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Abstract

The multi-terminal Josephson effect allows DC supercurrent to flow at finite commensu-
rate voltages. Existing proposals to realize this effect rely on nonlocal Andreev processes
in superconductor-normal-superconductor junctions. However, this approach requires
precise control over microscopic states and is obscured by dissipative current. We show
that standard tunnel Josephson circuits also support multiplet supercurrent mediated
only by local tunneling processes. Furthermore, we observe that the supercurrents per-
sist even in the high charging energy regime in which only sequential Cooper transfers
are allowed. Finally, we demonstrate that the multiplet supercurrent in these circuits has
a quantum geometric component that is distinguishable from the well-known adiabatic
contribution.
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The DC Josephson effect allows coherent transport of Cooper pairs across two-terminal
superconducting junctions at zero voltage [1]. At finite DC voltages the phase difference across
the junction advances linearly in time, resulting in a pure AC supercurrent. A dissipative DC
current may also arise due to multiple Andreev reflections [2]. However, charge transfers
across terminals of a voltage-biased junction cost energy and thus no DC supercurrent can
flow.

Junctions with additional terminals biased at commensurate voltages support energy-con-
serving processes that transfer charge between multiple electrodes. The simplest setup where
this can occur is a three-terminal junction, where two voltage-biased terminals each transfer
n1 and n2 Cooper pairs to a grounded terminal. At commensurate voltages 2en1V1 = −2en2V2
this is a coherent and energy-conserving process that allows DC supercurrent. Several ex-
perimental works reported increased conductance at commensurate voltages as a signature
of multiplet supercurrent in Josephson elements with weak links made of diffusive normal
metals [3], InAs nanowires [4], and graphene [5].

So far, theoretical interpretations of these experiments rely on Andreev physics associated
with highly transparent superconductor-normal-superconductor (SNS) junctions. In particu-
lar, the normal region must host nonlocal Andreev states that extend to multiple terminals and
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mediate transport of charge through nonlocal Andreev processes [6–9] (see Fig. 1(a)). This
mechanism is nontrivial because it is not guaranteed that a single state propagates to all three
junctions, which may imply that multiplet supercurrent is a fragile phenomenon requiring fine
tuning of microscopic aspects of the normal scattering region.

One may ask if this delicate microscopic process is the only mechanism that admits mul-
tiplet supercurrent. We draw inspiration from a problem in a similar context: multi-terminal
SNS Josephson junctions were proposed as a platform for non-trivial band topology, where
the superconducting phases play the role of crystal momenta [10]. Recent works showed
that tunnel Josephson junction circuits are capable of encoding the same physics in collective
electronic modes, rather than the fermionic degrees of freedom in the multi-terminal weak
link [11,12].

(a) (b)

Figure 1: Superconducting devices that carry multiplet supercurrent at com-
mensurate DC voltages. (a) A high transparency three-terminal Joseph-
son junction supports multiplet supercurrent through non-local Andreev pro-
cesses. When voltages applied to terminals 1 and 2 satisfy V1 = −V2, each bi-
ased terminal may transfer one Cooper pair to the grounded terminal through
crossed Andreev reflections, resulting in quartet supercurrent. (b) A Joseph-
son tunneling circuit also supports multiplet supercurrents. Even when the
central island has a large charging energy, multiplet supercurrent still flows
despite being carried only by single Cooper pair transfers.

In this work, we show that voltage-biased circuits of Josephson tunnel junctions also gen-
erate multiplet supercurrent, and we elucidate two types of contributions: an adiabatic com-
ponent and a quantum geometric component. In contrast with its SNS counterpart, these
circuits mediate the transport of multiplets through the collective behavior of the supercon-
ducting circuit, rather than microscopic multi-terminal Andreev processes. Furthermore, our
proposal is experimentally tractable because tunnel junctions are standard building blocks of
experimental superconducting devices.

We begin by analyzing the minimal tunneling circuit in Fig. 1(b) in the zero charging
energy limit, EC = 0, which may be referred to as the classical limit of the circuit. We assume
that damping in the circuit allows treating the evolution of ϕ adiabatically.

The circuit energy as a function of the superconducting phases is
E(ϕ,φ1,φ2) = −EJ ,0 cos(ϕ) − EJ ,1 cos(φ1 − ϕ) − EJ ,2 cos(φ1 − ϕ), where the phases of the
voltage-biased terminals evolve as φ̇i = Vi/Φ0, where Φ0 = ~/2e is the reduced magnetic
flux quantum. Minimizing the circuit energy E with respect to ϕ for fixed (φ1,φ2) gives the
condition

tan(ϕ) =
EJ ,1 sin(φ1) + EJ ,2 sin(φ2)

EJ ,0 + EJ ,1 cos(φ1) + EJ ,2 cos(φ2)
. (1)

We then obtain the supercurrent flowing to ground using the Josephson relation
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Figure 2: Currents across the EJ ,0 junction in the circuit of Fig. 1 with
EJ ,1 = EJ ,0/2, EJ ,2 = EJ ,0/4, EC = 0. (a) Instantaneous current at fixed φ1,φ2.
The inset shows the current along the quartet lineφ1+φ2 = −1 (black dashed
line). Since the average (blue dashed line) is finite there is a quartet DC super-
current. (b) Average current along quartet trajectories with different phase
offsets.

I0(φ1,φ2) = EJ ,0 sin(ϕ)/Φ0. In Fig. 2(a) we plot I0(φ1,φ2) for a circuit with EJ ,1 = EJ ,0/2
and EJ ,2 = EJ ,0/4. Because the supercurrent is a periodic function of both φ1 and φ2 it admits
a Fourier expansion

I0(φ1,φ2) =
∑

n,m

I0
nm sin(nφ1 +mφ2). (2)

The n, m harmonic in Eq. (2) is associated with transfering n (m) Cooper pairs from terminal 1
(2) and n+m to the reference terminal [8]. If terminals 1 and 2 are biased with commensurate
DC voltages nV1 + mV2 = 0, then harmonics with the ratio n/m become resonant. Thus, a
net DC current is produced if any of those Fourier components are nonzero, I0

nm 6= 0. In
the following we focus on the quartet supercurrent appearing when V1 + V2 = 0, i.e. when
n = m = 1; however, calculations for higher harmonics are analogous. To check whether the
circuit supports quartet supercurrent we plot the average current 〈I0(φ1(0)+V t,φ2(0)−V t)〉
as a function of the phase offset in Fig. 2(b). We observe that the average is finite as long
as the phase offset φ1 + φ2 (mod 2π) 6∈ {0,π}, confirming that the circuit carries quartet
supercurrent proportional to the critical current of the junction array.

We now investigate the role of quantum fluctuations in the circuit by including the charging
energy of the superconducting island. The circuit Hamiltonian then reads

H = EC(n̂− ng)
2 − EJ ,0 cos(ϕ̂)− EJ ,1 cos(ϕ̂ −φ1)− EJ ,2 cos(ϕ̂ −φ2), (3)

where n̂ is the number of Cooper pairs in the island, ng is the island offset charge, and ϕ̂
is now promoted to a Hermitian operator conjugate to n̂. In the adiabatic approximation in
which the bias voltages are small enough to prevent Landau-Zener transition [13], the current
flowing to ground equals

I0
adiab. =

1
Φ0

�

∂ E
∂ φ1

+
∂ E
∂ φ2

�

, (4)

where E is the energy of the ground state. In Fig. 3(a) we show the resulting current in a
circuit with EC = 30EJ ,0 and ng = 0. We observe a similar functional dependence to that of
the classical supercurrent in Fig. 1(a), indicating that the quartet supercurrent persists in the
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presence of large charge fluctuations. At the same time, the magnitude of the supercurrent is
significantly smaller than in the classical limit. In order to more systematically determine the
effect of a large charging energy on the magnitude of supercurrent, we analytically compute
I0(φ1,φ2) in the high charging energy limit. Near the charge degeneracy point ng = 0.5 the
system’s dynamics are restricted to the two lowest charge states |0〉 and |1〉. The low-lying
spectrum is then well approximated by the effective two-level Hamiltonian

H =

�

0 1
2

�

EJ ,0 + EJ ,1eiφ1 + EJ ,2eiφ2
�

1
2

�

EJ ,0 + EJ ,1e−iφ1 + EJ ,2e−iφ2
�

E1

�

, (5)

where we set the energy of |0〉 to zero and E1 = EC(1− 2ng) is the energy of |1〉. The ground
state energy reads

E =
1
2

�

E1 −
q

E2
1 + |EJ ,0 + EJ ,1eiφ1 + EJ ,2eiφ2 |2

�

. (6)

Using Eq. (4) we obtain the supercurrent flowing to ground:

I0 =
EJ ,0(EJ ,1 sinφ1 + EJ ,2 sinφ2)

2
q

E2
1 + |EJ ,0 + EJ ,1eiφ1 + EJ ,2eiφ2 |2

. (7)

When ng 6= 0.5, the charge degeneracy is broken (E1 6= 0). This supresses charge transfers to
the island and thus the supercurrent vanishes as EC →∞ (blue line in Fig. 3(b)). However,
at the charge degeneracy point E1 = 0 the supercurrent I0(φ1,φ2) becomes independent of
EC (orange line in Fig. 3(b)). Remarkably, this implies that the quartet supercurrent is carried
only by sequential Cooper pair transfers.
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Figure 3: (a) Instantaneous current across the EJ ,0 junction in the circuit of
Fig. 1(a) with EJ ,1 = EJ ,0/2, EJ ,2 = EJ ,0/4, EC = 30EJ ,0, ng = 0. (b) critical
quartet supercurrent: the current I0 maximized over the average phase of
the electrodes maxφ1+φ2

〈I0(φ1(0)+ V t,φ2(0)− V t)〉. When ng = 1/2 charge
states |0〉 and |1〉 are degenerate, allowing quartet supercurrent to flow with
single Cooper pair transfers. The solid lines are obtained by numerically di-
agonalizing the full Hamiltonian (3), while the dashed lines are given by the
approximate analytical expression (7), valid in the high EC limit.

When the bias voltages are commensurate, the closed trajectory in the φ1,φ2 parameter
space results in the accumulation of a Berry phase with each cycle. While φ1,φ2 vary with
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time, the instantaneous geometric contribution to the current is [10,14,15]

I0
Berry = −2e

�

Ω12φ̇1 +Ω21φ̇2

�

, (8)

where the Berry curvature of the ground state |ψ〉 is given by

Ωαβ = −2Im

�

∂ψ

∂φα

�

�

�

�

∂ψ

∂φβ

�

. (9)

The quartet supercurrent then arises from the average of I0
Berry along a trajectory in phase space

satisfying φ̇1 = −φ̇2 = V/Φ0, for which we simplify the instantaneous geometric current to

I0
Berry = −

(4e)2

h
πΩ12V , (10)

where we used the relation Ω12 = −Ω21. In contrast with the adiabatic term of Eq. (4), this
current scales proportionally with the applied voltage. This allows the possibility of separately
identifying the adiabatic and geometric parts.

The geometric quartet supercurrent requires additional conditions on the circuit’s param-
eters. At charge-inversion invariant points ng ∈ {0,1/2}, the Hamiltonian (3) is both time-
reversal and charge-inversion symmetric [11] and hence the Berry curvature vanishes. Away
from these points the Berry curvature becomes finite; however, if EJ ,1 = EJ ,2 it is antisymmet-
ric along the quartet trajectories, i.e. Ω(φ1,φ2) = −Ω(φ2,φ1). As a result, the average Berry
curvature along a quartet trajectory (φ1(0)+V t,φ2(0)−V t) vanishes regardless of the offset
phaseφ1+φ2. When the Josephson energies differ (i.e. EJ ,1 6= EJ ,2), the Berry curvature land-
scape ‘shears’, resulting in a finite average on a quartet trajectory. As an example, in Fig. 4 we
show the Berry curvature of a circuit with EC = EJ0

and ng = 0.7. We observe that the average
〈Ω12(φ1(0) + V t,φ2(0)− V t)〉 is finite provided that φ1 +φ2 (mod 2π) 6∈ {0,π}, resulting in
the quantum geometric contribution to the quartet supercurrent.

Our proposal to produce multiplet supercurrent has two main advantages over its exist-
ing SNS counterpart. First, SNS devices require tuning wave functions of Andreev bound
states that depend strongly on the microscopic details of the junction. Additionally, fabricat-
ing multi-terminal junctions is nontrivial [16]. In contrast, fabricating tunneling circuits with
designed parameters (charging and Josephson energies) is a relatively routine procedure. Fi-
nally, SNS junctions have significantly larger dissipation due to the low resistance of the normal
region [17].

Turning to existing experimental work [3–5, 16], we note that the most qualitative signa-
tures of SNS-based multiplet supercurrents are, to the best of our knowledge, indistinguish-
able from those of tunnel-based junctions. Furthermore, it is known that the conventional
Cooper pair transisor in the deep charging regime (EC � EJ) has the same Hamiltonian as
a single-level quantum dot with weak coupling strengths Γ � ∆ to a pair of superconduct-
ing reservoirs [18]. In this analogy between the SNS and SIS devices, Γ relates to EJ , and a
level offset energy relates to offset charge. The same analogy extends to the multi-terminal
case [19]. Such dots would exhibit the same kind of multiplet supercurrent described in our
work. On the other hand, multiplet processes that entangle Cooper pairs from different leads
require intermediate states with broken Cooper pairs, and thus they would be suppressed by
factors of Γ/∆. Many of the Andreev levels of experimental multiterminal and multichannel
SNS devices may be weakly coupled to the superconducting reservoirs, and those levels would
predominantly contribute the kind of multiplet supercurrent described here. Thus, our re-
sults suggest that the multiplet supercurrent observed in SNS devices may have an alternative
contribution arising from local Cooper pair transfers.

Moving forward, a question relevant for experimental implementation is how this device
performs in a realistic environment including load circuit and environmental noise [20]. An-
other interesting avenue of further investigation would be to design tunneling circuits that
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Figure 4: (a) Berry curvature of the ground state of the circuit in Fig. 1(b)
with EJ ,1 = EJ ,0/2, EJ ,2 = EJ ,0/4, EC = EJ ,0 and ng = 0.7. The inset shows
a cut along φ1 + φ2 = −1 (black dashed line). Because the average (blue
dashed line) is finite, the quartet supercurrent has a geometric contribution.
(b) Quartet current-phase relation of the circuit in (a) with geometric correc-
tions. The scale of the voltage is set by the minimum spectral gap Egap over
the Brillouin zone. Reflecting ng about 0.5 flips the sign of the Berry curvature
and hence of the geometric component of the supercurrent.

allow coherent control of the collective motion of quartets. Such a device could serve as a
building block for parity-protetected cos 2ϕ electromagnetic qubits [21–23].
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