Multiplet supercurrent in Josephson tunneling circuits
André Melo, Valla Fatemi, Anton R. Akhmerov
SciPost Phys. 12, 017 (2022) · published 12 January 2022
- doi: 10.21468/SciPostPhys.12.1.017
- Submissions/Reports
Abstract
The multi-terminal Josephson effect allows DC supercurrent to flow at finite commensurate voltages. Existing proposals to realize this effect rely on nonlocal Andreev processes in superconductor-normal-superconductor junctions. However, this approach requires precise control over microscopic states and is obscured by dissipative current. We show that standard tunnel Josephson circuits also support multiplet supercurrent mediated only by local tunneling processes. Furtheremore, we observe that the supercurrents persist even in the high charging energy regime in which only sequential Cooper transfers are allowed. Finally, we demonstrate that the multiplet supercurrent in these circuits has a quantum geometric component that is distinguinshable from the well-known adiabatic contribution.
Cited by 17
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 André Melo,
- 2 Valla Fatemi,
- 1 Anton R. Akhmerov