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Abstract

We analytically study the Fermi-gas formulation of sphere correlation functions of the
Coulomb branch operators for 3d N = 4 ADHM theory with a gauge group U(N), an ad-
joint hypermultiplet and l hypermultiplets which can describe a stack of N M2-branes at
Al−1 singularities. We find that the leading coefficients of the perturbative grand canon-
ical correlation functions are invariant under a hidden triality symmetry conjectured
from the twisted M-theory. The triality symmetry also helps us to fix the next-to-leading
corrections analytically.
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1 Introduction

The technique of supersymmetric localization allows for exact computations of observables in
quantum field theories with a certain minimum amount of supersymmetry as pioneered by
Pestun [1] (see [2] for reviews).

It was shown in [3] that the partition function on a three-sphere S3 of a three-dimensional
gauge theory with N ≥ 3 supersymmetry reduces to a matrix model via the localization.

For three-dimensional theories with N = 4 supersymmetry the sphere partition functions
can be decorated by either of two types of half-BPS local operators; the Coulomb (resp. Higgs)
branch operators whose expectation values define the Coulomb (resp. Higgs) branch. As
shown in [4–6], the localization also allows for the evaluation of these protected correlators
as generalized matrix integrals in such a way that a collection of the Coulomb or Higgs branch
operators localize along a specific great circle S1 in the S3.

The Ω deformation is very useful in the study of the supersymmetric gauge theories (See
e.g. [7–12]). The protected correlation functions of the Higgs branch operators or the Coulomb
branch operators in 3d N = 4 supersymmetric field theories are encoded by one-dimensional
topological quantum mechanical models [13, 14]. The associated topological quantum me-
chanical models arise from certain Ω deformations of the parent three-dimensional N = 4
supersymmetric field theories [15–17]. The topological quantum mechanics can be viewed as
a non-trivial space of solution to OPE Ward identities equipped with the quantized Coulomb
(resp. Higgs) branch algebra [15,18] which results from the quantization of the chiral ring of
the Coulomb (resp. Higgs) branch operators.

It is shown in [19] that these sphere correlation functions of the Coulomb or Higgs branch
operators as well as the sphere partition functions can be algebraically presented from the
quantized Coulomb and Higgs branch algebras in terms of the twisted traces over the Verma
modules without relying on the UV data.

The 3d N = 4 superconformal field theory (SCFT) appearing at low energy on a stack of N
M2-branes on R×C at an Al−1 singularity probing the space C2×(C2/Zl) has a UV description
as a 3d N = 4 ADHM gauge theory with a gauge group U(N), an adjoint hypermultiplet
and l fundamental hypermultiplets [20, 21]. In the near horizon limit of the M2-branes, one
obtains the holographic dual AdS4× (S7/Zl) background of M-theory, which provides us with
an attractive example of the AdS/CFT correspondence [22–24]. For l = 1, the ADHM theory
is self-mirror [25,26] and equivalent to the ABJM theory with k = 1 in the IR [27].

The large N limit of the partition function in the ADHM theory was studied well in [28,
29]. In spite of the explicit expressions of the partition function, it is still tricky to evaluate it
analytically in the large N regime. One of the analytic approach for the partition function is the
Fermi-gas formalism [30] where the partition function is rewritten as the partition function of
an ideal Fermi gas of N non-interacting particles. In the large N expansion of the free energy
F = − log ZS3 for the SCFT of the N M2-branes where ZS3 is the sphere partition function,
the leading coefficient can be evaluated from the two-derivative supergravity [31,32] and the
next-to-leading coefficient is expected to be reproduced from higher derivative corrections in
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the supergravity. 1

Recently it has been proposed in [34] that the topological quantum mechanics that encodes
the protected correlation functions of the world-volume theory of M2-branes are holograph-
ically dual to a certain protected sector of M-theory, that is the Ω-deformed or topologically
twisted M-theory as an example of “twisted holography” [35].

Topologically twisted M-theory on an Ω-deformed background

R×C2/Zl ×Cε1
×Cε2

×Cε3
, (1)

obeying the Calabi-Yau condition ε1+ε2+ε3 = 0 can lead to a 5d theory on R×C2/Zl [36,37].
It is called the “twisted M-theory”. The twisted M-theory is locally trivial and it is topological
in R and holomorphic in the remaining four directions. It depends on the ratio ε2/ε1 and it
has a perturbative description as a non-commutative Chern-Simons theory at least for l = 1
and in some range of parameters. One interesting feature of this theory is a triality symmetry
that permutes the Ω-deformation parameters [38]

ε1→ ε2 , ε2→ ε3 , ε3→ ε1 . (2)

The twisted M-theory can contain M2-branes and M5-branes as line operators and surface
operators in the 5d theory.2 In the Ω-deformed background (1), when a stack of N M2-branes
are placed on R×Cε1

, the ADHM theory would acquire the mass parameter m for the adjoint
hypermultiplet given by

m= i
�

1
2
+
ε2

ε1

�

(3)

and it can be effectively described at low energy as topological quantum mechanics on R
equipped with certain spherical part of the cyclotomic rational Cherednik algebras [42] with
ε1 being the quantization parameter as the quantized Coulomb branch algebra. The pertur-
bative part of the protected correlation functions in the ADHM theory is expected to be holo-
graphically dual to a perturbative twisted M-theory background. It is shown from numerical
and algebraic calculations in [43] that the perturbative part of protected correlation functions
of the ADHM theory with l = 1 on a three-sphere enjoys the triality symmetry in the large N
limit.

In this paper we analytically evaluate the sphere correlators of the Coulomb branch op-
erators for the ADHM theory in the Fermi-gas formulation. As argued in [44], the large N
behavior of the correlation functions can be evaluated from averages of many-body operators
in the Fermi-gas. The triality symmetry (2) that is associated to the adjoint mass (3) is a key
in our analysis. This symmetry should be manifest in the perturbative part of the correlation
functions in the large N limit [43]. In fact we show that the leading terms of the perturbative
grand canonical correlation functions are generally invariant under the triality symmetry (2).
Moreover, the triality symmetry constrains the forms of the perturbative part. In the Fermi-gas
formulation, it is technically hard to compute the subleading terms of the perturbative part
analytically. We are able to obtain it partially. The triality symmetry enables us to reconstruct
the remaining missing pieces. In this way, we obtain consistent triality invariant subleading
terms for higher-point functions.

The organization of this paper is as follows. In the next section, we review the Fermi-gas
formulation by following the original argument in [30]. The technique there is extended to
the correlators of the Coulomb branch operators, as shown in Section 3. We will derive the
large N behavior for the multi-point correlators. Finally, we will give some remarks on related
topics in Section 4.

1See [33] for a recent approach to the higher derivative corrections from the conformal supergravity.
2See [38–41] for recent studies of the operator algebras associated with the intersections of M2 and M5 branes

in the twisted M-theory.
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2 Fermi-gas formulation

We start with a review of the Fermi-gas formulation [30] to analyze partition functions in 3d
supersymmetric field theories on S3. In the Fermi-gas formulation, it is more convenient to go
to the grand canonical ensemble rather than the canonical one. We show how to derive the
grand potential in the large chemical potential limit.

Supersymmetric localization reduces path integrals to matrix models [3]. The partition
function of the ADHM theory on S3 takes the form

ZADHM =
1
N !

∫ N
∏

i=1

dσie
2πiζσi

∏

i< j 4sinh2π
�

σi −σ j

�

∏N
i, j=1 2 coshπ

�

σi −σ j −m
�

�

∏N
i=1 2coshπσi

�l
, (4)

where m is the mass of the adjoint hypermultiplet, and ζ is the Fayet-Iliopoulos (FI) parameter.
For l = 1, this is equal to the matrix model of the ABJM theory with k = 1 [27].

Making use of the Cauchy identity, one can identify the matrix integral (4) with the canon-
ical partition function of a non-interacting, one-dimensional Fermi-gas with N particles [30]:

ZADHM(N) =
1
N !

∑

ν∈SN

(−1)ε(ν)
∫ N
∏

i=1

dσi

N
∏

i=1

ρ(σi ,σν(i)) , (5)

where

ρ(σ1,σ2) =
eπiζ(σ1+σ2)

(2coshπσ1)
l
2 (2 coshπ(σ1 −σ2 −m))(2coshπσ2)

l
2

, (6)

is the one-particle density matrix in the position representation. This leads to a systematic
analysis of the large N limit of the partition function on S3 as a thermodynamic limit of an
ideal Fermi-gas. The analysis of the Fermi-gas of the partition function below has appeared
in [45]. We generalize it to the computation of some correlation functions, and find new
features on a manifestation of the hidden triality symmetry, expected in [38,43].

The thermodynamic limit of an ideal Fermi-gas can be obtained by considering the one-
particle problem in the semi-classical approximation and the 1/N corrections to the thermody-
namic limit can be obtained by evaluating the quantum corrections to the semi-classical limit.
In the following discussion, we consider the grand canonical ensemble, in which the grand
potential is introduced by

eJ(µ) =
∞
∑

N=0

e
2πµ
ε1

N ZADHM(N) . (7)

Our goal in this section is to derive the large µ limit of J(µ) by using the Fermi-gas formulation.
Let σ̂ and p̂ be canonically conjugate operators obeying

[σ̂, p̂] = iħh , (8)

where ħh= 1
2π . Then we can write the density matrix operator as

ρ̂ = e−
1
2 U(σ̂)e−T (p̂)e−

1
2 U(σ̂) , (9)

where

U(σ) = l log (2coshπσ)− 2πiζσ, (10)

T (p) = log (2coshπp)− 2πimp , (11)
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so that the kernel (6) can be realized as the matrix element of the operator (9) in the position
space.

From the density matrix operator (9), we can define a one-body Hamiltonian Ĥ of a system
by

e−Ĥ := ρ̂ . (12)

In the classical limit, this Hamiltonian reduces to

Hcl(σ, p) = U(σ) + T (p) , (13)

where U(σ) is a potential term and T (p) is a kinetic term. In the following we analyze the
Fermi-gas system in the case where the FI parameter ζ and the adjoint mass parameter m are
pure imaginary so that the Hamiltonian is real. However, we expect that the expression with
arbitrary ζ and m can be reached from our result by analytic continuation.

Given a density matrix (6), one can quantize the Fermi-gas system by following the phase
space formulation that is distinguished from the canonical quantization and the path integral
formulation. The phase space quantization is based on the Wigner-Weyl transforms and the
Weyl correspondence between c-number functions in the phase space and quantum mechanical
operators in the Hilbert space so that quantum mechanical composition of functions relies on
the star-product.

The Wigner transform of an operator Â with its matrix elements 〈σ|Â|σ′〉 = A(σ,σ′) in the
position space is the function [46–49]

AW(σ, p,ħh) =
∫

dσ′


σ+
σ′

2

�

�Â
�

�σ−
σ′

2

·

e−
ipσ′
ħh , (14)

in the phase space. This maps a quantum mechanical operator Â in the Hilbert space to a
function in the phase space. The inverse operation is the Weyl transform which relates a
function BW(σ, p,ħh) in the phase space to a quantum operator B̂ in the Hilbert space with
matrix elements

〈σ|B̂|σ′〉=
∫

dp
2πħh

BW

�

σ+σ′

2
, p,ħh

�

e
ip(σ−σ′)
ħh . (15)

When we deal with more than one particle, we need to include the effects of quantum statistics
in the Wigner transform. For the Fermi-gas, the Wigner transform of the s-body operator O(s) is
obtained by taking the anti-symmetrized operators PAO(s) where PA is the projection operator

PA =
1
s!

∑

ν∈SN

(−1)ε(ν)ν , (16)

which anti-symmetrize the states [44].
The Wigner transform of a product of operators Â and B̂ is given by [46–49]

(ÂB̂)W = AW ? BW . (17)

Here ? is the star operation

?= exp
�

iħh
2

�←−
∂ σ
−→
∂ p −

←−
∂ p
−→
∂ σ

�

�

, (18)
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where the derivatives act on the left or on the right according to the directions indicated by the
arrows. One can express all operators of quantum mechanics in terms of the Wigner transforms
of operators in such a way that the semi-classical expansion of an operator Â is given by

AW(σ, p,ħh) =
∞
∑

n=0

An(σ, p)ħhn , (19)

where A0 is the classical limit of Â.
From the Baker-Campbell-Hausdorff formula, (12) and (17) we find the Wigner transform

of the Hamiltonian

HW(σ, p) = T (p) + U(σ)−
ħh2

12
(T ′(p))2U ′′(σ) +

ħh2

24
(U ′(σ))2T ′′(p) +O(ħh4) . (20)

Furthermore, the semi-classical expansion of arbitrary function f (Ĥ) of the Hamiltonian op-
erator Ĥ is given by

fW(Ĥ)(σ, p,ħh) =
∞
∑

r=0

1
r!

f (r)(HW(σ, p))Gr(σ, p;ħh) , (21)

where f (r)(a) is the r-th derivative of f (x) evaluated at x = a and

Gr(σ, p;ħh) =
��

Ĥ −HW(σ, p)
�r�

W (σ
′, p′;ħh)

�

�

�

�

(σ′,p′)=(σ,p)

, (22)

is the universal coefficients in the expansion around HW. It follows that Gr is an even function
of ħh such that

Gr(σ, p;ħh) =O(ħh2(n+1)) , (23)

for the largest integer n< r
3 . For example, we have [50,51]

G0 = 1 ,

G1 = 0 ,

G2 = −
ħh2

4

�

∂ 2HW

∂ σ2

∂ 2HW

∂ p2
−
�

∂ 2HW

∂ σ∂ p

�2�

+O(ħh4) ,

G3 = −
ħh2

4

�

�

∂ HW

∂ σ

�2 ∂ 2HW

∂ p2
+
�

∂ HW

∂ p

�2 ∂ 2HW

∂ σ2
− 2
∂ HW

∂ σ

∂ HW

∂ p
∂ 2HW

∂ σ∂ p

�

+O(ħh4) . (24)

In particular, the Wigner transform of a distribution operator at zero temperature is given
by [50]

θW

�

2πµ
ε1
− Ĥ

�

= θ
�

2πµ
ε1
−HW(σ, p)

�

+
∞
∑

r=2

Gr

r!
δ(r−1)

�

2πµ
ε1
−HW(σ, p)

�

, (25)

where θ (x) is the Heaviside step function. By taking the trace of the distribution operator, we
get the function nW(µ) that counts the number of eigenstates whose energy is less than 2πµ

ε1
.

In the thermodynamic limit N →∞, the behavior of the system is semi-classsical and the
trace can be evaluated as an integral over the phase space. Therefore we obtain

nW(µ) =

∫

dσdp θ
�

2πµ
ε1
−HW(σ, p)

�

+
∞
∑

r=2

∫

dσdp
Gr

r!
δ(r−1)

�

2πµ
ε1
−HW(σ, p)

�

. (26)
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p+*

p-*

σ+*σ -*

II

IV

IIII

Figure 1: The quantum corrected curve (blue line) and the polygon as its large N
approximation (orange line). We divide the Fermi surface into four regions I, II, III
and IV.

Here the first term is the area of the quantum corrected Fermi surface defined by the equation

HW(σ, p) =
2πµ
ε1

, (27)

and the second term is the quantum corrections arising from the semi-classical expansion of
the distribution operator. Then the density of energy eigenstates is given by

ρW(µ) =
dnW(µ)

dµ
. (28)

Let us first evaluate the area of the quantum corrected Fermi surface in the limit µ→∞:

Vol(µ) :=

∫

dσdp θ
�

2πµ
ε1
−HW(σ, p)

�

. (29)

Since we have

log (2 coshπx) = πx + log(1+ e−2πx) = πx +
∞
∑

k=1

(−1)k+1 e−2kπx

k
, (30)
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the potential term U(σ) and its derivative have the asymptotics

U(σ) =

¨

π(l − 2iζ)σ+O(e−σ) σ→∞
−π(l + 2iζ)σ+O(eσ) σ→−∞

,

U ′(σ) =

¨

π(l − 2iζ) +O(e−σ) σ→∞
−π(l + 2iζ) +O(eσ) σ→−∞

,

U ′′(σ) =

¨

O(e−σ) σ→∞
O(eσ) σ→−∞

, (31)

and the kinetic term T (p) and its derivative have the asymptotics

T (p) =

¨

π(1− 2im)p+O(e−p) p→∞
−π(l + 2im)p+O(ep) p→−∞

,

T ′(p) =

¨

π(1− 2im) +O(e−p) p→∞
−π(l + 2im) +O(ep) p→−∞

,

T ′′(p) =

¨

O(e−p) p→∞
O(ep) p→−∞

. (32)

Let (σ+∗ , p+∗ ), (σ
+
∗ , p−∗ ), (σ

−
∗ , p+∗ ) and (σ−∗ , p−∗ ) be points in the quantum curve where

p+∗ =
µ

ε1(1− 2im)
, p−∗ = −

µ

ε1(1+ 2im)
. (33)

It then follows from (27), (31) and (32) that

σ+∗ =
µ

ε1(l − 2iζ)
+O(e−µ), σ−∗ = −

µ

ε1(l + 2iζ)
+O(e−µ) , (34)

where the exponentially small corrections in µ are power series in ħh2.
We divide the quantum corrected Fermi surface into four domains:

I : 0≤ σ, p−∗ ≤ p ≤ p+∗ ,

II : p+∗ ≤ p ,

III : σ ≤ 0, p−∗ ≤ p ≤ p+∗ ,

IV : p ≤ p−∗ , (35)

as shown in Figure 1. The area is then the sum of these four domains:

Vol(µ) = VolI + VolII + VolIII + VolIV .

On the quantum curve in the region I and III, the exponential terms in σ are larger than
those in µ. Thus we have the potential term and its derivatives

U(σ) =

¨

π(l − 2iζ)σ+O(e−σ) for I

−π(l + 2iζ)σ+O(e−σ) for III
,

U ′(σ) =

¨

π(l − 2iζ) +O(e−σ) for I

−π(l + 2iζ) +O(e−σ) for III
,

U ′′(σ) =

¨

O(e−σ) for I

O(e−σ) for III
, (36)
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and the Wigner transform of the Hamiltonian

HW(σ, p) =

¨

π(l − 2iζ)σ+ T (p) + ħh
2

24π
2(l − 2iζ)2T ′′(p) +O(ħh4) for I

−π(l + 2iζ)σ+ T (p) + ħh
2

24π
2(l + 2iζ)2T ′′(p) +O(ħh4) for III

. (37)

Therefore we can solve σ along the quantum curve

σ =

(

.σ+(µ, p) = 1
π(l−2iζ)

�

2πµ
ε1
− T (p)− ħh

2

24π
2(l − 2iζ)2T ′′(p)

�

for I

σ−(µ, p) = − 1
π(l+2iζ)

�

2πµ
ε1
− T (p)− ħh

2

24π
2(l + 2iζ)2T ′′(p)

�

for III
. (38)

On the quantum curve in the regions II and IV, the exponential terms in p are larger than
those in µ so that the kinetic term and its derivatives become

T (p) =

¨

π(1− 2im)p+O(e−µ) for II

−π(1+ 2im)p+O(e−µ) for IV
,

T ′(p) =

¨

π(1− 2im) +O(e−µ) for II

−π(1+ 2im) +O(e−µ) for IV
,

T ′′(p) =

¨

O(e−µ) for II

O(e−µ) for IV
, (39)

and the Wigner transform of the Hamiltonian reduces to

HW(σ, p) =

¨

U(σ) +π(1− 2im)p− ħh
2

12π
2(1− 2im)2U ′′(σ) +O(ħh4) for II

U(σ)−π(1+ 2im)p− ħh
2

12π
2(1+ 2im)2U ′′(σ) +O(ħh4) for IV

. (40)

Thus we can solve for p along the quantum curve

p =

(

p+(µ,σ) = 1
π(1−2im)

�

2πµ
ε1
− U(σ) + ħh

2

12π
2(1− 2im)2U ′′

�

for II

p−(µ,σ) = − 1
π(1+2im)

�

2πµ
ε1
− U(σ) + ħh

2

12π
2(1+ 2im)2U ′′

�

for IV
. (41)

Putting the area of the quantum Fermi surface of the region I, II, III and IV together, we
finally obtain the quantum corrected area Vol(µ) of Fermi surface 3

Vol(µ) = VolI + VolII + VolIII + VolIV

= −
2lµ2

ε2(ε1 + ε2)(l2 + 4ζ2)
−

l
6(l2 + 4ζ2)

+
l(ε2

1 + ε1ε2 + ε2
2)

24ε2(ε1 + ε2)
= n2µ

2 + n0 . (42)

The quantum corrections that correspond to the second term in (25), which are associated
with the semi-classical expansion of a function of the Hamiltonian turn out to yield only the
non-perturbative corrections of order e−µ [30]. Therefore we obtain

nW(µ) = n2µ
2 + n0 + nnp(µ) , (43)

where nnp(µ) = O(µe−µ) denotes the non-perturbative terms. Since our Hamiltonian is pos-
itive, it follows that nW(0) = 0 and nnp(0) = −n0 after resumming all the non-perturbative
corrections.

3see Appendix B.1 for the detail
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To obtain the leading and next-to-leadingg coefficients that show up in the free energy, we
observe that the grand canonical potential can be expressed in terms of the density (28) of
eigenstates:

J(µ) =

∫ ∞

0

dµ′ρW(µ
′) log(1+ e

2π(µ−µ′)
ε1 )

≈ 2n2

� ε1

2π

�2
∫ ∞

0

dν ν log(1+ e
2πµ
ε1
−ν) +

2πµ
ε1

∫ ∞

0

dµ′
dnnp(µ′)

dµ′

= −2n2

� ε1

2π

�2
Li3(−e

2πµ
ε1 ) + n0

2πµ
ε1
µ . (44)

According to the asymptotics of the trilogarithm

Li3(−ex) = −
x3

6
−
π2

6
x +O(e−x) , (45)

we get

J(µ) =
n2

3

�

2π
ε1

�

µ3 +

�

π2

3
n2

�

2π
ε1

�−1

+ n0

�

2π
ε1

�

�

µ+ A+ Jnp(µ)

=
C
3
µ3 + Bµ+ A+ Jnp(µ) , (46)

where

C =
4πl

ε1ε2ε3(l2 + 4ζ2)
, (47)

and

B = −
πl(ε2

1 + ε
2
2 + ε

2
3)(l

2 − 4+ 4ζ2)

24ε1ε2ε3(l2 + 4ζ2)
. (48)

We see that the leading coefficient (47) and the next-to-leading coefficient (48) are actually
invariant under the triality transformation (2). The overall factor 1

ε1ε2ε3
can be interpreted as

the equivariant volume of the Ω-deformed planes Cε1
×Cε2

×Cε3
in the background (1) of the

twisted M-theory.
In the next section, we extend this computation to correlation functions for Coulomb

branch operators.

3 Coulomb branch correlators

The 3d N = 4 supersymmetric gauge theory generically contains two types of half-BPS local
operators, i.e. the Coulomb and Higgs branch operators, which parametrize two branches of
supersymmetric vacua, the Coulomb and Higgs branches respectively. The Coulomb branch
operators can be built out of the monopole operators vn∗

4

dressed by the vector multiplet scalar fields ϕ. They can be expanded as a sum over the
monopole operators

OC =
∑

n∗

Rn∗(ϕ, mC)vn∗ , (49)

4The monopole operators are labeled by the GNO charge ±Aa, a = 1, · · · , r where A is the cocharacter that
specifies an embedding of a U(1)monopole singularity into the gauge group G and r is the rank of G. For G = U(N)
we have A= (A1, · · · , Ar) ∈ Zr and we denote the integer-valued charge by n∗.
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where Rn∗(ϕ, mC) are polynomials in ϕ. The sphere correlation function of the Coulomb
branch operators for the ADHM theory takes the form5

〈OC〉=
1
N !

∫ N
∏

i=1

dσie
2πiζσi

∏

i< j 4 sinh2π(σi −σ j)
∏N

i, j=1 2 coshπ(σi −σ j −m)(
∏N

i=1 2 coshπσi)l
R0(−iσ,−im) .

(50)

The sphere correlation functions of the Coulomb branch operators can be universally expressed
in an algebraic way in terms of the twisted traces over the Verma modules of the quantized
Coulomb branch algebra [19]. The factor R0(−iσ,−im) inserted in the correlation function is
pulled back from generators in the quantized Coulomb branch algebra. Since the non-trivial
twisted traces involving the monopole operators or equivalently shift operators can appear only
when they simply shift the vector multiplet scalar fields, only some insertion of non-periodic
part without the shift, i.e. R0(−iσ,−im) in the integrand will lead to distinct Coulomb branch
correlation functions with some change of residues.

3.1 Quantized Coulomb branch algebra

There exist two types of Ω-deformations for the 3d N = 4 supersymmetric gauge theory, in
which two kinds of non-commutative algebras of the topological Coulomb and Higgs branch
operators emerge. They are called the quantized Coulomb and Higgs branch algebras [15,16].
The quantized Coulomb branch algebra AC

N ,l;ε1,ε2
of the ADHM theory is isomorphic to the

spherical part SHcyc
N ,l of the cyclotomic rational Cherednik algebra [42]. The algebra AC

N ,l;ε1,ε2

can be also identified with the shifted Yangian Yl(mi) of Ògl(1) which is obtained by deforming
the subalgebra of an affine Yangian Y (Ògl(1)) [52].

Let us introduce coordinates wa and shift operators va, v−1
a , a = 1, · · · , N which obey

[wa, wb] = 0, [va, vb] = 0,

v−1
a vb = δab, vav−1

b = δab ,

[v±a , wb] = ±δabε1v±a . (51)

The algebra AC
N ,l;ε1,ε2

is generated by the operator

D0,n =
N
∑

a=1

(−ε1)n

n

�

Bn

�

−
wa

ε1

�

− Bn

�

(a− 1)ε2

ε1

��

, n≥ 1 (52)

where Bn(x) is the Bernoulli polynomial as well as raising and lowering operators which take
the forms:

en =
N
∑

a=1

(wa + ε1)
n
∏

b 6=a

wa −wb − ε2

wa −wb

∏

a=1

va, (53)

fn+l =
N
∑

a=1

wn
a

∏

b 6=a

wa −wb + ε2

wa −wb

N
∏

a=1

� l
∏

i=1

(wa − ε1 −mi)v
−1
a

�

, (54)

for non-negative integer n. Here mi are mass parameters for the SU(l) flavor symmetry. They

5See [5,6] for the result of supersymmetric localization.
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obey the relations

[D0,n, D0,m] = 0 , (55)

[D0,n, em] = −ε1en+m−1 , (56)

[D0,n, fm] = ε1 fn+m−1 , (57)

3[e2, e1]− [e3, e0] + (ε
2
1 + ε1ε2 + ε

2
2)[e1, e0] + ε1ε2(ε1 + ε2)e

2
0 = 0 , (58)

3[ f2, f1]− [ f3, f0] + (ε
2
1 + ε2ε2 + ε

2
2)[ f1, f0]− ε1ε2(ε1 + ε2) f

2
0 = 0 , (59)

[e0, [e0, e1]] = [ f0, [ f0, f1]] = 0 , (60)

[en, fm] = ε1hn+m . (61)

Here the operator hn can be determined by the relation

1− ε2(ε1 + ε2)
∑

n≥0

hnzn+1

=
l
∏

i=1

(1− (mi + ε1)z)
(1− (ε1 + ε2)z)(1+ Nε2z)

1− (ε1 + (1− N)ε2)z
exp

�

−
∑

n≥0

D0,n+1ϕn(z)

ε1

�

, (62)

where

ϕn(z) = zn
�

Gn(1+ ε1z)− Gn(1− ε1z) + Gn(1+ ε2z)− Gn(1− ε2z)

+ Gn(1− (ε1 + ε2)z)− Gn(1+ (ε1 + ε2)z)
�

, (63)

Gn =

¨

− log z for n= 0
z−n−1

n for n≥ 1
. (64)

3.2 The dn operators

There is an alternative presentation of the algebra in such a way that all generators can take
the form of ε1 times a triality-invariant expression [38]. We can introduce the Hamiltonian
operator

W [ f ] =
N
∑

a=1

f (wa) , (65)

associated to any polynomial f (w) in w.
When we choose polynomials

pn(σ) = (−1)nεn−1
1 Bn

�

1
2
− iσ

�

= inεn−1
1

∑

k:even
0≤k≤n

(−1)
k
2+1 (2

k − 2)Bk

2kk!
n!

(n− k)!
σn−k , (66)

where Bn(x) is the Bernoulli polynomial, which satisfy the recursion relation 6

pn

�

w−
i
2

�

− pn

�

w+
i
2

�

= n(iε1w)n−1 , (67)

we obtain the operator

dn =W [pn] . (68)

6This takes a similar form as the recursion relation for the Bernoulli polynomial Bn(x + 1)− Bn(x) = nxn−1.
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It has a generating function

1

ε2
1

ψ′
�

1
2
− iw+

z
ε1

�

=
∑

n

pn(w)
zn+1

, (69)

where ψ(z) is the digamma function.
For example, we have

p1(w) = iw , (70)

p2(w) = −ε1

�

w2 +
1
12

�

, (71)

p3(w) = −iε2
1

�

w3 +
w
4

�

, (72)

p4(w) = ε
3
1

�

w4 +
1
2

w2 +
7

240

�

, (73)

p5(w) = iε4
1

�

w5 +
5
6

w3 +
7
48

w
�

, (74)

p6(w) = −ε5
1

�

w6 +
5
4

w4 +
7

16
w2 +

31
1344

�

. (75)

Making use of the operator dn given by (68), one can also build the other generators in the
quantized Coulomb branch algebra AC

N ,l;ε1,ε2
which take triality-invariant fashion up to the

overall ε1 factor, as discussed in [38]. It manifests the symmetry of the algebra under the
triality symmetry (2).

3.3 Fermi-gas formulation

In terms of the Fermi-gas formulation, we can also evaluate correlation functions of the
Coulomb branch operators. The treatment is very similar to the previous work [53] for Wilson
loop correlators in ABJM theory. We can rewrite the sphere correlation function (50) as

〈OC〉=
1
N !

∑

ν∈SN

(−1)ε(ν)
∫ N
∏

i=1

dσi

N
∏

i=1

ρ(σi ,σν(i))R0(−iσ,−im) . (76)

First, we consider the sphere one-point function of a positive power function:

〈σn〉 :=
1
N !

∑

ν∈SN

(−1)ε(ν)
∫ N
∏

i=1

dσi

N
∏

i=1

ρ(σi ,σν(i))

� N
∑

i=1

σi

�n

. (77)

As we will see later, this is an important building block to compute the thermodynamic limit
N →∞ of the one-point function 〈dn〉. To study the large N limit of the one-point function
(77), we evaluate an average of the one-point function by integrating over the phase space in
terms of the Wigner transform of the distribution operator (25):

nσ
n

W (µ) :=

∫

dσdp θW

�

2πµ
ε1
−HW(σ, p)

�

σn (78)

=

∫

dσdp θ
�

2πµ
ε1
−HW(σ, p)

�

σn

+
∞
∑

r=2

∫

dσdp
Gr

r!
δ(r−1)

�

2πµ
ε1
−HW(σ, p)

�

σn , (79)
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where the second line involves the corrections from the quantum Fermi surface and the third
is associated to the corrections from the semi-classical expansion of the distribution operator.

The corrections from the quantum Fermi surface can be evaluated in the same manner
in the previous section. Collecting the pieces (170), (171) (175) and (176), we obtain the
leading and next-to-leading terms of the average over the quantum Fermi surface in the first
line of (78):

∫

dσdp θ
�

2πµ
ε1
−HW(σ, p)

�

σn = Volσ
n

I + Volσ
n

II + Volσ
n

III + Volσ
n

IV

= −
2
�

(−2)n(l − 2iζ)n+1 + 2n(l + 2iζ)n+1
�

εn
1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l2 + 4ζ2)n+1

µn+2

−
2n−4

3εn
1

�

4+ (l − 2iζ)2

(l − 2iζ)n+1
+ (−1)n

4+ (l + 2iζ)2

(l + 2iζ)n+1

�

µn . (80)

Next proceed to the Gr corrections arising from the semi-classical expansion of the distri-
bution operator. To order ħh2 corrections only come from G2 and G3 in (24):

1
2

∫

dσdpG2





∂

∂
�

2πµ
ε1

�δ

�

2πµ
ε1
−HW(σ, p)

�



σn

+
1
6

∫

dσdpG3





∂ 2

∂
�

2πµ
ε1

�2δ

�

2πµ
ε1
−HW(σ, p)

�



σn . (81)

Since we have

δ

�

2πµ
ε1
−HW(σ, p)

�

=
δ(σ−σ−(µ, p))
�

�

�

∂ HW(σ,p)
∂ σ

�

�

�

+
δ(σ−σ+(µ, p))
�

�

�

∂ HW(σ,p)
∂ σ

�

�

�

=
δ(p− p−(µ,σ))
�

�

�

∂ HW(σ,p)
∂ p

�

�

�

+
δ(p− p+(µ,σ))
�

�

�

∂ HW(σ,p)
∂ p

�

�

�

, (82)

G2 and G3 in (81) are evaluated along the quantum curves (38) and (41)

G2|σ=σ±(µ,p) = 0, G2|p=p±(µ,σ) = 0,

G3|σ=σ±(µ,p) = −
ħh2π2

4
(l ∓ 2iζ)2T ′′(p), G3|p=p±(µ,σ) = −

ħh2π2

4
(1∓ 2im)2U ′′(σ) . (83)

Consequently, only non-trivial corrections may come from G3. We find

1
6

∫

dσdpG3





∂ 2

∂
�

2πµ
ε1

�2δ

�

2πµ
ε1
−HW(σ, p)

�



σn =

= −
ħh2

24
∂ 2

∂
�

2πµ
ε1

�2

∫ p+∗

p−∗

dpT ′′(p)
1

πn−1(l − 2iζ)n−1

�

2πµ
ε1
− T (p)−

ħh2π2

24
(l − 2iζ)2T ′′(p)

�n

−
ħh2

24
∂ 2

∂
�

2πµ
ε1

�2

∫ p+∗

p−∗

dpT ′′(p)
(−1)n

πn−1(l + 2iζ)n−1

�

2πµ
ε1
− T (p)−

ħh2π2

24
(l + 2iζ)2T ′′(p)

�n

−
ħh2

24
∂ 2

∂
�

2πµ
ε1

�2

∫ σ+∗

σ−∗

dσπ(1− 2im)U ′′(σ)σn −
ħh2

24
∂ 2

∂
�

2πµ
ε1

�2

∫ σ+∗

σ−∗

dσπ(1+ 2im)U ′′(σ)σn ,

(84)
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which involve µn−2 and lower order terms. Hence the quantum corrections associated to the
semi-classical expansion do not contribute to the leading and next-to-leading terms.

Putting all together, we finally arrive at

nσ
n

W (µ) = −
2
�

(−2)n(l − 2iζ)n+1 + 2n(l + 2iζ)n+1
�

εn
1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l2 + 4ζ2)n+1

µn+2

−
2n−4

3εn
1

�

4+ (l − 2iζ)2

(l − 2iζ)n+1
+ (−1)n

4+ (l + 2iζ)2

(l + 2iζ)n+1

�

µn . (85)

For example, for l = 1 and ζ= 0 the expression reduces to a relatively simple form

nσ
n

W (µ) = −
2n+1(1+ (−1)n)

εn
1ε2(ε1 + ε2)(n+ 1)(n+ 2)

µn+2 −
5 · 2n−4(1+ (−1)n)

3εn
1

µn . (86)

3.4 Grand canonical one-point functions

In this and the next subsections, we would like to evaluate the large N limit of correlation
functions of the operators dn. The k-point function of dn generically takes the form

〈dn1
dn2
· · · dnk

〉=
1
N !

∑

ν∈SN

(−1)ε(ν)
∫ N
∏

i=1

dσi

N
∏

i=1

ρ(σi ,σν(i))
k
∏

j=1

�

∑

i

pn j
(σi)

�

. (87)

We go to the grand canonical ensemble, and study the large µ limit, as was done for the
partition function. We can easily translate obtained results in the grand canonical ensemble
into those in the canonical ensemble.

Let us consider the one-point function. According to the formula (66), the polynomial
pn(σ) has the leading and next-to-leading terms:

pn(σ) = inεn−1
1 σn +

inεn−1
1 n(n− 1)

24
σn−2 + · · · . (88)

Thus the leading and next-to-leading terms of the one-point function in the thermodynamic
limit can be obtained from (85)

npn
W (µ) = inεn−1

1 nσ
n

W (µ) +
inεn−1

1 n(n− 1)

24
nσ

n−2

W (µ)

= −
in2

�

(−2)n(l − 2iζ)n+1 + 2n(l + 2iζ)n+1
�

ε1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l2 + 4ζ2)n+1
µn+2

−
in2n−4

�

4+(l−2iζ)2

(l−2iζ)n+1 + (−1)n 4+(l+2iζ)2

(l+2iζ)n+1

�

3ε1
µn

−
in2n−4ε1

�

(−1)n(l − 2iζ)n−1 + (l + 2iζ)n−1
�

3ε2(ε1 + ε2)(l2 + 4ζ2)n−1
µn

= cn+2µ
n+2 + cnµ

n . (89)

Making use of the Sommerfeld expansion

1

1+ eβ Ĥ−µ
=
π

β
∂µ csc

�

π

β
∂µ

�

θ (µ− Ĥ) , (90)
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one can express the one-point function of operator O in the grand canonical ensemble for an
ideal Fermi-gas system as [54,55]

〈O〉GC

Ξ
= Tr

� O
1+ eβ Ĥ−µ

�

=
π

β
∂µ csc

�

π

β
∂µ

�

nO
W(µ)

=

�

1+
π2

6β2
∂ 2
µ +

7π4

360β4
∂ 4
µ + · · ·

�

nO
W(µ) , (91)

where

Ξ(µ) = eJ(µ), 〈O〉GC(µ) =
∞
∑

N=1

e
2πµ
ε1

N 〈O〉(N) . (92)

By taking O = pn(σ) and β = 2π/ε1 in (91), we get from (89) the leading and next-to-
leading terms of the grand canonical one-point function of the operator dn:

〈dn〉GC

Ξ
= cn+2µ

n+2 +

�

π2

6
(n+ 2)(n+ 1)

�

2π
ε1

�−2

cn+2 + cn

�

µn

=
in2n+1

�

(−1)n(l − 2iζ)n+1 + (l + 2iζ)n+1
�

ε1ε2ε3(n+ 1)(n+ 2)(l2 + 4ζ2)n+1
µn+2

+
in2n−5

�

4+(l−2iζ)2

(l−2iζ)n+1 + (−1)n 4+(l+2iζ)2

(l+2iζ)n+1

�

(ε2
1 + ε

2
2 + ε

2
3)

3ε1ε2ε3
µn +O(µn−1) . (93)

We see that the leading and next-to-leading coefficients of the grand canonical one-point func-
tions (93) are exactly invariant under the triality symmetry (2)!

Indeed, it is simple to check that our analytic formula (93) of the grand canonical one-point
function reproduces the numerical results in [43] when we specialize l = 1 and ζ= 0. We first
encode the µ dependence into d0 by replacing µ with τ0

2π . Then we can obtain the perturbative
correlation functions in [43] by taking the derivatives with respect to τ0 and setting τ0 to zero.

For example, the grand canonical one-point function of d2 for l = 1 and ζ= 0 is given by

〈d2〉GC

Ξ
= −

4
3ε1ε2ε3

µ4 −
5(ε2

1 + ε
2
2 + ε

2
3)

12ε1ε2ε3
µ2

= −
τ4

0

12π4ε1ε2ε3
−

5(ε2
1 + ε

2
2 + ε

2
3)τ

2
0

48π2ε1ε2ε3
. (94)

The derivatives of (94) with respect to τ0 lead to

∂ 4

∂ τ4
0

〈d2〉GC

Ξ

�

�

�

�

τ0=0
= −

2
π4σ3

= 〈d2d0d0d0d0〉pert
c , (95)

∂ 2

∂ τ2
0

〈d2〉GC

Ξ

�

�

�

�

τ0=0
= −

5σ2

12π2σ3
= 〈d2d0d0〉pert

c , (96)

where

σ2 =
1
2
(ε2

1 + ε
2
2 + ε

2
3) = (ε

2
1 + ε1ε2 + ε

2
2) , (97)

σ3 = ε1ε2ε3 . (98)

The results (95) and (96) perfectly match with the numerical results in [43].7

7See equation (2.48) in [43].
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3.5 Grand canonical higher-point functions

Higher-point functions can be evaluated by taking the averages of many-body operators in the
ideal Fermi-gas. The analysis is more involved than the one-point function.

Consider a system of N particles whose density matrix is ρ(σ1, · · · ,σN ;σ′1, · · · ,σ′N ). The
reduced s-particle density matrices are defined by [54,56,57]

ρs(σ1, · · · ,σs;σ
′
1, · · · ,σ′s; N) =

N !
(N − s)!

∫

dσs+1 · · · dσNρ(σ1, · · · ,σN ;σ′1, · · · ,σ′N ) . (99)

The thermal average of an s-body operator O(s) in the canonical ensemble can be calculated
in terms of the reduced density matrix (99) as

〈O(s)〉(N) = 1
s!

∫

dσ1 · · · dσsO(s)(σ1, · · · ,σs; N)ρs(σ1, · · · ,σs;σ
′
1, · · · ,σ′s; N) . (100)

In the grand canonical ensemble, the reduced density matrix is defined by

ρGC
s

�

σ1, · · · ,σs;σ
′
1, · · · ,σ′s; z

�

=
∞
∑

N=s

zNρs(σ1, · · · ,σs;σ
′
1, · · · ,σ′s; N) . (101)

For an ideal Fermi-gas, the grand canonical reduced density matrix is given by [54,55]

ρGC
s

�

σ1, · · · ,σs;σ
′
1, · · · ,σ′s; z

�

= Ξ
∑

ν∈Ss

(−1)ε(ν)
s
∏

i=1

�

σi

�

�

�

�

1

1+ z−1eβ Ĥ

�

�

�

�

σν(i)

�

. (102)

The semi-classical average of an s-body operator O(s) for the Fermi-gas in the grand canonical
ensemble takes the form

〈O(s)〉GC

Ξ
=

Tr〈ρGC
s (O

(s))W〉
Ξ

=

∫ s
∏

i=1

dσidpi(PAO(s))W
s
∏

i=1

(ρGC
s )W(σi , pi) , (103)

where the trace have been performed by the phase space integration and PA is the projection
operator defined in (16).

The grand canonical k-point function can be computed from the average of s(≤ k)-body
operators in the Fermi-gas.

3.5.1 Two-point functions

Let us see the grand canonical two-point functions of the operator dn. It has contributions
from the following one- and two-body operators:

O(1)[d2
n] =

� N
∑

i=1

pn(σi)

�2

, O(2)[d2
n] =

∑

i 6= j

pn(σi)pn(σ j) . (104)

From (14) we get the leading and next-to-leading terms of the Wigner transforms of the anti-
symmetrized operators for (104)

(O(1)[d2
n])W = pn(σ)

2 , (105)

(PAO(2)[d2
n])W = pn(σ1)pn(σ2)−δ(σ1 −σ2)

∫

d ypn(σ1 −
y1

2
)pn(σ1 +

y1

2
)e

i(p1−p2)y
ħh

= pn(σ1)pn(σ2)− 2πħhδ(σ1 −σ2)δ(p1 − p2)pn(σ1)
2

− 2πħh3δ(σ1 −σ2)δ
′′(p1 − p2)

n
4
σ2n−2

1 + · · · , (106)
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where the ellipsis indicates the terms at low orders in σ which do not contribute to the leading
and next-to-leading coefficinets of the correlation functions.

Plugging the Wigner transforms (105) and (106) into (103), we find the leading and next-
to-leading terms of the two-point function

〈dndn〉GC

Ξ
=

∫

dσdp(O(1)[d2
n])Wρ

GC
W (σ, p)

+

∫

dσ1dσ2dp1dp2(PAO(2)[d2
n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)

=

∫

dσdp pn(σ)
2ρGC

W (1−ρ
GC
W ) +

�

〈dn〉GC

Ξ

�2

− 2πħh3(−1)nε2n−2
1

∫

dσdp
n
2
σ2n−2

�

ρGC
W ∂

2
p ρ

GC
W − (∂pρ

GC
W )

2
�

. (107)

In the second equality we have combined the average of one-body operator pn(σ)2 with the av-
erage of the Wigner transform of the antisymmetrized two-body operator
−2πħhδ(σ1−σ2)δ(p1−p2)pn(σ1)2 where ħh= 1

2π so that they can be evaluated as the one-body
integral involving ρGC

W (1−ρ
GC
W ).

The grand canonical connected two-point function of the operator dn can be obtained by
subtracting the square of the grand canonical one-point functions. Thus we get

〈dndn〉GC
c =

〈dndn〉GC

Ξ
−
�

〈dn〉GC

Ξ

�2

= (−1)nε2n−2
1

1
β
∂µ

∫

dσdp
�

σ2n +
n(n− 1)

12
σ2n−2 + · · ·

�

ρGC
W

− 2πħh3(−1)nε2n−2
1

∫

dσdp
n
2
σ2n−2

�

ρGC
W ∂

2
p ρ

GC
W − (∂pρ

GC
W )

2
�

= (−1)nε2n−2
1

�

1
β
∂µ +

π2

6β3
∂ 3
µ + · · ·

�

�

〈σ2n〉W +
n(n− 1)

12
〈σ2n−2〉W + · · ·

�

− 2πħh3(−1)nε2n−2
1

∫

dσdp
n
2
σ2n−2

�

ρGC
W ∂

2
p ρ

GC
W − (∂pρ

GC
W )

2
�

, (108)

where we have used the relation
1
β
∂µρ

GC
W = ρGC

W (1−ρ
GC
W ) , (109)

in the second equality. We obtain from (108) and (85) the leading term in the connected
two-point function:

〈dndn〉GC
c =

(−1)n22n

π

�

(l − 2iζ)2n+1 + (l + 2iζ)2n+1
�

ε1ε2ε3(2n+ 1)(l2 + 4ζ2)2n+1
µ2n+1 +O(µ2n−1) . (110)

In fact, this is invariant under the triality symmetry (2)!
The subleading terms also have contributions from the last term in (108). Unfortunately

it seems difficult to evaluate it analytically because of the derivatives of ρGC
W in the integrands.

However, we can guess a consistent next-to-leading term by requiring the triality invariance,
�

(−1)n22n−4(2n)

�

(l − 2iζ)2n+1 + (l + 2iζ)2n+1
�

3πε1ε2ε3(l2 + 4ζ2)2n+1

+ (−1)n22n−5n(n− 1)

�

(l − 2iζ)2n−1 + (l + 2iζ)2n−1
�

3πε1ε2ε3(2n− 1)(l2 + 4ζ2)2n−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

2n−1 . (111)
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We will check the validity of this guess below.
It is straightforward to generalize the results (110) and (111) to the connected two-point

functions for two distinct operators dn1
and dn2

with n1 6= n2 by following the same argument.
To make a result simpler, we introduce N2 = n1 + n2. The result is

〈dn1
dn2
〉GC

c = iN22N2

�

(−1)N2(l − 2iζ)N2+1 + (l + 2iζ)N2+1
�

ε1ε2ε3π(N2 + 1)(l2 + 4ζ2)N2+1
µN2+1 (112)

+

�

iN22N2−4N2

�

(−1)N2(l − 2iζ)N2+1 + (l + 2iζ)N2+1
�

3ε1ε2ε3π(l2 + 4ζ2)N2+1

+ iN22N2−6 [n1(n1 − 1) + n2(n2 − 1)]

�

(−1)N2(l − 2iζ)N2−1 + (l + 2iζ)N2−1
�

3ε1ε2ε3π(N2 − 1)(l2 + 4ζ2)N2−1

�

× (ε2
1 + ε

2
2 + ε

2
3)µ

N2−1 +O(µN2−2) .

We should say again that the next-to-leading term in this expression is a guess based on the
triality.

Now we check that our analytic formula (112) of the grand canonical connected two-point
function reproduces the numerical results in [43] as special cases with l = 1 and ζ = 0. For
example, in a similar manner for the one-point function, we have

〈d1d1〉GC
c = −

8
3ε1ε2ε3π

µ3 −
ε2

1 + ε
2
2 + ε

2
3

3ε1ε2ε3π
µ= −

τ3
0

3π4σ3
−
σ2τ0

3π2σ3
, (113)

〈d2d4〉GC
c = −

1920
105ε1ε2ε3π

µ7 −
1876(ε2

1 + ε
2
2 + ε

2
3)

105ε1ε2ε3π
µ5 = −

τ7
0

7π8σ3
−

67σ2τ
5
0

60π6σ3
, (114)

by replacing µ with τ0
2π where σ2 and σ3 are defined by (97) and (98). Then we get

∂ 3

∂ τ3
0

〈d1d1〉GC
c

�

�

�

�

τ0=0
= −

2
π4σ3

= 〈d1d1d0d0d0〉pert
c , (115)

∂

∂ τ0
〈d1d1〉GC

c

�

�

�

�

τ0=0
= −

σ2

3π2σ3
= 〈d1d1d0〉pert

c , (116)

∂ 7

∂ τ7
0

〈d2d4〉GC
c

�

�

�

�

τ0=0
= −

720
π5σ3

= 〈d2d4d0d0d0d0d0d0d0〉pert
c , (117)

∂ 5

∂ τ5
0

〈d2d4〉GC
c

�

�

�

�

τ0=0
= −

134σ2

π6σ3
= 〈d2d4d0d0d0d0d0〉pert

c . (118)

In fact, the leading coefficient (115) and the next-to-leading coefficients (116) precisely agree
with the numerical results in [43]!8

In order to verify our results further, we note that the grand canonical connected higher-
point functions of the operator d1 can be derived from the grand canonical potential (46) with
non-zero FI parameter ζ 6= 0 since it can be viewed as a generating function of the correlation
functions of the operator d1. By shifting the FI parameter ζ by τ1

2π and expanding the grand
canonical potential (46) in powers of τ1, we can extract the grand canonical connected higher-
point functions of the operator d1

J(µ)ζ→ζ+ τ1
2π
= J0(µ) +

∞
∑

`=1

τ`1
`!
〈

`
︷ ︸︸ ︷

d1 · · · d1〉GC
c . (119)

8We thank Davide Gaiotto for telling us that our results (117) and (118) agree with his numerical results.
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From the expansion (119) we find that the leading and next-to-leading terms of (k+ 1)-point
functions of the operator d1 are given by

〈
k+1

︷ ︸︸ ︷

d1 · · · d1〉GC
c

=
(−1)k+1ik+12
3ε1ε2ε3πk

(k+ 1)!
(l − 2iζ)k+2 + (−1)k+1(l + 2iζ)k+2

(l2 + 4ζ2)k+2
µ3

+
(−1)k+1ik+1

12ε1ε2ε3πk
(k+ 1)!

(l − 2iζ)k+2 + (−1)k+1(l + 2iζ)k+2

(l2 + 4ζ2)k+2
(ε2

1 + ε
2
2 + ε

2
3)µ+O(1) . (120)

The result for k = 0 precisely agrees with (153) obtained from the formula (93) of the grand
canonical one-point function. Also the result for k = 1 coincides with (157) obtained from the
formula (112) of the grand canonical connected two-point function.

It is obvious to see that the grand canonical one-point functions (93) with non-zero FI pa-
rameter ζ 6= 0 can also be viewed as the generating function of the grand canonical connected
correlation functions with an insertion of dn and an arbitrary number of d1. By replacing ζ
with ζ+ τ1

2π in (93) and then expanding it in powers of τ1, we find

〈dn〉GC
ζ→ζ+ τ1

2π

Ξ
=
∞
∑

`=0

τ`1
`!
〈dn

`
︷ ︸︸ ︷

d1 · · · d1〉GC
c . (121)

Thus we obtain the grand canonical connected correlation functions of dn and an arbitrary
number of d1:

〈dn

k
︷ ︸︸ ︷

d1 · · · d1〉GC
c

=
(−1)k in+k2n+1

ε1ε2ε3πk

(n+ k)!
(n+ 2)!

((−1)n(l − 2iζ)n+k+1 + (−1)k(l + 2iζ)n+k+1)
(l2 + 4ζ2)n+k+1

µn+2

+
(−1)k in+k2n−5

3ε1ε2ε3πk

(n+ k− 2)!
n!

(ε2
1 + ε

2
2 + ε

2
3)

×
�

(−1)k
n(n− 1)(l − 2iζ)2 + 4(n+ k− 1)(n+ k)

(l − 2iζ)n+k+1

+ (−1)n
n(n− 1)(l + 2iζ)2 + 4(n+ k− 1)(n+ k)

(l + 2iζ)n+k+1

�

µn +O(µn−1) . (122)

When n = 1, we again obtain the connected grand canonical higher-point functions (120) of
the operator d1. When k = 1, (122) agrees with the formula (112) of the grand canonical
connected two-point function for n1 = n and n2 = 1.

Furthermore, the grand canonical two-point functions (112) of the operators dn with ζ 6= 0
can be treated as a generating function of the grand canonical higher-point functions with dn1

,
dn2

and an arbitrary number of d1. By shifting the FI parameter ζ by τ1
2π in (112) and expanding

20

https://scipost.org
https://scipost.org/SciPostPhys.12.1.005


SciPost Phys. 12, 005 (2022)

it in powers of τ1, we obtain the leading and next-to-leading terms of higher-point functions:

〈dn1
dn2

k
︷ ︸︸ ︷

d1 · · · d1〉GC
c

= (−1)k iN2+k2N2
(N2 + k)!
(N2 + 1)!

�

(−1)N2(l − 2iζ)N2+k+1 + (−1)k(l + 2iζ)N2+k+1
�

ε1ε2ε3πk+1(l2 + 4ζ2)N2+k+1
µN2+1

+

�

(−1)k iN2+k2N2−4 (N2 + k)!
(N2 − 1)!

�

(−1)N2(l − 2iζ)N2+k+1 + (−1)k(l + 2iζ)N2+k+1
�

3ε1ε2ε3πk+1(l2 + 4ζ2)N2+k+1

+ (−1)k iN2+k2N2−6 (N2 + k− 2)!
(N2 − 1)!

[n1(n1 − 1) + n2(n2 − 1)]

×

�

(−1)N2(l − 2iζ)N2+k−1 + (−1)k(l + 2iζ)N2+k−1
�

3ε1ε2ε3πk+1(l2 + 4ζ2)N2+k−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

N2−1

+O(µN2−2) . (123)

Again, when n1 = n2 = 1, (123) matches with the result (120) of the higher-point functions
of d1.

3.5.2 Three-point functions

For the grand canonical three-point functions there are contributions from the one-, two- and
three-body operators of the forms

O(1)[d3
n] =

� N
∑

i=1

pn(σi)

�3

, O(2)[d3
n] =

∑

i 6= j

pn(σi)
2pn(σ j) ,

O(3)[d3
n] =

∑

i 6= j 6=k

pn(σi)pn(σ j)pn(σk) . (124)

From the Wigner transforms

(O(1)[d3
n])W = pn(σ)

3, (125)

(PAO(2)[d3
n])W = 3pn(σ1)pn(σ2)

2 − 3pn(σ1)
3δ(σ1 −σ2)δ(p1 − p2) + · · · (126)

(PAO(3)[d3
n])W = pn(σ1)pn(σ2)pn(σ3)

− 3pn(σ1)pn(σ2)
2δ(σ2 −σ3)δ(p2 − p3)

+ 2pn(σ1)
3δ(σ1 −σ2)δ(σ2 −σ3)δ(p1 − p2)δ(p2 − p3) + · · · (127)

of the antisymmetrized operators for (124) where the ellipsis stands for the terms which do
not contribute to the leading term, we get the grand canonical three-point functions

〈dndndn〉GC

Ξ
=

∫

dσdp(O(1)[d3
n])Wρ

GC
W (σ, p)

+

∫

d2σd2p(PAO(2)[d3
n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)

+

∫

d3σd3p(PAO(3)[d3
n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)ρ

GC
W (σ3, p3)

=

∫

dσdp (pn(σ))
3
�

ρGC
W − 3(ρGC

W )
2 + 2(ρGC

W )
3
�

+ 3
〈dndn〉GC

Ξ

〈dn〉GC

Ξ
− 2

�

〈dn〉GC

Ξ

�3

+ · · · . (128)
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The grand canonical connected three-point function of the operator dn is obtained by sub-
tracting the disconnected parts so that the leading term appears from the one-body integral.
We obtain

〈dndndn〉GC
c =

〈dndndn〉GC

Ξ
− 3
〈dndn〉GC

Ξ

〈dn〉GC

Ξ
+ 2

�

〈dn〉GC

Ξ

�3

=

∫

dσdp (pn(σ))
3
�

ρGC
W − 3(ρGC

W )
2 + 2(ρGC

W )
3
�

+ · · ·

= i3nε3n−3
1

�

1
β2
∂ 2
µ +

π2

6β4
∂ 4
µ + · · ·

�∫

dσdp
�

σ3n +
n(n− 1)

8
σ3n−2 + · · ·

�

ρGC
W

=
i3n23n−1

�

(−1)n(l − 2iζ)3n+1 + (l + 2iζ)3n+1
�

ε1ε2ε3π2(l2 + 4ζ2)3n+1
µ3n +O(µ3n−2) . (129)

Here we have used the relation
�

1
β

�2

∂ 2
µρ

GC
W = ρGC

W − 3(ρGC
W )

2 + 2(ρGC
W )

3
, (130)

the Sommerfeld expansion (91) and the result (85). We see that the resulting leading term
(129) is invariant under the triality symmetry (2). For n = 1 the result (129) agrees with
(120).

The next-to-leading term appearing from the one-body integral (129) is not still triality
invariant since it involves further contributions from higher order terms in the Wigner trans-
forms (125)-(127). Assuming the triality invariance, we find a consistent expression for the
next-to-leading term

�

i3n23n−5(3n)(3n− 1)

�

(−1)n(l − 2iζ)3n+1 + (l + 2iζ)3n+1
�

3ε1ε2ε3π2(l2 + 4ζ2)3n+1

+ i3n23n−53n(n− 1)

�

(−1)n(l − 2iζ)3n−1 + (l + 2iζ)3n−1
�

3ε1ε2ε3π2(l2 + 4ζ2)3n−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

3n−2 . (131)

The same argument yields the connected three-point functions for generic three operators
dn1

, dn2
and dn3

〈dn1
dn2

dn3
〉GC

c = iN32N3−1

�

(−1)N3(l − 2iζ)N3+1 + (l + 2iζ)N3+1
�

ε1ε2ε3π2(l2 + 4ζ2)N3+1
µN3 (132)

+

�

iN32N3−5N3(N3 − 1)

�

(−1)N3(l − 2iζ)N3+1 + (l + 2iζ)N3+1
�

3ε1ε2ε3π2(l2 + 4ζ2)N3+1

+ iN32N3−7 [n1(n1 − 1) + n2(n2 − 1) + n3(n3 − 1)]

×

�

(−1)N3(l − 2iζ)N3−1 + (l + 2iζ)N3−1
�

3ε1ε2ε3π2(l2 + 4ζ2)N3−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

N3−2

+O(µN3−2) ,

where N3 = n1+ n2+ n3. We find the triality invariant leading coefficient by analytically com-
puting the one-body integral as in (129). Again the next-to-leading coefficient has additional
contributions from the higher order Wigner transforms which we could not analytically eval-
uate. Instead of computing them explicitly, we obtain a consistent next-to-leading coefficient
by restoring the triality invariance.
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As a consistency check of our expression (132) of the connected three-point function, note
that when one of the three operators is taken as d1, say for n3 = 1, it precisely coincides with
the result obtained from (123) when k = 1.

We can also obtain the leading and next-to-leading coefficients of the grand canonical
connected correlation functions with dn1

, dn2
, dn3

and an arbitrary number of d1 by shifting
the FI parameter in (132) by τ1

2π and expanding it in powers of τ1. We find

〈dn1
dn2

dn3

k
︷ ︸︸ ︷

d1 · · · d1〉GC
c =

= (−1)k in1+n2+n3+k2N3−1 (N3 + k)!
(N3)!

�

(−1)N3(l − 2iζ)N3+k+1 + (−1)k(l + 2iζ)N3+k+1
�

ε1ε2ε3πk+2(l2 + 4ζ2)N3+k+1
µN3

+

�

(−1)k iN3+k2N3−5 (N3 + k)!
(N3 − 2)!

�

(−1)N3(l − 2iζ)N3+k+1 + (−1)k(l + 2iζ)N3+k+1
�

3ε1ε2ε3πk+2(l2 + 4ζ)N3+k+1

+ (−1)k iN3+k2N3−7 (N3 + k− 2)!
(N3 − 2)!

[n1(n1 − 1) + n2(n2 − 1) + n3(n3 − 1)]

×
(−1)N3(l − 2iζ)N3+k−1 + (−1)k(l + 2iζ)N3+k−1

3ε1ε2ε3πk+2(l2 + 4ζ2)N3+k−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

N3−2

+O(µN3−3) . (133)

3.5.3 Four-point functions

The grand canonical four-point functions can be computed from the one-, two-, three- and
four-body operators:

O(1)[d4
n] =

� N
∑

i=1

pn(σi)

�4

, O(2)[d4
n] =

∑

i 6= j

pn(σi)
3pn(σ j) + pn(σi)

2pn(σ j)
2 ,

O(3)[d4
n] =

∑

i 6= j 6=k

pn(σi)
2pn(σ j)pn(σk), O(4)[d4

n] =
∑

i 6= j 6=k 6=l

pn(σi)pn(σ j) . (134)

The Wigner transforms of the antisymmetrized operators for (134) take the forms

(O(1)[d4
n])W = pn(σ)

4, (135)

(PAO(2)[d4
n])W = 3pn(σ1)

2pn(σ2)
2 + 4pn(σ1)

3pn(σ2)

− 7pn(σ)
4δ(σ1 −σ2)δ(p1 − p2) + · · · (136)

(PAO(3)[d4
n])W = 6pn(σ1)

2pn(σ2)pn(σ3)− 6pn(σ1)
2pn(σ2)

2δ(σ2 −σ3)δ(p2 − p3)

− 12pn(σ)
3pn(σ3)δ(σ1 −σ2)δ(p1 − p2)

+ 12pn(σ1)
4δ(σ1 −σ2)δ(p1 − p2)δ(σ2 −σ3)δ(p2 − p3) + · · · (137)

(PAO(4)[d4
n])W = pn(σ1)pn(σ2)pn(σ3)pn(σ4)

− 6pn(σ1)
2pn(σ3)pn(σ4)δ(σ1 −σ2)δ(p1 − p2)

+ 3pn(σ1)
2pn(σ3)

2δ(σ1 −σ2)δ(p1 − p2)δ(σ3 −σ4)δ(p3 − p4)

+ 8pn(σ1)
3pn(σ4)δ(σ1 −σ2)δ(p1 − p2)δ(σ2 −σ3)δ(p2 − p3)

− 6pn(σ1)
4δ(σ1 −σ2)δ(p1 − p2)δ(σ2 −σ3)δ(p2 − p3)δ(σ3 −σ4)δ(p3 − p4)

+ · · · , (138)

where the ellipsis indicates the terms which do not affect the leading term.
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Making use of (135)-(138), we can compute the grand canonical four-point function of
the operator dn

〈dndndndn〉GC

Ξ
=

=

∫

dσdp(O(1)[d4
n])Wρ

GC
W (σ, p)

+

∫

d2σd2p(PAO(2)[d4
n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)

+

∫

d3σd3p(PAO(3)[d4
n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)ρ

GC
W (σ3, p3)

+

∫

d4σd4p(PAO(4)[d4
n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)ρ

GC
W (σ3, p3)ρ

GC
W (σ4, p4)

=

∫

dσdp (pn(σ))
4
�

ρGC
W − 7(ρGC

W )
2 + 12(ρGC

W )
3 − 6(ρGC

W )
4
�

+ 4
〈dndndn〉GC

Ξ

〈dn〉GC

Ξ
+ 3

�

〈dndn〉GC

Ξ

�2

− 12
〈dndn〉GC

Ξ

�〈dn〉
Ξ

�2

+ 6

�

〈dn〉GC

Ξ

�4

. (139)

In particular, when the FI parameter is turned off, the one and three-point functions vanish so
that the grand canonical four-point function (139) is simplified as

〈dndndndn〉GC
ζ=0

Ξ
=

=

∫

dσdp (pn(σ))
4
�

ρGC
W − 7(ρGC

W )
2 + 12(ρGC

W )
3 − 6(ρGC

W )
4
�

+ 3

�

〈dndn〉GC

Ξ

�2

. (140)

The leading term that is proportional to µ4n+2 appears from the disconnected
term 3(〈dndn〉GC/Ξ)2.

By eliminating the disconnected terms from (139) and using the relation

�

1
β

�3

∂ 3
µρ

GC
W = ρGC

W − 7(ρGC
W )

2 + 12(ρGC
W )

3 − 6(ρGC
W )

4 , (141)

we obtain the grand canonical connected four-point function of the operator dn

〈dndndndn〉GC
c =

〈dndndndn〉GC

Ξ
− 4
〈dndndn〉GC

Ξ

〈dn〉GC

Ξ

− 3

�

〈dndn〉GC

Ξ

�2

+ 12
〈dndn〉GC

Ξ

�〈dn〉
Ξ

�2

− 6

�

〈dn〉GC

Ξ

�4

= i4nε4n−4
1

�

1
β3
∂ 3
µ +

π2

6β5
∂ 5
µ + · · ·

�∫

dσdp
�

σ4n +
n(n− 1)

6
σ4n−2 + · · ·

�

ρGC
W

=
24nn

�

(l − 2iζ)4n+1 + (l + 2iζ)4n+1
�

ε1ε2ε3π3(l2 + 4ζ2)4n+1
µ4n−1 +O(µ4n−3) . (142)

The leading term of the connected four-point function is proportional to µ4n−1. We see that
the expression (142) is triality invariant! When n = 1, it coincides with the leading term in
the previous result (120).

The next-to-leading terms in the one-body integral (142) are not still triality invariant as
there are additional contributions from the the higher order terms in the Wigner transforms
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(135)-(138). Assuming that the Wigner transforms complete the triality invariance so that it
is consistent with (133), we find next-to-leading terms
�

i4n24n−6(4n)(4n− 1)(4n− 2)

�

(−1)4n(l − 2iζ)4n+1 + (l + 2iζ)4n+1
�

3ε1ε2ε3π3(l2 + 4ζ2)4n+1

+ i4n24n−84n(n− 1)(4n− 2)

�

(−1)4n(l − 2iζ)4n−1 + (l + 2iζ)4n−1
�

3ε1ε2ε3π3(l2 + 4ζ2)4n−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

4n−3 .

(143)

More generally, we get the grand canonical connected four-point functions for dn1
, dn2

, dn3

and dn4

〈dn1
dn2

dn3
dn4
〉GC

c = iN42N4−2N4

�

(−1)N4(l − 2iζ)N4+1 + (l + 2iζ)N4+1
�

ε1ε2ε3π3(l2 + 4ζ2)N4+1 µN4−1

+

�

iN42N4−6N4(N4 − 1)(N4 − 2)

�

(−1)N4(l − 2iζ)N4+1 + (l + 2iζ)N4+1
�

3ε1ε2ε3π3(l2 + 4ζ2)N4+1

+ iN42N4−8(N4 − 2)

� 4
∑

i=1

ni(ni − 1)

�

×

�

(−1)N4(l − 2iζ)N4−1 + (l + 2iζ)N4−1
�

3ε1ε2ε3π3(l2 + 4ζ2)N4−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

N4−3

+O(µN4−4) , (144)

where N4 = n1 + n2 + n3 + n4. For n4 = 1 the expression (144) reproduces the connected
four-point function obtained from (133) for k = 1 involving a single d1.

Again we can extract from (144) the leading and next-to-leading terms of the connected
higher-point functions with additional insertion of d1

〈dn1
dn1

dn3
dn4

k
︷ ︸︸ ︷

d1 · · · d1〉GC
c =

= (−1)k iN4+k2N4−2 (N4 + k)!
(N4 − 1)!

�

(−1)N4(l − 2iζ)N4+k+1 + (−1)k(l + 2iζ)N4+k+1
�

ε1ε2ε3πk+3(l2 + 4ζ2)N4+k+1
µN4−1

+

�

(−1)k iN4+k2N4−6 (N4 + k)!
(N4 − 3)!

�

(−1)N4(l − 2iζ)N4+k+1 + (−1)k(l + 2iζ)N4+k+1
�

3ε1ε2ε3πk+3(l2 + 4ζ2)N4+k+1

+ (−1)k iN4+k2N4−8 (N4 + k− 2)!
(N4 − 3)!

�

∑

i

ni(ni − 1)

�

×

�

(−1)N4(l − 2iζ)N4+k−1 + (−1)k(l + 2iζ)N4+k−1
�

3ε1ε2ε3πk+3(l2 + 4ζ2)N4+k−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

N4−3

+O(µN4−4) . (145)

3.5.4 The k-point functions

We can compute more general higher-point functions by considering the many-body operators
of dn. The grand canonical k-point function is obtained by summing over the averages of the
Wigner transforms of the antisymmetrized l-body operators PAO(l)[dk

n] with l = 1, · · · , k

〈
k

︷ ︸︸ ︷

dn · · · dn〉GC

Ξ
=

k
∑

`=1

�

∫

∏̀

i=1

dσidpi

�

PAO(`)[dk
n]
�

W

∏̀

i=1

ρGC
W (σ`, p`)

�

. (146)
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From the grand canonical k-point function (146) and the lower-point functions, the grand
canonical connected k-point functions can be recursively computed as

〈
k

︷ ︸︸ ︷

dn · · · dn〉GC
c =

〈
k

︷ ︸︸ ︷

dn · · · dn〉GC

Ξ
−

k−1
∑

`=1

�

k− 1
`− 1

�

〈
`

︷ ︸︸ ︷

dn · · · dn〉GC
c
〈

k−`
︷ ︸︸ ︷

dn · · · dn〉GC

Ξ
. (147)

In particular, the leading terms of the grand canonical connected k-point functions can be
easily evaluated by acting on the one-body integral with the differential operator 1

βk−1 ∂
k−1
µ .

We find the leading term of the grand canonical connected k-point function of the operators
dni

, i = 1, · · · , k:

〈dn1
dn2
· · · dnk

〉GC
c = iNkε

Nk−k
1

�

1
β k−1

∂ k−1
µ +

π2

6β k+1
∂ k+1
µ + · · ·

�∫

dσdp

×
�

σNk +

∑

i=1 ni(ni − 1)
24

σNk−2 + · · ·
�

ρGC
W + · · ·

= iNk 2Nk−k+2 Nk!
(Nk − k+ 3)!

�

(−1)Nk(l − 2iζ)Nk+1 + (l + 2iζ)Nk+1
�

ε1ε2ε3πk−1(l2 + 4ζ2)Nk+1
µNk−k+3

+ · · · , (148)

where Nk =
∑k

i=1 ni . The leading term is proportional to µNk−k+3 and its coefficient is propor-
tional to 1

ε1ε2ε3
so that it is invariant under the triality symmetry (2).

The next-to-leading terms appearing from (148) are not yet triality invariant. Provided that
these altogether form the triality invariant expression, we get the consistent triality invariant
next-to-leading terms of the grand canonical connected k-point function of the operators dni

,
i = 1, · · · , k proportional to µNk+1:

�

i
∑k

i=1 ni 2Nk−k−2 Nk!
(Nk − k+ 1)!

�

(−1)Nk(l − 2iζ)Nk+1 + (l + 2iζ)Nk+1
�

3ε1ε2ε3πk−1(l2 + 4ζ2)Nk+1

+ iNk 2Nk−k−4 (Nk − 2)!
(Nk − k+ 1)!

� k
∑

i=1

ni(ni − 1)

�

×

�

(−1)Nk(l − 2iζ)Nk−1 + (l + 2iζ)Nk−1
�

3ε1ε2ε3πk−1(l2 + 4ζ2)Nk−1

�

(ε2
1 + ε

2
2 + ε

2
3)µ

Nk−k+1

+O(µNk−k) . (149)

In fact, we have checked that the expressions (148) and (149) reproduce the leading and
next-to-leading terms in all the previous results.

It has been numerically found in [43] that the perturbative correlation function has a
conjectural pattern

〈dn1
· · · dnk

〉pert
c =

∑

m≥0

c{ni};mσ
m
2 σ
− 2m

3 +
1
3

∑k
i=1(ni−1)

3 , (150)

in such a way that the non-vanishing terms have a power of σ3 greater or equal to −1.
By setting µ= τ0

2π in our results (146) and (149) and taking the derivatives with respective
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to τ0, we can write from them the perturbative correlation function in [43]:

〈dn1
· · · dnk

Nk−k+3
︷ ︸︸ ︷

d0 · · · d0〉pert
c =

iNk Nk!
�

(−1)Nk + 1
�

2πNk+2lNk+1
σ−1

3 , (151)

〈dn1
· · · dnk

Nk−k+1
︷ ︸︸ ︷

d0 · · · d0〉pert
c =

iNk

�

4Nk(Nk − 1) + l2
∑k

i=1 ni(ni − 1)
�

(Nk − 2)!
�

(−1)Nk+1
�

48πNk lNk−1
σ2σ

−1
3 .

(152)

This is compatible with the conjectural pattern (150).

4 Concluding remarks

In this work, we evaluated the large N correlation functions of the Coulomb branch operators
for 3d N = 4 ADHM theory in the Fermi-gas formulation. We confirmed that the leading per-
turbative part has the triality symmetry, expected from the dual twisted M-theory. Interestingly,
the full analytic form of the next-to-leading order correction can be fixed by the requirement
of this symmetry even though the Fermi-gas computation is technically hard at this order. This
idea should be useful in higher order computations.

We remark several related directions. The correlators have been studied in bootstrap
program for 3d SCFTs which arise as the IR limit of the effective theory of multiple M2-
branes [13, 58–61]. It would be nice to address the dn correlators via the bootstrap analysis
to be compared with our results.

The twisted holography [35] (see also [34]) would relate our results to the perturba-
tive calculations around a dominant semi-classical saddle point in the holographic dual five-
dimensional holomorphic (symplectic)-topological theory on AdS2 × S3. The k-point correla-
tors that we have computed would correspond to an amplitude of the Feynman diagram in the
5d Chern-Simons theory with k-points insertion on the 1d defect, where the 1d topological
quantum mechanics lives. Beyond the perturbative calculations, the triality symmetry may be
broken due to the instanton corrections [43]. It would be nice to extend our Fermi-gas anal-
ysis by calculating the non-perturbative corrections to the correlators which capture the full
geometry normal to AdS2 × S3 in AdS4 × S7. Also our subleading terms could be used to test
the holographic dual with higher derivative corrections as recently studied in [33,62].

The sphere correlators of the Coulomb and Higgs branch operators can be algebraically
computed as a sum of the products of the twisted traces over the Verma modules [19]. For
the ADHM theory, this sum is taken over a set of l Young diagrams with Nk (k = 1, · · · , l)
boxes obeying

∑l
k=1 Nk = N . It would be interesting to analyze the large N behavior of the

correlators in terms of the twisted traces.
In [43] it is conjectured from the numerical and algebraic computations that the generating

function of connected correlation functions of the operator dn satisfies a recursion relation that
leads to a quadratic constraint on the perturbative correlation functions. This is reminiscent
of the “string equation” [63,64] in topological gravity and it may play a key role in the twisted
holography. It is intriguing to give an analytical derivation or proof of this relation by extending
our analysis.

The line operators in 3d N = 4 ADHM theory would be also realized in the twisted M-
theory by introducing extra M2-branes intersecting with the original ones. The space of the
local operators living at junctions of line operators is realized as Hom space which generalizes
the bulk Coulomb and Higgs branch algebras [65]. It is interesting to figure out the triality
symmetry in the presence of line operators by applying the Fermi-gas analysis as studied for
the ABJM model in [53].
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Partition functions of 4d N = 2 SQFTs on S3×S1, the superconformal index or its special-
ization known as the Schur index [66] can reduce to partition functions of 3d N = 4 SQFTs on
S3 [67,68]. The Schur index can be decorated by the line operators wrapping the S1 so that it
can be associated with the sphere correlators of the Coulomb branch operators for 3d N = 4
SQFTs. It would be interesting to extend our Fermi-gas analysis to the Schur index with line
operators for the 4d N = 2∗ gauge theory which reduces to the ADHM theory as in [69] to
show the triality symmetry explicitly.
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A Some explicit results for correlation functions

The general results in the main text are quite complicated. In this appendix, we summarize
explicit forms of the connected correlation functions of dn for some lower n’s in the large µ
limit.

For the one-point functions, we have the following leading and next-to-leading perturba-
tive terms:

〈d1〉GC
c = −

16lζ
3ε1ε2ε3(l2 + 4ζ2)2

µ3 −
2lζ(ε2

1 + ε
2
2 + ε

2
3)

3ε1ε2ε3(l2 + 4ζ2)2
µ , (153)

〈d2〉GC
c = −

4l(l2 − 12ζ2)
3ε1ε2ε3(l2 + 4ζ2)3

µ4 −

�

l5 + (8ζ2 + 4)l3 + 16lζ2(ζ2 − 3)
�

(ε2
1 + ε

2
2 + ε

2
3)

12ε1ε2ε3(l2 + 4ζ2)3
µ2

(154)

〈d3〉GC
c = −

64lζ(l2 − 4ζ2)
5ε1ε2ε3(l2 + 4ζ2)4

µ5 −
i(ε2

1 + ε
2
2 + ε

2
3)
�

l4 + 8(ζ2 + 1)l2 + 16ζ2(ζ2 − 2)
�

3ε1ε2ε3(l2 + 4ζ2)4
µ3 ,

(155)

〈d4〉GC
c =

32l(l4 − 40l2ζ2 + 80ζ4)
15ε1ε2ε3(l2 + 4ζ2)5

µ6

+
(ε2

1 + ε
2
2 + ε

2
3)

6ε1ε2ε3

�

4+ (l − 2iζ)2

(l − 2iζ)5
+

4+ (l + 2iζ)2

(l + 2iζ)5

�

µ4 , (156)

where 〈dn〉GC
c := 〈dn〉GC/Ξ.

For the two-point functions, we have:

〈d1d1〉GC
c = −

8(l3 − 12lζ2)
3ε1ε2ε3π(l2 + 4ζ2)3

µ3 −
(l3 − 12lζ2)(ε2

1 + ε
2
2 + ε

2
3)

3ε1ε2ε3π(l2 + 4ζ2)3
µ , (157)

〈d1d2〉GC
c =

32lζ(l2 − 4ζ2)
ε1ε2ε3π(l2 + 4ζ2)4

µ4 +
26lζ(l2 − 4ζ2)(ε2

1 + ε
2
2 + ε

2
3)

3ε1ε2ε3π(l2 + 4ζ2)4
µ2 , (158)

〈d2d2〉GC
c =

32(l5 − 40l3ζ2 + 80lζ4)
5ε1ε2ε3π(l2 + 4ζ2)5

µ5 +
26(l5 − 40l3ζ2 + 80lζ4)(ε2

1 + ε
2
2 + ε

2
3)

9ε1ε2ε3π(l2 + 4ζ2)5
µ3 . (159)
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For the three-point functions with no d1 insertions, we have

〈d2d2d2〉GC
c = −

32
�

(l − 2iζ)7 + (l + 2iζ)7
�

ε1ε2ε3π2(l2 + 4ζ2)7
µ6 − (ε2

1 + ε
2
2 + ε

2
3)µ

4× (160)

×

�

20
�

(l − 2iζ)7 + (l + 2iζ)7
�

ε1ε2ε3π2(l2 + 4ζ2)7
+

�

(l − 2iζ)5 + (l + 2iζ)5
�

ε1ε2ε3π2(l2 + 4ζ2)5

�

.

〈d2d3d3〉GC
c =

128
�

(l − 2iζ)9 + (l + 2iζ)9
�

ε1ε2ε3π2(l2 + 4ζ2)9
µ8 + (ε2

1 + ε
2
2 + ε

2
3)µ

6× (161)

×

�

448
�

(l − 2iζ)9 + (l + 2iζ)9
�

3ε1ε2ε3π2(l2 + 4ζ2)9
+

28
�

(l − 2iζ)7 + (l + 2iζ)7
�

3ε1ε2ε3π2(l2 + 4ζ2)7

�

.

〈d4d4d4〉GC
c =

2048
�

(l − 2iζ)13 + (l + 2iζ)13
�

ε1ε2ε3π2(l2 + 4ζ2)13
µ12 + (ε2

1 + ε
2
2 + ε

2
3)µ

10× (162)

×

�

5632
�

(l − 2iζ)13 + (l + 2iζ)13
�

ε1ε2ε3π2(l2 + 4ζ2)13
+

384
�

(l − 2iζ)11 + (l + 2iζ)11
�

ε1ε2ε3π2(l2 + 4ζ2)11

�

.

For the four-point functions with no d1 insertions, we have

〈d2d2d2d2〉GC
c =

512
�

(l − 2iζ)9 + (l + 2iζ)9
�

ε1ε2ε3π3(l2 + 4ζ2)9
µ7 + (ε2

1 + ε
2
2 + ε

2
3)µ

5× (163)

×

�

448
�

(l − 2iζ)9 + (l + 2iζ)9
�

ε1ε2ε3π3(l2 + 4ζ2)9
+

16
�

(l − 2iζ)7 + (l + 2iζ)7
�

ε1ε2ε3π3(l2 + 4ζ2)7

�

.

〈d3d3d3d3〉GC
c =

12288
�

(l − 2iζ)13 + (l + 2iζ)13
�

ε1ε2ε3π3(l2 + 4ζ2)13
µ11 + (ε2

1 + ε
2
2 + ε

2
3)µ

9× (164)

×

�

28160
�

(l − 2iζ)13 + (l + 2iζ)13
�

ε1ε2ε3π3(l2 + 4ζ2)13
+

1280
�

(l − 2iζ)11 + (l + 2iζ)11
�

ε1ε2ε3π3(l2 + 4ζ2)11

�

.
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B Fermi surface

We give some details on the evaluation of the quantum corrected Fermi surface.

B.1 Area of the Fermi surface

The area of the quantum corrected Fermi surface of the region I can be evaluated from the
equation (38) as

VolI =

∫ p=p+∗

p=p−∗

dp

∫ σ=σ+(µ,p)

σ=0

dσ

=
1

π(l − 2iζ)

�∫ 0

p−∗

dp
�

2πµ
ε1
+π(1+ 2im)p

�

−
∫ 0

p−∗

dp [log(2 coshπp) +πp]−
ħh2π2

24
(l − 2iζ)2

∫ 0

p−∗

dpT ′′((p)

�

+
1

π(l − 2iζ)

�∫ p+∗

0

dp
�

2πµ
ε1
−π(1− 2im)p

�

−
∫ p+∗

0

dp [log(2coshπp)−πp]−
ħh2π2

24
(l − 2iζ)2

∫ p+∗

0

dpT ′′((p)

�

= −
3
4

µ2

ε2(ε1 + ε2)(l − 2iζ)
−

1
12(l − 2iζ)

−
ħh2π2

12
(l − 2iζ) , (165)

where we have extended the integration region to infinity up to non-perturbative terms in µ.
Similarly, we can calculate the area of the quantum corrected Fermi surface of the region III:

VolIII =

∫ p+∗

p=p−∗

dp

∫ σ=0

σ=σ−(µ,p)
dσ

= −
3
4

µ2

ε2(ε1 + ε2)(l + 2iζ)
−

1
12(l + 2iζ)

−
ħh2π2

12
(l + 2iζ) . (166)

From the equation (41) one finds the quantum corrected area of the region II

VolII =

∫ σ=σ+∗

σ=σ−∗

dσ

∫ p=p+(µ,σ)

p=p+∗

dp

=
lµ2

2ε1(ε1 + ε2)(l2 + 4ζ2)
−

ε1l
24(ε1 + ε2)

+
lħh2π2(ε1 + ε2)

3ε1
. (167)

The quantum corrected area of the region IV can be similarly computed by using the equation
(41). We get

VolIV =

∫ σ=σ+∗

σ=σ−∗

dσ

∫ p=p−+

p=p−(µ,σ)
dp = −

lµ2

2ε1ε2(l2 + 4ζ2)
+
ε1l

24ε2
−

lħh2π2ε2

3ε1
. (168)
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B.2 Average over the Fermi surface

The average over the quantum Fermi surface of the region I is

Volσ
n

I =

∫ p=p−∗

p=p−∗

dp

∫ σ=σ+(µ,p)

σ=0

dσσn

=
1

(n+ 1)πn+1(l − 2iζ)n+1

∫ p+∗

p−∗

dp

�

2πµ
ε1
− T (p)−

ħh2π2

24
(l − 2iζ)2T ′′(p)

�n+1

. (169)

Although it seems difficult to compute the integral (169) explicitly, we do not need to do
so. From the Wigner transform (20) that contains ħh2 corrections, we can only get the correct
leading term proportional toµn+2 and the next-to-leading term proportional toµn. The leading
and next-to-leading terms which appear from the expression (169) are

Volσ
n

I =
1

(n+ 1)πn+1(l − 2iζ)n+1

×
�∫ 0

p−∗

dp
�

2πµ
ε1
+π(1+ 2im)p

�n+1

+

∫ p+∗

0

dp
�

2πµ
ε1
−π(1− 2im)p

�n+1

− (n+ 1)
�

2πµ
ε1

�n∫ 0

−∞
dp

�

{log(2coshπp) +πp}+
ħh2π2

24
(l − 2iζ)2T ′′(p)

�

− (n+ 1)
�

2πµ
ε1

�n∫ ∞

0

dp

�

{log(2coshπp)−πp}+
ħh2π2

24
(l − 2iζ)2T ′′(p)

��

.

These integrals can be evaluated exactly, and we find the following large µ behavior:

Volσ
n

I = −
2n+2 − 1

2εn
1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l − 2iζ)n+1

µn+2 −
2n−4

�

4+ (l − 2iζ)2
�

3εn
1(l − 2iζ)n+1

µn . (170)

Similarly, the average over the quantum Fermi surface of the region III leads to the leading
and next-to-leading terms:

Volσ
n

III = −
(−1)n(2n+2 − 1)

2εn
1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l + 2iζ)n+1

µn+2 −
(−1)n2n−4

�

4+ (l + 2iζ)2
�

3εn
1(l + 2iζ)n+1

µn .

(171)

On the other hand, the average over the quantum Fermi surface of the region II takes the
form

Volσ
n

II =

∫ σ=σ+∗

σ=σ−∗

dσ

∫ p=p+(µ,σ)

p=p+∗

dpσn (172)

=
1

π(1− 2im)

∫ 0

σ−∗

dσσn

�

2πµ
ε1
− U(σ) +

ħh2π2

12
(1− 2im)2U ′′(σ)

�

−
∫ 0

σ−∗

dσp+∗ σ
n

+
1

π(1− 2im)

∫ σ+∗

0

dσσn

�

2πµ
ε1
− U(σ) +

ħh2π2

12
(1− 2im)2U ′′(σ)

�

−
∫ σ+∗

0

dσp+∗ σ
n .

The integral can be evaluated by extending the integration region to infinity according to the
formulas

∫ ∞

0

d x xn log(1+ e−2πx) =
Γ (2+ n)ζ(2+ n)
(n+ 1)(4π)n+1

(2n+1 − 1) , (173)

∫ ∞

0

d x xn π2

cosh2πx
=
Γ (1+ n)ζ(n)
(4π)n−1

(2n−1 − 1) . (174)
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We find

Volσ
n

II =
1

2εn+1
1 (ε1 + ε2)(n+ 1)(n+ 2)

�

1
(l − 2iζ)n+1

+
(−1)n

(l + 2iζ)n+1

�

µn+2

+
l(1+ (−1)n)Γ (n+ 1)

�

2(2n − 2)(ε1 + ε2)2π2ζ(n)− 3(2n+1 − 1)ε2
1ζ(n+ 2)

�

22n+3 · 3πn+2ε1(ε1 + ε2)
. (175)

We can analogously calculate the average over the region IV:

Volσ
n

IV = −
1

2εn+1
1 ε2(n+ 1)(n+ 2)

�

1
(l − 2iζ)n+1

+
(−1)n

(l + 2iζ)n+1

�

µn+2

−
l(1+ (−1)n)Γ (n+ 1)

�

2(2n − 2)ε2
2π

2ζ(n)− 3(2n+1 − 1)ε2
1ζ(n+ 2)

�

22n+33πn+2ε1ε2
. (176)

C Formulae

The Wigner transform of the Hamiltonian operator is given by

HW(q, p) = T + U +
1

12
[T, [T, U]?]? +

1
24
[U , [T, U]?]?

+
1

360
[[[[T, U]?, U]?, U]?, T]? −

1
480
[[[[U , T]?, U]?, T]?, U]?

+
1

360
[[[[U , T]?, T]?, T]?, U]? +

1
120
[[[[T, U]?, T]?, U]?, T]?

+
7

5760
[[[[T, U]?, U]?, U]?, U]? −

1
720
[[[[U , T]?, T]?, T]?, T]?

= T (p) + U(q)−
ħh2

12
(T ′(p))2U ′′(q) +

ħh2

24
(U ′(q))2T ′′(p)

+
ħh4

144
T ′(p)T ′′′(p)U (4)(q)−

ħh4

288
U ′(q)U ′′′(q)T (4)(p)

−
ħh4

240
(U ′(q))2U ′′(q)(T ′′(p))2 +

ħh4

60
(T ′(p))2T ′′(p)(U ′′(q))2

−
ħh4

80
(U ′(q))2U ′′(q)T ′(p)T ′′′(p) +

ħh4

120
(T ′(p))2T ′′(p)U ′(q)U ′′′(q)

+
7ħh4

5760
(U ′(q))4T (4)(p)−

ħh4

720
(T ′(p))4U (4)(q) . (177)
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