (see
Eq. (43)). Remarkably, this means that the probability of transforming both states simultane-
ously is given by:

pmax

�

|ψ〉⊗2 7→ |ψ1〉 ⊗ |ψ2〉
�

=
2

1+ ε2

�

1+ ε
2

�2

>
1+ ε

2
= pmax (|ψ〉 7→ |ψi〉) , (53)

where the inequality is due to the fact ε ∈ (0,1).
That is, the probability of transforming both states simultaneously, is greater than the prob-

ability of even just one single-state transformation ∀ε ∈ (0,1). For example, the multi-state
transformation has the greatest advantage over the single-state transformation if ε= 0.414. In
this case, the probability of transforming |ψ〉 →LOCC |ψ1〉 is 0.707 (therefore, the probability
of independently transforming both |ψ〉 →LOCC |ψ1〉 and |ψ〉 →LOCC |ψ2〉 is 0.500). However,
the probability of transforming both simultaneously, via a multi-state transformation, is 0.854.

Note that, unlike the probabilistic transformations in [28], such a transformation is not
a One-Successful-Branch Protocol (OSBP). Moreover, in this example, pmax cannot in fact be
achieved with an OSBP. This is because in an OSBP, by definition, the successful branch corre-
spond to only one measurement operator, which in turn must correspond to an element of the
stabilizer. As the stabilizer only contains 1 and SWAP, the pmax of this branch is at most the
product of the maximum probabilities of each transformation.

Finally, note that, if ε = 0, then Hi become projectors, and thus |ψi〉 are no longer fully-
entangled. Alternatively, ε= 1, implies a trivial (deterministic) transformation and the multi-
state regime provides no advantage (see Appendix C for further discussion for when the multi-
state regime does not provide an advantage).

In summary, multi-state transformations can provide an advantage in probabilistically
transforming two states together. In fact, the maximum success probability of transforming
two states at the same time can be greater than transforming just one of them.

5 Bipartite multi-state LU Transformations

Bipartite entanglement, with its single SLOCC class of fully-entangled states and its unique
maximally entangled state (up to LUs), has a very different structure compared to multi-
partite entanglement. As a result, some of the properties of the multi-state setting that we
highlighted in the previous section do not apply for bipartite states. For instance, as we
have fixed the dimension of the target state (thus avoiding trivial transformations such as
|Φ+4 〉 |Φ

+
4 〉 →LU |Φ+8 〉 |Φ

+
2 〉), it is not possible to change the SLOCC class of the target state.

Since this possibility of changing SLOCC class is one of the main features that make the multi-
state regime so difficult to characterize, bipartite systems seem to be a more reasonable setting
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for trying to develop a systematic method to characterize the new transformations that emerge
in the multi-state regime. As we saw in the previous section that even LU operations allow for
a large set of new possible transformations, we consider in this section the simplest setting of
two-state bipartite LU transformations. As we will see, even this very simple setting provides
surprising results.

Throughout this section, we denote the target state by |µ〉 ∈ Cdµ ⊗Cdµ . As LU operations
cannot transform a state to another state in a Hilbert space with a lower dimension, we con-
sider in this section an auxiliary state, |λ〉, belonging to a Hilbert space, Cdλ ⊗Cdλ , of possibly
larger dimension and ask whether there exist states |µ̄〉 ∈ Cdµ ⊗Cdµ and |λ̄〉 ∈ Cdλ ⊗Cdλ such
that

|µ〉9LU |µ̄〉 ,

|µ〉 ⊗ |λ〉 →LU |µ̄〉 ⊗ |λ̄〉 . (54)

Note that a related problem has been studied in [60]. In that work, the aim was to find
whether a high-dimensional bipartite or multipartite entangled state can be decomposed as a
tensor product of lower-dimensional entangled states. Here, we start from a decomposable
bipartite entangled state |µ〉⊗|λ〉 and search for all possible other decompositions of that state,
in order to find non-trivial transformations of the target state that can be achieved through
two-state LU. Because these transformations only involve bipartite states, it is more useful to
describe them in terms of Schmidt coefficients. Let µ = (µ1, ...,µdµ) and λ = (λ1, ...,λdλ)
denote the tuples of possibly degenerate, squared7 Schmidt coefficients of the states |µ〉 and
|λ〉, respectively. Without loss of generality, we may sort all Schmidt coefficients in descending
order and assume they are strictly positive, as zero-valued Schmidt coefficients can be removed
by redefining the dimensions. Consequently, the bipartite state |µ〉 ⊗ |λ〉 has strictly positive
Schmidt coefficients given by the tuple µ⊗λ= (µ1λ1, . . . ,µ1λdλ ,µ2λ1, . . . ,µdµλdλ). Similarly,
the final state must also have a tensor product structure and can therefore be characterized
by the tuple of Schmidt coefficients µ̄ ⊗ λ̄, with µ̄ = (µ̄1, ..., µ̄dµ) and λ̄ = (λ̄1, . . . , λ̄dλ) the
Schmidt vectors of the final target and auxiliary states.

Applying any local unitary obviously cannot change the Schmidt coefficients of the state
|µ〉 ⊗ |λ〉; it can only change their order. As a consequence, an LU transformation from the
state |µ〉⊗ |λ〉 into the state |µ̄〉⊗ |λ̄〉 corresponds to a non-trivial transformation of the target
state |µ〉 into an LU-inequivalent state |µ̄〉 if and only if there exist (ordered and normalized)
sets of Schmidt coefficients µ̄ 6= µ, λ and λ̄ such that the (dµdλ)-tuple µ̄⊗ λ̄ corresponds to a
non-trivial permutation of the initial tuple µ⊗λ (see Fig. 3). An upper bound for the number,
P, of such permutations is given by (see e.g. [60]):

P ≤
(dµ dλ)!

∏dµ
i=1

∏dλ
j=1(i + j − 1)

. (55)

To describe these transformations, we introduce the following equivalence relation: for any
two n-tuples, A and B, we say A∼ B if the tuples are identical up to reordering. For example,
(1, 2,2, 3) ∼ (2, 3,1, 2). With this notation, the transformation |µ〉 ⊗ |λ〉 →LU |µ̄〉 ⊗ |λ̄〉 is
possible if and only if

µ⊗λ∼ µ̄⊗ λ̄ . (56)

From this observation, the problem we consider seems trivial, as it is simply equivalent to
the problem of verifying the equivalence of two tuples. This problem is well-known and can,
for example, be solved using the Elementary Symmetric Polynomials (ESPs) [61]. Generally

7Misusing notations for conciseness, we will refer to the squared Schmidt coefficients as Schmidt coefficients.
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Figure 3: Non-trivial multi-state LU transformations correspond to non-trivial per-
mutations of the Schmidt coefficients which preserve the tensor product structure.
Here two non-trivial permutations are depicted. The circles with numbers represent
the multiplied Schmidt coefficients (i.e. λiµ j) sorted into descending order. The first
diagram corresponds to the transformation in Observation 7. The diagram below it
corresponds to a "direct sum solution", as discussed after Theorem 6, that builds on
this first transformation.

speaking, ESPs are indeed useful tools to study functions of several variables that do not de-
pend on the order of these variables, see for instance Ref. [42]. Given a tuple of n variables,
x = (x1, ..., xn), the elementary symmetric polynomial of degree k over x , ek(x)≡ ek(x1, ..., xn),
is defined as follows [61]:

ek(x)≡
n
∑

i1<i2<...<ik

x i1 x i2 ....x ik , ∀k = 1, . . . , n . (57)

In addition, we set e0 = 1 and ek = 0, ∀k > n. The ESPs provide simple necessary and
sufficient conditions for two tuples to be identical up to reordering: for any two n-tuples x
and y , x ∼ y if and only if all their elementary symmetric polynomials are equal, i.e. if and
only if ei(x) = ei(y), ∀i ∈ {1, ..., n}. As a consequence, bipartite two-state LU transformations
can be studied in terms of ESPs over tuples of Schmidt coefficients. The necessary and sufficient
condition of Eq. (56) for the transformation |µ〉⊗|λ〉 →LU |µ̄〉⊗|λ̄〉 can equivalently be restated
as

ei(µ⊗λ) = ei(µ̄⊗ λ̄),∀i ∈ {1, . . . , dµdλ) . (58)

These equations always admit the trivial solution µ̄ ∼ µ and λ̄ ∼ λ (corresponding to
the identity permutation). Moreover, if dµ = dλ, we have another trivial solution: λ̄ ∼ µ and
µ̄∼ λ (corresponding to a SWAP of the states |µ〉 and |λ〉). In the following, we again disregard
these trivial solutions and only look for solutions leading to non-trivial transformations. The
set of polynomial equations we have to solve grows quickly with the dimensions of the bipartite
systems we consider, as it contains dµdλ equations with even degrees ranging from 2 to 2dµdλ.
Determining all the solutions may therefore quickly become a difficult task. If we did not expect
any non-trivial solutions for this set of equations, we could also use some powerful tools, such
as the Positivstellensatz [62] from real algebraic geometry. This theorem indeed provides
necessary and sufficient conditions for when a set of polynomial equalities, inequalities and
inequations have no solutions. As we will show using a different approach, this method cannot
directly be used here because there is an unexpectedly large set of different solutions.

We start, in the following section, by addressing this problem for the simplest case, in which
the target state is restricted to a 2-qubit state. We fully characterize all the possible non-trivial
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transformations of this target state. Building on this result, we show that a bipartite target state
can always be non-trivially transformed using an auxiliary bipartite state of higher dimension.
We then also use our characterization of qubit states transformations to show that when the
auxiliary state has the same dimension as the target state non-trivial transformations can also
always be achieved, except if the target and auxiliary states are 2-qubit or 2-qutrit states (in
which case we prove no non-trivial transformations exists).

5.1 LU transformation in (C2 ⊗Cd)⊗2

In this section, we restrict the target state |µ〉, to be a 2-qubit state and use an arbitrary
2-qudit auxiliary state. We use the notations presented in the previous section for the tu-
ples of Schmidt coefficients and investigate non-trivial transformations of the target state un-
der two-state LU. We thus only fix the 2-tuple µ = (µ1,µ2) of the initial target state, and
search all tuples (µ̄1, µ̄2) 6= (µ1,µ2) and (λ̄1, ..., λ̄d) 6= (λ1, ...,λd) such that the 2d-tuple
(µ̄1λ̄1, . . . µ̄1λ̄d , µ̄2λ̄1, ..., µ̄2λ̄d) corresponds to a non-trivial permutation of the initial 2d-tuple
(µ1λ1, . . . ,µ1λd ,µ2λ1, ...,µ2λd). The only a priori constraint on this permutation is that it
should match the greatest and smallest elements of both sets, i.e.

µ1λ1 = µ̄1λ̄1 and µ2λd = µ̄2λ̄d . (59)

For the others, we have to find a permutation, π ∈ S2d−2, such that the chain of equations

µ1λ1 µ1λd µ2λ1 µ2λd

= · · · = = · · · =

µ̄1λ̄1 π(µ̄1λ̄d) π(µ̄2λ̄1) µ̄2λ̄d

(60)

has a non-trivial solution.
In the next subsections, we characterize the transformations on the two-qubit target state

that can be achieved in this setting. Because they lead to highly different results, we treat
separately the case where d is even and the case where d is odd.

5.1.1 Characterization of the non-trivial transformations for even d

For any even d, it is always possible to consider a two-qudit auxiliary state |λ〉, that is the
tensor product of a two-qubit state |λ1〉 and a state |λ2〉 ∈ Cd/2 ⊗ Cd/2 (if d = 2, the state
|λ1〉 is simply |λ〉 and there is no state |λ2〉). Using the LU operation to implement a SWAP
between the two-qubit states, |µ〉 and |λ1〉, and the identity in the other dimensions (if any),
we see that LU operations allow for an arbitrary transformation of the initial two-qubit target
state |µ〉:

|µ〉 ⊗ (|λ1〉 ⊗ |λ2〉)→LU |λ1〉 ⊗ (|µ〉 ⊗ |λ2〉) . (61)

Note that such a transformation is a particular case of the “sub-SWAP” transformation intro-
duced in the multipartite case (see Fig. 2). Moreover, although we presented here a trans-
formation involving biseparable auxiliary states |λ〉 and |λ̄〉, we could equivalently consider
a transformation involving an auxiliary state for which the states of the 2-dimensional and
(d/2)-dimensional sub-spaces have been previously (and subsequently) entangled using LU
operations acting on the d-level subspace only. Adding these extra LUs to the permutation
realizing the sub-SWAP yields a less obvious LU transformation. For the case dµ = 2, dλ = 4,
by considering all valid permutations, it is easy to see that sub-SWAP solutions are (up to LU)
the only solutions.
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5.1.2 Characterization of the non-trivial transformations for odd d

If d is odd, the previous construction cannot be applied. We therefore expect more con-
straints on the possible transformations, and, in this case, it is unlikely that we can achieve an
arbitrary transformation of the 2-qubit target state |µ〉. From now on, we characterize the ini-
tial two-qubit target state by the ratio a = µ2

µ1
∈ (0, 1]. Similarly, the ratio ā = µ̄2

µ̄1
characterizes

the final two-qubit target state.
As already mentioned, we search here for transformations that transform the state |µ〉 into

an LU-inequivalent state |µ̄〉, i.e. with ā 6= a. If |µ〉 is a maximally entangled two-qubit state,
then a = 1 and all the Schmidt coefficients of |µ〉 ⊗ |λ〉 have an even degeneracy. If |µ̄〉 is
not maximally entangled, however, its Schmidt coefficients are distinct and those of |µ̄〉 ⊗ |λ̄〉
cannot all have an even degeneracy since d is odd. As a consequence, when starting with a
maximally entangled 2-qubit state, we can only achieve a trivial transformation. This is why
we exclude in the following the case a = 1. This is the first constraint resulting from the fact
that d is odd.

As the transformation is reversible, we can focus on transformations with a > ā, which
correspond to decreasing the entanglement of the 2-qubit target state after the LU operation.
The transformations of the 2-qubit target state that can be achieved within this context are
characterized in the following theorem.

Theorem 6. Let |µ〉 , |µ̄〉 ∈ C2⊗C2 be 2-qubit states with sets of Schmidt coefficients respectively
given by

� 1
1+a , a

1+a

�

and
� 1

1+ā , ā
1+ā

�

, with a, ā ∈ (0, 1) such that a > ā. Given an odd number
d ≥ 3, the following two statements are equivalent:

(i) There exist states |λ〉 , |λ̄〉 ∈ Cd ⊗Cd such that |µ〉 ⊗ |λ〉 →LU |µ̄〉 ⊗ |λ̄〉 .

(ii) ā = ad1/d2 for two odd numbers d1, d2 ∈ N satisfying d ≥ d1 > d2 ≥ 1 .

Proof. (only if) If an LU transformation is possible, then there necessarily exists a permuta-
tion π relating the Schmidt coefficients of the initial and final product states as shown in
Eq. (60). We begin by using the upper line in Eq. (60) to compute the d ratios µ2λi

µ1λi
= a for

all i ∈ {1, . . . , d} and write equalities with the corresponding ratios from the bottom line. We
obtain a set of d equations of the form

a =
λ̄x i

λ̄yi

āki , ∀ i = 1, . . . , d , (62)

with ki ∈ {−1, 0,1} and x i , yi ∈ {1, . . . , d}. All the non-trivial transformations can be found
by solving this set of equations. Because we need some elements of the solution for later
constructions, we now provide an explicit method to find the non-trivial solutions of these
equations.

Because the ends of the chain of equalities (60) are fixed, we know that y1 = 1 and xd = d,
and that k1, kd 6= −1. Moreover, as we consider sorted Schmidt coefficients, the ratios λ̄x1

/λ̄1

and λ̄d/λ̄yd
are at most equal to 1. Therefore, because we assume a > ā, we must in fact

have k1 = kd = 0. We must also have x i 6= yi for all values of i, as otherwise it would
imply a = (ā)ki , ki ∈ {−1,0, 1}, which necessarily leads to a trivial solution with a = ā.
Consequently, in the d equations, each variable λ̄i (i ∈ {1, . . . , d}) must appear precisely twice,
in two different equations. We now describe a method to eliminate all these variables, yielding
the relation between a and ā stated in the theorem.

We start by selecting the two equations containing λ̄1. If λ̄1 appears as a numerator in
one equation and as a denominator in the other, we multiply these equations side by side and
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replace the two initial equations by the resulting equation. In this way, the resulting set of
d−1 equations does not contain the variable λ̄1 anymore. If λ̄1 appears in both equations as a
numerator or as a denominator, we invert both sides of one of these equations and proceed as
explained above to get a set of d − 1 equations that do not involve the variable λ̄1. Repeating
this process at most d −1 times8, we can eliminate all the λ̄i variables, yielding an equality of
the general form

ad−2r = (ā)
∑d

i=1±ki , (63)

where r ≥ 0 is a integer related to the effective number of equation inversions that have been
performed. If there is no inversion, the exponent of a is d. It is otherwise decreased by 2 for
each inversion, and the corresponding exponent ki in the right-hand side gets a minus sign.

The exponent of a is obviously odd and at most equal to d. We now show that the exponent
associated to ā has to be odd as well. Any exponent ki = 0 stems originally from the quotient
of two µ̄1 or two µ̄2 when extracting Eqs. (62) from the chain (60). Because µ̄1 and µ̄2 both
appear precisely d times in these equations and the other exponents ki = ±1 consume exactly
one µ̄1 and one µ̄2, exponents ki = 0 have to come in pairs (one corresponding to µ̄1/µ̄1 and
the other one to µ̄2/µ̄2). Therefore,

∑d
i=1±ki is a sum of an odd number of 1 or −1, which

is always an odd integer. Furthermore, since we have k1 = kd = 0, this sum is at most equal
to d − 2. As a consequence, we must have ad1 = (ā)d2 with d1 ≤ d and d2 ≤ d − 2 two odd
integers. If d1 and d2 have different signs, then a|d1|(ā)|d2| = 1, which for a, ā ∈ (0,1) leads
to a contradiction. We can thus consider them both to be positive and, because we consider
transformations with a > ā, we have d1 > d2. This concludes the proof of the necessary
condition.

(if) To prove the sufficient condition, we constructively show how to build states |λ〉 and
|λ̄〉 enabling the transformation |µ〉 ⊗ |λ〉 →LU |µ̄〉 ⊗ |λ̄〉, with ā = ad1/d2 , for any odd d1 and
d2 satisfying d ≥ d1 > d2 ≥ 1. We divide the proof into the following two cases: (i) d1 = d
and (ii) d1 < d.

(i) Writing b = a
d

d2
−1, the unnormalized sets of Schmidt coefficients of |µ〉 and |µ̄〉 read

µ = {1, a} and µ̄ = {1, ab}, respectively9. For the Schmidt coefficients of |λ〉 and |λ̄〉, we
choose the sets

{λi}= {ai}d−d2−2
even i=0 ∪ {a

i b}d−d2−2
even i=2 ∪ {b

i}d2+1
i=1 , (64)

and
{λ̄i}= {ai}d−d2−1

i=0 ∪ {bi}d2
i=1 , (65)

respectively. To show that these sets correspond to a valid LU transformation, we must show
that the tensor product µ⊗λ gives the same set as µ̄⊗ λ̄. These tensor products read respec-
tively

{ai}d−d2−1
i=0 ∪ {ai b}d−d2−1

i=2 ∪ {bi}d2+1
i=1 ∪ {abi}d2+1

i=1 , (66)

and

{ai}d−d2−1
i=0 ∪ {ai b}d−d2

i=1 ∪ {b
i}d2

i=1 ∪ {abi}d2+1
i=2 . (67)

8For some configurations of the λ̄i variables, two variables could be eliminated in a single step (as is always the
case for the last step), yielding an equality between some power of a and some power of ā. If there are still some
λ̄i variables to eliminate, another relation between a and ā can be obtained by following the same procedure. In
such case, the system of equations only has a non-trivial solution if all the relations between a and ā are equivalent.
Multiplying them all side by side, we obtain an equation that has the same form (see Eq. (63)) as in the general
case.

9Note that we use here set notations instead of tuples for convenience. Some elements in these sets might
however be degenerate.
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The only difference between these sets is that the first one contains the element bd2+1 (in
its third subset) while, in the second set, this is replaced by ad−d2 b (in the second subset).
However, since ad−d2 = bd2 , these elements are in fact equal. This concludes the proof of case
(i). It should be stressed here that the solution we built for |λ〉 and |λ̄〉 is not necessarily the
only solution allowing a transformation from |µ〉 to |µ̄〉. The idea behind this construction and
how to build other solutions will be explained in more details in the examples following the
proof of the theorem.

(ii) If d1 does not take the maximal value, we show that we can build a solution using
a solution from case (i) for a lower dimension. Indeed, as both d and d1 must be odd, the
condition d1 < d implies that there exists an integer k > 0 such that d1+2k = d. We can then
divide the d-tuple of Schmidt coefficients of |λ〉 into k 2-tuples λi

(2) and one d1-tuple λ(d1).
In λ(d1), we choose Schmidt coefficients of an auxiliary state allowing a transformation from
the initial 2-qubit state |µ〉 to the final 2-qubit state |µ̄〉, which has ā = ad1/d2 . From case (i),
we know that this can indeed be achieved for any odd d2 satisfying 1 ≤ d2 < d1. For the k
2-tuples λi

(2), we simply choose Schmidt coefficients corresponding to the final 2-qubit state

|µ̄〉, i.e. λi
(2) = µ̄, ∀i = 1, . . . , k.

Using an LU that, in the corresponding subspaces, has the effect of swapping each 2-tuple
λi
(2) with the 2-tuple µ of the initial 2-qubit state, and performs the non-trivial transformation

from case (i) in the d1-dimensional subspace, we achieve a transformation that has the desired
final 2-qubit state |µ̄〉. Regarding the final auxiliary state, λ̄ has the same structure as λ, but
with λ̄i

(2) = µ, ∀i = 1, . . . , k, and λ̄(d1) corresponding to the d1-tuple of Schmidt coefficients of
the final auxiliary state of the transformation performed in the d1-dimensional subspace.

This concludes the proof of case (ii), and with it the proof of the sufficient part of the
theorem.

The construction used to solve the case d1 < d in the sufficient part of the proof is a useful
tool allowing one to embed a known solution into a larger space. Because this type of solution
consists in dividing the d-level space into some direct sum of different subspaces, we call these
solutions "direct-sum solutions" (see Fig. 3). We detail now the idea behind the constructive
proof given above for the other case (d1 = d) and, through explicit examples, illustrate the
fact that several auxiliary states can be used for a given 2-qubit state transformation.

Theorem 6 shows that for any non-trivial transformation we can express ā as a power of
a. As a consequence, the ratios of Schmidt coefficients appearing in Eqs. (62) correspond also
to some powers of a. This suggests that, up to some normalization factor, we can express the
Schmidt coefficients themselves as powers of a. In this sense, Eqs. (62) characterize the “mul-
tiplicative gaps”, in terms of power of a, between couples of Schmidt coefficients (λ̄x i

, λ̄x j
).

Because the parameter ki in these equations can only take three different values, we have only
three possible gaps. From the relation ā = ad/d2 (remember that we assume here d1 = d), we
obtain the following explicit expressions for these gaps:

If ki = −1,
λ̄xi

λ̄yi
= a

d
d2
+1 ≡ g++ ,

If ki = 0,
λ̄xi

λ̄yi
= a ≡ g+ ,

If ki = 1,
λ̄xi

λ̄yi
= a1− d

d2 ≡ g− .

(68)

The gaps g++ and g+ correspond to a positive power of a (g++ to a greater power of a
than g+), while g− corresponds to a negative power of a.

In the case of a transformation with d1 taking the maximal value d, the parameter r in
Eq. (63) has to be zero (there is no equation inversion to perform) and we have

∑d−1
i=2 ki = d2.
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In this case, it is easy to see that the product of the positive gaps is precisely equal to the inverse
of the product of the negative gaps. As a consequence, we can use these gaps to arrange the
Schmidt coefficients of the auxiliary state |λ̄〉 in closed cycles (see for instance Fig. 4). To build
such a cycle, one starts with the largest Schmidt coefficient, i.e. λ̄1, and select the equation
from the list (62) in which λ̄1 appears in the denominator. The Schmidt coefficient appearing
in the numerator in this equation, say λ̄x , is then equal to λ̄1 multiplied by some gap. Since
λ̄1 is the greatest Schmidt coefficient, this gap has to be positive. As there is no equation
inversion when d1 = d, λ̄x has to appear in the denominator of some other equation, which
can be used to relate λ̄x to another Schmidt coefficient via a positive gap. Continuing to
follow this list of equations, we arrive eventually at the equation in which λ̄1 appears in the
numerator. Again, because λ̄1 is the greatest Schmidt coefficient, this equation is necessarily
associated to a negative gap which closes the cycle. If there are still equations left in the list,
we start another cycle of Schmidt coefficients. Note that in the case of multiple cycles, each
cycle must produce the same relation between a and ā, as we otherwise have a = ā = 1. As
we illustrate now for d1 = d = 5 and d2 = 1, this can be used to give a schematic picture of all
transformations turning the initial (unnormalized) 2-qubit Schmidt vector (1, a) into (1, a5).

In this case, the three possible gaps given in Eq. (68) read

g++ = a6 ,
g+ = a ,
g− = a−4 ,

(69)

and there are, up to reordering, only two sets {ki}5i=1 such that
∑4

i=2 ki = d2 = 1 (recall that
we always have k1, k5 = 0):

ka = {0,1, 0,0, 0}, kb = {0, 1,1,−1,0} . (70)

Let us first consider the case ka = {0,1, 0,0, 0}. In this case, there is no gap g++ and only
one gap g−. As a consequence, the only cycle that we can create starts with the largest Schmidt
coefficient λ1, then uses all the four positive gaps to go through the remaining four Schmidt
coefficients and closes the cycle using the negative gap (see Fig. 4).

g+ g+g+ g+

g−

λ̄1 λ̄2 λ̄3 λ̄4 λ̄5

Figure 4: Cycle associated with ka = (0,1, 0,0, 0)

All Schmidt coefficients are expressed as a function of λ̄1 (which accounts for the nor-
malization). Setting it to 1, the corresponding (unnormalized) Schmidt vector for |λ̄〉 reads

λ̄= (1, a, a2, a3, a4) . (71)

The Schmidt vector of |λ〉 can be deduced by considering the equation µ ⊗ λ ∼ µ̄ ⊗ λ̄. In
summary, using (unnormalized) Schmidt vectors to denote the bipartite states, we have the
transformation:

(1, a)⊗ (1, a2, a4, a6, a8)→LU (1, a5)⊗ (1, a, a2, a3, a4) . (72)

We now turn to the second case kb = {0,1, 1,−1, 0}. Because we have here the two types of
positive gaps, g+ and g++, we can build several cycles, see for instance Figs. 5 and 6. However,
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not every cycle corresponds to a valid non-trivial transformation. Indeed, inverting the gaps
of the cycle in Fig. 5 to get equations of the form (62), we get:

a =
λ̄3

λ̄1
ā−1 =

λ̄1

λ̄2
ā =

λ̄4

λ̄3
=
λ̄5

λ̄4
=
λ̄2

λ̄5
ā . (73)

These equations are compatible with the relation a5 = ā but, writing explicitly ā = µ̄2
µ̄1

, we see

that the Schmidt coefficient λ̄1µ̄2 appears twice in this set of equations, whereas λ̄1µ̄1 and
λ̄1µ̄2 should both occur precisely once. As a consequence, these equations have a solution
only if µ̄1 = µ̄2, showing that this cycle corresponds to a trivial transformation with a = ā = 1.

The cycle depicted in Fig. 6 corresponds to the only non-trivial transformation in the case
kb = {0,1, 1,−1,0}. Indeed, as noted in the proof of Theorem 6, a non-trivial transformation

necessarily implies a =
λ̄x1

λ̄1
= λ̄d

λ̄yd

for some x1 ∈ {2, . . . , d} and yd ∈ {1, . . . , d − 1}. As we

consider an unnormalized Schmidt vector, we can without loss of generality set λ̄1 = 1. This
implies λ̄x1

= a. As, in this case, all gaps correspond to integer powers of a (which is not
always the case as we illustrate later), and we can here only have a single cycle (as d1 has
the largest possible value), there cannot be another Schmidt coefficient between λ̄1 and λ̄x1

.

We thus have x1 = 2 and λ̄2 = a. For a similar reason we must have λ̄5

λ̄4
= a. With these two

constraints, it follows that the cycle in Fig. 6 is the only possible solution. It corresponds to
the transformation

(1, a)⊗ (1, a4, a6, a8, a12)→LU (1, a5)⊗ (1, a, a4, a7, a8) . (74)

g++ g+ g+

g−
g−

λ̄1 λ̄2 λ̄3 λ̄4 λ̄5

Figure 5: Example of cycle associated with kb = {0,1, 1,−1, 0} that leads to a trivial
transformation with a = ā = 1.

g++g+ g+

g−g−

λ̄1 λ̄2 λ̄3 λ̄4 λ̄5

Figure 6: This cycle is the only one leading to a valid LU transformation in the case
kb = {0, 1,1,−1,0}.

For a given qubit transformation from |µ〉 to |µ̄〉, there may be several choices of (odd
dimensional) states |λ〉 and |λ̄〉, each transformation corresponding to a specific unitary oper-
ation. When d1 = d, each solution corresponds to a specific cycle, and there are only finitely
many possibilities. As d increases, however, the length of potential cycles increases, leading to
more possible cycles, and thus more transformations. For example, in the case of d = d1 = 7
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and d2 = 3, we have the three distinct (not normalised) transformations:

(1, a)⊗ (1, a4/3, a8/3, a10/3, a4, a16/3, a20/3)

→LU (1, a7/3)⊗ (1, a, a4/3, a8/3, a4, a13/3, a16/3) , (75)

(1, a)⊗ (1, a2/3, a4/3, a2, a8/3, a10/3, a4)

→LU (1, a7/3)⊗ (1, a2/3, a, a4/3, a5/3, a2, a8/3) , (76)

(1, a)⊗ (1, a4/3, a2, a8/3, a10/3, a4, a16/3)

→LU (1, a7/3)⊗ (1, a, a4/3, a2, a8/3, a3, a4) . (77)

Investigating which cycle corresponds to a non-trivial solution becomes more involved as d
increases. For d > 5, the cycles do not necessarily consist of a sequence containing all the pos-
itive gaps, followed by a sequence containing all the negative gaps (as in Figs. 4 and 6). More
intricate cycle structures appear, such as for instance the cycle corresponding to transformation
in Eq. (76) (see Fig. 7).

g+
g+ g+ g+

g−g−
g−

λ̄1 λ̄2 λ̄3 λ̄4 λ̄5 λ̄6 λ̄7

Figure 7: Cycle associated with the transformation in Eq. (76).

This last example concludes our illustration of the possible transformations of 2-qubit states
under multi-state LUs characterized in Theorem 6. In the next section we address the possible
transformations of bipartite states of higher dimension.

5.2 Non-trivial solutions in higher dimensional non-homogeneous systems

We show here that non-trivial transformations are not only possible when one of the initial
states is a 2-qubit state but also occur in all non-homogeneous systems, i.e. systems with
dµ 6= dλ.

To begin, let us look at the non-trivial transformations in the case dµ = 3, dλ = 4. By
considering all valid permutations, one can show that there are four non-trivial, non-direct-
sum solutions.

(1, a, a2)⊗ (1, a3, a6, a9)∼ (1, a4, a8)⊗ (1, a, a2, a3) (78)

(1, a2, a4)⊗ (1, a3, a5, a6)∼ (1, a4, a5)⊗ (1, a2, a3, a5) (79)

(1, a, a5)⊗ (1, a3, a5, a6)∼ (1, a4, a5)⊗ (1, a, a3, a6) (80)

(1, a, a5)⊗ (1, a2, a3, a5)∼ (1, a2, a4)⊗ (1, a, a3, a6) . (81)

Note, perhaps surprisingly in this higher dimensional dµ = 3, dλ = 4 case, all non-trivial,
non-direct-sum solutions are still characterised by a single variable. However, as the dimen-
sions grow, the number of non-trivial solutions will also grow. This makes further investi-
gation of this feature challenging. Nonetheless, we can generally observe that for any non-
homogeneous system (dµ 6= dλ), there is always at least one non-trivial solution. As we illus-
trate in the following observation, it is indeed possible to generalize the transformation given
in Eq. (72) to pairs of bipartite states of arbitrary (but different) dimensions.
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Observation 7. For any dµ, dλ ≥ 2, with dµ < dλ, the tuples of Schmidt coefficients

µ=
�

1, adλ , a2dλ , . . . , a(dµ−1)dλ
�

, (82)

λ=
�

1, a, a2, . . . , adλ−1
�

, (83)

and

µ̄=
�

1, a, a2, . . . , adµ−1
�

, (84)

λ̄=
�

1, adµ , a2dµ , . . . , a(dλ−1)dµ
�

, (85)

lead to the non-trivial transformation |µ〉 ⊗ |λ〉 →LU |µ̄〉 ⊗ |λ̄〉 (see Fig. 3).

This can easily be verified by computing the tensor products µ⊗λ, and µ̄⊗ λ̄ and checking
that they are equal up to reordering. We now move on to homogeneous systems.

5.3 Homogeneous Systems

As we showed in the previous section, non-trivial transformations can be found in all non-
homogeneous systems. However, the general example shown in the previous section cannot
be used in homogeneous systems. This is because, when dµ = dλ, the transformation in Ob-
servation 7 corresponds to SWAP. Consequently, we must look for alternate non-trivial trans-
formations.

Building on the non-trivial transformations characterized in the previous section, we first
show that non-trivial transformations can be found in all homogeneous systems with d ≥ 4.
As an application, we then use such transformations to show that the source entanglement, an
entanglement measure that was defined in Ref. [45], is not an additive measure for bipartite
pure states. Finally, we prove that there does not exist any non-trivial transformations for
the two remaining homogeneous systems (d = 2,3). In this last part, we make use of the
elementary symmetric polynomials approach presented in the introductory part of Section 5.

5.3.1 Building non-trivial transformations

We show here the following observation:

Observation 8. There exists at least one non-trivial transformation in all homogeneous systems
with dµ = dλ ≥ 4.

We proceed by first demonstrating non-trivial solutions for all non-prime dimensions. Then
we demonstrate a solution for all odd (and therefore all prime) dimensions greater than d = 5.
Finally, we provide an explicit solution for d = 5.

If the dimension dµ = dλ = d is not a prime number, then it can always be factorized into
two smaller dimensions, d1 and d2, with d = d1d2. It is therefore possible to consider, as initial
states, two product states |λ〉 = |λd1

〉 ⊗ |λd2
〉 and |µ〉 = |µd1

〉 ⊗ |µd2
〉. We can then obviously

get a non-trivial transformation if we use local unitaries to swap only the states corresponding
to the d1− (or d2−) dimensional subspace, yielding a transformation of the form

�

|µd1
〉 ⊗ |µd2

〉
�

⊗
�

|λd1
〉 ⊗ |λd2

〉
� LU
−→

�

|λd1
〉 ⊗ |µd2

〉
�

⊗
�

|µd1
〉 ⊗ |λd2

〉
�

. (86)

Note that, for simplicity, we present here again a transformation with bipartite states that
have a tensor product structure across their d dimensions. Using local unitaries, we could
also create entanglement across these d1- and d2-dimensional subspaces to provide a similar
transformation involving only fully-entangled states.
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If d is prime, we obviously cannot have a non-trivial solution of this form. However, instead
of decomposing the dimension into a product, we can decompose it into a sum. If d is large
enough, this sum decomposition can lead to non-trivial solutions. We demonstrate this with
an example. In the case d = 7, we can split the 7 Schmidt coefficients of both initial states
into one set of 4 Schmidt coefficient and one set of 3 Schmidt coefficients. Splitting further
the sets of 4 Schmidt coefficients into a tensor product of two sets of 2 Schmidt coefficients,
we take for λ (and similarly for µ) the following structure:

λ= c
�

λ1
(2) ⊗λ

2
(2)

�

⊕ (1− c)λ(3) , (87)

whereλ1
(2) andλ2

(2) are tuples of Schmidt coefficients of 2-qubit states, λ(3) is a tuple of Schmidt
coefficients of a 2-qutrit state and 0< c < 1 is a mixing parameter.

To achieve a non-trivial transformation from this structure, we exploit a non-trivial trans-
formation in (C2 ⊗C3)⊗2 that can be deduced from Theorem 6. For this system, the theorem
shows that there exists a non-trivial transformation of the 2-qubit target state corresponding
to a final state with ā = a3. In term of Schmidt coefficients, this transformation reads

1
1+ a

(1, a)⊗
1

1+ a2 + a4
(1, a2, a4)∼

1
1+ a3

(1, a3)⊗
1

1+ a+ a2
(1, a, a2) . (88)

As a consequence, using

µ= c
�

1
1+ a

(1, a)⊗
1

1+ b
(1, b)

�

⊕ (1− c)
1

1+ a+ a2
(1, a, a2) , (89)

λ= c′
�

1
1+ a3

(1, a3)⊗
1

1+ b′
(1, b′)

�

⊕ (1− c′)
1

1+ a2 + a4
(1, a2, a4) , (90)

we can achieve a transformation to

µ̄= c
�

1
1+ a3

(1, a3)⊗
1

1+ b
(1, b)

�

⊕ (1− c)
1

1+ a2 + a4
(1, a2, a4) , (91)

λ̄= c′
�

1
1+ a

(1, a)⊗
1

1+ b′
(1, b′)

�

⊕ (1− c′)
1

1+ a+ a2
(1, a, a2) . (92)

This argument holds for any odd dimension, d ≥ 7. This is because for any d ≥ 7, d−3 is even
and at least equal to 4 (so that the corresponding subspace can be further split into a tensor
product of two non-trivial subspaces). Therefore we can construct a state
λ = c(λ(2) ⊗ λ(d/2)) ⊕ (1 − c)λ(3) (where, as before, the subscript indicates the dimension
of the corresponding tuple). Then we simply apply the same type of transformation as in the
example. As this argument holds for any odd dimension d ≥ 7, it holds in particular for all
prime dimensions greater than five.

Finally, in the case of d = 5, we provide the following explicit example of a non-trivial
transformation:

(1, a, a4/3, a2, a8/3)⊗ (1, a1/3, a2/3, a, a4/3)

∼ (1, a1/3, a4/3, a5/3, a2)⊗ (1, a2/3, a, a4/3, a2) . (93)

This concludes the proof of the observation that in all homogeneous bipartite systems (except
those of dimension 2 and 3), there are non-trivial multi-state LU transformations.

Before completing the last remaining cases of d = 2,3 in Section 5.3.3, as an application
of the transformations we described in this section, we first show that the source entangle-
ment [45], Es, is not an additive measure of entanglement for bipartite states, in contrast, for
instance, to the Von Neumann entropy (of pure states).
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5.3.2 Source Entanglement of Bipartite Systems

The source entanglement is a measure of entanglement, ranging from 0 to 1, which mea-
sures how difficult it is to reach a state using LOCC. For a bipartite state |λ〉 ∈ Cd ⊗Cd , with
set of Schmidt coefficients λ, it is given by [45]

Es(λ) = 1−
∑

σ∈Sd

�

∑d
k=1σ(k)λk

�d−1

∏d−1
k=1

�

σ(k)−σ(k+ 1)
� , (94)

where the sum runs over all permutations σ from the permutation group of d elements, Sd .

Observation 9. The source entanglement is not an additive measure of entanglement for bipartite
states

Consider a transformation involving the states given in Eqs. (89)-(92). Obviously, we have
Es(µ⊗λ) = Es(µ̄⊗ λ̄). However, for some values of the parameters of the transformation, we
can have Es(λ) + Es(µ) < Es(λ̄) + Es(µ̄). In that case, the source entanglement can increase
more in the transformation from |λ〉 to |λ̄〉 than it decreases in the transformation from |µ〉
to |µ̄〉. To give an example, choosing the parameters a = 0.3, b = 0.01, c = 0.01, b′ = 0.3
and c′ = 0.8, this difference amounts to

�

Es(λ̄) + Es(µ̄)
�

−
�

Es(λ) + Es(µ)
�

= 0.56. Using a
state |µ〉 that is easy to reach (Es(µ) = 0.005), we can transform an easily reachable state |λ〉
with Es(λ) = 0.11 into a state |λ̄〉 with Es(λ̄) = 0.68, which is much more difficult to reach via
LOCC. This once again demonstrates that multi-state LOCC transformations are much richer
than their single-state counterparts.

5.3.3 Characterizing trivial solutions using ESPs

In this section, we show that for the two homogeneous systems for which we did not pro-
vide examples of non-trivial transformations, namely those with d = 2,3, only trivial transfor-
mations are possible. As explained previously, ESPs provide a natural framework for studying
bipartite multi-state LU transformations through the following necessary and sufficient condi-
tions: the transformation |µ〉 ⊗ |λ〉 →LU |µ̄〉 ⊗ |λ̄〉 is possible if and only if

ei(µ⊗λ) = ei(µ̄⊗ λ̄),∀i ∈ {1, . . . , dµdλ) . (95)

Moreover, it was demonstrated in Ref. [42] that if the Schmidt coefficients have a tensor
product structure, as in the present case, then the ESPs ei(µ⊗λ) can be expressed in terms of
the ESPs si ≡ ei(λ) and t i ≡ ei(µ), i.e. in term of the ESPs of the marginals. For example, in
the case dµ = dλ = 2, we have:

e1(µ⊗λ) = s1 t1 (96)

e2(µ⊗λ) = s2
1 t2 + s2 t2

1 − 2s2 t2 (97)

e3(µ⊗λ) = s1 t1s2 t2 (98)

e4(µ⊗λ) = s2
2 t2

2 . (99)

Although this decomposition does not usually help solving Eqs. (95), which is typically a
large set of high degree polynomial equations, we now show that it is very useful to identify
trivial LU transformations. A transformation, |µ〉 ⊗ |λ〉 →LU |µ̄〉 ⊗ |λ̄〉, is trivial if the tuple of
tuples (µ,λ) is equal up to reordering to the tuple of tuples (µ̄, λ̄). This accounts indeed for
both 1 and SWAP trivial transformations. Since the order of the Schmidt coefficients in each
tuple does not matter, we can replace the tuples of Schmidt coefficients by their corresponding
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tuples of ESPs. In the case dµ = dλ = 2, using the simplified notations si and t i (resp. s̄i and
t̄ i) for the ESPs of the tuples µ and λ (µ̄ and λ̄), we then have a trivial transformation if and
only if

�

(s1, s2), (t1, t2)
�

∼
�

(s̄1, s̄2), ( t̄1, t̄2)
�

. (100)

As the first order ESP of any normalized tuple of Schmidt coefficients is equal to 1, for nor-
malized states, the previous equation reduces to

(s2, t2)∼ (s̄2, t̄2) . (101)

This is a usual equivalence relation between two tuples of two variables. This equivalence
holds if and only if the two ESPs of the two tuples are equal, i.e. if and only if

s2 + t2 = s̄2 + t̄2 , (102)

s2 t2 = s̄2 t̄2 . (103)

On the other hand, all the solutions for the transformation |λ〉 ⊗ |µ〉 →LU |λ̄〉 ⊗ |µ̄〉 can be
obtained by solving the equations ei(λ⊗ µ) = ei(λ̄⊗ µ̄), ∀i = 1, . . . , 4. Using the decomposi-
tions in Eqs. (96) to (99), and taking into account that we consider normalized states, this set
of equations is equivalent to:

s2 + t2 − 2s2 t2 = s̄2 + t̄2 − 2s̄2 t̄2 , (104)

s2 t2 = s̄2 t̄2 . (105)

As these two equations are equivalent to the conditions (102) and (103) for having trivial
solutions, we conclude that there are only trivial transformations for dµ = dλ = 2.

In order to generalize this approach for higher dimensions we present the following theo-
rem:

Theorem 10 (Equivalence between two tuples of tuples). Let s = (s1, s2, ..., sd) ∈ Rd
+ with

si+1 ≤ si and let t, s̄, t̄ be defined similarly. Then (s, t) is equal to (s̄, t̄) up to reordering iff the
following conditions hold:

1. ei(s) + ei(t) = (”̄), ∀i = 1, . . . , d and

2.
∑

i+ j=k ei(s)e j(t) = (”̄), ∀k = 1, . . . , 2d

where (”̄) indicates the same as the LHS but with all variables barred.

The proof of this theorem is provided in the Appendix D. As ei+1(λ) ≤ ei(λ) for any nor-
malized tuple of Schmidt coefficients λ, and the ESPs over λ completely determine |λ〉 up to
LUs, this theorem gives necessary and sufficient conditions for trivial transformations being
the only possible transformations.

We now use this to show that there are only trivial solutions in the one remaining case:
d = 3. Again, |λ〉 ⊗ |µ〉 →LU |λ̄〉 ⊗ |µ̄〉 if and only if ei(λ⊗ µ) = ei(λ̄⊗ µ̄), ∀i = 1, . . . , 9. De-
composing these equalities in term of the ESPs of the marginals, we have the set of equations:

s2 + t2 − 2s2 t2 = ¯(”) (106)

s3 + t3 + s2 t2 − 3(s3 t2 + s2 t3) + 3s3 t3 = ¯(”) (107)

s3 t2 + s2 t3 + s2
2 t2

2 − 2(s3 t2
2 + s2

2 t3)− s3 t3 = ¯(”) (108)

s2s3 t2
2 + s2

2 t2 t3 − 2(s2s3 t3 + s3 t2 t3)− s2s3 t2 t3 + s3 t3 = ¯(”) (109)

s2
3 t3

2 + s3
2 t2

3 + s2s3 t2 t3 − 3(s2
3 t2 t3 + s2s3 t2

3) + 3s2
3 t2

3 =
¯(”) (110)

s3 t3

�

s3 t2
2 + s2

2 t3 − 2s3 t3

�

= ¯(”) (111)

s2 t2s2
3 t2

3 =
¯(”) (112)

s3
3 t3

3 =
¯(”) , (113)
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where again (”̄) indicates the same as the LHS but with all the variables barred.
Now by application of Theorem 10, a transformation is trivial iff

s2 + t2 + s3 + t3 = ¯(”) (114)

s2s3 + t2 t3 = ¯(”) (115)

(s2s3) + (s2 + s3)(t2 + t3) + (t2 t3) = ¯(”) (116)

(s2 + s3)(t2 t3) + (s2s3)(t2 + t3) = ¯(”) (117)

s2s3 t2 t3 = ¯(”) . (118)

Using the fact that si , t i > 0, one can easily show that the set of Eqs. (106-113) implies
the set of Eqs. (114-118). Therefore, the conditions for having a solution imply only trivial
solutions, which shows that the only solutions in homogeneous systems with d = 2,3 are the
trivial 1 and SWAP transformations. This completes our analysis of multi-state bipartite LU
transformations.

6 Conclusion

In this work, we investigated the physically motivated extension of LOCC consisting of
multi-state transformations. As mentioned in the introduction, considering such an extension
of LOCC is motivated by the fact that, in homogeneous systems, states are generically isolated
under single-state LOCC [30], implying that the MES necessarily contains almost all states of
the Hilbert space. Relaxing this setting, for instance by allowing local operations on multiple
states, new transformations could be achieved and a (hopefully more practical) equivalent of
the MES could be obtained.

We first showed that by performing a multi-state LOCC transformation on several multipar-
tite pure states, it is possible to change the SLOCC class of at least one of them with only LUs.
As one of the initial states could be transformed into a state that belongs to a different SLOCC
class, we must, in order to characterize all possible transformations, consider potential final
states from all possible SLOCC classes. As there is generically an infinite number of SLOCC
classes in multipartite systems, achieving a full characterization of multipartite multi-state
transformations is very unlikely. This is also one of the reasons why identifying the equivalent
of the MES in the multi-state setting is probably out of reach.

In light of this first result, we focused in the present work on identifying new features of
multi-state transformations of multipartite states (compared to single-state LOCC). With a 3-
qubit example, we showed that a state from the MES can be reached in the multi-state setting
through an LOCC transformation of two states that are not from the MES, which allows for
some freedom in choosing the 2-MES. We also showed that catalytic transformations of multi-
partite states can be performed in the multi-state regime and that this regime can provide an
advantage (in the sense of a larger success probability) for probabilistic LOCC transformations.

These results show qualitatively that multi-state LOCC allows a much larger set of possible
transformations than single-state LOCC. Looking for a more systematic characterization of the
new possible transformations, we also considered the simpler setting of bipartite two-state LU
transformations. In this setting, we provided a full characterization of the possible transforma-
tions of a 2-qubit state, when transformed together with an arbitrary auxiliary bipartite state.
We also showed that in almost all possible pairs of bipartite systems, non-trivial two-state LU
transformations can be achieved.

Looking forward, our multipartite results show that multi-state LOCC has a wide range of
interesting phenomena but a full characterisation is probably out of reach. Therefore, further
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investigations of multipartite, multi-state transformations should either focus on the asymp-
totic case, or on physically relevant sets of states (for which the multi-state LOCC structure
might be simpler than in the general case). Regarding the bipartite setting, the results pre-
sented here show that already LUs lead to non-trivial transformations in the multi-state setting.
One could extend our work by expanding the allowed operations to LOCC. In this case, optimal
protocols already exist for entanglement concentration of finitely many bipartite states [19].
However, a full characterisation seems very challenging as it would include the heavily inves-
tigated bipartite entanglement catalysis [39,40,43,54] as a subset of transformations.
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A Changing SLOCC orbit type in the multi-state regime

In this appendix, we discuss the possibility to change the orbit type of SLOCC classes under
multi-state LU transformations as in Section 4.1. We use the same notation as in the main text,
i.e., the pair of states |ψ〉 and |ψ̄〉 is transformed to the pair of states |φ〉 and |φ̄〉. First, we
briefly review the notion of the orbit type of SLOCC classes (states), i.e, the notion of polystable
states, strictly semistable states, and states of the null-cone. Then, we show that the example
presented in the main text, |ψ〉 = |GHZ〉⊗2, |ψ̄〉 = |W〉⊗2, and |φ〉 = |φ̄〉 = |GHZ〉 |W〉 indeed
constitutes an example in which a polystable state and a state from the null-cone is transformed
to two states from the null-cone. We then provide additional examples showing that two
strictly semistable states can be transformed to one strictly semistable and one polystable state.
Furthermore, we show that two states in the null-cone can be transformed to one strictly
semistable state and one state in the null-cone. Finally, we discuss that the orbit types cannot
be changed arbitrarily. This is due to the fact that, obviously, the orbit type of the joint state
cannot change under SLOCC. In the course of that, we discuss the orbit type of tensor products
of states. To conclude, we draw a connection to SLOCC catalysis (changing SLOCC class with
a catalytic SLOCC transformation).

Let us begin by reviewing the notion of the orbit type of SLOCC classes. As mentioned
in the main text, states and their respective SLOCC classes can be categorized into three
different types depending on geometrical properties of the orbit: polystable classes, strictly
semistable classes, and the null-cone10, see e.g. [46–49]. The orbit type plays a role in char-
acterizing deterministic LOCC transformations within SLOCC classes. Polystable classes are
those SLOCC classes that contain a critical state. Strictly semistable classes are those SLOCC
classes that do not contain a critical state, but do contain a critical state in their closure. Fi-
nally, the null-cone is composed by the remaining classes, i.e., those SLOCC classes that do
not contain a critical state within their closure. Not all of these types are necessarily present
within a quantum system of specified local dimensions. Note that a state |ξ〉 is in the null-
cone if and only if there exists a sequence of operators S(1)α , S(2)α , . . . ∈ SL(d,C) such that
limα→∞ S(1)α ⊗ S(2)α ⊗ . . . |ξ〉 = 0 [47]. A state |χ〉 is strictly semistable if and only if it has

10A finer classification can be made. However, for our purposes here, the presented classification is sufficient.
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the property that it is not SLOCC equivalent to any critical state, but there exists a sequence
of operators as before such that limα→∞ S(1)α ⊗S(2)α ⊗ . . . |χ〉 ∝ |Ψc〉 for some critical state |Ψc〉
(with non-vanishing proportionality factor). Note also that a critical state in the closure of an
SLOCC class is unique up to LUs [46,47]. Analytical and numerical methods to determine the
orbit type have been devised, see e.g. [47,48,63–65].

Let us now study how the orbit type of states may change under multi-state LU transforma-
tions. Let us first consider the transformation from the main text, |ψ〉= |GHZ〉⊗2, |ψ̄〉= |W〉⊗2,
and |φ〉 = |φ̄〉 = |GHZ〉 |W〉. As explained in the main text, this transformation is possible by
LUs acting jointly on the copies. Moreover, note that |GHZ〉⊗2 is critical and thus represents
a polystable SLOCC class, while |W〉 |GHZ〉 as well as |W〉⊗2 are in the null-cone. This can
be easily seen as follows. The state |W〉 is in the null-cone, hence, there exists a sequence of
operators Aα, Bα, Cα ∈ SL(2,C) such that limα→∞ Aα ⊗ Bα ⊗ Cα |W〉 = 0 [47]. Then, for any
state |ζ〉, it holds that limα→∞(1⊗Aα)⊗ (1⊗Bα)⊗ (1⊗Cα) |ζ〉 |W〉= 0, where 1⊗Aα, 1⊗Bα,
1⊗ Cα have determinant one. Thus, |GHZ〉 |W〉 and |W〉⊗2 are in the null-cone. Let us remark
that this argument actually holds for any state in the null-cone together with an arbitrary state
|ζ〉. This shows that, indeed, it is possible to transform one state in the null-cone and one
polystable state to two states that are both in the null-cone.

Similarly, it is possible to transform two strictly semistable states to one strictly semistable
as well as one polystable state. Consider the transformation involving the four-partite states

|ψ〉= |GHZ〉⊗2 (119)

|ψ̄〉= |χ〉⊗2 (120)

|φ〉= |φ̄〉= |GHZ〉 |χ〉 , (121)

where |χ〉= |0000〉+ |1111〉+ |0110〉+ |0011〉, which belongs to the La2 b2
class in Ref. [27] for

a = 1 and b = 0. This state is strictly semistable. Hence, there exists a sequence of operators
Aα, Bα, . . . ∈ SL(d,C) such that limα→∞ Aα ⊗ Bα ⊗ . . . |χ〉 ∝ |Ψc〉 for some critical state |Ψc〉
with non-vanishing proportionality factor, but no critical state is inside the SLOCC class of |χ〉.
To see that |χ〉 is strictly semistable, note that

lim
α→∞

�

e−α 0
0 eα

�

⊗1⊗
�

eα 0
0 e−α

�

⊗1 |χ〉= |GHZ〉 , (122)

and it may be easily verified that |χ〉 and |GHZ〉 are not SLOCC equivalent. Similarly, it can
be easily verified that both |χ〉 |GHZ〉 and |χ〉 |χ〉 are strictly semistable with |GHZ〉⊗2 being
the critical state within the closure of their respective SLOCC class. Thus, the considered
transformation is indeed a transformation from a strictly semistable and a polystable state to
two strictly semistable states.

Finally, we find that two states from the null-cone may be transformed into one state in
the null-cone as well as one strictly semistable state. With similar methods as above, it can be
shown that the transformation involving the states

|ψ〉= |χ〉⊗2 (123)

|ψ̄〉= |W〉⊗2 (124)

|φ〉= |φ̄〉= |χ〉 |W〉 , (125)

is indeed an example of that.
Let us remark here that, obviously, all of the considered transformations are also possible

in reverse direction. We depict the considered examples in Figure 8. Note, though, that the
orbit type may not be changed arbitrarily. For instance, it is impossible to transform two states
in the null-cone to two polystable states. The reason for this is that, necessarily, the orbit
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Figure 8: Illustration of how LUs operating jointly on two multipartite states may
not only alter the SLOCC classes of the two considered states, but also the orbit type
of the SLOCC classes. On the left we depict the Hilbert space partitioning into the
three distinct orbit types: The null-cone N , strictly semistable classes, and polystable
classes. On the right hand side, we depict possible orbit type changes. First, we depict
two states in the null-cone which can be transformed to one state in the null-cone as
well as one polystable state. Then, we depict two strictly semistable states which can
be transformed to one strictly semistable states as well as one polystable state. On the
bottom, we depict two states in the null-cone that can be converted to a single state
in the null-cone as well as a strictly semistable state. Concrete examples for all of
the depicted scenarios are given in the main text. Finally, we indicate the considered
pairs of states in the schematic picture of the Hilbert space on the left-hand side.

types of the tensor products of the states on both sites of the considered transformation must
coincide. However, the tensor product of two states in the null-cone is in the null-cone, while
the tensor product of two polystable states is polystable. More generally, it is impossible to
transform any state in the null-cone together with an arbitrary state into two states neither of
which is in the null-cone.

Finally, let us remark that it is not immediately clear whether the tensor product of a
strictly semistable state and a polystable state (the tensor product of two strictly semistable
states) is always strictly semistable, or may also be polystable. As we show in a following
observation, the latter case would demonstrate reversible SLOCC catalysis. By this we mean it
would provide an instance of three states |ψ〉, |ψ̄〉, and |φ〉 with the following properties. The
states |ψ〉 and |φ〉 are fully-entangled states of a Hilbert space with fixed local dimensions,
which are not SLOCC equivalent. However, the states |ψ〉 |ψ̄〉 and |φ〉 |ψ̄〉 are SLOCC equiva-
lent. Irreversible SLOCC catalysis, i.e., an instance where |φ〉 is lower-dimensional than |ψ〉,
has been demonstrated in [40]. Regarding reversible SLOCC catalysis we make the following
observation.

Observation 11. An instance of two states |ψ〉 and |ψ̄〉, one strictly semistable and one polystable,
such that |ψ〉 |ψ̄〉 is polystable would provide an instance of reversible SLOCC catalysis.

Proof. Consider a strictly semistable state |ψ〉 and a polystable state |ψ̄〉 and suppose that the
joint state |ψ〉 |ψ̄〉 is polystable. Let us denote the critical state that is in the closure of the
SLOCC class of |ψ〉 by |φ〉. Due to arguments used earlier in this appendix, |φ〉 |ψ̄〉 is then in
the closure of the SLOCC class of |ψ〉 |ψ̄〉. As we supposed that |ψ〉 |ψ̄〉 is polystable, its SLOCC
class is closed and thus, |φ〉 |ψ̄〉 is actually within the SLOCC class of |ψ〉 |ψ̄〉. However, |ψ〉 is
not SLOCC equivalent to |φ〉, as |ψ〉 is strictly semistable and |φ〉 is critical. Note moreover that
|ψ〉 |ψ̄〉 as well as |φ〉 |ψ̄〉 are fully-entangled. The states |ψ〉, |φ〉, and |ψ̄〉 thus demonstrate
reversible SLOCC catalysis.
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B Symmetries of |GHZn
d〉

In this appendix, we prove Lemma 3 from the main text, which characterizes the local
symmetries of generalized GHZ states. We recall the lemma here for completeness.

Lemma 3. A local invertible operator is a symmetry of the state |GHZn
d〉 (with d ≥ 2 and n≥ 3)

if and only if it can be written

S =
�

D(~γ(1))⊗ · · · ⊗ D(~γ(n))
�

X⊗n
σ , (126)

where

D(~γ(i)) = diag(γ(i)1 ,γ(i)2 , . . . ,γ(i)d ) , (127)

γ
(n)
j =

�n−1
∏

i=1

γ
(i))
j

�−1

, ∀ j ∈ {1, ..., d} (128)

Xσ =
d−1
∑

k=0

|σ(k)〉 〈k| , (129)

with σ ∈ Sd any permutation of d elements, ~γ(i) = (γ(i)1 , . . . ,γ(i)d ) ∈ C
d for i = 1, . . . , n− 1.

Proof. The proof of this theorem is a straightforward generalization of the proof of the sym-
metries of |GHZ3

2〉 presented in Ref. [26]. It can be easily verified that the symmetries given in
the theorem are indeed symmetries of |GHZn

d〉. Let us now show that all symmetries of |GHZn
d〉

are necessarily of that form.
To this end, let us consider an arbitrary symmetry S = S(1) ⊗ · · · ⊗ S(n) and compare the

projections of the states |GHZn
d〉 and S |GHZn

d〉 onto 〈i j|1,2 for i 6= j. For the first projection, it
is straightforward to see that

〈i j|GHZn
d〉= 0 . (130)

Since the same result must hold for the second projection, we have:

0= 〈i j|S(1) ⊗ · · · ⊗ S(n)|GHZn
d〉 (131)

=
∑

k

S(1)i,k S(2)j,k |k . . . k
︸ ︷︷ ︸

n−2

〉 , (132)

where we used the fact that the operator 1⊗1⊗S(3)⊗· · ·⊗S(n) is invertible. As the states |k · · · k〉
in the equation above are orthogonal vectors as long as n > 2, it follows that S(1)i,k S(2)j,k = 0 for
all k and for all i 6= j. Moreover, this condition has to hold for arbitrary pairs of parties. From
these conditions it follows that each matrix S(i) can only have one non-vanishing entry per
column. Moreover, the positions of the non-vanishing entries must coincide for all parties.
Since the matrices have to be invertible, the non-vanishing entries must be distributed over all
rows. Adding up these constraints, we see that the matrices S(i) must correspond to the same
column permutation of diagonal matrices. We can therefore write the symmetries as

S =
�

D(~γ(1))⊗ · · · ⊗ D(~γ(n))
�

X⊗n
σ , (133)

for some σ ∈ Sd . By applying S to |GHZn
d〉, it can be easily verified that ~γ(n) has to be chosen as

in Eq. (128). This shows that all symmetries are of the form given in Eq. (126) and completes
the proof.
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C Further probabilistic multi-state transformations

In Section 4.4, we demonstrated that the multi-state setting can provide an advantage in
probabilistic transformations. We demonstrated this by taking a state |ψ〉 such that the stabi-
lizer of |ψ〉⊗2 consisted of only 1 and SWAP. We then considered probabilistic transformations
from two copies of a state to two distinct states. In this appendix, we now show that the multi-
state setting does not always provide an advantage. To see this, we now consider the reverse
of the previous example: i.e. transforming from two distinct states to two copies.

Let |ψ〉 be a normalized state such that the stabilizer of |ψ〉⊗2 is unitary (note that this is a
generalisation of the previous example, which required the stabilizer to consist of only 1 and
SWAP). Then, by Eq. (7), we have:

pSEP
max

�

g1 |ψ〉 ⊗ g2 |ψ〉 7→ |ψ〉
⊗2� (134)

= λmin

�

G1 ⊗ G2

||g1 ⊗ g2 |ψ〉
⊗2 ||2

�

(135)

= λmin

�

G1

||g1 |ψ〉 ||2

�

λmin

�

G2

||g2 |ψ〉 ||2

�

(136)

= pSEP
max (g1 |ψ〉 7→ |ψ〉) pSEP

max (g2 |ψ〉 7→ |ψ〉) . (137)

That is, if the tensor product of two copies of a seed state has a unitary stabilizer, the multi-
state regime provides no advantage in reaching two copies of the seed state via SEP. As was
shown in Ref. [28], pSEP

max for the individual state transformations is achievable via LOCC. There-
fore, pSEP

max

�

g1 |ψ〉 ⊗ g2 |ψ〉 7→ |ψ〉
⊗2� is also achievable with LOCC, and the multi-state regime

provides no advantage for this transformation.

D Further discussion of the application of Elementary and Power
Sum Symmetric Polynomials

In Section 5.3.3, we used the elementary symmetric polynomials to prove that there are
no non-trivial transformations in the case dµ = dλ = 2, 3. To do this, we used the fact that
the elementary symmetric polynomials provide necessary and sufficient conditions for tuples
of variables to be equivalent up to reordering. In this appendix, we discuss elementary (and
other fundamental) symmetric polynomials in more depth, and present the proof of Theorem
10.

To begin, let x = (x1, ..., xn) be a tuple of n variables. In addition to elementary symmetric
polynomials, ek(x) (see Eq. (57)), we also have the power sum symmetric polynomials:

ψk =
n
∑

i=1

xk
i , ∀k ∈ N , (138)

again with ψ0 = 1. These two families of symmetric polynomials are related by Newton’s
identities [61]:

kek(x) =
k
∑

i=1

(−1)i−1ek−i(x)ψi(x), ∀k ∈ {1, . . . , n} . (139)

As a consequence, the power symmetric polynomials give necessary and sufficient conditions
for two tuples of real numbers to be equal up to reordering and, therefore, they also give
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necessary and sufficient conditions for the existence of LU transformations. That is for two d-
dim bipartite states, |λ〉 and |µ〉, with Schmidt coefficients λ= (λ1, ...,λd) and µ= (µ1, ...,µd),
|λ〉 can be transformed with LUs into |µ〉, if and only if

ei(λ) = ei(µ), ∀i ∈ {1, . . . , d} , (140)

which is equivalent to

ψi(λ) =ψi(µ), ∀i ∈ {1, . . . , d} . (141)

Finally, observe that the power symmetric polynomials are multiplicative under tensor product.
That is,

ψi(x ⊗ y) =ψi(x)ψi(y), ∀i ∈ N . (142)

Therefore (as presented in Ref. [42]), by Newton’s identities, the elementary polynomials over
tensor products, ei(λ⊗µ) can also be expressed in terms of si ≡ ei(λ) and t i ≡ ei(µ). We can
also easily deduce from this property:

|λ〉 →LU |µ〉 ⇐⇒ |λ〉
⊗n→LU |µ〉

⊗n , (143)

as this follows directly from Eq. (141) and Eq. (142).
We emphasize again that bipartite states are completely determined by the ESPs over their

Schmidt coefficients. Therefore, if we let s = (s2, s3, ..., sd) and likewise for t, s̄, t̄, then the
transformation

|λ〉 ⊗ |µ〉 →LU |λ̄〉 ⊗ |µ̄〉 , (144)

is trivial (i.e. it corresponds to either 1 or SWAP) iff (s, t) is equal to (s̄, t̄) up to reordering.
We now proceed to give necessary and sufficient conditions for this and prove Theorem 10:

Theorem 10 (Equivalence between two tuples of tuples). Let s = (s1, s2, ..., sd) ∈ Rd
+ with

si+1 ≤ si and let t, s̄, t̄ be defined similarly. Then (s, t) is equal to (s̄, t̄) up to reordering iff the
following conditions hold.

1. ei(s) + ei(t) = (”̄), ∀i = 1..d

2.
∑

i+ j=k ei(s)e j(t) = (”̄), ∀k = 1...2d

where (”̄) indicates the same as the LHS but with all variables barred.

Proof. Consider the multivariate polynomials over λ and µ, with real parameters
s1, . . . , sn, t1, . . . , tn:

p = p(λ,µ; s1, ..., sn, t1, ..., tn)

=

�

λ−
∏

i

(µ− si))

�

 

λ−
∏

j

�

µ− t j)
�

!

, (145)

and
p̄ = p(λ,µ; s̄1, ..., s̄n, t̄1, ..., t̄n) . (146)

Then we have p = p̄ if and only iff either
∏

i

(µ− si)) =
∏

i

(µ− s̄i)) , and
∏

i

(µ− t i)) =
∏

i

(µ− t̄ i)) , (147)

or
∏

i

(µ− si)) =
∏

i

(µ− t̄ i)) , and
∏

i

(µ− t i)) =
∏

i

(µ− s̄i)) . (148)
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Let s = (s1, s2, ..., sd) ∈ Rd
+ with si+1 ≤ si and let t, s̄, t̄ be defined similarly. Then we have either

s is equal to s̄ up to reordering and t is equal to t̄ up to reordering or vice versa. As the tuples
are ordered, this in fact holds only if they are actually equal. Which is to say, p = p̄ iff (s, t) is
equal to (s̄, t̄) up to reordering.

Expanding p = p̄, we have:

p =

�

λ−
∏

i

(µ− si))

�

 

λ−
∏

j

�

µ− t j)
�

!

(149)

= λ2 −

 

∏

i

(µ− si) +
∏

j

�

µ− t j

�

!

λ+

�

∏

i

(µ− si)

�

 

∏

j

�

µ− t j

�

!

(150)

= λ2 −

 

d
∑

i=0

(−1)iei(s)µ
i +

d
∑

j=0

(−1) je j(t)µ
j

!

λ+

� d
∑

i=0

(−1)iei(s)µ
i

�

 

d
∑

j=0

(−1) je j(t)µ
j

!

(151)

= λ2 −
d
∑

i=0

(−1)i
�

ei(s) + ei(t)
�

µiλ+
d
∑

i, j=0

(−1)i+ jei(s)e j(t)µ
i+ j (152)

= p̄ . (153)

Comparing coefficients of λnµm, we can deduce p = p̄ iff the following conditions hold:

1. ei(s) + ei(t) = (”̄), ∀i ∈ 1..d

2.
∑

i+ j=k ei(s)e j(t) = (”̄), ∀k ∈ 1...2d

As for any normalised bipartite state, |λ〉, ei+1(λ) < ei(λ), we can use Theorem 10 to
provide necessary and sufficient conditions for only trivial solutions to be possible, as explained
in the main text.
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