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Abstract

Entanglement entropy satisfies a first law-like relation, which equates the first order
perturbation of the entanglement entropy for the region A to the first order perturba-
tion of the expectation value of the modular Hamiltonian, δSA = δ〈KA〉. We propose
that this relation has a finer version which states that, the first order perturbation of the
entanglement contour equals to the first order perturbation of the contour of the mod-
ular Hamiltonian, i.e. δsA(x) = δ〈kA(x)〉. Here the contour functions sA(x) and kA(x)
capture the contribution from the degrees of freedom at x to SA and KA respectively. In
some simple cases kA(x) is determined by the stress tensor. We also evaluate the quan-
tum correction to the entanglement contour using the fine structure of the entanglement
wedge and the additive linear combination (ALC) proposal for partial entanglement en-
tropy (PEE) respectively. The fine structure picture shows that, the quantum correction
to the boundary PEE can be identified as a bulk PEE of certain bulk region. While the
ALC proposal shows that the quantum correction to the boundary PEE comes from the
linear combination of bulk entanglement entropy. We focus on holographic theories with
local modular Hamiltonian and configurations of quantum field theories where the ALC
proposal applies.
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1 Introduction

The entanglement entropy captures the quantum entanglement in a pure state between A and
B for a bipartite system A∪B. The study of entanglement entropy has played an essential role
in our understanding of the emergence of spacetime and holography. These progresses begin
with the Ryu-Takayanagi (RT) proposal [1, 2] that reveals the deep connection between the
spacetime geometry and quantum entanglement. In AdS/CFT [3–5], consider a static region
A in the boundary field theory and the minimal surface EA that is in the dual AdS bulk and
anchored to ∂ A, the RT formula relates the entanglement entropy of A to the area of EA in
Planck units, i.e.

SA =
Area(EA)

4G
. (1)

This relation between the quantum entanglement and geometry has recently been extended
to holographic theories beyond AdS/CFT, for example the (warped) AdS/(warped) CFT cor-
respondence [6–9] and 3-dimensional flat holography [10–12], whose dual field theory is
non-Lorentz invariant. These new relations are derived firstly via the Rindler method [13],
which constructs a Rindler transformation that maps the entanglement wedge to a Rindler
spacetime with infinitely far away boundaries, then calculates the entanglement entropy via
the thermal entropy in the Rindler spacetime. Later they are also derived in [14] via the
Lewkowycz-Maldacena prescription [15, 16], which directly applies the replica trick in the
bulk to calculate the entanglement entropy. However, in these cases, there exists a subtle issue
about the cut-off in the bulk causing the RT surfaces not anchored on the boundary1. This is-
sue can be solved at least in 2+1 dimensions by introducing certain null geodesics emanating
from the boundary of A. Indeed the analogue of the RT surface EA is the extremal geodesic
whose length is at the saddle among all the geodesics that anchored on the null geodesics,
then the holographic entanglement entropy is given by the length of the extremal geodesic.

These novel null geodesics in holographic theories with non-Lorentz invariant duals are
indeed ingredients of the entanglement wedge’s fine structure based on the bulk and bound-
ary modular flows [17]. The fine structure also largely inspires the following study on the
entanglement contour or the partial entanglement entropy [17–21]. For a given region A and
a subset Ai of A, the partial entanglement entropy (PEE), denoted by sA(Ai), is defined to cap-
ture the contribution from Ai to the entanglement entropy SA. The key property featured by
the PEE is the additivity, which is not possessed by any other entanglement measures. When
the subsets reduce to single points in A, the PEE reduces to a function fA(x) called the entan-
glement contour [18]. fA(x) gives the contribution from the site at the position x in A to SA, in

1When the boundary field theory is non-Lorentz invariant, the causal development of an interval becomes an
infinitely long strip instead of a causal diamond. In order to keep the consistency between the bulk and boundary
causal structure, the extremal surface should not be anchored on the boundary. See [14] for more details.
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other words, it is the density function of the entanglement entropy SA,

SA =

∫

A
fA(x)d

d x , (2)

where d is the dimension of A. The PEE sA(Ai) can also be written as

sA(Ai) =

∫

Ai

fA(x)d
d x , (3)

hence, only collect the contribution in the subset Ai .
Though the definition of PEE based on the reduced density matrix is still missing, the

physical meaning as the density function for the entanglement entropy requires the PEE to
satisfy the following physical requirements 2:

1. Additivity: If Aa
i ∪ Ab

i = Ai and Aa
i ∩ Ab

i = ;, by definition we have

sA(Ai) = sA(A
a
i ) + sA(A

b
i ) . (4)

2. Invariance under local unitary transformations: sA(Ai) is invariant by any local unitary
transformation inside Ai or Ā.

3. Symmetry: For any symmetry transformation T under which T A= A′ and T Ai = A′i , we
have

sA(Ai) = sA′(A
′
i). (5)

4. Normalization: SA = sA(Ai)|Ai→A .

5. Positivity: sA(Ai)≥ 0.

6. Upper bound: sA(Ai)≤ SAi
.

7. Symmetry under the permutation: I(Ā, Ai) = sA(Ai) = sĀi
(Ā) = I(Ai , Ā) .

There have been four PEE (or entanglement contour) proposals that satisfies the above
requirements. The first one is the Gaussian formula [18, 22–28] that applies to the Gaussian
states in free theories. The second proposal is a geometric construction [14, 17, 29] in holo-
graphic theories, based on the fine structure analysis of the entanglement wedge following the
boundary and bulk modular flows. The third one, previously given by the author in [17, 20],
claims that the PEE is given by an additive linear combination of subset entanglement en-
tropies. Later we will call this proposal the ALC (additive linear combination) proposal for
short3. The fourth proposal [21] follows the construction of the extensive (or additive) mu-
tual information (EMI) [31] (see also [32] for a similar construction), which tried to solve the
above seven requirements in CFT. The entanglement contour can also be studied under the
picture of the bit threads [33] in holographic theories, see for example [19,34–36]. The PEE
calculated by different approaches are highly consistent with one another [14,17,21,28,29],
suggesting that the PEE should be well-defined and unique. The uniqueness of the PEE has
been confirmed for Poincaré invariant theories [21], by showing that the above seven require-
ments in these theories have unique solution. The PEE is also useful to study the entanglement

2The requirements 1-6 are firstly given in [18], while the requirement 7 is recently given in [21]
3Previously in [20, 21, 30], this proposal was call the “partial entanglement entropy proposal”. This is a bit

misleading since we defined the PEE as (3) rather than the linear combination (6).
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structure in condensed matter theories4. Recently, the entanglement contour is used to give the
entanglement structure of the Hawking Radiation which shows non-trivial behavior [41, 42]
due to an island phase transition (see [43] for a review on this topic). The above progresses
suggest that the new concept of entanglement contour in quantum information should play
an important role in our understanding of the gauge/gravity duality and the entanglement
structure in quantum field theories (or many-body system).

Figure 1: A typical region A with a definite order is shown by the red interval.
When an arbitrary subset α is chosen, a natural decomposition of A = αL ∪ α ∪ αR
is determined. All the degrees of freedom in A lines in a definite order. When A is a
circle, the definition of αL and αR become ambiguous.

In this paper, we mainly use the fine structure of the entanglement wedge and the ALC
proposal to construct the PEE. The ALC proposal [17, 20] claims that, the PEE is given by a
linear combination of certain subset entanglement entropies. The ALC proposal is proven to
satisfy all the seven requirements using only the general properties of entanglement entropy.
It can be applied to generic theories, but a definite order is required for all the degrees of
freedom in A for satisfying the additivity.

• The ALC proposal: Given a region A and an arbitrary subset α, when there is a definite
order inside A, it can be unambiguously partitioned into three non-overlapping subre-
gions A= αL ∪α∪αR (see for example Fig.1), where αL (αR) denotes the subset on the
left (right) hand side of α. In this configuration, the ALC proposal claims that

sA(α) =
1
2

�

SαL∪α + Sα∪αR
− SαL

− SαR

�

. (6)

The ALC proposal can be used to calculate the entanglement contour for one dimensional re-
gions in general theories with a definite order [17, 20]. It also works for highly symmetric
regions in higher dimensions, which can be characterized by a single coordinate [29]. Fur-
thermore, this linear combination can be understood as a conditional mutual information [42]

sA(α) =
1
2

I(α : Ā|αL) =
1
2

I(α : Ā|αR) . (7)

We will briefly introduce the fine structure approach in section 3 later.
By an infinitesimal variation of the state, the perturbation of entanglement entropy SA sat-

isfies a first law-like relation δSA = δ〈KA〉, where 〈KA〉 is the expectation value of the modular

4The entanglement contour gives a finer description for the entanglement structure. In condense matter theories
it can be used to discriminate between gapped systems and gapless systems with a finite number of zero modes in
d = 3 [18]. It has been shown to be particularly useful to characterize the spreading of entanglement when study-
ing dynamical situations [18, 19, 27]. The entanglement contour is also a useful probe of slowly scrambling and
non-thermalizing dynamics for some interacting many-body systems [37] and holographic states dual to Bañados
geometries, and general excited states in the small interval limit [38]. Holographically, the correspondence be-
tween PEE and bulk geodesic chords [14, 17] is a finer correspondence between the quantum entanglement and
bulk geometry [14, 39]. Under some balanced condition the PEE also gives the area of the entanglement wedge
cross section [30]. The balanced PEE can be considered to be an generalization of the reflected entropy [40] to
generic purifications of the bipartite system [30].
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Hamiltonian KA [44,45]. In holographic theories where the RT formula applies, δSA affects the
dynamics of the bulk geometry: The first law of entanglement entropy has been used to derive
the linearized Einstein’s equations in the bulk spacetime [45,46]. The first law and linearized
Einstein’s equations have also been discussed in holographies beyond AdS/CFT [12, 47, 48].
In this paper we propose that the first law of entanglement entropy has a finer description: in
a given region A, the first order perturbation of the entanglement contour at each site equals
the first order variation of the expectation value of the modular Hamiltonian’s contour, which
is a similar density function for the modular Hamiltonian.

Another important topic of holographic entanglement entropy is the quantum correction.
The RT formula only concerns the leading order contribution to the entanglement entropy SA.
It is shown in [49] that the quantum correction to SA is just the bulk entanglement entropy
of the homology surface ΣA in the entanglement wedge. The evaluation of the quantum cor-
rection plays an essential role in our understanding of holography and spacetime beyond the
classical level, see for example [50–55]. For holographic theories, the entanglement contour
derived [14,17,29] via the fine structure of the entanglement wedge is also only at the leading
order. Then it is very interesting to explore the finer description of the quantum correction.
More explicitly, for a give subset Ai of A, we want to evaluate the quantum correction to the
PEE sA(Ai). Furthermore, for the cases that the modular Hamiltonian is local, we identify a
bulk sub-region ai of the homology surface ΣA, such that the contribution from ai to the bulk
entanglement entropy SΣA

gives the quantum correction to sA(Ai).

2 The first law of entanglement contour and the contour of mod-
ular Hamiltonian

The state of a generic quantum system can be described by the density matrix ρtotal . Let us
consider an arbitrary subsystem A and its complement Ā, the state of A is then described by the
reduced density matrix ρA = TrĀρtotal . If the total system is in a pure state, the entanglement
between A and Ā is captured by the entanglement entropy that is the von Neumann entropy
SA of ρA

SA = −TrρA logρA . (8)

The modular Hamiltonian KA is a state-dependent operator defined by

ρA ≡ e−KA . (9)

One may multiply a constant to the right hand side of the above equation to ensure TrρA = 1.
Usually the modular Hamiltonian is non-local. For the cases where KA is local, usually it can be
written as KA = −H/T , where H is the ordinary Hamiltonian measured by the local observer
(or Rindler observer) confined in the causal development of A.

Let us consider any infinitesimal perturbation to the density matrix ρtotal , the first order
perturbation of the entanglement entropy is given by

δSA = − Tr(δρA logρA)− Tr(ρAρ
−1
A δρA)

= Tr(δρAKA)− TrδρA

= δ〈KA〉 . (10)

Here we have used the fact the TrδρA = 0, since TrρA = 1 always holds and KA is defined by the
unperturbed state. The above equality between variations of the entanglement entropy and
the modular Hamiltonian’s expectation value is called the first law of entanglement entropy.
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For thermal states where KA = −H/T , this relation becomes the quantum version of the first
law of thermodynamics, δ〈H〉= TδSA.

It is very interesting to explore a finer version of the above first law, i.e. the relation be-
tween variations of the entanglement contour and certain local properties of modular Hamilto-
nian. Here we focus on the configurations where the ALC proposal applies. This includes single
intervals in 2-dimensional theories and spherical (or strip) regions in higher dimensions with
a definite order. Again, let us consider a region A and its non-overlapping connected subsets
{A1, A2, A3}, the PEE is given by the ALC proposal

sA(A2) =
1
2
(S12 + S23 − S1 − S3) . (11)

Here we write, for example, SA1∪A2
= S12. Similarly the modular Hamiltonian of A1 ∪ A2 is

denoted by KA1∪A2
= K12.

Let us perform an infinitesimal perturbation on both sides of (11), then apply the first law
to all the subset entanglement entropies on the right hand side, we get

δsA(A2) =
1
2
(δ〈K12〉+δ〈K23〉 −δ〈K1〉 −δ〈K3〉)

=
1
2
(Tr(δρ12K12) + Tr(δρ23K23)− Tr(δρ1K1)− Tr(δρ3K3)) . (12)

We assume that the Hilbert space HA of A factorizes HA = HA1
⊗HA2

⊗HA3
. The modular

Hamiltonian acts trivially outside the region where it is defined. So it is convenient to extend
it to an operator acting on the whole region A, for example

K12 ≡ K12 ⊗ I3, (13)

where I3 is the identity operator on HA3
. This is crucial to write

Tr(δρ12K12) = Tr(δρAK12) , (14)

where the trace on the left hand side is over HA1
⊗HA2

, while on the right hand side the trace
is over HA. We rewrite other terms similarly to obtain,

δsA(A2) =
1
2

Tr[δρA (K12 + K23 − K1 − K3)] . (15)

Similarly we may express the PEE in terms of the modular Hamiltonians,

sA(A2) =
1
2

TrρA (K12 + K23 − K1 − K3) . (16)

It is easy to see that, the linear combination of the modular Hamiltonians in the above
equation is exactly the same as the subset entanglement entropies in the ALC proposal. It has
been proven that this linear combination was additive. More explicitly, let us define a new
non-local operator on A,

kA(A2)≡
1
2
(K12 + K23 − K1 − K3) . (17)

If A2 is divided into two non-overlapping connected subregions A= Aa
2 ∪ Ab

2, we have

kA(A2) = kA(A
a
2) + kA(A

b
2) . (18)
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It is natural to take KA → 0 when A vanishes, hence when we take the limit
A2→ A, A1→ ;, A3→ ;, we get the normalization property,

kA(A2)|A2→A = KA. (19)

Due to the additivity and normalization of the operator kA(A2), we call kA(A2) the partial
modular Hamiltonian. Furthermore, if we know the modular Hamiltonian for all the subre-
gions inside A, we can determine the contour function kA(x)5 for KA by taking A2 to be a single
site at the position x= {t, ~x}, hence

KA =

∫

A
kA(x)d ~x . (20)

Similar to the entanglement contour, kA(x) is understood as a density function for the modular
Hamiltonian KA. The partial modular Hamiltonian kA(A2) gives the contribution from the
subregion A2, i.e.

kA(A2) =

∫

A2

kA(x)d ~x , (21)

where the domain of the integration is confined in A2. Note that both the contour function
kA(x) and the partial modular Hamiltonian kA(A2) are operators defined on A rather than the
point x or the subregion A2.

As a result, the equation (12) can be written as

δsA(A2) = δ〈kA(A2)〉 , (22)

which we call the first law of partial entanglement entropy. If we know all the partial modular
Hamiltonians, we can determine the contour function hence get a finer version of the above
relation

δsA(x) = δ〈kA(x)〉 , (23)

which we call the first law of entanglement contour. For any site x in A, the first law of entangle-
ment contour states that the perturbation of the contribution to SA at x equals the perturbation
of the expectation value of kA(x), which is the contribution to KA at x. Though it is derived for
the special cases where the ALC proposal applies, we conjecture it to be valid for more general
configurations. We hope this can be confirmed in the future.

This finer version of the first law is useful, because the modular Hamiltonian has been ex-
tensively explored in many configurations, especially when the modular Hamiltonian is local.
More importantly, the modular Hamiltonian KA is usually written as an integration over the
region A, hence perfectly match with our introduction of the contour of the modular Hamilto-
nian. One simple and renowned case is the modular Hamiltonians for ball-shaped regions A in
d-dimensional CFTs. If we consider the vacuum state of the CFT and a static and ball-shaped
region with radius R and center position x0 = {t0, ~x0}, then the modular Hamiltonian takes
the simple form [13,56],

KA = 2π

∫

A

R2 − |~x − ~x0|2

2R
Tt t(t0, ~x)d ~x , (24)

5Note that, one should not take the contour function kA(x) as a local function of x since it also depend on the
region A. Also it is an operator in the sense of (17) rather than a number.
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where Tµν is the stress tensor and ~x is the coordinates on A. More generally, the modular
Hamiltonian can be written in a covariant way,

KA =

∫

A
dΣ ηµ(x) Tµν(x) ξ

ν(x) , (25)

where dΣ is an infinitesimal volume on the spacelike co-dimension-one region A with the
normal vector ηµ, while the vector field ξµ describes the modular flow (or geometric flow)
which is generated by the modular Hamiltonian.

There are two ways to derive the modular flow. The first one relies on the construction
of the Rindler transformation R, which is a symmetry transformation that maps the causal
development DA of A to a Rindler spacetime with infinitely far away boundaries. The normal
Hamiltonian, which generates the Rindler time translation ∂τ in the Rindler spacetime, is
mapped to the modular Hamiltonian of A. In other words, ∂τ maps to the modular flow ξu in
DA by the inverse Rindler transformation. However the construction of the Rindler mapping
is highly non-trivial. The Rindler transformation for static balls in CFTs are constructed in
[13]. While the Rindler transformation for covariant intervals in warped CFTs and BMSFTs
(theories with BMS3 symmetries) are constructed in [6,8] and [10]. See also [48] for a related
construction of the modular Hamiltonian. The Rindler transformation can be extended into
the bulk in the context of holography, hence plays an essential role to derive the geometric
picture of the entanglement entropy [8,10].

Recently another way to generate the modular flow is proposed in [20] base on the proper-
ties of the PEE. The key of this approach is that the PEE should be invariant under the modular
flow. The property is observed in the entanglement wedge’s fine structure, which we will intro-
duce later. Using the ALC proposal, it is easy to derive the orbit of the modular flow in DA, if we
know all the entanglement entropies for sub-intervals inside DA. This approach reproduces the
previous results quite easily. More importantly, it does not rely on the Rindler transformations.

In the Rindler spacetime, the modular Hamiltonian is just the energy. Since the Rindler
spacetime is invariant under the translation along the spacial directions, the contour function
for the modular Hamiltonian should respect this symmetry, thus is a constant. Applying the
inverse Rindler transformation, this flat contour maps to the contour function of the modular
Hamiltonian KA in A. This contour function is nothing but the integrand of (24) and (25), i.e.

kA(x) = η
µ(x) Tµν(x) ξ

ν(x) . (26)

According to the first law of the entanglement contour, we have

δsA(x) = η
µ(x) ξν(x) δ〈Tµν(x)〉 , (27)

which states that, the first order variation of the entanglement contour relates to the first
order variation of the stress tensor. Note that in the above equation we used the relation
δ (ηµ(x)ξν(x)) = 0 because the geometry is at the saddle hence the first order perturbation of
geometry vanishes. The above relation is also in some sense applied in [42] to evaluate the
entanglement contour for low energy excited states of CFT near the vacuum.

However, in more generic configurations the modular Hamiltonian cannot be written as
an integration like (25), hence one may worry about the validity of (20). We stress that,
the reason we can write KA as an integral of kA(x) is the additivity of the partial modular
Hamiltonian, which is always true when the ALC proposal applies. The ALC proposal does not
select theories. For example, let us consider an interval A in a 2-dimension theory which is not
conformal invariant, where KA can not be written as (25). Since in this case the ALC proposal
applies thus the partial modular Hamiltonian is additive, KA can still be written as (20) with
kA(x) not directly related to the stress tensor. So (25) is not necessary for the validity of (20).
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3 Quantum correction to holographic entanglement contour

3.1 Quantum correction to holographic entanglement entropy

The RT formula only gives the leading order contribution for the holographic entanglement
entropy, i.e. at the order O(1/GN ) ∼ O(N2). The Faulkner-Lewkowycz-Maldacena (FLM)
formula [45] corrects the RT formula to the next order O(1),

SA =
Area(EA)

4GN
+ Sbulk(ΣA) , (28)

where Sbulk(ΣA) is the bulk entanglement entropy for the homology surface ΣA, which is any
Cauchy surface with its boundary satisfying ∂ΣA = A ∪ EA. Later in this paper we use the
short-hand notation ΣA ≡ a. The entanglement wedge WA is the causal development of ΣA.
Note that, compared with the full expression for the quantum correction to the holographic
entanglement entropy [45], Eq. (28) omitted the terms that are given by local integrals on
the original minimal surface, including the terms that cancel the UV divergences of the bulk
entanglement entropy.

Since the quantum correction is taken into account, the minimization on the area of the
RT surface should be adjusted to the minimization of the quantum extremal surface [51],

SA =min

�

Area(ẼA)
4GN

+ Sbulk(Σ̃A)

�

. (29)

Accordingly the surface satisfying the minimization changes from EA to ẼA, and ΣA changes to
Σ̃A. However, this difference usually only affect SA at the order O(GN ) 6, hence we will directly
apply (28) instead of (29) to avoid unnecessary complications. Our discussion focuses on the
configurations where the quantum correction is much smaller than the leading contribution
from the RT formula.

The relation (28) implies an important relation between the bulk and boundary modular
Hamiltonian [53],

KA =
ÊA

4GN
+ Ka , (30)

where Ka is the modular Hamiltonian of the bulk region ΣA, and ÊA is the bulk area operator
whose expectation value gives the area of the RT surface.

Then it is quite interesting to discuss the quantum corrections to the entanglement con-
tour. Firstly we will explore the spatial distribution of the bulk entanglement entropy on the
homology surface ΣA, i.e. the entanglement contour or PEE of the bulk degrees of freedom.
The essential entanglement contour that we study is the contour on the boundary region A, so
the PEE from any bulk degrees of freedom will be assigned to the PEE of a boundary degrees
of freedom as the quantum correction to the entanglement contour of A. Secondly, we will
explore how to assign the bulk PEE to the boundary PEE. We will study the quantum correc-
tion of the contour using both the fine structure analysis with the modular slices and the ALC
proposal.

6The difference only gives significant corrections when we approach a phase transition, where the RT surface
jumps discontinuously or when the bulk entanglement entropy is comparable to the area term.
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3.2 Quantum correction to entanglement contour from the fine structure

Fine structure of the entanglement wedge

In holography, when the modular Hamiltonian is local, the entanglement contour can be de-
scribed by a geometric picture 7, which is constructed in a series of papers [14, 17, 20, 29].
Since the modular Hamiltonian is local thus generates a geometric modular flow, there ex-
ists a natural slicing of the entanglement wedge. More explicitly, from any point P in A, the
boundary modular flow generates an orbit, which we call the boundary modular flow curve.
Then we let the points on the boundary modular flow curve flow under the bulk modular flow.
Trajectories of this flow form a two dimensional bulk surface, which we call a modular slice.
The causal development DA is a slicing of the boundary modular flow curves. Similarly the
entanglement wedge WA is a slicing of the modular slices. Note that, since the boundary mod-
ular flow is also a bulk modular flow, when the boundary modular flow curve is settled exactly
at the boundary, i.e. z = 0, its trajectory under the bulk modular flow is just itself. Here by the
trajectory of the boundary modular flow curve, we mean the trajectory of the curve settled at
the limit z → 0 but z 6= 0, hence points on the curve can flow into the bulk. More explicitly,
points on the curve flow into the bulk, then get to a turning point, and eventually flow back
to some points on exactly the same boundary modular flow curve.

See Fig.2 for an explicit example in AdS3/CFT2. In the right figure the black curve is the
boundary modular flow curve that passes the point P, the orange curves are orbits of points
on the black curve under the bulk modular flow. The modular slice intersects with the RT
surface EA at the partner point P̃ of P. The outermost straight orange lines are the normal null
geodesics emanated from EA, and are also bulk modular flow curves that end on the future
and past tips of the causal development DA. τm denotes the Rindler time in different causal
wedges, which can be covered by a single complex “time” coordinate,

τm = τ+
m− 1

2
πi . (31)

In this coordinate, the thermal circle in the entanglement wedge WA is just the imaginary circle
τ∼ τ+ 2πi of the Rindler time. The dashed line γP is where the modular slice intersect with
the homology surface ΣA.

The holographic entanglement contour from the fine structure

The relation between the fine structure and the entanglement contour appears as we consider
the replica story of a single point P in A. When applying the replica trick, we prepare n copies
of the system and cut the region A open for all the copies, then we glue them cyclically to form
a n-manifold. Correspondingly, in the gravity side we cut the entanglement wedge open along
any homology surface ΣA, then glue all the copies of the bulk spacetime cyclically [15,16].

While applying replica trick on A, let us focus on the replica story of a single point P, and
see how it affects the boundary and bulk modular flow. Firstly we cut P open for each copy.
This cuts the modular flow curve open at P. Then we glue all the open curves cyclically at P in
each copy, hence the modular flow in the ith copy will flow into the (i+1)th copy of the curve
through P. See Fig.3 for a simple example with n= 2. Here the boundary modular flow curve
along τ1 contains the lower half line in the first copy and the upper half line in the second
copy. Then we prepare two copies of the modular slices and see how the bulk modular flow

7This picture works also for holographic theories beyond AdS/CFT [14], for example, the (warped) AdS/
(warped) CFT correspondence and the flat holography. However, similar construction cannot be straitforwardly
generalized to the cases of multi-intervals and a large enough boundary interval in the BTZ background with
disconnected RT surface, since the modular flow becomes nonlocal. This is an important problem we hope to
understand further in the future.
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Figure 2: A typical example of the modular slice in AdS3/CFT2. In the left figure, the
modular slice at the point P is embedded in the entanglement wedge. The right figure
shows how the boundary modular flow curve flows in the bulk under the bulk mod-
ular flow. The dashed curve γP is where is modular slice intersect with the homology
surface. τm denotes the modular flow in different causal wedges in the bulk. The
modular flow curves become null at the boundary of the entanglement wedge, and
are just the null geodesic congruence emanating from the RT surface EA vertically.

is affected. Note that, the bulk modular flow lines emanating from the τ1 boundary modular
flow curve should return to the same boundary modular flow curve. The fact that the τ1
boundary curve now contains two parts in different copies implies that, the τ1 bulk modular
flow curves should also be cut open and glued cyclically, thus can flow back to the second part
of the τ1 boundary curve in the second copy. The place where we cut the bulk modular flow
curves open is just the curves γP , which are the purple lines in Fig.3.

Figure 3: The replica trick applied to the modular slice when n = 2. Each slice is
cut open at γP then glued cyclically. The dashed lines show the gluing boundary
conditions.

In summary, the replica story of a single point in A induces the replica story of the corre-
sponding modular slice. Since the modular flows are local, it will not affect the modular slices
in the neighborhood. The replica story on all the modular slices are relatively independent
and together form the replica story of the entanglement wedge. Following the calculation
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of [15,16], if we evaluate the partition functions at the classical level, the cyclic gluing at the
region A turns on the extensive contribution at the bulk fixed points of the replica symmetry,
i.e. the RT surface. Accordingly, the cyclic gluing of any point P exactly turns on the contribu-
tion to the entanglement entropy at the partner point P̃. This is the original statement of [17].
In the same sense this relation implies a correspondence between the geodesic chords Ei on
EA and the PEE of certain subset Ai in A,

sA(Ai) =
Leng th (Ei)

4G
, (32)

where Ei is the set of partner points of Ai . The one-to-one correspondence between all the
points on A and EA gives the entanglement contour of A.

In the context of AdS/CFT, given a static region A (spheres or intervals) and a static homol-
ogy surface ΣA, γP for any point P is just a static geodesic normal to EA [29] 8. See the purple
dashed lines in the left figure of Fig.4. The correspondence between the PEE of the subsets Ai
and geodesic chords Ei in the sense of (32) is shown in the right figure of Fig.4. Accordingly
the homology surface is also decomposed by two γP curves for two points that decomposes A,

ΣA ≡ a = a1 ∪ a2 ∪ a3 . (33)

Figure 4: The above two figures show a time slice of the entanglement wedge. The
purple dashed lines are the γP curves, which are static geodesics normal to EA. In
the right figure, the decomposition of A induces a decomposition of the homology
surface ΣA and the RT surface EA.

Quantum correction to the holographic entanglement contour

In the above discussion the partition functions are only evaluated at the classical level, hence
the entanglement contour from the slicing of the entanglement wedge by the modular slices is
only at the leading order. When including the quantum corrections to the partition functions,
i.e. computing the partition function of all bulk quantum fluctuations around the classical
geometry, the entanglement entropy and entanglement contour should receive quantum cor-
rections. As we previously pointed out in section 3.1, the first order quantum correction to
the entanglement entropy comes from the entanglement entropy of the bulk region in the
entanglement wedge Sa. Studying the correction to the entanglement contour relates to the

8The curves γP coincide with a special bit-thread configuration constructed in [57] following the bulk geodesics.
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following question: how do we distribute the bulk entanglement entropy to the degrees of
freedom in A?

The answer is indeed hidden in the fine structure of the entanglement wedge. Now we
introduce the entanglement contour sa(x), which represent the contribution from the site x
to the bulk entanglement entropy Sa. The cyclic gluing of the single point P not only turns
on the leading contribution to SA at its partner point P̃, but also induces the cyclic gluing of
the bulk points on the curve γP . Note that the cyclic gluing of all the points in the homology
surface ΣA coincides with the replica trick in the bulk for the bulk entanglement entropy Sa.
This indicates that, the quantum correction to the PEE of the point P comes from the bulk PEE
of the curve γP , which we denote as sa(γP).

It is more convenient to consider the quantum correction to the PEE sA(A2) of a subregion
A2. For example, see the left figure in Fig.5, where A is a static interval which is divided
into three non-overlapping parts A= A1 ∪ A2 ∪ A3. According to the fine correspondence, the
geodesic chord E2 gives the PEE sA(A2) at the leading order. The curves γP for all the points
in A2 form the bulk region enclosed by A2, E2 and the γP curves for the two endpoints of A2.
This region is denoted as a2, which is the yellow region in Fig.5. In other words, we have

sA(A2) =
Area(E2)

4G
+ sa(a2) , (34)

where the bulk PEE sa(a2) is the quantum correction to the PEE sA(A2).
The above statement can be easily understood in the Rindler bulk spacetime. The Rindler

transformations map WA to the Rindler bulk spacetime, which is an AdS black brane with
translation symmetries along the directions, say ~x = {x i}, that are extensive on the horizon
or boundary. The regions Ai , ai and Ei are mapped to A′i , a′i and E ′i respectively. See the right
figure in Fig.5 for a time slice of the Rindler bulk. Note that, due to the translation symmetry
a′i and E ′i are the regions projected to A′i along the r direction.

The quantum correction to the entanglement entropy (thermal entropy in this case) of
A′ = A′1 ∪A′2 ∪A′3 is just the bulk entanglement entropy for the region a′, which is the exterior
region of the Rindler horizon. Since the entanglement contour respects the symmetries, it only
depends on the radial coordinate and is flat along the x i directions, i.e.

sa′(~x , r) = sa′(r) . (35)

It is convenient to define the constant

C =
∫

sa′(r)dr , (36)

where the domain of the integration is from the horizon to the boundary. Thus C is the density
function for bulk entanglement entropy after integration over the radius direction.

On the boundary A′, let us denote the leading order and quantum correction of SA′ by S(0)A′

and S(1)A′ respectively. Due to translation symmetries, S(1)A′ and S(0)A′ should be equally distributed
to all degrees of freedom on A′ hence present a volume law. Accordingly, the contour function
is a constant given by,

sA′(~x) =
1

4GN
+ C , (37)

where the first term come from the RT (or Bekenstein-Hawking) formula while the second
term come from quantum correction. For a subregion A′2 with length l ′2, the PEE sA′(A′2) is just
given by

sA′(A
′
2) = l ′2

�

1
4GN

+ C
�

. (38)
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Figure 5: The homology surface a at a time slice is mapped to the time slice of the
Rindler bulk under the Rindler transformation. γP curves are mapped to the curves
along the r direction. The bulk region a2 is just mapped to the bulk region a′2, which
is the projection region of A′2 along the r direction.

It is easy to see the length of E ′2 equals to l ′2, and sa′(a′2) = l ′2 C. Then we can write the PEE
(38) in the following way,

sA′(A
′
2) =

Area(E ′2)
4G

+ sa′(a
′
2) . (39)

The modular slices in WA are just mapped to the AdS2 slices with fixed ~x in the Rindler bulk.
Note that the Rindler transformation is also a symmetry of the theory, according to the sym-
metry property of the PEE we have

sa(ai) = sa′(a
′
i) , sA(Ai) = sA′(A

′
i) . (40)

The length of the geodesic chords is also invariant under the Rindler transformation,

Area(Ei) = Area(E ′i ) . (41)

Following (39),(40) and (41), we immediately recover (34).
Our discussion shows that, the quantum correction to the entanglement entropies, PEE or

entanglement contour in holographic CFTs are indeed proportional the leading contribution.
This is consistent with the quantum result of entanglement contour given in [21].

3.3 Quantum correction from the additive linear combination proposal for PEE

Unlike the geometric construction, the ALC proposal is not limited to the leading order. In
holographic field theories, we can expand the entanglement entropy with respect to GN , i.e.

SA = S(0)A + S(1)A + S(2)A + · · · , (42)

where S(i)A is of order O(G i−1
N ). Similarly we can expand the PEE in the same way and the ALC

proposal should hold at all orders, i.e.

s(i)A (A2) =
1
2

�

S(i)12 + S(i)23 − S(i)1 − S(i)3

�

. (43)

All properties of the PEE should be satisfied respectively at all orders. In the following, we
only consider the first order correction, which are the bulk entanglement entropies of ΣAi

,

S(1)Ai
= SΣAi

. (44)
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So we get another formula for the quantum correction to the PEE

s(1)A (A2) =
1
2

�

SΣ12
+ SΣ23

− SΣ1
− SΣ3

�

, (45)

where Σi means ΣAi
and Σi j means ΣAi

∪ΣA j
.

This looks quite confusing. On the one hand, the linear combination (45) are exactly the
same as the ALC proposal, hence looks like a bulk PEE sΣA

(Σ2). On the other hand the ALC
proposal requires ΣA = Σ1 ∪Σ2 ∪Σ3 where Σi are non-overlapping, and furthermore

Σ12 ∩Σ23 = Σ2 , Σ12 = Σ1 ∪Σ2 , Σ23 = Σ2 ∪Σ3 . (46)

Obviously, these requirements are satisfied by the regions ai rather than the regions Σi or Σi j
in the bulk. So the linear combination in (45) is not a PEE defined by the ALC proposal and is
not guaranteed to be additive. However, previously we get the result s(1)A (A2) = sa(a2) using
the fine structure analysis of the entanglement wedge. This implies that the left hand side of
(45) is a PEE in the bulk thus should be additive.

The confusion can be resolved if one associate the bulk entanglement entropies to their
corresponding boundary regions Ai and Ai j rather than the bulk regions Σi and Σi j . In other
words, the left hand side of (45) can be understand as a PEE on the boundary following the
ALC proposal. Thus, the additivity immediately follows.

Now we show the additivity of (45) from a more intuitive perspective in the Rindler space-
time. Again we consider the simple case of AdS3/CFT2 which is shown in Fig.6. Though the
RT surfaces for A1, A3, A1 ∪A2 and A2 ∪A3 look quite different from one another (see the blue
solid lines in the upper figure of Fig.6), their images in the Rindler bulk are indeed the same
curve up to a translation or reflection (see the solid blue lines in the lower figure of Fig.6),
because A′1, A′3, A′1 ∪ A′2 and A′2 ∪ A′3 are all infinitely long half lines. For example, consider
the RT surface emanating from x = x0 and moving along the +x direction, it approaches the
horizon in the following way r(x) = rh(1 − e−(x−x0))−1, where r = rh is the horizon. In the
large |x | region, the RT surfaces just move along the horizon, thus the translation symmetry
emerges and the entanglement contour is flat at the large |x | limit. It is obvious that if we
translate E ′12 by l ′2, it exactly matches with E ′1. The only difference is that E ′12 is longer by l ′2
near the cut off region, where the volume law applies. Also the bulk region Σ′12 is only larger
than Σ′1 by a region that exactly matches with a′2 under a translation. Then we have

S(0)
A′1∪A′2

− S(0)
A′1
=

l ′2
4GN

, S(0)
A′2∪A′3

− S(0)
A′3
=

l ′2
4GN

, (47)

and

SΣ′12
− SΣ′1 = l ′2C , SΣ′23

− SΣ′3 = l ′2C . (48)

Plugging the above equations to the ALC proposal, as expected at the leading order, we find
the PEE is just given by,

s(0)A′ (A
′
2) =

l ′2
4GN

. (49)

While the quantum correction (45) can also be calculated by

s(1)A (A2) =
1
2

�

SΣ12
+ SΣ23

− SΣ1
− SΣ3

�

=
1
2

�

SΣ′12
+ SΣ′23

− SΣ′1 − SΣ′3

�

= l ′2C . (50)
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The result recovers the previous result of sa′(a′2) or sa(a2) using the fine structure of the en-
tanglement wedge, so the additivity of the right hand side of (45) is justified in this case. This
is also a consistency check between the two approaches to evaluate the quantum corrections.

Figure 6: The upper figure shows the RT curves (solid blue curves) for the subregions
in the linear combination in the ALC proposal. The lower figure shows the images of
the above RT curves in the Rindler spacetime. Since A′1, A′3, A′1 ∪ A′2 and A′2 ∪ A′3 are
all infinite half lines, their RT surfaces are the same up to a translation or reflection.

4 Discussion

In this paper, we explore two important aspects about entanglement contour. Firstly we explore
the “first law” of entanglement contour. For a given region, the first law tells us that first order
variation of the contour (or density) function of the entanglement entropy equals the first
order variation of the expectation value of the contour (or density) function of the modular
Hamiltonian, i.e. δsA(x) = δ〈kA(x)〉. This gives a much stronger and finer description of the
variation of the entanglement structure under the variation of the state. Note that, this relation
is only derived for the configurations where the ALC proposal applies. However this relation
seems to be a quite natural extension of the first law of entanglement entropy δSA = δ〈KA〉.
We conjecture it to be true for more generic configurations. It may be quite useful to calculate
the entanglement contour for low energy exited states (see for example [42]).

The second aspect is the quantum correction to the holographic entanglement contour.
Firstly, using the fine structure picture, we find that the quantum correction to the PEE of a
subset is captured by the bulk PEE of a certain bulk subregion inside the homology surface, i.e.
s(1)A (A2) = sa(a2). This observation gives a fine relation between the PEE of the bulk degrees
of freedom and the PEE of the boundary degrees of freedom. Secondly, for the configurations
where the ALC proposal applies, the quantum corrections to the PEE computed by the ALC
proposal is a linear combination of the bulk entanglement entropies of certain bulk regions.
For example, see the right hand side of (45). The results of the two approaches are confirmed
to be consistent in the Rindler bulk spacetime. Note also that, the additivity of the linear
combination (45) is not manifest. It comes from the additivity of the boundary PEE and the fact

16

https://scipost.org
https://scipost.org/SciPostPhys.11.3.058


SciPost Phys. 11, 058 (2021)

that the bulk entanglement entropies are quantum corrections to the entanglement entropies
of certain boundary regions.

One can test the first law of the entanglement contour at the leading order using a per-
turbed geometry around the pure AdS space. On one hand, the perturbation of the geometry
perturbs the stress tensor of the boundary CFT, which furthermore perturbs the entanglement
contour according to the first law. On the other hand, the perturbation of the geometry per-
turbs the fine correspondence between points in A and EA which also gives a perturbation
of the entanglement contour. The first law can be confirmed if the two perturbations of the
entanglement contour coincide with each other.

Explicit configurations of bit threads is a good way to describe the entanglement contour.
However, the entanglement contour is assumed to be unique while the bit thread configura-
tion is highly non-unique even when the state and region are determined. So far, it is not well
undertood how we can impose physical requirements to determine the bit thread configura-
tion for a given entanglment wedge. We propose that, reproducing the right entanglement
contour should be a reasonable physical requirement. This is recently explored in [36] by ap-
plying the locking theorems [58,59] of bit threads to construct a concrete locking scheme for
the RT surfaces in the entanglement wedge. In [60] two perturbations of the bit threads con-
figurations are explicitly considered. One of them is for the geodesic bit threads normal to the
RT surface [57], consistent with our fine structure analysis [29]9. The other is the canonical
perturbation of the bit threads configuration following the Iyer-Wald formalism [63]. These
perturbations of bit threads give perturbations of the entanglement contour, hence is useful to
test the first law.

We do not explicitly discuss the dependence of the coordinates of the bulk entanglement
contour sa(x). It is interesting since it gives a fine description of the entanglement structure
in the bulk and affects the boundary entanglement contour at the quantum level. The bulk
entanglement contour is also mentioned recently in [34,35], which extend the concept of bit
threads to the quantum bit threads by allowing the bit threads to start and terminate in the
bulk. In such a way they can use the quantum bit threads to describe the quantum correction
of the holographic entanglement entropy. However an explicate configuration of the quantum
bit threads is necessary to give a contour function.

We propose that the entanglement contour sa(x) should be evaluated by applying the first
law of entanglement contour in the bulk. More explicitly let us consider the low energy exci-
tations (for example the Hawking Radiation) in the bulk which induce a perturbation of the
stress tensor, while the backreaction to the geometry can be omitted. According to the first
law of entanglement contour, the perturbation of the contour function is proportional to the
perturbation of the stress tensor. This approach may be valid at the early age of a black hole.
Together with the picture we give in section 3.2, the time evolution or perturbation of the bulk
entanglement contour is furthermore related to the evolution or perturbation of the bound-
ary entanglement contour at the quantum level using the relation between the bulk PEE and
boundary PEE. See Fig.7 for example.

Another important relevant question that we come up with is what the first law of the
entanglement contour at the quantum level can tell us about the dynamics in the bulk. The
linearized Einstein’s equations in the bulk have already been derived by the first law of the
entanglement entropy at the classical level. According to our discussion on both of the first
law and quantum correction of the entanglement contour, the perturbation of the boundary
entanglement contour at the quantum level should relate to the perturbation of the energy-
momentum tensor in the bulk, and further relate to the perturbation of the bulk geometry.
We hope this can give us further understanding about the dynamics of geometry beyond the

9See also [61, 62] for another related flow picture based on a fracton model which satisfies several major
properties of AdS/CFT.
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linearized Einstein’s equations or quantum excitations of gravity.

Figure 7: Here the homology surface ΣA is divided into a1 ∪ a2 ∪ a3 as in Fig.4.
The background state is the vacuum of the boundary CFT, and the stars are low
energy excitations of the stress tensor inside a2. The red curve on the boundary is
the perturbation of the entanglement contour at the quantum level caused by the
bulk excitations, which is only non-zero on A2.
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