
SciPost Phys. 12, 001 (2022)

Reconstructing the graviton

Alfio Bonanno1,2, Tobias Denz3, Jan M. Pawlowski3,4 and Manuel Reichert5

1 INAF, Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy
2 INFN, Sezione di Catania, via S. Sofia 64, 95123 Catania, Italy

3 Institut für Theoretische Physik, Universität Heidelberg,
Philosophenweg 16, 69120 Heidelberg, Germany

4 ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung mbH,
Planckstr. 1, 64291 Darmstadt, Germany

5 Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K.

Abstract

We reconstruct the Lorentzian graviton propagator in asymptotically safe quantum grav-
ity from Euclidean data. The reconstruction is applied to both the dynamical fluctuation
graviton and the background graviton propagator. We prove that the spectral function of
the latter necessarily has negative parts similar to, and for the same reasons, as the gluon
spectral function. In turn, the spectral function of the dynamical graviton is positive. We
argue that the latter enters cross sections and other observables in asymptotically safe
quantum gravity. Hence, its positivity may hint at the unitarity of asymptotically safe
quantum gravity.
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1 Introduction

In the past two decades, asymptotically safe (AS) gravity has emerged as an interesting and
solid contender for a quantum theory of gravity. By now a lot of non-trivial evidence has been
collected for the existence of AS gravity as an ultraviolet (UV) complete quantum field theory.
Most of the investigations have been done with the functional renormalisation group (fRG), for
a recent overview see [1]. For reviews on AS gravity including its application to high energy
physics see [1–14]. However, there are some pivotal challenges yet to be resolved, see [13]. A
very prominent one is the setup of a non-perturbative Lorentzian signature approach: most
investigations so far have been done within Euclidean quantum gravity. The Wick rotation to a
Lorentzian version is one of the remaining challenges yet to be met. For first steps towards
Lorentzian flows see, e.g., [15–24], for work in related quantum gravity approaches see,
e.g., [25–31], and for discussions of ghosts and the Ostrogradsky instability see, e.g., [32–36].
The proper definition of the Wick rotation and the interpretation of the spectral properties of
Lorentzian correlation functions also touch upon the question of unitarity of the approach.

A first, but important, step in this direction is done by the reconstruction of spectral functions
from their Euclidean counterparts. While being short of a full resolution of the challenges
mentioned about, it provides non-trivial insight into the possible complex structure of AS gravity.
In the present work, we apply reconstruction methods, already used successfully in non-Abelian
gauge theories [37], to the fundamental correlation function of AS gravity, the graviton two-
point function or propagator. In (non-Abelian) gauge theories, as in gravity, one has to face
the fact that the gauge field is not an on-shell physical field. Hence, the standard derivation of
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(a) Spectral function of the fluctuation graviton.
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(b) Spectral function of the background graviton.

Figure 1: Spectral functions of the fluctuation and background graviton. The shaded
areas constitute the estimated error of the reconstruction. The fluctuation graviton
spectral function is strictly positive, which may be important for the unitarity of
asymptotically safe gravity. In turn, we show that the background graviton spectral
function has a vanishing spectral weight and hence positive and negative parts. For
more details see Sec.5.2 and Sec.5.3.

the Källén–Lehmann spectral representation fails, and the spectral function of the gauge field
features non-positive parts if it exists. This property follows already in the perturbative high-
momentum regime of the gluon from the Oehme-Zimmermann super-convergence property.
Consequently, non-positive parts of spectral functions have but nothing to do with strongly-
correlated physics such as confinement, and, even more importantly, do not signal the failure
of unitarity of the theory. In turn, they also should not be taken lightly.

Similar properties may be present in AS quantum gravity. For a first discussion see [38],
for related recent work see [39–41]. In the present work, we formally show that the spectral
function of the background graviton has non-positive parts. We also compute the spectral
function of the dynamical fluctuation graviton, which turns out to be positive. As the derivation
of these spectral functions requires many steps and intermediate results, we present the final
spectral functions already in Fig.1. The knowledge of the structures visible there certainly allows
to better follow some of the technical steps, and also understand their origin. In particular,
the positivity of the spectral function of the fluctuation graviton in Fig.1 is a non-trivial and
very exciting result, as it is the fluctuation graviton which propagates in the diagrams of cross-
sections and other potential observables. While the results leave much to be explained, the
present work is a first rather non-trivial step towards a discussion of unitarity in AS gravity.

This work is structured as follows: In Sec. 2, we give a brief overview of the setup of
our approach to AS quantum gravity as well as the fRG approach used for the computation
of Euclidean correlation functions. In Sec. 3, we introduce the Källén–Lehmann spectral
representation and discuss the properties of the graviton spectral function. We also prove that
the spectral function of the background graviton has negative parts. In Sec.4, we present our
computation of Euclidean correlation functions, mainly based on results in previous works. In
Sec.5, we introduce our reconstruction framework, compute and discuss our results on graviton
spectral functions. A summary and outlook of our findings can be found in Sec.6.
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2 Asymptotically safe gravity

Asymptotically safe quantum gravity [42,43] is a viable and minimal UV closure of fundamental
physics. It is minimal in the sense that it only relies on standard quantum field theory, and
its viability has been furthered by many results in the past two decades following the seminal
paper [44] within the fRG-approach, see [1–14]. Most of these fRG-based investigations are
done within a Euclidean setting, also commonly used for other non-perturbative investigations,
being short of numerically accessible approaches with Lorentzian signature.

The extraction of (timelike) physics from Euclidean correlation function is already intricate
and challenging within standard high energy physics, and in particular for strongly correlated
physics such as infrared (IR) QCD. However, in quantum gravity, a further, even conceptual,
challenge is the very definition of a Wick rotation.

While chiefly important, we will not touch upon this crucial subject here, and simply assume
the existence of a standard Wick rotation at least for backgrounds close to flat ones. This
allows us to use standard reconstruction techniques for the computation of spectral properties
of correlation functions in quantum gravity from their Euclidean counterparts. Hence, below
we introduce the Euclidean approach to AS gravity.

2.1 Euclidean quantum gravity and the fRG

In the present work, we utilise results for momentum-dependent correlation function in a
Euclidean flat background based on [45] within the fluctuation approach. This approach has
been set-up in [45–48] and used, e.g., for pure gravity investigations in [45–57], and for
gravity-matter systems in [54–68]; for a recent review see [14]. Here we briefly describe the
computation and approximation scheme, for more details see these works.

Central to the functional approach to asymptotic safety is the effective action Γ , the quantum
analogue of the classical action. Importantly, the RG-approach to AS quantum gravity does not
rely on a specific classical action, but on a non-trivial fixed-point action at the UV Reuter fixed
point. In turn, the large-scale physics in the IR is well described by the Einstein-Hilbert action,

SEH[gµν] =
1

16πGN

∫

d4 x
p

g
�

2Λ− R(gµν)
�

, (1)

with the (IR) classical Newton constant GN and the abbreviation
p

g =
Æ

det gµν(x). The
definition of a graviton propagator, a pivotal ingredient to the approach, requires a gauge fixing.
A standard linear gauge fixing requires the definition of a background metric, which also serves
as the expansion point of the effective action. We use a linear split for the full metric,

gµν = ḡµν +
p

16πGN hµν , (2)

where hµν is the dynamical fluctuation field with mass dimension 1. Importantly, the fluctuation
field carries the quantum fluctuations. In the present work, we use the flat O(4)-symmetric
Euclidean metric for ḡµν. The gauge fixing is done within this background, and we take a
de-Donder type gauge fixing, see App.A.

This formulation introduces a separate dependence of the effective action on the background
metric and the fluctuation fields, Γ = Γ [ ḡµν,φ], where φ is the fluctuation multi-field including
the ghosts,

φi = (hαβ , c̄µ , cν) . (3)

We consider a vertex expansion of the effective action about the given Euclidean background ḡ,

Γ [ ḡµν,φ] =
∞
∑

n=0

1
n!

n
∏

l=1

∫

d4 x l

q

det ḡµν(x l) φil (x l)Γ
(φi1 ...φin )

�

ḡµν, 0
�

(x ) , (4)
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where Γ (φi1 ...φin ) are the nth derivatives of the effective action with respect to the fluctuation
fields φi1 , ...,φin and x = (x1, . . . , xn). We shall also use the abbreviation Γ (n) for the sake of
simplicity.

A suggestive choice for the background metric is a solution of the quantum equations of
motion. There, background independence is regained and we expect the most rapid convergence
of the vertex expansion, for a detailed discussion see e.g. [14]. Such an expansion is technically
very challenging, and in the present work we consider an expansion about the flat Euclidean
background, ḡµν = δµν with the flat O(4)-metric δ = diag(1,1,1,1). Such an expansion
works well, if the full dynamical space-time is asymptotically flat, and no regimes with strong
curvatures are present. Consequently, the results in the present work obtained for the spectral
properties of gravity rely on this assumption.

The flat background choice comes with considerable technical advantages. In particular it
allows for the definition of Fourier transforms and allows us to compute momentum-dependent
vertices,

Γ (n)(p) =

 

n
∏

j=1

∫

d4 x j ei xµj pµj

!

Γ (n)[δµν, 0](x ) . (5)

Here, p = (p1, . . . , pn). The vertices in (5) are computed within the fRG-approach to quantum
gravity discussed below. Owing to the flat background the respective fRG-flow equations are
standard momentum loops and hence can be solved within the well-developed computational
machinery of fRG-computations in quantum field theories. Moreover, it facilitates the discussion
of the Wick rotation to Minkowski space as we can resort to standard spectral properties. As
already discussed before, this does not resolve the problem of a Wick rotation in the presence
of a dynamical metric. However, the results here may also shed some light into this intricate
challenge.

In the fRG approach to quantum gravity, the theory is regularised with an IR cutoff that
suppresses quantum fluctuations with momenta p2 ® k2. This cutoff is successively lowered
and finally removed. The respective flow equation for the IR regularised effective action Γk is
given by [69–71]

∂tΓk[ ḡµν,φ] =
1
2

TrGk[ ḡµν,φ]∂tRk[ ḡµν] , (6)

with

Gφi1φi2 ,k[ ḡµν,φ] =





1

Γ
(φφ)
k [ ḡµν,φ] + Rk[ ḡµν]





φi1φi2

. (7)

Here, Rk is a regulator that implements the suppression of IR modes and t = log k/kref is the
(negative) RG-time with the reference scale kref that is at our disposal. Note that the second
derivative of the effective action with respect to the fluctuation field enters in (6). The flow
equations for Γ (n)k are obtained by n-derivatives w.r.t. the fluctuation field φ. For more details
on the fRG-approach to quantum gravity see [1–14].

We extract the momentum-dependent fluctuation graviton propagator from the flow of the
two-point function, and the momentum-dependent flow of the fluctuation Newton coupling from
the flow of the three-point function. The corresponding flow equations are diagrammatically
depicted in Fig.2. The regulator used for the numerical computations is a Litim-type regulator,
see App.B.
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Figure 2: Diagrammatic representation of the flows of the fluctuation graviton two-
and three-point functions, from which we extract the flow of the fluctuation graviton
propagator and the flow of the physical Newton coupling, respectively. The latter
relates to the flow of the background graviton propagator. Double blue lines represent
graviton propagators, red single lines ghost propagators, and the cross stands for a
regulator insertion.

2.2 Projection on momentum-dependent couplings

We now describe the fRG setup for the solution of the momentum-dependent vertices as defined
in (4) and (5) within a flat background. These numerical computations require a truncation of
the effective action to a finite set of vertices. The present work builds on results and flows in [45],
where the momentum dependence of the two-, there-, and four-point graviton vertices have
been taken into account, as well as that of the graviton-ghost sector. Further works including
momentum dependences can be found in [46–48,55–58,72–75], for a review see [14].

The general tensor structure of the vertices is furthermore reduced to the Einstein-Hilbert
tensor structures,

T (φi1 ...φin )
EH (p;Λn) = S

(φi1 ...φin )
EH (p;Λn)

�

�

GN→1 . (8)

In (8), S
(φi1 ...φin )
EH is the nth derivative of the Einstein-Hilbert action (1). We send GN → 1 in

order to remove the dependence on GN. The Λn are the (running) coefficients of the tensor
structure arising from the cosmological-constant term. These coefficients can be understood
as avatars of the cosmological constant. Guided by the results in [45], we use the further
approximation Λn ≈ 0, detailed below.

In the n-point vertices, the above tensor structures are multiplied by a scalar vertex dressing
that depends on p. Here we only consider the dressing with a dependence on the average
momentum p̄,

p̄2 =
p2

n
. (9)

As it is multiplying the Einstein-Hilbert tensor structure, it can be understood as a power of
an avatar Gn(p̄) of the Newton coupling, multiplied with

Æ

Zφi ,k(pi) for each leg. Here, the
Zφi ,k(pi) are the momentum-dependent wave-function renormalisations of the fields φi . They
relate to the anomalous dimensions of the fields φi via

ηφi
(p) = −∂t ln Zφi ,k(p) . (10)

The anomalous dimension ηφi
are k-dependent just as the wave-function renormalisations

Zφi ,k but we choose to suppress the index k for convenience of notation. Note that Zh and ηh
are in general tensorial quantities and we choose a uniform wave-function renormalisation
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for the graviton. In summary, this leads us an ansatz for the n-point functions of the effective
action given by

Γ
(φi1 ...φin )
k (p) =

 

n
∏

j=1

Z
1
2
φi j

,k(p j)

!

G
n
2−1
n (p̄)(SEH + Sgf + Sgh)

(φi1 ...φin )
�

�

GN→1 . (11)

The first term in the second line is precisely the tensor structure defined in (8). For n > 2,
there are no contributions from the gauge-fixing term, and for n > 3, also ghost-graviton
contributions are absent.

The Gn(p̄) are running avatars of the Newton coupling for each n-point function. The flows
of Γ (n) or that of the Gn(p̄) are obtained within an evaluation of ∂tΓ

(n) at a symmetric point,
p2

i = p̄2, where for the 3-point function we choose

pi · p j =
1
2
(3δi j − 1) p̄2 . (12)

We work with the dimensionless versions of Gn and Λn, which are given by

gn(p) = k2Gn(p) , λn =
Λn

k2
. (13)

Here and in the following, we drop the bar on the momentum argument of gn but it is understood
that we consider the average momentum flow through the vertex, see (9). More details on
the projection procedure (contraction of the tensor structure) and the results can be found
in [14,45].

For the analysis of the spectral properties of the graviton presented here, we consider
additional approximations that are guided by the results in [45]. There, the UV-fixed point as
well as full UV-IR trajectories with momentum dependences for two-, three- and four-point
functions have been considered. While not being identical, the avatars gn(p̄) of the Newton
couplings showed similar p̄- and k-dependences.

We assume a vanishing cosmological constant, which in the present approximation entails
λn = 0 at vanishing cutoff scale, k = 0. We know from [45] that the flow is not dominantly
driven by the λn and for the sake of simplicity we use λn(k) = 0. Similarly, we use that the
momentum-dependence of the ghost, while present, is only of quantitative interest. We use a
vanishing ghost anomalous dimension, ηc(p)≈ 0. In summary, we compute the flows of

Zh,k(p) , g3,k(p) = gk(p) , (14a)

with vanishing λn and ηc. Furthermore, we identify all avatars of the Newton coupling with
g3,k,

gn,k(p) = gk(p) , (14b)

which leaves us with a unique momentum- and cutoff-dependent Newton coupling Gk(p), and
a unique physical Newton coupling GN(p) with

GN(p) = Gk=0(p) , where Gk(p) =
gk(p)

k2
. (14c)

We emphasise that physical simply refers to the physical limit k→ 0.
We consider RG-trajectories with classical IR scaling. Together with the definitions (14)

and in particular (14c), this implies that the classical Newton coupling in (1) is nothing but
the physical one at vanishing momentum, GN = GN(0), which also defines the Planck mass,

M2
pl =

1
GN(p = 0)

. (15)
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Within the approximation described above, we can access the full momentum- and cutoff-
dependent fluctuation propagator via Zh,k(p) as well as the three-graviton coupling gk(p).
Here, p = p̄ is the average momentum flow through the vertex, see (9). The respective flow
is evaluated at the symmetric point (12). The flows are integrated from the initial condition
close to the UV fixed point to the physical theory for k→ 0. The diagrams contributing to the
respective two- and three-point function flows are displayed in Fig.2. For the wave-function
renormalisation we choose the initial condition Zh,Λ = const. and fix Zh,k=0(p = 0) = 1. Here
Λ is the initial scale that we send to infinity and the constant initial conditions depends on Λ.

3 The graviton spectral function

The Euclidean fluctuation approach in Sec.2 within the approximations discussed in Sec.2.2
provides us with results for the momentum- and cutoff-dependent fluctuation field propagator
and Newton coupling. For k→ 0 we approach the physical theory. This already allows us to
discuss the properties of the physical correlation functions in momentum space.

In particular, it also gives access to the question, whether an identification of momentum-
dependences at k = 0 and cutoff dependences at p = 0 is at least working qualitatively. Such an
identification underlies many physics studies in asymptotic safety, most of which only provide
cutoff dependences and not momentum dependences. While not being at the heart of the
current work, the Euclidean momentum dependences provided here are hence very important
for the physics interpretation of these cutoff scale studies. Even more importantly, the current
results, as well as those already provided in [14, 45–48] can be used as input for the direct
computation of scattering vertices for general momentum configurations, S-matrix elements,
and asymptotically safe cosmology. These interesting applications are left to future work.

Here we aim at the reconstruction of the graviton spectral function from the numerical
Euclidean data of the graviton propagator, for our results see Fig.1. Such reconstructions based
on numerical data with statistical and systematic errors are typically ill-conditioned problems.
Moreover, for (unphysical) gauge fields they also require the additional key assumption that
such a spectral representation exists. In gravity, this is further complicated by the intricacies of
the Wick rotation. The considerations and numerical reconstructions here are based on these
assumptions, a detailed investigation of the difficulties of the reconstruction for numerical data
in the context of QCD can be found in [37]. Here, we follow the discussion there and extend
it to positivity and normalisability of spectral functions in the presence of anomalous UV and
IR momentum scalings. While most of the respective properties, in particular the UV ones,
are well-known, the present work is to our knowledge the first comprehensive application to
quantum gravity.

Time-ordered propagators GF(x , y) = 〈Tφ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 of physical fields
(asymptotic states) in Minkowski space have a Källén–Lehmann (KL) spectral representation.
In momentum space, it is given by

GF(p0) = i

∞
∫

0

dλ
π

λρ(λ)
p2

0 −λ2 + iε
, (16)

with the spectral function ρ(λ). In (16), the restriction to positive frequencies in the integral
follows from the antisymmetry of the spectral function

ρ(λ) = −ρ(−λ) . (17)

A simple example is provided by the classical spectral function ρcl of a particle with pole mass
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mpol,

ρcl(λ) =
π

λ

�

δ(λ−mpol)−δ(λ+mpol)
�

. (18)

Inserting (18) in (16) leads to the classical Feynman propagator GF(p0) = i/(p2
0 −m2

pol + iε).
The KL-representation in (16) constructs the full propagator in terms of a spectral integral over
’on-shell’ propagators 1/(p2

0 − λ
2 + iε) of states with pole masses λ. If properly normalised,

the total spectral weight of all states is unity,

∞
∫

0

dλ
π
λρ(λ) = 1 . (19)

The spectral sum rule in (19) holds for the spectral function of asymptotic states and also
encodes the unitarity of the theory. In general, the propagator of the fundamental fields in
the theory is subject to renormalisation and its amplitude can be changed by an RG equation.
In this case, one first has to define renormalisation group invariant fields to apply the above
arguments. For gauge fields, the discussion is even more intricate as detailed below.

The condition (19) entails that the decay of the spectral function for asymptotically large
spectral values has to be faster than 1/λ2. The latter decay is the canonical one, as the
momentum-dimension of the spectral function is that of the propagator: −2. The classical
spectral function is a δ-function, and vanishes identically for λ > mpol. In turn, scattering
events for λ > mpol induce a spectral tail, which indeed decays faster than 1/λ2. However,
if the propagator shows an anomalous momentum scaling for large momenta, this analysis
is more intricate and is detailed below. This case with anomalous scaling applies to gauge
theories, and in particular to the graviton.

The reconstruction of the spectral function is done with the Euclidean propagator G(p0) for
Euclidean momenta p0. In the Euclidean branch this spectral representation of G(p0) = iGF(i p0)
is given by

G(p0) =

∞
∫

0

dλ
π

λρ(λ)
λ2 + p2

0

. (20)

Equivalently, the spectral function can be obtained from the Euclidean propagator by means of
an analytic continuation,

ρ(ω) = 2ℑG
�

−i(ω+ i0+)
�

, (21)

i.e. from the discontinuity of the propagator. Inserting the limit on the right-hand side of
(21) in (20) leads to a δ-function from the KL kernel, and the spectral integral can readily be
performed, leading to the left-hand side of (21). This concludes the brief introduction to the
KL representation.

3.1 Properties of the graviton spectral function

Gauge fields such as the graviton and the gluon are not directly linked to asymptotic states.
Therefore, they do not necessarily enjoy a spectral representation. While the photon in QED
is believed to have a spectral representation, this is currently a debated subject in QCD, see
e.g. [37,76] and references therein. Possible extensions of (16) include complex conjugated
poles, which are not considered here, as they may signal the loss of unitarity. However, for
recent discussions of such an extension including the question of unitarity see e.g. [77–80].
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In QCD, it is the confining nature at large distances that complicates the matter, and in
particular the relation to asymptotic states. In asymptotically safe quantum gravity, it is the
strongly-correlated UV fixed-point regime that complicates spectral considerations, even if
leaving aside the intricacies of spectral representation in the presence of dynamical metrics.
In turn, in the IR, gravity is well-described by the classical Einstein-Hilbert action (1) and
we expect spectral properties in the IR similar to that of the photon: a massless δ-function
with a scattering tail. This expectation is well-supported by the observations at LIGO [81]. In
summary, this suggests spectral properties of the graviton that are ’photon-like’ in the IR and
’gluon-like’ for the Planck-scale and beyond.

As discussed in Sec.2, we consider AS gravity within an expansion about a flat background.
In this setup, gravity is classical for large distances since the UV-IR trajectories approach classical
scaling in the IR [45]. In this limit, similarly to QED, gravity is weakly coupled and may enjoy
a spectral representation.

The full propagator can be decomposed in its different components, leaving us with a
traceless-transverse tensor as well as vector and scalar components. In the present approxima-
tion based on the Einstein-Hilbert tensor structure, all components are related and it suffices
to discuss the spectral representation of one of them. Here, we concentrate on the spectral
function of the traceless-transverse part Ghh,TT of the graviton propagators in a flat background,
also considered in [45]. We parametrise Ghh,TT with the TT-projection operator ΠTT(p) in App.C

Ghh,TT(p) = Ghh(p)ΠTT(p) ,

G ḡ ḡ,TT(p) = G ḡ ḡ(p)ΠTT(p) , (22)

with the scalar parts Ghh(p) and G ḡ ḡ(p) of the fluctuation and background graviton respectively.
Both scalar propagators are assumed to have a KL representation (20) with spectral functions
ρh(λ) and ρ ḡ(λ).

Importantly, both the analytic IR and the UV tail of the Euclidean propagators can be used
to analytically determine the spectral functions ρ(λ) for the asymptotic regimes λ→ 0 and
λ→∞, see [37]. In the UV this is related to the well-known Oehme-Zimmermann super-
convergence relation [82,83]. We recall the argument here, adapted to the AS graviton. We
consider dimensionless propagators and momenta, which are rescaled by appropriate powers
of the Planck mass, see (15). This leads us to dimensionless momenta and spectral parameters,

p̂2 =
p2

M2
pl

, λ̂=
λ

Mpl
, (23a)

and dimensionless propagators and spectral functions,

Ĝ(p̂) = M2
pl G(p) , ρ̂(λ̂) = M2

plρ(λ) . (23b)

With (23) the UV limit of the dimensionless propagators reads

lim
p̂2→∞

Ĝ(p̂) = ZUV

p̂2(1− η2 )
1

(log p̂2)γ̄
, (24)

where the ZUV’s are dimensionless normalisations and the η’s are the anomalous dimensions
of the fluctuation graviton hµν and the background graviton ḡµν, and γ̄ is non-vanishing for
marginal scalings. Eq.(24) is a general asymptotic form that includes a monomial behaviour as
well as a logarithmic cut. The decay behaviour (24) present in asymptotically safe gravity is
different to some non-local gravity theories that feature an exponential decay behaviour.
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The anomalous dimensions in (24) are precisely given by the anomalous dimension at
k→∞ and p = 0 if the theory is momentum local [48]. If the theory is not momentum local
and the relation between ηk→∞(p = 0) and the fall-off of the propagator at k = 0 is more
intricate. In the current approximation, the theory is momentum local and the anomalous
dimensions take the values

ηh ≈ 1.03 , ZUV
h = 0.64 ,

η ḡ = −2 , ZUV
ḡ = 24.1 , (25)

with γ̄ = 0. While the anomalous dimension of the fluctuation graviton ηh is a dynamical
quantity and depends on the approximation, the background anomalous dimension is uniquely
fixed by asymptotic safety: It is linked to the β -function βN of the background Newton coupling
with η ḡ = βN − 2. At the fixed point βN is vanishing by definition and hence η ḡ = −2 follows.
The value of ηh is approximation-dependent but one finds ηh > 0.

Eq.(25) already shows an interesting difference between the graviton fields: The background
graviton has a negative anomalous dimension while the fluctuation graviton has a sizeable
positive anomalous dimension.

The computation of ηh and the underlying approximation is explained later, and is done in
the de-Donder type gauge (69) with α= 0 and β = 1, given in App.A. The large momentum
value in (25) has been computed in [45] within a rather elaborate approximation. The
approximation here is a variant of that put forward in [45], and utilises the flows derived there.

For the general discussion as well as the consideration of subleading UV- and IR-momentum
dependences in the graviton propagators we also take into account a potential logarithmic
running. This is known from resummed perturbation theory, where γ̄ is given by the ratio of
the anomalous dimension and the β-function of the running coupling,

γ̄=
η

β
. (26)

In summary, (24) allows us to discuss the UV-asymptotics of the spectral function of a given
propagator. Moreover, it also can be used for the IR asymptotics, p→ 0, where it gives access
to the IR asymptotics of the spectral function.

3.1.1 Spectral function of the background graviton

We first discuss the UV limit of the background graviton. The argument follows closely that
for the Oehme-Zimmermann super-convergence relation in QCD. We show that the spectral
function of the background graviton is negative for large spectral values and its total spectral
weight vanishes,

∞
∫

0

dλλρ ḡ(λ) = 0 . (27)

Hence, in contradistinction to the spectral sum rule (19) related to unitarity of the theory, the
spectral sum rule (27) enforces a vanishing spectral sum. Note also that (27) necessitates a
spectral function ρ ḡ(λ) that is both positive and negative for some λ.

For proving (27), we consider asymptotically large Euclidean momenta as compared to the
Planck mass. It is convenient to study the asymptotic properties in terms of the dimensionless
quantities defined in (23) within the limit p̂ = p/Mpl→∞. In this limit the propagator of the
background graviton decays with,

lim
p̂→∞

Ĝ ḡ ḡ(p̂) =
ZUV

ḡ

p̂2
�

1−
η ḡ
2

� , (28)
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with η ḡ → −2, see (24) and (25). The UV asymptotics in (28) allows us to determine the
spectral representation for λ̂→∞. With the definition (21) we get

lim
λ̂→∞

ρ̂ ḡ(λ̂) = 2 sin
hπ

2
η ḡ

i ZUV
ḡ

λ̂2−η ḡ
. (29)

Evidently, for η ḡ < 0, the spectral function decays more rapidly as 1/λ̂2. Moreover, if we
approach the UV-fixed point scaling with η ḡ →−2, the right-hand side in (29) vanishes. Then,
the spectral function ρ ḡ decays either more rapidly than 1/λ̂4 or does vanish identically. In
summary, (29) guarantees that all spectral integrals in the following are finite.

Now we split the spectral integral in (20) for the background graviton propagator into an
asymptotic UV part with spectral values λ̂≥

p

p̂, and the respective IR part,

Ĝ ḡ ḡ(p̂) =

p
p̂

∫

0

dλ̂
π

λ̂ ρ̂ ḡ(λ̂)

λ̂2 + p̂2
+

∞
∫

p
p̂

dλ̂
π

λ̂ ρ̂ ḡ(λ̂)

λ̂2 + p̂2
. (30)

Let us first discuss the second term on the right-hand side of (30): For
p

p̂ →∞ only the
asymptotic limit of the spectral function in (29) enters, and the term decays faster than 1/p̂2.
For η ḡ ∈ (−2,0), we find

lim
p̂→∞

�

�

�

�

�

�

�

�

∞
∫

p
p̂

dλ̂
π

λ̂ ρ̂ ḡ(λ̂)

λ̂2 + p̂2

�

�

�

�

�

�

�

�

≤
C

p̂2−
η ḡ
2

. (31)

For η ḡ = 0, the respective fall-off behaviour is C log(p̂)p̂−2, and, for η ḡ ∈ (0, 2), it is C p̂−2+η ḡ .
Accordingly, for our case of interest with η ḡ ∈ (−2,0), also the first term on the right-hand
side in (30) has to decay at least with 1/p̂(2−η ḡ/2), in order to guarantee the limit (28) in
combination with (31). For example, for the fixed point scaling with η ḡ = −2 this amounts to
a decay with 1/p̂3.

The first term in (30) can be rewritten as
p

p̂
∫

0

dλ̂
λ̂ ρ̂ ḡ(λ̂)

λ̂2 + p̂2
=

1
p̂2

p
p̂

∫

0

dλ̂λ̂
ρ̂ ḡ(λ̂)

1+ λ̂2

p̂2

, (32)

where we have dropped the 1/π-term, as the total normalisation is not relevant for the present
discussion. Now we use λ̂2 ≤ p̂ in (32) due to the upper bound of the integration. Hence,
in the limit p̂→∞, the λ̂2-part in the denominator in (32) can be dropped to leading order.
Accordingly, in this limit, we are led to

1
p̂2

p
p̂

∫

0

dλ̂λ̂
ρ̂ ḡ(λ̂)

1+ λ̂2

p̂2

p̂→∞
−−−→

1
p̂2

p
p̂

∫

0

dλ̂λ̂ ρ̂ ḡ(λ̂) . (33)

The prefactor only decays with 1/p̂2 for p̂ →∞. This entails that for η ḡ < 0, the spectral
integral in (33) has to decay at least as p̂η ḡ/2 in order to be compatible with (28) for the
background propagator. This leads us to

lim
p̂→∞

p
p̂

∫

0

dλ̂λ̂ ρ̂ ḡ(λ) = 0 , for η ḡ < 0 . (34)
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Eq.(34) is nothing but the Oehme-Zimmermann super-convergence sum rule (27).
This property holds for any field with a UV scaling with η < 0. In particular, we conclude

that, if the background graviton admits a spectral representation, its spectral function, ρ ḡ , has
a vanishing total spectral weight, see (27). This also implies negative parts for ρ ḡ , which is
confirmed in the explicit computation, see Fig.1.

We emphasise again that the property (27) does not entail unitary violations. The same
property holds true for the background gluon Āµ in QCD, where the full gauge field Aµ is split
into a background field Āµ and a fluctuation field aµ with the linear split Aµ = Āµ + aµ. If it
has a spectral representation, it has the property (27) due to its anomalous dimension being
negative,

ηĀ = βg2
s
= −

g2
s

16π2

22
3
< 0 , (35)

with the running strong coupling gs(p/ΛQCD). For large momenta the coupling tends to zero
due to asymptotic freedom and hence ηĀ→ 0. The ratio γ̄ of anomalous dimension ηĀ and
β -function βg2

s
is unity, γ̄Ā = 1 and we are left with a logarithmic running 1/p21/(log p/ΛQCD)

of the propagator. In this case, the decay in (31) solely arises from the respective logarithms
for γ̄ > 0.

Similarly to gravity, the anomalous dimension of the graviton is identical to the (anomalous)
part of the β-function of the coupling. Note that in QCD this property is even more peculiar:
the spectral function is negative in a regime, where the theory is asymptotically free. In any
case, this analogy makes clear that a negative spectral function for an unphysical gauge boson
does not entail a lack of unitarity for the theory. While unitary of QCD has not been proven
rigorously, it is commonly assumed that it is present. However, let us also add that negative
spectral functions do not facilitate unitarity proofs or arguments either.

3.1.2 Spectral functions for large spectral values & normalisation

Now we use the UV-leading term of the propagators for both, the fluctuation graviton and the
background graviton in (24) for determining the asymptotic form for both spectral functions.
Here we expect a qualitative difference between gravity and QCD/Yang-Mills theory. In the
latter theory, the fluctuation gluon has the same vanishing spectral weight property of (27)
(in the Landau-DeWitt gauge) due to the negative anomalous dimension ηa of the fluctuation
gluon aµ,

ηa = −
g2

s

16π2
(13− 3ξ)< 0 , (36)

for ξ < 13/3, where ξ is the gauge-fixing parameter. As for the background propagator we
have ηa→ 0 for p/ΛQCD→∞. The resummed logarithmic running has the power

γ̄a =
13
22

, (37)

for the Landau gauge with ξ = 0. For more details and the discussions of general covariant
gauges we refer the reader to e.g. [84] and references therein. As for the background gluon,
the fluctuation gluon propagator decays more rapidly as 1/p2 and we arrive at (27): both
gluon propagators obey the sum rule (27), their total spectral weight vanishes.

In turn, in AS gravity the anomalous dimension of the fluctuation graviton is positive,
ηh > 0, see (25). The respective computation in [45] as well as the present ones are done in
the de-Donder type gauge (69) with α = 0 and β = 1. The choice α = 0 enforces the gauge
strictly similar to the Landau-DeWitt gauge in QCD with gauge fixing parameter ξ= 0.
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We now proceed with the analytic computation of the UV asymptotics of the spectral func-
tions. Using (21) one obtains the asymptotic behaviour of the smooth part of the dimensionless
spectral functions ρ̂ in (23) with,

lim
ω̂→∞

ρ̂(ω̂) =2
ZUV

ω̂2(1− η2 )
1

(log ω̂2)γ̄

�

sin
hπ

2
η
i

− cos
hπ

2
η
i πγ̄

log ω̂2

�

, (38)

valid for the η ∈ (ηh,η ḡ) considered here,

η ∈ (−2,2) . (39)

In (38) we have dropped subleading terms in the logarithms with:
Æ

π2/4+ (log ω̂2)2→ log ω̂2 .

The lower limit in (39) comes from a constraint in the fixed-point theory, which admits scaling
for all momenta. For η < −2 the fixed-point propagator is not plane-wave normalisable any
more, it has no Fourier representation as it develops a non-integrable singularity at p = 0. The
boundary value η = −2 is special and has to be evaluated with care. The upper limit is a more
technical one, the approximation and regulators used in the present (and most other works)
fails for η > 2, see [55]. Again the boundary value requires special attention.

Importantly, we can already conclude from our analysis that fields with η 6= 0 cannot
describe asymptotic states: for η < 0 the spectral function necessarily has negative parts, while
for η > 0 the spectral function is not (UV) normalisable, as the spectral function decays with
less than 1/λ̂2.

For η = 0 we are left with the dependence on γ̄. In this case, as for η = ±2, the first term in
(38) vanishes. For γ̄ 6= 0 we are left with the second term, triggered by the logarithmic running
of the UV-asymptotics. This part, with η = 0 and γ̄ > 0, covers the QCD-behaviour. The UV
asymptotics is given by

lim
ω̂→∞

ρ̂(ω̂) = −
2ZUV

ω̂2

πγ̄

(log ω̂2)(1+γ̄)
. (40)

With (40), the total spectral weight is finite for γ̄ > 0. However, in this case, the spectral
function necessarily has negative parts. In turn, for γ̄≤ 0, the spectral weight is UV-divergent,
and the spectral function cannot be normalised.

In summary, we have found that a spectral function has a vanishing total spectral weight
for η < 0, see (27). In this case γ̄ can be general. This property also holds true for η= 0 and
γ̄ > 0,

{η < 0 or (η= 0∧ γ̄ > 0)} :

∞
∫

0

dλλρ(λ) = 0 . (41)

Then, the spectral function also has negative parts, and in particular, its UV asymptotics is
negative in the range (39), see (38). This case applies to the spectral function of the background
graviton, ρ ḡ . We emphasise that this property is not at odds with unitarity for two reasons.
First of all, it is a well-known property of the gluon in QCD (assuming the existence of a spectral
representation). Secondly, the background graviton is not the graviton propagating in loop
diagrams that contribute to the (unitary) S-matrix.

The graviton that is relevant for the latter processes in the S-matrix, is the fluctuation
graviton. For the fluctuation graviton, the case η > 0 applies for the UV asymptotics. This
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Figure 3: Momentum dependence of the Euclidean fluctuation graviton propagator
Ghh(p). (left) Momentum dependence of the Euclidean fluctuation graviton propagator
(blue, solid) with its IR and UV asymptotics. The UV asymptotic (violet, dotted) is
given by ZUV

h p−2+ηh with ηh = 1.03 and ZUV
h = 0.64, see (25). The IR asymptotic

(red, dashed) is simply the classical dispersion 1/p2. (right) Subleading contributions
at small momenta in comparison to the full propagator (blue, solid). ∆G(1)hh (magenta,

dashed) carries a subleading log-like contribution, while ∆G(2)hh (cyan, dotted) carries
a constant contribution for small momenta.

entails that the UV tail of the spectral function is positive in the range (39). However, as
discussed above, for ηh > 0 the spectral function cannot be normalised.

This UV analysis above does not imply that the spectral function ρh is positive for all spectral
values. However, we shall see later that this is indeed the case within the reconstruction, see
also Fig.1. This leads us with a positive, though not normalisable, spectral function ρh > 0.
With the latter property of the fluctuation graviton one of the necessary condition for applying
Cutkosky cutting rules, [85], is satisfied. This brings us closer to a reliable discussion of unitarity
in asymptotic safety.

4 Euclidean correlation functions

With the setup discussed in Sec.2, we now compute the Euclidean fluctuation graviton prop-
agator, see Sec.4.1, as well as the Euclidean coupling of the fluctuation three-point function
for all momenta and cutoff scales, see Sec.4.2. This is based on momentum-dependent results
for the anomalous dimensions ηh(p) and the β-function βg3

(p) in [45]. Here we provide, for
the first time, the full physical momentum-dependence of the graviton two- and three-point
function at vanishing cutoff scale. This also allows us to explicitly check the reliability of the
identification of cutoff and momentum scales.

For the sake of simplicity, we use an analytical flow equation for the zero-momentum
cutoff-dependent Newton coupling gk = gk(p = 0). This analytic flow equation is based on [45]
with the approximations from (14) and ηh = 0. It takes the simple form,

∂t gk = 2gk

�

1−
gk

g∗

�

= 2gk −
833g2

k

285π
, (42)

where g∗ = 570π/833 is the UV fixed-point value. This flow equation has the solution

gk =
g∗k2

g∗M2
pl + k2

. (43)
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This solution is consistent with the fixed-point value in the UV, gk→∞ = g∗, and has the physical
IR behaviour, gk→0 = k2/M2

pl. This allows us to express the RG scale in units of the Planck
mass.

On the trajectory (43), we evaluate the momentum-dependent graviton anomalous di-
mension ηh(p) as well as the momentum-dependent three-point Newton coupling gk(p). We
emphasise that both quantities are evaluated consistently on the trajectory (43) but we neglect
any feedback on the trajectory itself. The impact of this approximation is subleading since the
full trajectory, which can be obtained in an iterative procedure, exhibits the same qualitative
features as (43).

4.1 Fluctuation graviton propagator

In this section, we present the Euclidean results for the propagator of the fluctuation graviton.
We first discuss the details of the computation and the numerical results while we discuss
analytic fits for the IR asymptotics in Sec.4.1.1. The latter are important for the reconstruction
of the spectral function.

The momentum-dependence of the Euclidean propagator is incorporated in the momentum-
dependence of the anomalous dimension already computed in [45]. For the Euclidean scalar part
Ghh,k(p) of the transverse-traceless mode (22) we parametrise the cutoff-dependent graviton
propagator with

Ghh,k(p) =
1

Zh,k(p) p2
. (44)

The wave-function renormalisation is readily computed from the anomalous dimension ηh(p2),
defined in (10). We emphasise that the anomalous dimension naturally also depends on the
graviton couplings via the diagrams, see Fig.2. With the definition (10), we obtain the physical
wave-function renormalisation Zh(p), in the double limit k→ 0 and Λ→∞,

Zh(p) = lim
k→0
Λ→∞

Zh,Λ(p)exp(

Λ
∫

k

dk′

k′
ηh,k′(p)) , (45)

where we set Zh,Λ = const. at a large cutoff scale and normalise Zh(p = 0) = 1. The computation
of the fluctuation graviton anomalous dimension is detailed in App.E.

The result for the physical full momentum-dependent Euclidean graviton propagator Ghh(p)
is presented in Sec.3.1.2. The leading asymptotics of Ghh(p) are proportional to 1/p2 for small
momenta, and pηh−2 for large momenta, where ηh ≈ 1.03 is the graviton anomalous dimension
at the UV fixed point and p2 = 0, see (25).

4.1.1 IR asymptotics

The low-momentum asymptotic of 1/p2 captures the classical IR-regime: the theory approaches
classical gravity with the Einstein-Hilbert action in (1). This does not exclude the presence of
subleading features which may carry important physics. We access the subleading IR behaviour
by subtracting the 1/p2-pole and introduce the difference propagator ∆Ĝ(1)hh ,

∆Ĝ(1)hh (p) = Ĝhh(p̂)−
1
p̂2

. (46)

This difference propagator is displayed with a red-dashed line in Sec. 3.1.2. As expected,
the Euclidean propagator does indeed show non-trivial subleading behaviour introduced by
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scatterings. It exhibits a log-like contribution, and for small momenta we find,

lim
p̂→0
∆Ĝ(1)hh (p̂) = −Ah ln p̂2 + Ch , (47)

with Ah =
7

20π ≈ 0.11 and Ch ≈ 0.29. The coefficient Ah is the prefactor of the p̂4 ln p̂2 term
in the two-point function. Accordingly, it can be computed by a p2 derivative of the one-loop
anomalous dimension at vanishing momentum, Ah = −∂g∂p2ηh(p)/2|g,p→0. The quantity thus
relates to a p4 derivative of the one-loop flow and is independent of the regulator, though still
gauge dependent, see (85) in App. F for the full gauge-dependent result. The result in the
gauge we use here agrees with effective field theory computations [86,87].

For the reliability of the reconstruction it is beneficial to remove both the IR and UV
asymptotics in terms of analytic functions. Then, the reconstruction only deals with the
intermediate momentum (and spectral) values, which stabilises the construction. The analytic
fits in the IR (UV) should not interfere with the UV (IR) behaviour, and should not introduce
further structures. Note that these features are best (and most easily) implemented on the level
of asymptotic spectral contributions. Here, we are also interested in Euclidean fits and stay in
the Euclidean domain for the derivation of the analytic fits.

The subtraction with 1/p̂2 in (46) satisfies these properties, as it is subleading in the UV
due to ηh > 0. In turn, we cannot use the logarithmic and constant terms in (47) as an analytic
IR fit for the subleading IR behaviour. Instead, we use the confluent hypergeometric function
Ua,b(p̂2), whose leading large-momentum asymptotic is 1/p̂2a. For b = 1 and small momenta,
it approaches

lim
p̂→0

Ua,1(p̂
2) = −

1
Γ (a)

�

2γ+
Γ ′(a)

Γ (a)
+ ln(p̂2)

�

, (48)

where γ is the Euler–Mascheroni constant and Γ (z) the gamma function. Hence it shows the
subleading IR-asymptotics in (47) with a cut at ℜ(p) = 0. In particular, Ua,b(p̂2) does not
introduce any poles in the positive real half-plane. Moreover, for a > 1−ηh/2 ≈ 0.485 it is
subleading in the UV. In summary, the hypergeometric functions Ua,1 also fulfil the requirement
of not interfering with the UV behaviour of ρh, while simultaneously not introducing any
additional structures, and are thus well suited to describe the log-like contribution at small
momenta. For simplicity, we choose a = 1 and arrive at,

∆Ĝ(2)hh (p̂) =∆Ĝ
(1)
hh (p̂)− Ah U1,1(p̂

2) , (49a)

where

U1,1(p̂
2) = e p̂2

Γ (0, p̂2) , (49b)

with the upper incomplete gamma function Γ (a, z) =
∫∞

z dt ta−1e−t . The subleading IR-
asymptotics in (49) is depicted as the dotted cyan line in Sec.3.1.2. In summary, the two IR
subtractions leave us with a constant contribution remaining for small momenta.

The spectral function of these asymptotic IR fits is readily computed, which leaves us only
with a reconstruction task of the remaining part of the propagator, ∆G(2)hh . This is done by a fit
of Breit-Wigner (BW) structures as well as an analytic UV-asymptotic ρUV

h . This is detailed in
Sec.5, the resulting spectral function is discussed in Sec.5.2.

4.2 Newton coupling

In this section, we present the Euclidean results for the physical momentum-dependent Newton
coupling GN(p) = Gk=0(p), which is derived from the transverse-traceless part of the fluctuation
three-graviton vertex.
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In our approximation, we only retain the dependence of the Newton coupling on the average
momentum flowing through the vertex, see (9), and we evaluate the flow of the graviton three-
point function at the momentum symmetric point, see (12). We feed the dependence of the
average momentum back on the right-hand side of the flow, see Fig. 2. Note that different
combinations of external and loop momenta run through the vertices in the diagrams but
the coupling only depends on the average momentum. Furthermore, we use that the loop
momentum q is bounded by the cutoff scale, q2 ® k2, and that the diagrams give subleading
contributions for p2

i � k2. This implies that through all vertices, we have an average momentum
flow of the order of p̄2 = 1/3(p2

1+ p3
2+ p2

3) and we approximate gk(pi , q)≈ gk(p̄). More details
can be found in [14,45]. In summary, this leads us to

∂t gk(p̂)− p̂ g ′k(p̂) =
�

2+ηg(p̂)
�

gk(p̂) , (50)

with the dimensionless momentum p̂ = p/k and the anomalous dimension ηg of the flow of
the graviton three-point function, see App.D for details. Eq.(50) is integrated for given data
of ηg(p). The resulting momentum-dependent Newton coupling at vanishing cutoff scale is
given by the blue solid line in Fig.4. Together with the explicit depiction of the momentum
dependence of the fluctuation propagator, it is a key Euclidean result of the present work. It
encodes, for the first time, the full momentum-dependence of the scattering coupling of three
gravitons in the physical cutoff limit k→ 0 with

GN(p) = Gk=0(p) . (51)

The coupling GN(p) shows a flat classical IR regime, and exhibits a slight increase in strength
between about 1 and 2 Planck masses, before decaying with 1/p2. Whether or not this increase
about the Planck scale is a physics feature or a truncation artefact remains to be seen within
improved approximations.
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Figure 4: Physical Newton coupling gN(p) = GN(p)M2
pl as a function of momentum

in units of the Planck mass (blue, solid). For comparison, we also show the scale-
dependent Newton coupling gRG = gk(p = 0) (red, dashed) as a function of k = p,
and the fixed-point coupling g∗(p/k) as a function of a dimensionless momentum
variable (green, dotted).
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4.2.1 Physical Newton coupling

This novel result of a momentum-dependent coupling at k = 0 allows us to evaluate the
standard approximation of identifying the physical momentum-dependent Newton coupling
at vanishing cutoff with the k-running of the Newton coupling at vanishing momentum, and
that of the fixed-point coupling. In Fig.4, we depicted the momentum-dependent fixed-point
coupling g∗(p/k), and the k-dependent coupling at p = 0, gRG(k), for comparison:

(i) cutoff-momentum identification (p− k): While gRG(k) trivially agrees with the physical
coupling gN(p) for small momenta, it turns over towards the asymptotically safe fixed
point running at smaller momentum scales. Indeed this happens nearly an order of
magnitude earlier. Moreover, the UV coupling is also far smaller, and it does not show
the intermediate rise of the coupling.

(ii) Fixed-point identification: The fixed-point coupling g∗(pFP), normalised with the cutoff
scale k lacks a determination of the (IR) Planck mass. Here, pFP indicates that the
momentum in g∗ is measured in the cutoff scale. This normalisation of both, the Newton
coupling and the momentum, with the cutoff scale, leads to the deviation of its ’IR’ value
from the physical one. If rescaled to fit the IR coupling, it turns towards the asymptotically
safe regime even earlier than gRG(k). Also the UV value of the coupling is even smaller
than that of gRG(k).

In summary, we conclude that both procedures, (i) and (ii), mimic the qualitative aspects
of the physical Newton coupling. Moreover, the common p − k–identification, (i), works
considerably better than the fixed-point identification. However, the comparison also shows
that both procedures cannot be used for quantitative statements. This concerns in particular
physics that covers both the asymptotically safe UV regime and the classical IR regime. In both
procedures, (i) and (ii), the relative momentum scales in the two regimes are off by one or
more orders of magnitude. We emphasise that while this has been shown here for the scattering
coupling of three gravitons, this readily translates to other observables: the three-graviton
coupling is at the root of all scattering processes.

Finally, the results of the present work can also be used to improve upon the procedures (i)
and (ii) used in the literature: the comparison of gRG(k), g∗(pFP) with the physical coupling
gN(p) allows us to establish identifications k→ p and pFP→ p for phenomenological use. Still,
for more quantitative statements and scattering observables with several momentum scales this
is bound to fail, and one has to resort to the full computation within the present fluctuation
approach, see [14,45–58,68] for pure gravity and [54,55,57–68] for gravity-matter systems.

4.3 Euclidean background propagator

In this section, we relate the Newton coupling obtained in Sec.4.2 from the fluctuation three-
graviton vertex to the background graviton propagator. Similarly to the fluctuation graviton
propagator in (44), the background graviton propagator is parametrised as

G ḡ ḡ(p) =
1

Z ḡ(p) p2
, (52)

with the (inverse) dressing or wave-function renormalisation Z ḡ(p) = Z ḡ,k→0(p). The latter is
related with background diffeomorphism invariance to the β -function of the Newton coupling.
With (50), this leads us to the relation

η ḡ(p) = −
∂t Z ḡ(p)

Z ḡ(p)
= ηg(p) . (53)
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In (53), we have used that we have identified all avatars of the Newton coupling with gk(p),
including the background coupling. This (symmetric-point) approximation has been proven to
hold true semi-quantitatively, for more details see e.g. [14,45]. Note also that it is at the root
of the background-field approximation used in the literature.

Given later applications to cross-sections and other observables, it is instructive to relate
the definition of the background propagator to the tree-level scattering of fluctuation gravitons
with a one-graviton exchange. Such a scattering process in the s-channel is displayed diagram-
matically in Fig.5. To relate it to the background propagator, we need to contract the external
legs with two further fluctuation graviton propagators. This reads schematically

G ḡ ḡ(p)' Ghh(p)
�

Γ (hhh)(p)Ghh(p)Γ
(hhh)(p)

�

Ghh(p) , (54)

see also Fig.5. Here, we have implicitly projected on transverse-traceless part of the scattering
process. Note that in (54), all fluctuation wave-function renormalisations cancel out and we
are left with a gk(p)/p2 behaviour in the high-momentum regime, as expected. This way
of defining a background propagator or running coupling has a straightforward analogy in
QCD, where the analogous tree-level process of gluon-gluon scattering can be linked to the
background propagator. While not identical, they share both qualitative as well as quantitative
features.

We emphasise that while (54) as well as its gluon analogue GĀĀ are reminiscent of an s-
channel contribution to 2-to-2–scattering of particles, they do not describe an on-shell physical
process: for the present case of gravity the initial and final ’states’ are fluctuation gravitons,
which are not diffeomorphism-invariant. For QCD the final ’states’ are fluctuation gluons, which
are not gauge invariant.

Note also that considering a 2-to-2–scattering of background gravitons does not improve
on this situation. Despite their rôle for the construction of a diffeomorphism-invariant effective
action, they are no on-shell physical particles. We recall the fact that the background gluon
shares all these gauge-covariant properties with the background graviton. Still, its spectral
function has negative parts.

With (53), we readily compute the Euclidean background graviton propagator or s-channel
scattering of gravitons on the symmetric point. The result is depicted with the blue solid line
in Fig.6. The leading asymptotics of G ḡ ḡ(p) are proportional to 1/p2 for small momenta, and
pη ḡ−2 = 1/p4 for large momenta. Asymptotic safety requires η ḡ = −2 at the UV fixed point,
see also Sec.3.1.

4.3.1 IR asymptotics

The low-momentum asymptotic of 1/p2 captures the classical IR-regime: the theory approaches
classical gravity with the Einstein-Hilbert action in (1). This does not exclude the presence of
subleading features that may carry important physics.

Figure 5: Tree-level graviton-graviton scattering diagram. The dashed lines indicate
the transverse-traceless contraction of the external legs.
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Figure 6: Momentum dependence of the Euclidean background graviton propagator
G ḡ ḡ(p). (left) Momentum dependence of the Euclidean background graviton propa-
gator (blue, solid) with its IR and UV asymptotics. The UV asymptotic (violet, dotted)
is given by p−4 with ZUV

ḡ ≈ 18.5, see (25). The IR asymptotic (red, dashed) is simply

the classical dispersion 1/p2. (right) Subleading contributions at small momenta in
comparison to the full propagator (blue, solid). ∆G(1)ḡ ḡ (magenta, dashed) carries

a subleading log-like contribution, while ∆G(2)ḡ ḡ (cyan, dotted) carries a constant
contribution for small momenta.

To access the subleading IR behaviour, we follow the same procedure as for the fluctuation
graviton propagator in Sec.4.1.1 and subtract the 1/p2-pole. This leads us to the difference
propagator ∆Ĝ(1)ḡ ḡ ,

∆Ĝ(1)ḡ ḡ (p̂) = Ĝ ḡ ḡ(p̂)−
1
p̂2

. (55)

In contradistinction to the fluctuation graviton,∆Ĝ(1)ḡ ḡ is not subleading in the UV: the subtraction

introduces a 1/p2-dependence that dominates the 1/p4 asymptotics. This is seen in Sec.4.3,
where the magenta dashed line depicts the resulting subleading contribution.

Similarly to the fluctuation graviton propagator, we observe a subleading log-like contribu-
tion for small momenta,

lim
p̂→0
∆Ĝ(1)ḡ ḡ (p̂) = −A ḡ ln p̂2 + C ḡ , (56)

with A ḡ = −
111

380π ≈ −0.093 and C ḡ ≈ −0.11. The coefficient A ḡ is again computed from the
derivative of the one-loop anomalous dimension, A ḡ = −∂g∂p2η ḡ(p)/2|g,p→0, and is regulator
independent but gauge dependent, see (86) in App. F for the full gauge dependence. As in
Sec.4.1.1, we capture this contribution with the hypergeometric function U1,1. We define

∆Ĝ(2)ḡ ḡ (p̂) =∆Ĝ
(1)
ḡ ḡ (p̂)− A ḡ U1,1(p̂

2) +
1+ A ḡ

1+ (p̂+∆Γ 1)2
+ 2

(1+ A ḡ)∆Γ 1

(1+ (p̂+∆Γ 2)2)
3
2

. (57)

In (57), we have employed a combination of hypergeometric functions and two BW structures,
see Sec.5.1: this parametrisation ensures that ∆Ĝ(2)ḡ ḡ (p̂) is positive for all momenta, and that its

UV asymptotics is given by 1/p̂4. The lack of sign changes in∆Ĝ(2)ḡ ḡ facilitates the reconstruction,
though it is not necessary. We have checked that the specific values of the ∆Γi have no impact
on the reconstruction result, and the values used here are ∆Γ 1 =∆Γ 2 = 2.

We depict ∆Ĝ(2)ḡ ḡ with the cyan dotted line in Sec.4.3. It shows some smooth substructures
that are related to the analytic subtractions in (57), importantly, these subtractions do not
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Figure 7: Spectral function of the fluctuation graviton and the reconstructed Euclidean
propagator. The reconstruction, the definition of its error, and the error band in Sec.5
are described in Sec. 5.1 and Sec. 5.2. (left) Spectral function of the fluctuation
graviton (blue, solid line). It features a δ-function at ω = 0 (massless graviton), and
an ensuing smooth multi-particle continuum, ρcont

h (ω). We also depict the analytic
IR- and UV-asymptotics (red, dashed and violet, dash-dotted), and the Breit-Wigner
part (cyan, dotted). (right) Euclidean fluctuation propagator reconstructed from the
spectral function presented in the left panel. The reconstructed and original Euclidean
data agree very well on all data points corresponding to a reconstruction error of
Erel < 10−6.

introduce cuts and poles. These structures could be smoothed out, but since this does not have
an impact on the resulting systematic error of the reconstruction, we refrain from doing so.

As for the fluctuation graviton, the spectral function of the asymptotic IR fits is readily com-
puted, which leaves us only with a reconstruction task of the remaining part of the propagator,
∆Ĝ(2)ḡ ḡ . This is done by a fit of BW structures. This is detailed in Sec.5, the resulting spectral
function is discussed in Sec.5.3.

5 Graviton spectral functions

In this section, we compute the spectral functions of the fluctuation and background propagator
with reconstruction methods from the Euclidean propagators computed in Sec.4. We discuss
the results for the spectral function of the fluctuation graviton ρh in Sec.5.2 and the one for
the background graviton ρ ḡ in Sec.5.3. These results provide an important first step towards a
comprehensive understanding of the spectral properties of asymptotically safe gravity including
unitarity.

5.1 Spectral reconstruction

As described in Sec.4.1.1 and Sec.4.3.1, the IR asymptotics of the Euclidean graviton propagators
can be taken into account analytically in the form of a 1/p̂2 pole and a hypergeometric function
encompassing a subleading log-like pole. The remaining contributions, ∆G(2), are constant
for small momenta and tend towards p̂−2+η for large momenta. The respective anomalous
dimension is dynamical for the fluctuation graviton ηh ≈ 1.03, while asymptotic safety dictates
η ḡ = −2 for the background graviton.

The remaining numerical contribution ∆G(2) is treated with the reconstruction method
described in [37], for an assessment of other reconstruction methods see also the detailed
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discussion there. We proceed by choosing an ansatz of a combination of BW-like structures,

ĜBW(p̂0) =K
Nps
∑

k=1

N (k)pp
∏

j=1

 

N̂k

(p̂0 + Γ̂k, j)2 + M̂2
k, j

!δk, j

. (58)

Here, Nps is linked to the number of BW-structures needed to describe the propagator, N (k)pp ,δk, j
are linked to the shape and decay of the single structures, and K is an overall normalisation
of the propagator, for more details see [37]. As mentioned before, we could also describe the
high momentum asymptotics analytically, and only fit the remaining structures with the ansatz
(58). However, since the exponents δk, j naturally lead to the same type of high momentum
asymptotics, this does not improve the convergence of the reconstruction.

The fit of ∆G(2) with BW-like structures leads us to a fully analytical description of the
propagators, see (61) for the fluctuation propagator, and (64) for the background propagator.
This allows us to readily compute the spectral function ρ and also to reconstruct the graviton
propagator from the obtained spectral function. The reconstructed graviton propagator Grec is
defined just as in (20) with

Grec(p0) =

∞
∫

0

dλ
π

λρ(λ)
λ2 + p2

0

. (59)

The spectral function is now fixed by minimising the averaged deviation or error Erel between
the Euclidean data and its reconstruction,

Erel =
1
N

∑

i

�G(pi)− Grec(pi)
G(pi)

�2

, (60)

where the index i runs over the N data points considered for the fit. The relative error Erel
in (60) is measured in terms of the values G(pi) of the Euclidean propagator on the data
points. This definition can be further optimised as after the subtraction of the asymptotics the
data points in the vicinity of the Planck scale (several orders of magnitude) are most relevant.
Improved reconstructions on recently developed methods based on machine learning as well
as further structural insights, see [88], will be presented elsewhere.

To minimise bias w.r.t. the choice of BW structures, we use various fits with different Nps

and N (k)pp . Then we select the best fits by their relative error (60) and an additional smoothness
constraint: the error defined in (60) does not punish oscillations. This introduces a well-known
instability towards smaller Erel at the expense of oscillations, for a discussion see again [37,88]
and references therein.

This finalises the set-up of our reconstruction procedure. The resulting spectral functions
are discussed in the following sections Sec.5.2 and Sec.5.3.

5.2 Spectral function of the fluctuation graviton

The reconstruction method explained in Sec.5.1 provides us with a spectral function, which is
derived from the fluctuation graviton propagator,

Ĝhh(p̂) =
1
p̂2
+ Ah U1,1(p̂

2) + ĜBW
hh (p̂) , (61)

with ĜBW
hh defined in (58). The parameters in (61) are summarised in App.F in Tab.1, and the

resulting spectral function is shown in Sec.5. The reconstructed propagator is in quantitative
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Figure 8: Spectral function of the background graviton and reconstructed Euclidean
graviton propagator. The reconstruction, the definition of its error, and the error
band in Sec.5.1 are described in Sec.5.1 and Sec.5.3. (left) Spectral function of the
background graviton (blue, solid line). It features a δ-function at ω = 0 (massless
graviton), and an ensuing smooth multi-particle continuum, ρcont

ḡ (ω). We also depict
the IR asymptotics (red, dashed), and the Breit-Wigner part (cyan, dotted). (right)
Euclidean background propagator reconstructed from the spectral function presented
in the left panel. The reconstructed and original Euclidean data agree very well on all
data points corresponding to a reconstruction error of Erel < 10−3.

agreement with the Euclidean input data, see Sec.5. The best fit for the spectral function ρh is
given by the blue, solid line, and further reconstructions within the error Erel < 10−5, see (60),
are indicated by the blue-shaded area. The latter provides our systematic error estimate.

We split the spectral function into two parts,

ρ̂h(ω̂) =
π

ω̂
δ(ω̂) + ρ̂cont

h (ω̂) , (62)

where the δ-function at vanishing frequency comprises a ’classical’ massless graviton and
ρ̂cont

h (ω̂) comprises the ensuing smooth multi-particle continuum and the UV-asymptotics. The
spectral function of the fluctuation graviton shows several well-understood properties:

(i) Classical gravity: It has a δ-function contribution at vanishing frequency due to the 1/p2

IR asymptotics of the Euclidean propagator. This contribution is simply that of a classical
graviton propagator that arises from the curvature term in the Einstein-Hilbert action.
We remind the reader in this context that we have set the cosmological constant to zero
for the sake of simplicity. It can be resurrected within the computation.

(ii) Perturbative low energy scattering spectrum: The massless pole contribution also leads
to scattering events with arbitrarily small momenta. Hence the multi-particle scattering
continuum leads to a (subleading) cut mirrored in the log-like divergence of the propaga-
tor at small momenta. In terms of Cutkosky rules, these would correspond to 1-to-2 and
2-to-2 scattering events. However, we should keep in mind that the fluctuation graviton
is not a physical field, and hence these are not physical scattering events. The logarithmic
cut leads to a finite IR part, ρ̂cont

h (0) = 2πAh ≈ 0.71, see Sec.5. The scattering events
from perturbative low energy gravity dominate roughly up to the Planck scale.

(iii) IR-UV transition regime at the Planck-scale: As expected, in the regime about the Planck
scale, the BW contributions take over, and facilitate a smooth transition towards the large
frequency asymptotics in the asymptotically safe UV regime. We also emphasise that this
regime does not feature any pronounced structure such as an additional peak.
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(iv) Asymptotically safe regime: The IR-UV transition in (iii) tends towards the UV-asymptotics
in the asymptotically safe UV-regime. This asymptotics is given analytically by,

lim
ω̂→∞

ρ̂UV
h (ω̂) = 2ZUV

h sin
�

ηh
π

2

� 1
ω̂2−ηh

, (63)

with ηh ≈ 1.03 and ZUV
h ≈ 0.64. This is a direct consequence of the UV asymptotics of

the Euclidean propagator, see Sec.4.1.1. The positive value of the anomalous dimension
ηh implies that the total weight of the spectral function diverges, see the discussion in
Sec.3.1.2.

In summary, the δ-function at vanishing frequency, and consequently also the scattering cut,
as well as the high-frequency asymptotics, all follow directly from analytic properties of the
Euclidean propagator. They do not depend on the details of the chosen reconstruction method.
Another important and stable property is the positivity of the spectral function, which holds
for all reconstructions. In conclusion, these are the ’physics’ properties of the spectral function
ρh(p): while it is a gauge-fixed correlation function, it is, together with the Newton coupling
gN(p), the pivotal building block of asymptotically safe gravity. In particular, the gravity
contributions of scattering elements are constructed from it. Hence, the fluctuation graviton
satisfies one of the necessary condition for applying Cutkosky cutting rules, see [85].

5.3 Spectral function of the background graviton

The reconstruction method explained in Sec.5.1 also provides us with a spectral function, which
is derived from the background graviton propagator,

Ĝ ḡ ḡ(p̂) =
1
p̂2
+ A ḡ U1,1(p̂

2)−
1+ A ḡ

1+ (p̂+∆Γ 1)2
−

2(1+ A ḡ)∆Γ 1
�

1+ (p̂+∆Γ 2)2
�

3
2

+ ĜBW
ḡ ḡ (p̂) , (64)

with ĜBW
ḡ ḡ defined in (58). The parameters in (64) are summarised in App.F in Tab.2, and the

resulting spectral function is shown in Sec.5.1. The reconstructed propagator is in quantitative
agreement with the Euclidean input data, see Sec.5.1. The best fit for the spectral function
ρ ḡ(p) is given by the blue, solid, line and further reconstructions within the error Erel < 10−3,
see (60), are indicated by the blue-shaded area. The latter provides our systematic error
estimate

We again split the spectral function into two parts,

ρ̂ ḡ(ω̂) =
π

ω̂
δ(ω̂) + ρ̂cont

ḡ (ω̂) , (65)

where the δ-function at vanishing frequency comprises a ’classical’ massless graviton and
ρ̂cont

ḡ (ω̂) comprises the ensuing smooth multi-particle continuum and the UV-asymptotics. The
spectral function shows several well-understood properties:

(i) Classical gravity: it has a δ-function contribution at vanishing frequency due to the
1/p2 IR asymptotics of the Euclidean propagator. This contribution is simply that of a
classical graviton propagator that arises from the curvature term in the Einstein-Hilbert
action. In this regime, classical diffeomorphism invariance holds up to small perturbative
corrections. Hence, the normalisation of the δ-function is the same as for the fluctuation
graviton.

(ii) Perturbative low energy scattering spectrum: This massless pole contribution of the fluctu-
ation graviton also leads to scattering events for the background graviton with arbitrarily
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small momenta, and hence the multi-particle scattering continuum leads to a (subleading)
cut mirrored in the log-like divergence at small momenta. However, these events differ
from those in the fluctuation graviton: while the scattering events for the background
graviton can be understood as tree-level (s-channel) 2-to-2 scatterings of gravitons, those
of the fluctuation graviton are loop contributions, which may be interpreted via cutting
rules also as 1-to-2 scatterings. This can lead to significant differences: ρcont

ḡ has already

at vanishing frequencies a negative finite value of ρ̂cont
ḡ (0) = 2πA ḡ = −

111
190 ≈ −0.58, see

Sec.5.1.

(iii) IR-UV transition regime in the Planck-scale regime: In contradistinction to the spectral
function of the fluctuation graviton, that of the background graviton shows distinct
peaks at frequencies about the Planck scale. In this regime, the systematic error of the
reconstruction grows large. We remark that if dropping the anomalous dimension of
the fluctuation graviton in the diagrams for the propagator of the background graviton,
the spectral function ρ ḡ only shows the positive δ-function at vanishing frequency and
a negative one with the same amplitude at around the Planck scale. The anomalous
dimension ηh carries rescattering events and softens the negative δ-function, leading to
the pronounced peak structure in Sec.5.1.

(iv) Asymptotically safe regime: The IR-UV transition in (iii) tends towards the UV asymptotics
in the asymptotically safe UV regime. The asymptotics is given analytically by,

lim
ω̂→∞

ρ̂UV
ḡ (ω̂) =

2ZUV
ḡ

ω̂4
, (66)

with ZUV
ḡ ≈ 24.1. Eq.(66) is dictated by asymptotic safety, see Sec.3.1.2. It also implies

that the total spectral weight vanishes, see (41). The sum of the three terms in first line
on the right-hand side of (64) has already analytically the property (66), while the two
terms in the second line individually enjoy this property. Accordingly the sum rule (41)
is satisfied analytically, and we find

∞
∫

0

dλλρ ḡ(λ) = 0 . (67)

Eq.(67) is analogous to the Oehme-Zimmermann super-convergence relation [82,83] for
the gluon spectral function.

In summary, the spectral function of the background graviton shows the required δ-function
at vanishing frequency, identical to that of the fluctuation graviton, as well as a finite low
energy part that originates in perturbative scattering events. At large frequency is shows a
softened negative peak that is dictated by asymptotic safety, and leads to a vanishing total
spectral weight. We close this part with an important comment on the physical interpretation
of background correlation functions. To that end, we use the single-graviton exchange process
in Fig.5 and its QCD analogue as a ’telling’ example. In QCD, we may define a ’background’
propagator GĀĀ(p) with tree-level gluon-gluon scattering or quark–anti-quark scattering: (54)
and Fig. 5, where the gravitons are substituted by gluons. Then, an IR singular behaviour
with GĀĀ(p)∝ 1/p4 for small momenta would give rise to confinement with a linear potential
within a single gluon-exchange picture. Assuming the resulting IR dominance of gluons it has
been shown that functional equations in the Landau gauge indeed admit such a solution (the
Mandelstam solution) [89]. What makes this self-consistent picture even more appealing is
the direct physics interpretation of the respective propagator GĀĀ. However, a full computation
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reveals that the propagator GĀĀ is even IR suppressed, p2GĀĀ(p)→ 0 for small momenta [90].
Moreover, the spectral function for GĀĀ contains negative parts both for asymptotically small
and large spectral values [37]: that for large spectral values is triggered by the perturbative
tail. In turn, that for small spectral values is triggered by the ghost. Moreover, the confining
potential is only revealed by an all order gauge-invariant computation, see [91]. In conclusion,
while the direct physics interpretation of the gluon-gluon scattering is very appealing and is
even confirmed within approximations based on this assumption (self-consistency), it turns out
to be even qualitatively wrong. Note that this statement includes the perturbative part.

The analysis in QCD leads to an important lesson for asymptotically safe gravity: there
is no evidence for the validity of a direct physics interpretation of diffeomorphism-variant
scattering events such as graviton-graviton scatterings, in particular in the strongly correlated
asymptotically safe UV regime. In turn, while such an interpretation fails in QCD even for
perturbative UV momenta, the IR scattering of gravitons simply describes the scattering of
massless particles, see Fig.1b or Sec.5.1.

6 Conclusions

In the present work, we have reported on first, but important steps towards an understanding
of asymptotic safety with Lorentzian signature. In particular, we have computed the spectral
functions of the fluctuation and background graviton, see Fig.1, with reconstructions methods
from the full momentum-dependent Euclidean propagators at vanishing cutoff scale. The
Euclidean results also encompass a full momentum-dependent avatar of the Newton coupling
at vanishing cutoff scale. In particular, they allow the discussion of scattering events as well
as the benchmarking of standard phenomenological scale identifications in the literature, see
Sec.4.2.1.

The results for the spectral functions have been presented and discussed in detail in Sec.5.
For details on the fluctuation graviton we refer to Sec.5.2, and for details on the background
graviton we refer to Sec. 5.3. The spectral function of the fluctuation graviton is positive
and hence the fluctuation graviton in the Landau-DeWitt gauge satisfies one of the necessary
condition for applying Cutkosky cutting rules, see [85]. However, the spectral function is not
normalisable, which signals the fact that the graviton is not directly related to an asymptotic
state. In turn, that of the background graviton has positive and negative parts, and has a
vanishing total spectral weight. Its properties are reminiscent of that of the background gluon,
see the analysis at the end of the last section, Sec.5.3. This analogy suggests in particular that
the background graviton does not carry any signature of unitarity violation or preservation,
which is a far more intricate matter.

Next steps include the application of the spectral functions to the computation and analysis
of observables such as scattering events or the cosmological evolution induced by asymptotically
safe gravity. Moreover, we currently corroborate the results obtained in the present work with a
direct computation of the Minkowski propagators within the spectral setup put forward in [92].
With all these advances we aim at an investigation of unitarity in asymptotically safe gravity
within the present approach.
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A Gauge fixing

The gauge-fixing action is given by

Sgf[ ḡ, h] =
1

2α

∫

d4 x
p

ḡ ḡµνFµFν , (68)

with the de-Donder type gauge fixing condition Fµ,

Fµ = ∇̄νhµν −
1+ β

4
∇̄µhνν . (69)

This leads to the ghost action

Sgh[ ḡ, h, c̄, c] =

∫

d4 x
p

ḡ c̄µMµνcν , (70)

with the Faddeev-Popov operator M following from a diffeomorphism variation of the gauge-
fixing condition,

Mµν = ∇̄ρ
�

gµν∇ρ + gρν∇µ
�

−
1+ β

2
ḡρσ∇̄µ

�

gνρ∇σ
�

. (71)

Throughout this work, we use β = 1 and the Landau limit α→ 0.

B Regulator

We choose the regulator Rk proportional to the two-point function at vanishing cosmological
constant

Rk = Γ
(2)
k (Λ= 0) · r(p2/k2) . (72)

Here, r is the shape function for which we use the Litim-type cutoff function [93–95]

r(x) =
�

1
x
− 1

�

Θ(1− x) . (73)

C Transverse-traceless projection operator

We project the two- and three-point graviton correlation functions on their transverse-traceless
part. The TT-projection operator is given by

Π
µνρσ
TT (p) =

1
2

�

Π
µρ
T (p)Π

νσ
T (p) +Π

µσ
T (p)Π

νρ
T (p)

�

−
1
3
Π
µν
T (p)Π

ρσ
T (p) , (74)

where

Π
µν
T (p) = δ

µν −
pµpν

p2
. (75)
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D Flow of the three-graviton vertex

The flow of the dimensionless three-point Newton coupling is obtained by the complete con-
traction of the flow of the three-graviton vertex with three TT-projection operators. We write

Flow(hhh)
TT =

∂tΓ
(hhh)
k (p1, p3, p3)

∏3
i=1

Æ

Gk(pi)Zh,k(pi)
∗

3
∏

i=1

ΠTT(pi) , (76)

where ’∗‘ stands for the complete contraction of the projection operators with the vertex. The
denominator in (76) takes care of the wave-function renormalisations in (11). The flow (76) is
evaluated at the momentum symmetric point, see (12), which makes is a function of one single
momentum. This leads to flow equation for the Newton coupling of the three-point vertex as
given in (50) with the anomalous dimension given by

ηg(p) =3ηh(p) + Gk(0)
Flow(hhh)

TT (p)− Flow(hhh)
TT (0)

p2
. (77)

Here, we have also substituted Gk(p)→ Gk(0) in front of the flow term in (77). This additional
approximation weakens the decay of the flow for large momenta, and hence only influences
subleading contributions.

E Computation of the anomalous dimension

The fluctuation graviton anomalous dimension ηh(p) is derived from the flow of the graviton
two-point function, (with λn = 0 and gn,k = g3,k)

ηh(p) = −
32π

5

Flow(hh)
TT (p)− Flow(hh)

TT (0)

p2
, (78)

where

Flow(hh)
TT (p) =

∂tΓ
(hh)
k,µνρσ(p)

Zh,k(p)
Π
µνρσ
TT (p) , (79)

with the TT-projection operator as provided in App. C. Eq. (79) is the projection of the full
fluctuation two-point flow on its TT-part. Eq. (78) is an integral equation for ηh(p) since
the momentum-loop integrals of the flow contain the anomalous dimension via the regulator
insertion ∂tRk. We solve (78) in a two-step procedure: we first solve for its asymptotics, i.e.,
we expand for small and large p. Then we solve the full equation for ηh(p) by an iterative
procedure.

E.1 Asymptotics of the anomalous dimension

The spectral reconstruction requires good understanding of the asymptotics of the Euclidean
propagators, which directly relate to the asymptotics of the anomalous dimension. Here, we
provide the explicit expressions of the anomalous dimension at large and small momenta.

For p→ 0, the anomalous dimension (78) is given by a derivative with respect to p2 and
we obtain

ηh(0) = −
16π

5
∂ 2

p

�

Flow(hh)
TT (p)

�

�

�

�

p→0
=

gk

π

�

19
12
−
∫ 1

0

dq (3q3 − 7q5 + 4q7)ηh(q)

�

. (80)
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Similarly, we obtain an equation for ηh(p) at large momenta p > 2k from the definition (78),

ηh(p > 2k) =
gk

π

�

k2

p2

�

1
2
+

2
3

∫ 1

0

dq q5(q2 − 1)(7q2 − 3)ηh(q)

�

+
k4

p4

�

1
4
+

1
3

∫ 1

0

dq q7(q2 − 1)ηh(q)

�

+
k6

p6

�

−
1
15
−

1
3

∫ 1

0

dq q9(q2 − 1)ηh(q)

�

+
k8

p8

�

−
1
90
−

1
15

∫ 1

0

dq q11(q2 − 1)ηh(q)

�

�

. (81)

Note that the series terminates after (k/p)8, i.e., all higher orders are vanishing.

E.2 Symmetrisation of the anomalous dimension

For k→ 0, the graviton anomalous dimension is a function of momentum-squared, ηh = ηh(p2):
it can be expanded in p2, i.e., no terms proportional to (p2)np are present, with p =

p

p2. For
finite cutoff-scale, k 6= 0, non-analyticities of the regulator function can break this property.
This is well-known for the sharp cutoff as well as the Litim-type cutoff. The latter leads to
contributions of the form l3p3 + l4p4 +O(p5) to the flow of the graviton two-point function,
while the former would even introduce terms linear in p. This entails that for the Litim-type
cutoff, ηh(p) as defined in (78), contain terms linear in p, which have to integrate to zero for
k→ 0. This implies a fine-tuning condition for the anomalous dimension at the large initial
cutoff scale k/Mpl→∞. This fine-tuning is straightforward but tedious.

Since these terms are subleading, we refrain from the fine-tuning and only consider the
even part of the anomalous dimension at each cutoff step. This is done via a Padé fit,

η
sym
h (p) =

ηPadé
h (p) +ηPadé

h (−p)

2
. (82)

The Padé fit, or any other fit, introduces an analytic bias for our reconstruction. Note however
that this bias only is an issue for small momenta, and not for the large momentum regime we
are mainly interested in. Moreover, the flows do allow for Taylor expansions in the asymptotic
regimes, which further stabilises Padé approximants.

F Parameters of the spectral functions

In this appendix, we provide the parameters of the BW fits used for construction of the fluctuation
and background spectral functions presented in Sec.5.
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Table 1: Parameters for the reconstruction of the fluctuation graviton spectral function
(central line in Sec.5).

parameter ĜBW (1)
hh ĜBW (2)

hh ĜBW (3)
hh ĜBW (4)

hh

K 1 1 1 1

N̂1 0.517 0.408 0.552 0.411
Γ̂1,1 0 0.222 1.20 1.05
M̂2

1,1
2.28 ·10−5 1.57 ·10−3

0.237 0.298

δ1,1 −0.380 −1.52 2.31 1.34
Γ̂1,2 1.43 0.196 0.628 0.722
M̂2

1,2 0.562 0.0577 1.68
4.89 ·10−7

δ1,2 1.06 1.36 1.25 −0.859
Γ̂1,3 1.48 1.29
M̂2

1,3 1.30 0.783
δ1,3 0.670 0.647

N̂2 0.409 0.0649 0.410 0.260
Γ̂2,1 1.75 1.15 1.30 0.441
M̂2

2,1 0.546 1.15 0.657 2.60
δ2,1 0.0133 1.57 0.632 1.59
Γ̂2,2 1.63 0.389 0.298 1.27
M̂2

2,2 1.64 1.17 0 1.98
δ2,2 0.470 0.479 −0.149 1.47
Γ̂2,3 1.37 1.06
M̂2

2,3 0.487 1.18
δ2,3 1.18 1.39

N̂3 0.335
1.03 ·10−3

0.0292
2.38 ·10−5

Γ̂3,1 0.615 2.48 1.90 2.59
M̂2

3,1 0.710 1.16 1.11 0.641
δ3,1 1.42 2.06 0.940 2.38
Γ̂3,2 1.82 1.18 1.55 1.77
M̂2

3,2 1.50 1.08 1.08 1.15
δ3,2 2.21 0.618 0.758 1.31
Γ̂3,3 0.329 2.20
M̂2

3,3 1.22 0.991
δ3,3 1.28 1.64

Erel
6.67 ·10−7 6.82 ·10−7 1.47 ·10−6 2.71 ·10−6
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Table 2: Parameters for the reconstruction of the background graviton spectral function
(central line in Sec.5.1).

parame-
ter

ĜBW (1)
ḡ ḡ ĜBW (2)

ḡ ḡ ĜBW (3)
ḡ ḡ

K 1 1 1

N̂1 4.25 4.32 2.81
Γ̂1,1 0.190 0.210 2.41
M̂2

1,1 2.55 2.56 3.49
δ1,1 2.24 2.24 −0.637
Γ̂1,2 0.261
M̂2

1,2 2.49
δ1,2 2.65

N̂2 2.02 2.04
Γ̂2,1 4.01 4.45
M̂2

2,1 2.58 1.96
δ2,1 1.97 1.98

Erel 4.68 · 10−4 4.78 · 10−4 7.34 · 10−4

F.1 Fluctuation spectral function

We describe the Euclidean fluctuation propagator, used to reconstruct the spectral function
shown in Sec.5, by a combination of a p−2 peak, a hypergeometric function, and the average
of four BW fits to the remaining structures,

Ĝhh(p̂) =
1
p̂2
+ Ah U1,1(p̂

2) +
1
4

4
∑

i=1

ĜBW (i)
hh (p̂) , (83a)

with

Ah =
7

20π
≈ 0.11 . (83b)

The four BW fits used were selected from a range of BW structures with different Nps and N (k)pp ,
c.f. (58), and all exhibit relative errors Erel < 10−5. We present their fit parameters in Tab.1.

F.2 Background spectral function

For the reconstruction of the background spectral function shown in Sec.5.1, we introduced
two additional terms facilitating an easier fit of the remaining structures,

Ĝ ḡ ḡ(p̂) =
1
p̂2
+ A ḡ U1,1(p̂

2)−
1+ A ḡ

1+ (p̂+∆Γ 1)2
−

2(1+ A ḡ)∆Γ 1
�

1+ (p̂+∆Γ 2)2
�

3
2

+
1
3

3
∑

i=1

ĜBW (i)
ḡ ḡ (p̂) , (84a)

with

A ḡ = −
111

380π
≈ −0.09 . (84b)

The three fits were chosen as the best fits with Erel < 10−3, and we show their parameters in
Tab.2.
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F.3 Gauge dependence of Ah and A ḡ

The coefficients Ah and A ḡ describe the logarithmic branch cuts of the fluctuation and back-
ground propagator, respectively. Therefore, they relate to a p4 derivative of the flow and are
independent of the choice of regulator, (72). The coefficients still depend on the gauge-fixing
parameters α and β as defined in (68) and (69). The full gauge dependent result of Ah and A ḡ
is given by

Ah = α
2 3β4 − 36β3 + 162β2 − 324β + 259

12π(β − 3)4
+α

9β4 − 90β3 + 320β2 − 630β + 519
24π(β − 3)4

−
43β4 − 406β3 + 312β2 + 1926β − 2547

120π(β − 3)4
, (85)

A ḡ = α
2−107β4 + 1284β3 − 5778β2 + 11556β − 9771

228π(β − 3)4

+α
−3637β4 + 37850β3 − 137920β2 + 233182β − 121155

2280π(β − 3)4

+
7863β4 − 81316β3 + 272746β2 − 390084β + 180135

2280π(β − 3)4
. (86)

For the values α = 0 and β = 1, these expressions reduce to (83b) and (84b) in agreement
with [86]. The full gauge dependence of (85) and (86) does, however, not agree with [86].
The cause of this disagreement remains to be investigated.
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