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Quantum Chirikov criterion: Two particles in a box
as a toy model for a quantum gas
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Abstract

We consider a toy model for emergence of chaos in a quantum many-body short-range-
interacting system: two one-dimensional hard-core particles in a box, with a small mass
defect as a perturbation over an integrable system, the latter represented by two equal
mass particles. To that system, we apply a quantum generalization of Chirikov’s criterion
for the onset of chaos, i.e. the criterion of overlapping resonances. There, classical non-
linear resonances translate almost automatically to the quantum language. Quantum
mechanics intervenes at a later stage: the resonances occupying less than one Hamilto-
nian eigenstate are excluded from the chaos criterion. Resonances appear as contiguous
patches of low purity unperturbed eigenstates, separated by the groups of undestroyed
states—the quantum analogues of the classical KAM tori.
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1 Introduction

The celebrated Chirikov resonance-overlap criterion [1, 2] constitutes a simple analytic es-
timate for the onset of chaos in an integrable, deterministic Hamiltonian system weakly per-
turbed from integrability. This criterion can be considered as a heuristic and intuitive precursor
to the rigorous Kolmogorov-Arnold-Moser (KAM) theorem [3–5] that serves the same purpose
for classical systems.

We consider the quantum version of the Chirikov condition because, despite varied nu-
merical and experimental attempts to address the quantum integrability-to-chaos transition,
a quantum version of the KAM theorem remains elusive. A good discussion of the challenges
can be found in [6]. This reference in particular mentions the work of Hose and Taylor [7]
as having proposed a criterion (albeit one dependent on both the perturbation scheme and
the basis) for determining if one can assign a full set of quantum numbers to the states of a
nonintegrable Hamiltonian obtained by perturbing an integrable one. A promising approach
to a quantum KAM theorem is outlined in [8], but full details have never appeared. In a
more recent advance, a quantum version of what are known as Nekhoroshev estimates was
constructed in [9].

Although the full quantum KAM theorem is still unavailable, the Chirikov criterion has
yielded to quantum formulation. In [10–13], the authors study a quantum system with exactly
two nonlinear resonances, while in [14, 15], the studied quantum system is truncated to two
resonances. Physically, both systems consist of a single particle driven by an external field.
The classical counterparts of both systems feature a chaotization threshold.

Here we apply the quantum Chirikov criterion to a simple two-dimensional system: two
one-dimensional hard-core particles in a box, with a small mass defect. We consider all nonlin-
ear resonances that are present, with no truncations. Note that, unlike in the previous studies,
our system is self-contained and isolated, with no external fields. The mass defect is treated as
a perturbation over the integrable system with two equal-mass particles. In [16] it has been
found that in a many-body case, relaxation in a one-dimensional two-mass mixture occurs in
a few collisions per particle, similarly to a multidimensional gases of hard-core spheres. On
the other hand, by analogy with other few-body toy models [17], this two-body model allows
us to estimate the relaxation threshold in a many-body setting [9].

Traditionally, research on KAM theory avoids considering short-range interactions because
they typically lead to no chaos threshold, c.f. [18]. Indeed, as we show below, the classical
counterpart of our model is chaotic for any nonzero perturbation strength. However, in the
quantum model the threshold for the emergence of chaos is restored even for a system with
short-range interactions.

2 Chirikov condition

For two-dimensional classical systems, the Chirikov criterion [1, 2] can be formulated as fol-
lows. Let

H(θ1, I1, θ2, I2) = H0(I1, I2) + εV (θ1, I1, θ2, I2) ,

be the Hamiltonian of an integrable system H0 weakly perturbed by a correction εV , 2π-
periodic with respect to both θ1 and θ2. Here I1,2 and θ1,2 are the corresponding canonical
actions and angles, respectively. (Note that upon quantization, the actions I1,2 = ħhn1,2 become
the two quantum numbers for the eigenstates of the quantum version of H0.) Consider a
resonance point ( Ī1, Ī2) in the action space where the frequencies ω1,2 ≡ ∂ H0/∂ I1,2

�

�

Ī1, Ī2
of
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the two subsystems are in a rational relationship:

ω2

ω1
=

p
q

, (1)

where p and q are assumed to be mutually prime. In the resonant approximation, the non-
resonant terms in the double Fourier decomposition of the perturbation can be replaced by a
constant leading to

V (θ1, I1, θ2, I2)≈ Vp,q(pθ1 − qθ2, I1, I2) + const.

The Hamiltonian now depends on a single function of the two coordinates, indicating integra-
bility. Indeed, under the canonical transformation

θ1 = (p
2 + q2)−1(pθ + qθ̃ ) ,

I1 = Ī1 + pI + qĨ ,

θ2 = (p
2 + q2)−1(−qθ + pθ̃ ) ,

I2 = Ī2 − qI + pĨ ,

the action Ĩ becomes the sought-after second integral of motion.
For a sufficiently weak perturbation, assume the motion is bound to a narrow region in the

action space. Accordingly, the resonant Hamiltonian emerges when the Taylor expansion of
the terms H0 and V are truncated to the second and the zeroth order in I, respectively, while
Ĩ is kept at zero. The Hamiltonian becomes H ≈H+ const., where the resonant Hamiltonian
H for the (p, q) resonance at Ī1, Ī2 has the form

H = I2

2J
+ εV(θ ) , (2)

with 1/J = ∂ 2H0/∂ I2
�

�

Ī1, Ī2
and V(θ ) = Vp,q(pθ1 − qθ2, Ī1, Ī2) .

In the resonant Hamiltonian (2), the linear term in I term is absent because I controls
shifts in the action space that are tangential to the equienergy surface. As a result, the time
evolution generated by the Hamiltonian (2) describes a motion along the surface. A bounded-
motion trajectory, with energies E in the range E ∈ [minθ V , maxθ V] (see Fig. 1), occupies
a finite-width segment of the equienergy surface and is called a nonlinear resonance. These
bound trajectories differ qualitatively from their unperturbed counterparts, and they signify
an appearance of the destroyed tori in the KAM theory. The unbounded trajectories that live
outside of the E ∈ [minθ V , maxθ V] energy region remain close to their unperturbed versions.

According to the Chirikov theory, each point (I1, I2) on the equienergy surface of interest
must be tested for belonging to a resonance. If it does not belong to any, no matter what p
and q are, this point constitutes a mobility-limiting, impenetrable boundary on the equienergy
surface, analogous to a KAM torus. To the contrary, if every point in a particular region of the
equienergy surface belongs to at least two resonances, the whole region is conjectured to be
chaotic.

Quantization of the Chirikov criterion [10–13,15] follows a scheme analogous to the clas-
sical case. The perturbation is truncated to resonant matrix elements only. Furthermore a
semiclassical limit is assumed, where it becomes possible to reformulate the problem in terms
of an effective quantum Hamiltonian,

Ĥ = (Î +ħhδ)
2

2J
+ εV . (3)

The action I takes the form of an angular momentum-like operator Î ≡ −iħh ∂
∂ θ and is quan-

tized as I = ħhm, m= 0, ±1, ±2, . . .. The additional increment ħhδ is a possible quantum offset

3
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I1

I2

E = const

p, q

max�−min�

ℐ p 2 + q 2

p′ ′ , q′ ′ 
p′ , q′ ℐ′

 ′ (p′
 ′ ) 2+ (q′

 ′ ) 2
ℐ′ (p′ ) 2+ (q′ ) 2

max�′ −min�′ 

max�′
 ′ −min�′

 ′ 

Figure 1: A schematic view of the Chirikov criterion for the onset of chaos (see
text). For three resonances (p, q), (p′, q′), (p′′, q′′) on an equienergy surface, the
effective resonant Hamiltonian for bound states and the non-linear resonances are
depicted. The parabolas signify the unperturbed energy along a line tangential to the
equienergy surface with energy E at the resonance point. The horizontal coordinate,
I
p

p2 + q2 (see (2) for the meaning of the resonance action I), is chosen in such a
way that the distance between two points on the tangential line is equal to the dis-
tance between their counterparts on the (n1, n2) plane. For a classical system, these
three resonances would constitute a fragment of a chaotic region by the Chirikov
criterion because the non-linear resonances overlap. In the quantum version of the
system, the two resonances (p, q) and (p′′, q′′) contain more than one unperturbed
energy eigenstate that survive quantization (represented by black dots). However,
they are separated by a (p′, q′) resonance that contains one or fewer unperturbed
eigenstates, meaning that this resonance disappears under quantization. Therefore,
in contrast to the classical system, for the quantum system the resonances (p, q) and
(p′′, q′′) are separated by a “KAM torus” given by the unpopulated resonance (p′, q′)
and as such remain isolated.

from the mismatch of the quantized unperturbed states and the resonant equienergy surface.
The overlap of the resonances is studied in a manner identical to the classical case.

In our article, we deliberately chosen a system that is classically chaotic at all energies
(see Appendix A.3 and references [18, 19]). The system is two one-dimensional particles in
a box whose masses are almost identical. The mass defect plays a role of a perturbation of
the integrable system of two identical particles. Our main interest is the question of whether
quantization affects the above conclusion. What we found was that not all the resonances
identified in the classical system are eligible to being included in the resonance overlap con-
sideration. While classically, a resonance can occupy an arbitrary small region of the phase
space, quantum-mechanically this volume is limited to (2πħh)d , where d is the number of spa-
tial dimensions. Classical resonances that occupy less than this volume become indistinct from
the unperturbed eigenstates: they will be discarded from the Chrikov criterion of the overlap-
ping resonances (see Fig. 1). As a result, a perturbation strength threshold for quantum chaos
emerges, ε ∼ n̄−2/3, absent in the classical case. Here, ε is a dimensionless relative mass
defect, and n̄ is a typical quantum number of one degree of freedom.
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3 Quantum two-particle model

For two one-dimensional hard-core particles with slightly different masses in a box, the quan-
tum version of the Chirikov condition exactly follows this minimal extension of the classical
condition. We see the onset of chaos, as observed by the onset of Wigner-Dyson statistics
for the energy level, occur where the mass difference (considered as a perturbation) crosses
the threshold given by the quantum Chirokov condition and and the quantum analogs of the
classical KAM tori are broken; c.f. Fig. (2). See the Appendix A.3 for a Chirikov analysis of a
classical analogue of our system.

Consider the two one-dimensional hard-core particles of masses and M2 > M1, with co-
ordinates x1 ≤ x2, moving in a hard-wall box of size L. This system is often recast as a
right triangular billiard (see, e.g., [19]), where after a change of variables, a two-dimensional
scalar-mass particle emerges, moving in a triangle with angles π/2, α/2, π/2 − α/2 with
α/2= arctan

�p

M2/M1

�

. However to frame the mass difference as a perturbation, the Hamil-
tonian

Ĥ = Ĥ0 + ε V̂ , (4a)

can be expressed in the form

Ĥ0 =
1

2M0
(p̂2

1 + p̂2
2) , (4b)

V̂ = −
1

2M0
(p̂2

2 − p̂2
1) , (4c)

where p̂1,2 ≡ −iħh∂ /∂ x1,2 are the particle momenta, 1/M0 = 1/(2M1) + 1/(2M2), and
ε = (M2 − M1)/(M1 + M2). The familiar spectrum of the unperturbed Hamiltonian (4b) has
eigenenergies

E(0)(n1, n2)
= T0(n

2
1 + n2

2) ,

and eigenstates
Ψ
(0)
(n1, n2)

(x1, x2) = φn1
(x1)φn2

(x2)−φn2
(x1)φn1

(x2) ,

with φn(x) =
p

2/L sin(kn x), kn = πn/L, and 1 ≤ n1 < n2. The energy scale T0 is given by
T0 ≡ ħh2π2/(2M0 L2).

The energy-scaled matrix elements of the perturbation (4c) in the unperturbed
basis |(n1, n2)〉,

v(n1,n2),(n′1,n′2)
≡

1
T0
〈(n1, n2)|V̂ |(n′1, n′2)〉 , (5)

are zero unless the sum n1+ n2+ n′1+ n′2 is odd. When the sum is odd, we find the expression

v(n1,n2),(n′1,n′2)
=

256
π2

�

n1n′1n2n′2(n
2
1 − n2

2)
�

(n′1)
2 − (n′2)

2
��

/
�

(n1 + n′1 + n2 + n′2)

× (n1 + n′1 − n2 − n′2)(n1 − n′1 + n2 − n′2)(n1 − n′1 − n2 + n′2)

× (n1 + n′1 + n2 − n′2)(n1 + n′1 − n2 + n′2)

× (n1 − n′1 + n2 + n′2)(−n1 + n′1 + n2 + n′2)
�

,

which simplifies to the approximate result

v(n1,n2),(n′1,n′2)
≈

4
π2

N2
1 − N2

2

∆n2
1 −∆n2

2

, (6)
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when ∆n1,2 � N1,2 with N1,2 ≡ (n1,2 + n′1,2)/2 and ∆n1,2 ≡ n1,2 − n′1,2. Note that while N1,2
can be both integer and half-integer, the numbers ∆n1,2 are strictly integer.

The perturbation (4c) breaks the integrability of H0 and the new eigenstates Ψλ of the full
Hamiltonian (4a) obeying ĤΨλ = EλΨλ can be decomposed into sums over the unperturbed
eigenstates Ψ(0)(n1, n2)

using the expansion coefficients 〈λ|(n1, n2)〉 as

Ψλ(x1, x2) =
∑

(n1, n2)

〈λ|(n1, n2)〉Ψ
(0)
(n1, n2)

(x1, x2) .

For a sufficiently strong perturbation strength ε, there are eigenstates Ψλ of the perturbed
Hamiltonian (4a) that consist of broad superpositions of the unperturbed eigenstates Ψ(0)(n1, n2)

.
Our goal is to interpret such states in terms of the nonlinear resonances of the Chirikov theory
[1, 2]. Similarly to the classical case, we will attempt to interpret an overlap between the
resonances as an onset of chaos.

Let us construct the quantum analogy to a classical nonlinear resonance of order p : q
by constructing lines of unperturbed states tangent to the equienergy surface. Two mutually
prime integers p and q define a ray in (n1, n2) space pointing out from the origin (Fig. 6(a)).
Each unperturbed state (n1, n2) lies on a ‘resonance line’ with slope −q/p perpendicular to the
p :q ray. The point of intersection of the resonance line through (n1, n2)with the p :q ray occurs
at a position (n̄1, n̄2) =

�

qk/(p2 + q2), pk/(p2 + q2)
�

, where the positive integer k = qn1+ pn2
serves as a convenient label for the resonance line through (n1, n2). Denote the energy at the
intersection point (n̄1, n̄2) by Ē = T0k2/(p2 + q2)≡ T0n̄2, with n̄≡

q

n̄2
1 + n̄2

2.
Generally, a resonance line intersects multiple unperturbed states. If (n1, n2) is on reso-

nance line k, then so is (n1+ p j, n2−q j) for all integers j such that the constraints 0< n1 < n2
are fulfilled. Denote the unperturbed state on resonance line k that is closest to the p : q ray
by (n∗1, n∗2) = (n̄1+δp, n̄2−δq) and the other states on resonance line k by (n∗1+mp, n∗2−mq).
The increment δ can be interpreted as the quantum offset from the classical resonance point to
the lowest unperturbed quantum state on the same resonance tangent line (see Fig. 1). Note
that by this construction, each unperturbed state is uniquely identified by a pair (k, m)

(n1, n2)(k,m) = (n̄1 + (m+δ)p, n̄2 − (m+δ)q) . (7)

The energy of the unperturbed eigenstates on the k resonance line of the p : q resonance
now reads

Em = Ē + T0(p
2 + q2)(m+δ)2 . (8)

For p, q ∼ 1, the prefactor of the parabola is as small as the ground state energy. In contrast
to states on the same resonance line k, the typical energy distance between neighboring un-
perturbed energy states is n̄ times greater, and thus, a even a relatively small perturbation can
potentially couple a range of m indices in the vicinity of m = 0. The resulting eigenstates of
the perturbed system will then be represented by large, multicomponent superpositions of the
unperturbed states. Such broad eigenstates constitute quantum “nonlinear” resonances, the
quantum analogues of the classical nonlinear resonances. Indeed at the point (n̄1, n̄2), the
classical frequencies ω1,2 ≡ ∂ E(0)(n1, n2)

/∂ (ħh n1,2) obey the classical resonance condition (1)1.
In what follows, we truncate the Hilbert space to only the states lying on a particular

resonance line k. Then, let us interpret the index m in (8) as a momentum index of a fictitious
one dimensional particle on a ring of a circumference 2π. The Hamiltonian for such a fictitious
particle coincides with the conjectured expression (3), where the moment of inertia J is given

1Such a resonance is qualitatively different from the “quantum resonance” proposed in [20]. An example of that
kind a resonance in our system would be T0/(ħhω1) = p/q. While our condition (1) is, so far, completely classical,
the “quantum resonance” of [20] has no classical analogue.

6
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by ħh2/(2J ) = T0(p2+q2) and the quantum offset δ is defined above. The potential energy εV
in (3) can be inferred from the matrix elements (5)-(6) restricted to states on the resonance
line k with different m:

Vm,m′ ≡ 〈(n1, n2)(k,m)|V̂ |(n1, n2)(k,m′)〉 . (9)

Our eventual goal is to find the width of the resonance mmax that in analogy to the clas-
sical construction [1, 2] corresponds to the momentum width of the separatrix trajectory, the
boundary between the bound and unbound motion. As a first step, we consider the approx-
imation (6) valid for ∆n1,2 � N1,2 and require that the states with |m| ® mmax yield this
inequality. Substituting the definition of the quantum numbers (k, m) for unperturbed states
on the same resonance line (7) into the inequality, and assuming p ∼ q and m∼ m′, we obtain
the following condition2

mmax�
n̄

p

p2 + q2
=

k
(p2 + q2)

.

This condition for the validity of the approximation (6) has to be verified a posteriori for each
p :q resonance line k.

When the condition |m|, |m′| � n̄/
p

p2 + q2 is met, then the perturbation matrix elements
(9) simplify to

Vm,m′ =

�

0 for m−m′ = even

− 4
π2 T0

n̄2

p2+q2
1

(m−m′)2 for m−m′ = odd
.

The above are precisely the matrix elements of a potential

V(θ )
ε�1
≈ −V0(1− 2|θ |/π) , −π≤ θ < +π (10)

between the unperturbed eigenstates Φm(θ ) =
1p
2π

exp[imθ] with V0 = T0n̄2/(p2 + q2) (see
Fig. 5). Interestingly, the Hamiltonian (3) is identical to its classical counterpart obtained
using a resonant approximation (see Appendix A.2).

Physically, a quantum “nonlinear” resonance would manifest itself in appearance of bound
states of (3)—similarly to the classical case (2). Energetically, only the states for which the
kinetic energy Î2/(2J ) does not exceed the span of the potential, |V(θ = ±π)−V(θ = 0)| can
participate in such bound states. More specifically, we require that span of the unperturbed
kinetic energy defined in (8), T0(p2+q2)m2

max, be equal the span of the potential energy (10),
2T0n̄2/(p2 + q2). This condition limits the state index m to |m|® mmax, with

mmax =
p
ε

p
2

p2 + q2
n̄ . (11)

Notice that for a sufficiently small perturbation parameter ε, the necessary condition
mmax � n̄/

p

p2 + q2 for establishing (10) will be automatically satisfied for all ε that yield
ε�

p

p2 + q2. Recall that by construction, ε can not be greater than unity, and the
p

p2 + q2

border can only be reached for a combination of extreme mass ratios and small p and q.
So far, the quantum “nonlinear” resonances described above were constituting a one-to-one

copy of the classical phenomenon [1,2]. The quantum limitation emerges from a requirement
for the resonance to occupy more than one unperturbed eigenstate:

mmax ¦ (mmax)min ∼ 1 . (12)

2See Appendix B for a special case of 1:0 resonance.
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Figure 2: The inverse purity, IPR−1 ≡ (
∑

λ |〈λ|n1, n2〉|4)−1 (i.e. the inverse of the
inverse participation ratio IPR), of the eigenstates |(n1, n2)〉 of two one-dimensional
equal mass hard-core particles in a box with respect to the eigenstates |λ〉 of the same
system but with a small mass defect, ε≡ (M2 −M1)/(M2 +M1). The values of ε are
0.006 (a), 0.02 (b), and 0.06 (c). Darker squares represent the unperturbed states
destroyed by the perturbation, while the lighter one—the analogues of the classi-
cal KAM tori—are insensitive to it. Colored lines show the location of the classical
resonances, further post-selected under a requirement that a resonance must span
more than one unperturbed quantum state. Quantum post-selected resonances are
depicted for the following p : q ratios: 1 : 0 (black), 2 : 1 (green), 3 : 2 (blue), 4 : 1
(orange), 4 : 3 (indigo), 5 : 2 (yellow), 6 : 1 (red), and 5 : 4 (purple). The smaller
the sum p2 + q2, the earlier a resonance p : q appears. The quantum lower bound
on the resonance width has been chosen to be (mmax)min = 0.5. The insert shows
level statistics for a range of perturbed energies E = T0n̄2 with 37.1 < n̄ < 52.0, in
comparison with the Poisson (green) and Wigner-Dyson (blue) distributions.

Trivial as it is, such a limitation dramatically depletes the set of allowed resonances. According
to (11)-(12), in order to have any resonances on an equienergy surface of radius n̄, on the
n1 − n2 plane, one needs to have

ε¦ εfirst resonance ∼
1
n̄2

.

To the contrary, the classical analogue of our system yields the Chirikov criterion for chaos for
all ε > 0 (see Appendix A.3).

The condition for the resonances to overlap everywhere—with no gaps—and hence, ac-
cording to the Chrikov criterion, for chaos to occur is even more stringent. In the Appendix
A.3, we invoke the density of the classical resonances and then, at the final stage, apply the
quantum limitation (11)-(12). This analysis leads to the following estimate for the chaos
threshold:

ε¦ εno gaps ∼
1

n̄
2
3

∼
ħh

2
3

M
1
3

0 Ē
1
3 L

2
3

. (13)
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(a) (b)

(c) (d)

Figure 3: An example of two separate quantum nonlinear resonances, 2 : 1 (b)
and 4 : 1 (c), separated by a KAM gap (a), at ε = 0.02, overlap and fuse into
a single, broad eigenstate (d) that also comprises the already existing 1 : 0 and
3 : 2 resonances and newly emerged 4 : 3, 5 : 2, 6 : 1, and 5 : 4 ones, at
ε= 0.06 (see caption of Fig. 2 for the color scheme and for the value of (mmax)min).
Grey scale reflects contributions |〈λ|(n1, n2)〉|

2 of the individual unperturbed states
|(n1, n2)〉 to the perturbed state |λ〉. For clarity, on each of the four plots, the
grey scale spans the whole range between white and black, white correspond-
ing to zero overlap and black corresponding to the maximal value of the overlap,
maxn1, n2

|〈λ|(n1, n2)〉|
2 = 0.614, 0.315, 0.194, and0.070 for (a), (b), (c), and (d)

respectively.

Recall that above, n̄≡
q

n2
1 + n2

2 is typical state index, M0 is the unperturbed particle mass, Ē
is the system energy of interest, and L is the size of the box to which our two-body system is
confined.

As expected, minimal perturbation strength (13) for chaos to occur tends to zero if ħh is
moved to zero. Note that this conclusion seemingly contradicts an observation in [19] that in-
dicates that generic right-triangular billiards partially retain memory of the initial conditions.
More precisely, for any initial velocity orientations, there will be several hundred uniformly
distributed orientations the trajectory visits with an anomalously high probability. We conjec-
ture that Chirikov’s criterion employed in our paper is too imprecise an instrument to detect
such a subtle effect.

The above expression for the chaos threshold can be further improved (see Appendix A.3),
leading to

ε¦ εno gaps ≈
π

8
3

32
((mmax)min)

2
3

n̄
2
3

, (14)

where, again (mmax)min ∼ 1, and its precise value is a matter of convention.
Fig. 2(b) demonstrates that when ε crosses the ‘no gaps’ threshold, the quantum-post-

selected classical nonlinear resonances begin to overlap and the the level statistics undergoes
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a transition from the Poisson (Fig. 2(a)) to the Wigner-Dyson (Fig. 2(c)) type, signifying an
integrability-to-chaos transition. The quantum analogues of the classical resonances appear
as contiguous patches of low purity unperturbed eigenstates. These results were obtained
using exact diagonalization, within a 4950-state strong basis of eigenstates of an integrable
reference system, represented by two equal mass balls in a box (see [21, 22] for an overview
of the method).

Note that while the Wigner-Dyson statistics of Fig. 2(c) is reached at a perturbation strength
ε = 0.06, the Chirikov prediction for the chaos threshold, Eq. (14), computed for
(mmax)min = 0.5 (the same as at Figs. 2-3), at n̄= 44.5 (i.e. in the middle of the band used for
the level statistics) gives ε= 0.7.

An alternate perspective is depicted in Fig. 3, which shows that classical nonlinear reso-
nances can constitute a meaningful taxonomy of the perturbed eigenstates in the intermediate
between integrability and chaos regime. Interestingly, even when two or more resonances fuse
together at stronger perturbation (Fig. 3(d)), the constituent resonances allow one to predict
the location and the width of the resulting state. Intriguingly, the appearance of the eigen-
states that span significant portions of the available state space (Fig. 3(d)) can also be seen
as an approach towards the Eigenstate Thermalization [23–25] for the observables p̂1 and p̂2
(see (4a)) and functions thereof. Indeed, classically a thermal state would feature a uniform
distribution of velocity orientations. Eigenstate Themalization would then predict that every
eigenstate is spread uniformly along the equienergy surface.

4 Conclusions and outlook

In summary, for a Hamiltonian system, we constructed quantum analogues of the classical
nonlinear resonances. The set of quantum "nonlinear" resonances must be post-selected to
exclude those resonance lines containing only one quantum eigenstate or none at all. Such
post-selection leads to a chaos suppression at low energies. This suppression stands in con-
trast to Anderson localization [26] which would manifest itself in appearance of multi-state
resonances that are shorter than classically predicted; we observed no evidence for this effect
in our system. We extend the notion of the Chirikov criterion for the onset of chaos to the
quantum case and show that resonance overlap remains a sensitive predictor for the onset of
chaos even in the quantum case. The classical resonances appear as bands of low purity un-
perturbed quantum eigenstates separated by the undestroyed ones—the quantum analogues
of the KAM tori. We hope that our work can be used to advance understanding of a KAM
threshold in low-dimensional cold quantum gases [9].

In particular, following an analogy with a toy model [17], one may attempt to estimate a
quantum thermalization threshold in a one-dimensional two-mass mixture of hard-core parti-
cles [16]. We proceed as follows. We consider (i) the threshold (14), (ii) estimate ħh2n̄2/M0 L2

as a single-particle energy, (iii) associate the latter with the temperature kBT , and (iv) regard
1/L as an estimate for the one-dimensional density n1D, to obtain (v) the following threshold:

ε¦
�

ħh2n2
1D

kBM T

�

1
3

, (15)

where M is the particle mass scale, ε ∼ ∆M/M is a dimensionless mass defect, and kB is the
Boltzman constant.
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A Classical analysis of two-particle model

A.1 Set-up

Consider two one-dimensional hard-core particles of masses m̃1 and m̃2, with coordinates
x1 < x2, moving in a hard-wall box of size L (Fig. 4 (a)). The Hamiltonian for the system has
the form

H = H0 + εV , (16)

with

H0 = η
(0)(p2

1 + p2
2) , (17)

V = −η(0)(p2
2 − p2

1) , (18)

and

0≤ x1 ≤ x2 ≤ L ,

where p1,2 are the particle momenta, 1/M0 = 1/(2M1) + 1/(2M2), ε= (M2 −M1)/(M1 +M2)
and η(0) ≡ 1/(2M0). In what follows, we will assume ε� 1 and treat V as a perturbation.

One can perform a canonical transformation of the phase-space coordinates so that in the
new coordinates, the unperturbed Hamiltonian H0 describes free motion in an infinite space.
This transformation is performed in two steps.

1. At the first stage, we unfold the unperturbed motion in the variables of the configuration
space triangle 0≤ x1 ≤ x2 ≤ L to that inside the square −L ≤ ρ1,ρ2 ≤ L; see Fig. 4(b).
This is accomplished by the following canonical (thus invertible) transformation of the
phase-space coordinates:

~r = ĝ ~ρ · ~ρ ,

~p = ( ĝ ~ρ)
−1 · ~π ,

with ~ρ ≡ (ρ1,ρ2), ~r ≡ (x1, x2), ~π ≡ (π1,π2), and ~p ≡ (p1, p2). The linear transfor-
mation ĝ ~ρ is one of the eight elements of the point symmetry group of the square that
brings ~ρ to the chamber 0 < x1 < x2. The conjugate transformation ( ĝ ~ρ)−1 restricts
the new canonical momenta so that they now reside in the domain 0 < π1 < π2 <∞.
Under this transformation, the Hamiltonian becomes

H = H0 + εV ,

with

H0 = η
(0)(π2

1 +π
2
2) ,

V = −η(0) (π2
2 −π

2
1) sign(|ρ2| − |ρ1|) . (19)
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2. The second transformation unfolds the square −L ≤ ρ1,ρ2 ≤ L to an infinite two-
dimensional space; see Fig. 4(c). This one-to-many, non-invertiable transformation
emerges when one attempts to solve the unperturbed evolution of the ρ1, ρ2 coordi-
nates using the method of images:

ρ1 = x1 mod−L 2L ,

ρ2 = x2 mod−L 2L ,

~π= ~p ,

with ~p≡ (p1,p2). Here and below, a modd b ≡ a−bb a−d
b c is the modulo function with an

offset, and b. . .c is the floor function. The domain of the new momenta 0< p1 < p2 <∞
is unchanged, but now the positions ~x ≡ (x1, x2) range over the whole plane ~x ∈ R2.
Under this transformation, the Hamiltonian becomes

H = H0 + εV ,

with

H0 = η
(0)(p2

1 + p2
2) ,

V = −η(0) (p2
2 − p2

1) sign(|x2 mod−L 2L| − |x1 mod−L 2L|) . (20)

A.2 Nonlinear resonances

In these new coordinates, nonlinear resonances are identified using temporal averaging of
the perturbation V over the unperturbed motion, i.e. a constant velocity propagation along a
straight line parallel to a particular momentum vector ~p. To calculate this time average, con-
sider an unperturbed trajectory with momentum vector (p̃2, p̃1) that crosses a point
x′1 = x

′(0)
1 , x′2 = 0 (see Fig. 4(c) for notations). The temporal average of the perturbation

(20) becomes

V = −η(0) (p̃2
2 − p̃2

1) sign(|x2 mod−L 2L| − |x1 mod−L 2L|) .

The temporal average of the sign-function is related to the probability Probgrey(p̃1, p̃2, x′(0)1 ), de-

fined as follows: Consider a straight line parallel to (p̃1, p̃2) that crosses a point x′1 = x
′(0)
1 , x′2 = 0.

Choose a point on this line at random. The probability of interest becomes

Probgrey(p̃1, p̃2, x′(0)1 )≡ Probability of landing on a gray square, Fig. 4(c) .

This probability gives the temporal average through the relation

sign(|x2 mod−L 2L| − |x1 mod−L 2L|) = 2Probgrey(p̃1, p̃2, x′(0)1 )− 1 .

Below, we list the relevant results, omitting the derivation:

(i) When the ratio of momentum components

p̃2

p̃1
=

p
q

, (21)

is given by p and q, a mutually prime integers of opposite parity. Recall that the un-
perturbed trajectory given by (21) corresponds to a resonance between the two degrees
of freedom in the system, see Eq. (1). For this case, the probability depends on the
particular value of the intercept x′(0)1 :

12

https://scipost.org
https://scipost.org/SciPostPhys.12.1.035


SciPost Phys. 12, 035 (2022)

(a) We find

Probgrey =
1
2
+

1
2(p2 − q2)

,

when
x
′(0)
1 = 2l(p, q)× integer ,

where
l(p, q)≡

p+ q
p

p2 + q2
L .

(b) We find

Probgrey =
1
2
−

1
2(p2 − q2)

,

when

x
′(0)
1 = 2l(p, q)× (integer+

1
2
) .

(c) For the remaining values of x′(0)1 , the probability Probgrey is given a linear interpo-
lation between the cases (a) and (b).

Overall, the averaged perturbation assumes the form

V = −
Ē

p2 + q2
saw[

x
′(0)
1

l(p, q)
] , (22)

where saw[ξ] is function with period 2 and in the interval −1 < ξ < +1 takes the form
saw[ξ] = 1− 2|ξ|. The reference energy Ē will defined later. Remark that after a trivial
coordinate transformation x

′(0)
1 /l(p, q) = θ/π, the potential V (θ ) becomes identical to

the form (10) inferred from the quantum version of the problem.

(ii) In all other cases,

Probgrey =
1
2

,

rendering a vanishing averaged perturbation:

V = 0 .

Consider a particular pair of mutually prime opposite parity integers, p and q, and rotate
the coordinates in such a way that the “y axis” coincides with the direction governed by (21):

x′1 = ~x · ~e
′
1

x′2 = ~x · ~e
′
2 ,

p′1 = ~p · ~e
′
1 ,

p′2 = ~p · ~e
′
2 ,

with

~e′1 ≡
1

p

p2 + q2

�

+p
−q

�

~e′2 ≡
1

p

p2 + q2

�

+q
+p

�

.
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x1

x2

ρ1

ρ2

�1

�2

�′ 1

�′ 2

L

L

(a)

(b)

(c)

�′ (0)
1

(!̃1, !̃2)
θ

Figure 4: Three coordinate systems used to find and analyze classical nonlinear reso-
nances. (a) The original system of coordinates. The size of the box is L. Particle 2 is
assumed to be to the right from particle 1. (b) Unfolding the triangle to a square. The
original triangle is unfolded, using mirror reflections about the x1 = 0 cathetus and
the x1 = x2 hypothenuse, to a square of side 2L. While the coordinate space is en-
larged by a factor of 8, momenta are constrained to a 0< π1 < π2 sector. There are
no reflective walls inside the square; the outer wall, generated by the x2 = L cathetus,
remains. Grey areas correspond to positive values of the function sign(|ρ2| − |ρ1|);
this function is a part of the perturbation (19). (c) Unfolding the square to a plane.
The square of subfigure (b) is unfolded to a plane, via sequential mirror reflections
with respect to its walls. Reflective walls disappear completely. The grey areas cor-
respond to the positive values of the function sign(|x2 mod−L 2L| − |x1 mod−L 2L|);
this function is a part of the perturbation (20).

θ ≡ �′ (0)1
l(p, q) π

+π−π 0

ϵ!(θ)
2ϵ Ē

p2 + q2

Figure 5: The form of the potential that appears in the study of a nonlinear resonance
in our system.
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Now, for a sufficiently small perturbation parameter ε, motion along the ~e′2 axis can be ap-
proximated by its unperturbed counterpart:

p′2 ≈ p̄ = const ,

x′2 ≈
p̄

M0
t .

Furthermore, the perturbation V can be replaced by its time-averaged value,

V ≈ V .

The Hamiltonian becomes
H ≈ Ē +H(x′1, p′1) ,

�1

�2 θ⋆

� ≡
2m

(0) Ē

θres.(p, q)

Δθres.(p, q)

q

p

1 2 3 4 5 6 7 ⋯

1
2
3
4
5
6
7
⋮

0
0 θ⋆

2 3
2 ϵ

∼ ϵ 1
4

m(0)Ē L
ℏ

Figure 6: Steps in construction of the classical and quantum Chirikov criteria for an
offset of chaos. (a) A point of on an equienergy surface Ē in the momentum space, at
an angle θ ? to the horizontal, is shown to lie outside of a nonlinear resonance p :q. (b)
As shown in the text, the angular width of a resonance p :q, on an equienergy surface,
is proportional to 1/

p

p2 + q2. As a result, if a point θ ? belongs to a resonance p :q,
the point (q, p) must lie in a stripe, in the q, p space. The total width of the stripe
can be shown to be 2

3
2
p
ε. Classically, the stripe is infinitely long, and any point θ ?

belongs to an infinite number of allowed resonances (colored and grey points, color
scheme is the same as at Figs. 2-3. Every point on the equienergy surface turns out
to be dynamically connected to any other point there resulting in chaos. Quantum
mechanics sets an upper bound on the length of the stripe:

p

p2 + q2 ® ε1/4n̄, with
n̄ being the typical quantum number along any of thee two directions. As a result,
both the appearance of the first resonance (at ε ¦∼ 1/n̄2) and the chaos threshold
(at ε¦ 1/n̄

2
3 ) requires a finite strength perturbation.
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where

Ē ≡
p̄2

2M0
,

and

H(x′1, p′1)≡
p′21

2m(0)
+ εV (x′1) , (23)

with V (x′1) given by (22). Finally, applying a canonical transformation

θ =
x′1

l(p, q)
π ,

I =
p′1l(p, q)

π
,

we arrive at the classical analogue of the quantum resonant Hamiltonian (3), with the quantum
offset δ being neglected. Recall that the momentum I is the classical analogue of the quantum
number m, i.e. ħhm→ I (see Fig. 5).

Let us return to the form (23). Notice that the behavior of our system will crucially depend
on the magnitude of the momentum p′1. For

|p′1|> 2
p
ε

Æ

M0 Ē
p

p2 + q2
,

the motion along x′1 is unbounded, remaining close the unperturbed scenario. For

|p′1|< 2
p
ε

Æ

M0 Ē
p

p2 + q2
,

however, the one observes oscillation about the resonant ratio p/q between the momentum
components: the motion along the x1 and x2 become phase-locked. All of the above is com-
pletely analogous to the setting for a nonlinear resonance described in Chirikov’s original pa-
per [1].

A.3 Chirikov criterion

The idea of Chirikov criterion for emergence of chaos [1] is as follows. An individual resonance
constitutes a strong but yet regular perturbation of a trajectory of the underlying integrable
system. At a formal level, each resonance can be studied individually, via a truncation of the
Fourier spectrum of the perturbation to resonant terms only. Such a treatment may or may
not be self-consistent. Each resonance occupies a segment of the phase space. If every point
of the segments belongs only to the resonance in question, this resonance is regarded to be an
isolated one, and no chaos is expected. However, it it so happens that a given point belongs
simultaneously to two or more resonances, an appearance of a mobility is inferred. When
every point of the energetically allowed shell in the phase space is found to belong to two or
more resonances, a global chaos is predicted at this energy.

From the geometry depicted in Fig. 6, one deduces that the angular half-width of a reso-
nance in an equienergy surface is

∆θres.(p, q)≈
p

2
p
ε

p

p2 + q2
.
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To see this, consider a point at the equienergy surface Ē, at an angle θ ? to the horizontal. For
a resonance p : q to contain the point, it needs to lie—in the q, p space—in an interval of a
(full) length

2∆θres.(p, q)
Æ

p2 + q2 =∆r ≡ 2
3
2
p
ε ,

around a point θ ?, on a surface of a constant
p

p2 + q2. In general any allowed resonance in
a stripe of a width 2

3
2
p
ε, along the θ ? ray, in the q, p space, contains the probe point θ ? in

the momentum space.
Classically, Chirikov criterion predicts that in our system, motion is always chaotic, no

matter how small ε is. Indeed, the density of the allowed resonances where q and p are
opposite parity and mutually prime is (6/π2) × (2/3). The first factor is the probability for
two randomly chosen integers to be mutually prime [27] and the second selects the opposite
parity mutually prime pairs. Quantum Mechanics—through the condition (12) that resonance
occupies at least one quantum state—limits the “radius”

p

p2 + q2 by

Æ

p2 + q2 < rquant. = 2
1
4ε

1
4

p
n̄

p

(mmax)min

.

A threshold for the onset of chaos requires that any point θ ? on the energy surface of interest
belongs to at least one resonance. Thus

∆r rquant. ≈ 1 ,

leading to the chaos condition (13). However, for a given energy Ē, the limit rquant. tends to
infinity in the classical limit ħh→ 0. Hence, classically the system is predicted, according to the
Chirikov criterion, to be always chaotic, no matter how small the perturbation is.

B Special case of the 1:0 resonance

In the case of p = 1, q = 0, the resonance is located near the point (n1, n2) = (0, n̄). This point
requires a different approximation for the matrix elements of the perturbation. As before, the
resonant Hamiltonian reads

Ĥ = T̂ + εV(θ ) , (24)

with

T̂ = Î2

J
, (25)

where the angular momentum I is defined as I ≡ −iħh∂ /∂ θ , the moment of inertia J is given
by 1/(2J ) = T0(p2 + q2). Notice that for this resonance, the δ correction vanishes and the
unperturbed state is exactly on the resonance line.

An important change however is that now the “angular momentum” I is strictly positive,

I > 0 ,

and it can no longer interpreted as I ≡ −iħh∂ /∂ θ . This follows from the resonance line (7)
with n̄1 = 0 and p = 1, that gives

m= 1, 2, 3, . . . .

A different approximation will be required to evaluate the matrix elements of the pertur-
bation. Assume that the yet unknown resonance width mmax obeys

mmax� n̄ . (26)
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In the case p = 1, q = 0, this condition, to be verified a posteriori, allows to simplify the
perturbation matrix elements (Eqns. 5 and 6 in main text) as:

Vm,m′ ≡ 〈m, n̄|V̂ |m′, n̄〉
m, m′�n̄
≈ −

4
π2

T0
n̄2

p2 + q2

�

0 for m−m′ = even
1 for m−m′ = odd

�

§

1
(m−m′)2

−
1

(m+m′)2

ª , (27)

(see Eq. 7 for p = 1, q = 0, and n̄1 = 0).
The following can be shown however. Let us keep the potential described by (10), but re-

define the basis states as Φm(θ ) = (1/
p
π) sin[mθ]. Physically, the Hilbert space a resonance

spans is now associated with the odd function subspace of the Hilbert space of periodic func-
tions of θ ; the Hamiltonian acting on this space remains exactly the same. After some algebra,
one arrives at the matrix elements (27). The expression for the resonance width (11) remains
thus unaltered.
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