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Abstract

We derive an effective field theory for a type-II fracton starting from the Haah code
on the lattice. The effective topological theory is not given exclusively in terms of an
action; it must be supplemented with a condition that selects physical states. Without
the constraint, the action only describes a type-I fracton. The constraint emerges from
a condition that cube operators multiply to the identity, and it cannot be consistently
implemented in the continuum theory at the operator level, but only in a weaker form,
in terms of matrix elements of physical states. Informed by these studies and starting
from the opposite end, i.e., the continuum, we discuss a Chern-Simons-like theory that
does not need a constraint or projector, and yet has no mobile excitations. Whether this
continuum theory admits a lattice counterpart remains unanswered.
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1 Introduction

Fracton topological order, originally constructed in lattice spin models [1–16] and later on ex-
tended to the scope of continuum field theories [17–31], is characterized by a gapped spectrum
with quasiparticle excitations with either restricted mobility (type-I fractons) or no mobility
at all (type-II fractons), and a ground state degeneracy (GSD) that depends not only on the
topology of the manifold but also on the geometry of the lattice. This dependence on the
lattice details signals a sort of ultraviolet/infrared (UV/IR) mixing, i.e., fracton systems do
not present the usual decoupling between high and low-energy physical properties. These ex-
otic properties of fractonic systems make the problem of finding effective low-energy theories
rather interesting. Recently, continuum field theories that capture these unusual properties
have been successfully constructed for gapped systems with fracton excitations of type-I. Field
theory descriptions of gapless systems with fracton excitations of type-I and II have also been
obtained. However, a field theory description of fracton topological order of type-II – a gapped
theory with completely immobile excitations – is thus far missing.

The purpose of this paper is to construct effective field theories for gapped type-II fractons.
We follow a UV-to-IR prescription that starts from a lattice model for a type-II fracton, specif-
ically the Haah code [3]. Our construction benefits from insights from previous studies of
effective field theories inspired by the Haah code [32–34]. These constructions capture some
of its physical properties, but the resulting effective theories still contain mobile excitations
and are gapless. As we shall discuss, to ensure that all excitations are completely immobile,
it is essential that the theory contains infinitely many charge conservation laws that prevent
excitations from moving. Equivalently, the immobility is connected to the impossibility of con-
structing gauge invariant space-like line operators that represent trajectories of excitations.
The gaplessness of previous constructions comes from the Maxwell-like form of the field the-
ory; the effective theory we deduce here is instead of a Chern-Simons form and hence gapped.

One of the main difficulties in obtaining an effective field theory for type-II fracton topolog-
ical order is that, in trying to construct a fully gapped gauge theory, we immediately run into a
problem. In a fully gapped gauge theory, we can in principle construct line operators which in
turn describe trajectories of excitations. However, this is in contradiction with the most salient
feature of a type-II theory: that all the excitations are completely immobile. In our approach
we overcome this difficult. Starting from the lattice, we represent the microscopic operators
in terms of fields that are well-defined in the continuum limit and that lead to a fully gapped
gauge theory. However, the type-II effective field theory is not given exclusively in terms of the
action; it must be supplemented with a condition that selects physical states. This condition
emerges from the requirement that the continuum operators properly reproduce the features
of the lattice ones. More precisely, this condition implements the property that the product of
all spin operators contained in a cube operator (see Fig. 1 below) reduces to the identity. As we
shall discuss, this feature of the lattice cannot be consistently implemented in the continuum
theory at the operator level, but only in a weaker form, in terms of matrix elements of physical
states, i.e., as a criterion for selecting physics states. By itself, the action we have obtained
describes a type-I fracton topological order, since the associated Hilbert space contains mobile
excitations. It is only inside the physical subspace that the type-II fracton properties manifest.
In this sense, the type-II fracton character is embedded into a type-I theory.
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Figure 1: Cube operators of the Haah code. The notation indicates the product of
Pauli operators in each site, e.g., Z Z ≡ σZ ⊗ σZ . The γI are the associated Dirac
operators. The Γ (I ,α) of each cube are equivalent to γI but needed for a consistent
effective theory. The α index is supressed in the figure for simplicity.

2 Haah Code and Its Effective Field Theory

The Haah model is defined on a the 3-dimensional cubic lattice Λ [3]. Its Hamiltonian is
written in terms of two types of cube operators, C (1)x and C (2)x :

HHaah = −
∑

x∈ Λ∗
C (1)x −

∑

x∈ Λ∗
C (2)x , (1)

where x labels the cubes (or sites in the dual cubic lattice Λ∗). The cube operators are con-
structed as products of two Pauli operators at each of the eight corners of the cube, as depicted
in Fig. 1.

One can construct the corresponding low-energy effective theory by following the proce-
dure presented in [35]. To this end, we write the cube operators in the Dirac basis. Consider
the set of anti-commuting operators γI , I ∈ S(2), with S(2) = {12, 22, 32, 01,03}, where the
notation i j represents the tensor product σi ⊗σ j , with σ0 ≡ 1. In terms of this basis of Dirac
γI matrices, the cube operators become

C (1)x =
�

γ1γ5
�†

x− x̂− ŷ−ẑ

�

γ4
�†

x− x̂+ ŷ−ẑ

�

γ4
�†

x+ x̂− ŷ−ẑ

�

γ4
�†

x− x̂− ŷ+ẑ

×
�

γ2γ3
�

x+ x̂+ ŷ−ẑ

�

γ2γ3
�

x− x̂+ ŷ+ẑ

�

γ2γ3
�

x+ x̂− ŷ+ẑ 1x+ x̂+ ŷ+ẑ , (2)

and

C (2)x =1x− x̂− ŷ−ẑ γ
5
x− x̂+ ŷ−ẑ γ

5
x+ x̂− ŷ−ẑ γ

5
x− x̂− ŷ+ẑ

×
�

γ1γ2
�†

x+ x̂+ ŷ−ẑ

�

γ1γ2
�†

x− x̂+ ŷ+ẑ

�

γ1γ2
�†

x+ x̂− ŷ+ẑ

�

γ3γ4
�†

x+ x̂+ ŷ+ẑ . (3)

Our choice of conjugation of certain operators in both cubes is completely innocuous since all
the lattice operators are Hermitian. This is simply a convenience for the description in terms of
continuum fields, leading to more symmetrical forms for the T -vectors that will be constructed
below. Which operators are conjugated or not reflects assignments of charges at the corners
of the cube. According to the choices in Fig.1, under an inversion about the center, the charge
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arrangement of the cube C (1) is mapped into the one of the cube C (2) and vice-versa. This
symmetry mimics the self-duality between the cube operators.

We then follow the procedure described in [35] and represent the Dirac matrices as

γ(I)x ≡ exp
�

i t(I)a KabAb(x)
�

, (4)

where a, b = 1, ..., 4 (We need four independent fields Aa to realize a four dimensional repre-
sentation of the Clifford algebra). Commutation relations between the fields Aa(x) are set in
order to reproduce the algebra of Dirac matrices,

[Aa(x), Ab(x
′)]≡ iπ(K−1)abδx,x′ . (5)

This, in turn, implies that the matrix K and the set of vectors t(I)a must satisfy

t(I)a (K
>)ab t(J)b =

¨

1 mod 2 , I 6= J ,

0 mod 2 , I = J ,
(6)

to ensure that the representation in (4) reproduces properly the anticommutation relations
of the γ(I)x matrices. For an antisymmetric matrix K , the condition in second line is satisfied
exactly (not mod 2). A simple choice for K and t(I)a is Kab ≡ +1 if a < b and the vectors
t(I)a , I = 1, . . . , 5 defined as t(I)a ≡ δ

I
a for I = 1, . . . , 4 and t(5)a defined so that the neutrality

condition
∑5

I=1 t(I)a = 0 is satisfied (this is equivalent to γ1γ2γ3γ4γ5 = 1). These vectors
identify the elements of S(2), and we refer to them as the principal basis.

The conditions (6) imply that the fields Aa(x) in (4) are U(1) compact, since the exponen-
tial is unchanged under the shifts

Aa→ Aa + 2π
3
∑

J=1

t(J)a mJ , mJ ∈ Z . (7)

Under these shifts the exponential changes by the factor

exp

�

2π i
3
∑

J=1

t(I)a Kab t(J)b mJ

�

, (8)

which is equal to one due to (6).
To each corner of the cubes we assign a Γ (I ,α) operator

Γ (I ,α) ≡
�

γ1
�T (I ,α)1

�

γ2
�T (I ,α)2

�

γ3
�T (I ,α)3

�

γ4
�T (I ,α)4 , (9)

where the index α = 1, 2 indicates whether the operator belongs to either C (1) or C (2), and
T (I ,α) can be written as a linear combination of the principal basis vectors. They have integer
entries, which are defined only mod 2. (The freedom mod 2 arises from the fact that (γI)2 = 1.)
We stress that the identification between T (I ,α) and Γ (I ,α) is unique on each cube.

The microscopic description has further properties that will be essential to arrive at a con-
sistent low-energy effective field theory. These properties constrain the allowed T -vectors in
the continuum theory 1. They are summarized as follows:

1While the condition that the vectors t(I) are defined mod 2 are sufficient to ensure the proper commu-
tation relations between Dirac matrices, the gauge invariance in the continuum requires that conditions like
T (I ,α)a Kab T

(J ,β)
b = 0 are satisfied exactly, where T (I ,α)a are linear combinations of T (I ,α). These relations cannot be

satisfied by the principal basis vectors t(I)a , but can be adjusted with t(I) mod 2. This is the reason we are forced
to introduce the operators (9).
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(i) The Γ (I ,α) operators are equivalent to the γI , i.e.,

T (I ,α)a = t(I)a mod 2 and
5
∑

I=1

T (I ,α)a = 0 . (10)

This condition allows for the entries of T (I ,α) to differ from the entries of t(I) up to the
addition of an even integer, but the sum of them satisfies the neutrality condition exactly
(not only mod 2), as the principal basis does.

(ii) The cube operators commute, [C (α)x , C (β)x′ ] = 0, for all α,β = 1, 2, and x, x′. The
commutation constrains the allowed T -vector to obey a set of relations. For example,
the commutation relation [C (1)x , C (1)x− x̂+ ŷ+ẑ] = 0 implies that

�

T (2,1) + T (3,1)
�

K T (4, 1) = 0
mod 2. There are in total 12 such relations that can be read systematically from Fig.(1)
and are listed explicitly in Appendix A.

(iii) The eight operators on the corners of each cube multiply to the identity. This con-
straint is equivalent to requiring that the T -vectors at the corners of the cubes in Fig.(1)
add to zero mod 2:

−T (1,1)
a − T (5,1)

a + 3
�

T (2, 1)
a + T (3,1)

a − T (4,1)
a

�

= 0 mod 2 ,

−T (3,2)
a − T (4,2)

a + 3
�

T (5, 2)
a − T (1,2)

a − T (2,2)
a

�

= 0 mod 2 . (11)

Demanding that the conditions (ii) resulting from the commutation of the cubes vanish exactly
(not only mod 2) ensures gauge invariance of the low-energy effective theory, similarly to the
case of the type-I fractons studied in [35]. The following choices satisfies the conditions (i)
and (ii):

T (1,1)
a =







1
0
0
0






, T (2,1)

a =







0
1
0
0






, T (3,1)

a =







0
0
−1
0






, T (4,1)

a =







0
0
0
1






, T (5,1)

a =







−1
−1
1
−1






, (12)

and

T (1,2)
a =







1
0
0
0






, T (2,2)

a =







0
−1
0
0






, T (3,2)

a =







0
0
1
0






, T (4,2)

a =







0
0
0
1






, T (5,2)

a =







−1
1
−1
−1






. (13)

However, these vectors do not satisfy condition (iii) exactly, but only mod 2. Therefore, we
cannot implement (iii) at the operator level2, instead we impose the conditions in (11) as
constraints in the Hilbert space of the continuum theory. The specific form of the T -vectors is
not unique. Other choices for these vectors are allowed as long they are compatible with con-
ditions (i) and (ii). The constraint imposed by condition (iii) would also change accordingly,
but there would not be any physical consequence in the continuum description. In this sense,
there exists an equivalence class of T -vectors that defines a consistent effective theory.

The exponential map (4) allows us to write the cube operators in the continuum limit,

C (α)x ≡ exp
�

i T (1,α)
a Kab Ab

�

exp
�

i
�

T (1,α)
a Kab d1 Ab + T (2,α)

a Kab d2 Ab

��

+ h.c , (14)

2In fact, conditions (i), (ii) and (iii) are mutually exclusive and cannot be simultaneously satisfied. Any set of
T -vectors obeying two of the three conditions automatically breaks the third one.
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where the derivatives di are defined as

�

d1
d2

�

≡
�

1
2

�

∂ 2
x + ∂

2
y + ∂

2
z

�

∂x ∂y + ∂y ∂z + ∂x ∂z

�

. (15)

The charge vectors T (i,α)a are expressed as a combination of the T (I ,α)a . They are given explicitly
by

T (1,1) =







0
4
−4
−2






, T (2,1) =







0
0
0
2






and T (1,2) =







−6
6
−4
−4






, T (2,2) =







2
−2
0
0






. (16)

We remark that T (1,α) K T (2,α) = 0 and hence the terms in the exponentials in (14) commute.
The term in the first exponential in (14) originates from the product of the eight operators

in the corners of the cubes in condition (iii) above. As the conditions in (11) cannot be enforced
to vanish exactly in the continuum theory, we impose them in terms of matrix elements. In
other words, we select the physical states via the conditions

T (1,α)
a Kab Ab |phys〉= 0 , α= 1, 2 . (17)

We shall consider the deformed (enlarged) theory obtained by omitting the first exponential
in (14), and recover the physical subspace by means of (17). At the first sight, the selection
rule (17) does not define consistently a subspace which is closed under time evolution, since
it does not commute with the full Hamiltonian. However, we will use it only after the theory
is properly projected onto the ground state (in the low-energy effective theory), where the
closure under time evolution is trivial.

We shall assign a charge q(α) for each cube excitation (corresponding to the eigenvalue
c(α)
~x = −1), i.e, c(α)

~x = −1⇔ q(α). As the eigenvalues of the cube operators are ±1, then the
charges in the continuum are defined q(α) mod 2q(α). Note that since q(α) is not necessarily
unit, we need to impose that the charge is defined mod2q(α) to reproduce the Z2 charge of
the lattice model. We will discuss the excitations of the continuum action in more detail in
section(3.2) .

The redefined cube operators can be written as

C (α)x = exp
�

iKab D(α)a Ab

�

+ h.c , (18)

where

D(α)a ≡
2
∑

i=1

T (i,α)a di . (19)

In the continuum limit the Hamiltonian of the enlarged theory can be written as

H ∼ −
∑

α

∫

d3 x cos
�

D(α)a Kab Ab

�

. (20)

The ground state corresponds to the situation where all the cosines are maximized. This can
be enforced through a Lagrange multiplier A(α)0 for each of the cubes. We thus arrive at the
enlarged low-energy effective theory

S =

∫

d3 x d t
�

1
2π

Aa Kab ∂0 Ab +
1
π

A(α)0 Kab D(α)a Ab

�

. (21)
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The first term of the action gives the equal-time commutation relation (5) while the second one
corresponds to the ground state constraint. We recall that the low-energy physical subspace is
obtained upon using (17). The action (21) is invariant under the gauge transformations

A(α)0 → A(α)0 + ∂0 ζ
(α) , (22)

Aa→ Aa +D(α)a ζ(α) , (23)

provided that Kab D(α)a D(β)b = 0, which follows directly from the requirements in (ii) above.
In the following we shall discuss some properties of the effective field theory.

3 Aspects of the effective field theory

3.1 Level Quantization

The matrix K entering the low-energy effective action (21) plays the role of a level, just as in
the case of usual Chern-Simons theories. A natural question is whether it carries some notion
of quantization. Coming from the lattice, the elements of the matrix K were chosen to be
quantized. This was just a simple solution of the conditions in (6). Of course, the choice
of t(I)a and K is not unique. Therefore, we can think of the conditions in (6) as providing
certain quantization conditions for the elements of the matrix K , given a set of vectors t(I)a .
For example, with the vectors t(I)a in the principal basis, the conditions (6) translate into the
following quantization condition for the elements of the matrix K:

KI J = odd , I 6= J and I , J = 1, . . . , 4 . (24)

The next natural question is whether one could extract some notion of quantization exclu-
sively from the effective theory (21) without making reference to the lattice, relying only on
the possible existence of certain types of large gauge transformations. While a positive answer
might be expected in view of the fact that the level is quantized in our case (from the lattice),
and also from the analogy with usual Chern-Simons theory, we could not find a way to show
level quantization directly from the continuum theory.

3.2 Excitations and Their Immobility in the Effective Field Theory

We can use the effective action (21) to study the low-energy properties of the Haah code after
proper projection onto the physical subspace. We consider low-lying excitations parametrized
by currents and couple them to the gauge fields according to

∫

d3 x d t[J (α)0 A(α)0 +Ja Aa], which
is gauge invariant provided that the current is conserved

∂0 J (α)0 =D(α)a Ja . (25)

Note that the spatial currents Ja have no flavor index, we interpret that as meaning that
the excitations in each cube are not completely independent from each other. This mimics a
feature of the lattice model. For example, action of a IY operator on a given site produces a
tetrahedral configuration on each cube (see Fig.1 for reference). This is incorporated in the
effective theory through (25) with Ja carrying no flavor index. This continuity relation also
leads to infinitely many conserved charges [32]

Q(α)f =

∫

d3 x f (x) J (α)0 , (26)
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provided that D(α)a f (x) = 0. Note that the trivial case f = constant gives the common notion
of a global charge. Below we show that the projection onto the physical Hilbert space ensures
the immobility of all excitations (in Appendix B, we show that in the unconstrained Hilbert
space there is dipole mobility along the (111) direction). To properly project onto the physical
subspace consider the equation of motion of A(α)0 , which provides a “flux-attachment" relation:

J (α)0 =
1
π

Kab D(α)a Ab . (27)

We can use this relation to examine the corresponding conservation laws inside the physical
subspace. Denoting the physical states generically as |phys〉, the relation (27) leads to

d
d t

Q(α)f |phys〉 =
∫

d3 x f (x)
1
π

Kab

�

T (1,α)
a d1 + T (2,α)

a d2

�

∂0Ab |phys〉

=

∫

d3 x f (x)
1
π

Kab T (2,α)
a d2 ∂0Ab |phys〉 , (28)

where we have used the constraint T (1,α)
a Kab Ab |phys〉 = 0. Therefore, inside the physical

subspace, the function f (x) is less restricted than in the full Hilbert space, since it only needs
to satisfy d2 f = 0, instead of d1 f = d2 f = 0. This, in turn, implies a more general set
of conserved charges and consequently more restrictions on the mobility of the excitations,
leading ultimately to the complete immobility of all quasiparticles.

To highlight the difference between the constrained and unconstrained cases, let us first
consider solutions of d1 f = d2 f = 0, which can be generically writen as f = (c1 l + c0) h(u , v),
where h(u, v) is a harmonic function and the coordinates (l, u, v) are explicitly given by

l̂ ≡
1
p

3
( x̂ + ŷ + ẑ) , û≡

1
p

2
( ŷ − ẑ) , v̂ ≡

1
p

6
(−2 x̂ + ŷ + ẑ) . (29)

For example, the density J (α)0 = q(α)δ(u)δ(v) [δ(l − l0(t))−δ(l − l1(t))] is such that for any

function f of the form above, Q(α)f = c1 (l0− l1)q(α) h(0, 0) is conserved provided that l0− l1 is

constant. The density J (α)0 corresponds to a dipole moving along the (111) direction. There-
fore, we find that the restrictions d1 f = d2 f = 0 allow for mobile excitations.

In contrast, when the condition d1 f = 0 is no longer required, the space of solutions for f
is much less restricted (e.g., not forced to have at most linear dependence on l). For example,
f = c1 x implies dipole conservation along the (100) direction, and similarly for dipole conser-
vation along (010) and (001) directions with f = c2 y and f = c3 z. The function f = c11 x2

implies conservation of one of the components of the quadrupole tensor. In appendix (C) we
construct multinomial solutions of arbitrary order. These infinitely many conservation laws is
what prevents mobility of excitations.

The mobility (or lack of thereof) can be understood in an equivalent way by means of
gauge invariant line operators. In the full Hilbert space with both d1 and d2 operators, it is
always possible to build a line operator W = exp

�

i
∫

C Ãa

�

, using a linear combination Ãa of the
gauge fields, where C is a path along the (111) direction. For example, the linear combinations
Ã1 = −

1
3(A1 +

2
3A2 +

2
3A3) and Ã2 =

2
3(A2 +

1
2A3 +

1
2A4) transform as

δÃ1 = ∂
2
l ζ
(2) and δÃ2 = ∂

2
l ζ
(1) , (30)

so that the corresponding line operators are gauge invariant. They capture the motion of
dipoles along the l-direction. Inside the physical subspace we no longer have the d1 operator
and, hence, is not possible to build these line operators. The only gauge invariant line operators
are along the time direction (exp i

∫

t A(α)0 ), describing immobile excitations.
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Next, we study the local operators that create excitations inside the physical subspace.
Consider a generic local operator eiTKA(x′), where T corresponds to an integer-valued vector
to be determined under the condition that the resulting state lies inside the physical subspace.
This is met provided

T (1,α) K T= 0 . (31)

In this way, the state
|T〉phy ≡ eiTK A(x′) |0〉phy (32)

is physical. Consider a general vector T with T= (n1, n2, n3, n4), with na ∈ Z. The conditions
in (31) imply

2n1 + 6n2 + 6n3 = 0 and 2n1 + 2n2 + 4n3 − 4n4 = 0 . (33)

Thus, any operator characterized by a nontrivial vector of the form

T= (−3n+ 3m, −n−m, 2n, m) , n , m ∈ Z (34)

is responsible for creating excitations in the physical subspace. Let us construct them explicitly.
To this end, we compute the commutator

�

J (α)0 (x) , eiTK A(x′)
�

=
2
∑

I=1

(T (I ,α) K T) eiTK A(x′)dI δ(x− x′)

= (T (2,α) K T) eiTK A(x′)d2δ(x− x′) . (35)

Let us now determine the charge structure created by this local operator. By starting with
a state |0〉phy with no charge content, i.e., J (α)0 (x) |0〉phy = 0, the charge content of the state
|T〉phy is

J (α)0 (x) |T〉phy = q(α)d2δ(x− x′) |T〉phy , (36)

with the charges q(α) defined as
q(α) ≡ T (2,α) K T . (37)

For the two flavors of charges, one obtains

q(1) = 4(n−m) and q(2) = 4(m− 2n) . (38)

We see that operators characterized by vectors T with m− 2n = 0 create physical excitations
of flavor α= 1, while operators with n−m= 0 produce excitations of flavor α= 2. Operators
with both n−m 6= 0 and m− 2n 6= 0 produce excitations of the two flavors simultaneously.

3.3 Introducing Dynamics

In this section we consider dynamical terms in the the low-energy effective field theory (21)
to study the spectrum of the excitations. We start by adding to the action an appropriate
Maxwell-like term,

S =

∫

d t d3 x
�

1
2gE

F0a F0a +
1

4gM
F (α)ab F (α)ab +

1
2π

Kab Aa ∂0 Ab +
1
π

A(α)0 Kab D(α)a Ab

�

, (39)

where F0a ≡ ∂0 Aa −D(α)a A(α)0 , F (α)ab ≡D(α)a Ab −D(α)b Aa, and gE and gM are dimensionful cou-
plings. We have chosen this particular form for the kinetic terms for simplicity, but in principle
we could consider more general terms, for example, F0aMabF0b, involving an arbitrary matrix
M .
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A simple way to determine the spectrum of the excitations is to find the location of the
poles of the propagator. To do this, we first fix the gauge A(α)0 = 0, which is allowed because of
the existence of the two gauge degrees of freedom ζ(α). With this gauge choice, the equations
of motion for the Aa fields read

�

−
1
gE
δmb ∂

2
0 +

1
gM

�

D(α)i D(α)i δmb −D(α)m D(α)b

�

+
k
π
εmb∂0

�

Ab = 0 . (40)

Note that we have assumed an arbitrary level k and re-wrote the K-matrix as k εab, where the
εab is a 4× 4 anti-symmetric matrix with the elements in the upper triangle all equal to one.
In momentum space, the equations of motion become

�

1
gE
δmbω

2 −
1

gM

�

P2δmb −P(α)m P(α)b

�

+
ikω
π
εmb

�

Ab = 0 , (41)

where we have defined P(α)m ≡ T (I ,α)m pI , with p1 ≡ (p2
x + p2

y + p2
z )/2 and

p2 ≡ (px py + px pz + py pz). The corresponding propagator obeys ∆mb Gbc = δmc , i.e.,
Gbc =

�

∆−1
�

bc . The poles of Gbc then follow from det(G) = 0, which in general is a very
complicated function of ω, px , py , pz . Since we are mostly interested in unveiling the gap
for the excitations, we can focus on the limit px , py , pz → 0, where the determinant det(G)
simplifies dramatically. In this limit the poles of G can be obtained by solving the following
quartic equation

ω4 − 6
�

k
π

�2

g2
Eω

2 +
�

k
π

�4

g4
E = 0 , (42)

which leads to the following mass gaps

ω1 =
kgE

π

�

1+
p

2
�

and ω2 =
kgE

π

�

−1+
p

2
�

. (43)

In the limit where we have the pure Chern-Simons-like action, gE , gM →∞, the gap becomes
infinitely large, which shows that the effective action (21) is fully gapped.

It is interesting to trace back the physical origin of the two independent excitations we
have found. This comes from the number of physical components of the gauge fields, namely,
we have two pairs of fields, with each pair giving rise to an independent excitation. This is
a direct reflection of the number of degrees of freedom per site of the lattice model, where
the local Hilbert space accommodates two spin-1/2 degrees of freedom. While the specific
values obtained in (43) are tied to the choice F0aF0a, the fact that there are two excitations is
independent of the form of the kinetic Maxwell-like term.

To further discuss this point, it is instructive to pursue a quantum mechanical analogy.
The action (39) can be transformed into a simple quantum mechanical problem by studying
field configurations depending only on time, Aa→

1
V 1/2 Aa(t), with V the spatial volume of the

system. With this, the action (39) reduces to

S =

∫

d t
�

1
2gE

Ȧ2
a +

k
2π
εab Aa Ȧb

�

. (44)

With a simple change of basis we can split the action into two independent problems, with
each one involving a pair of fields. This is achieved through an orthogonal transformation
A→Q A, where the matrix Q is given by

Q =















0 − 1p
2

0 1p
2

1+
p

2

2
p

3+2
p

2
−1

2
1−
p

2

2
p

3−2
p

2
−1

2

2+
p

2

2
p

3+2
p

2
0 2−

p
2

2
p

3−2
p

2
0

1+
p

2

2
p

3+2
p

2

1
2

1−
p

2

2
p

3−2
p

2

1
2















, (45)
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satisfying QQ> = 1 and detQ = 1. The effect of this transformation in the action (44) is to
leave the matrix ε in a block-diagonal form

Q εQ> =









0 1+
p

2 0 0
−(1+

p
2) 0 0 0

0 0 0 −1+
p

2
0 0 −(−1+

p
2) 0









. (46)

In the new basis, the action (44) splits into two independent Landau problems with different
magnetic fields,

S = S1 + S2 , (47)

where

S1 ≡
∫

d t
2
∑

i=1

�

1
2gE

Ȧ2
i +

k(1+
p

2)
2π

εi jAi Ȧ j

�

, (48)

and

S2 ≡
∫

d t
2
∑

i=1

�

1
2gE

Ȧ2
i +

k(−1+
p

2)
2π

εi jAi Ȧ j

�

, (49)

with εi j the two-dimensional antisymmetric index defined by ε12 ≡ 1. The gap between the
Landau levels is of the form ω = B/m, where B is the magnetic field and m is the mass of
the particle. From (48) and (49) we can identify m1 = m2 ≡ g−1

E , B1 ≡ (1 +
p

2)k/π and
B2 ≡ (−1+

p
2)k/π, so that the corresponding gaps between the Landau levels are

ω1 =
gE k
π

�

1+
p

2
�

, ω2 =
gE k
π

�

−1+
p

2
�

, (50)

matching precisely the result obtained from the poles of the propagator. Therefore, we see
that the effective field theory does capture properly the spectrum of low-lying excitations of
the lattice model.

4 Discussions

We have been able to derive a low-energy effective field theory for the Haah code directly from
the lattice model. This is done through a map that connects the spin operators of the lattice to
field operators that are well-defined in the continuum limit. This procedure was developed in
previous works in the context of type-I fractonic systems, like the X-cube model [36] and the
Chamon code [35], and it is extended here to the case of a type-II fractonic system.

The effective theory is a 3+1 dimensional quadratic gauge theory of the Chern-Simons-
type and hence fully gapped. The action is supplemented with a condition that is responsible
for selecting physical states. This condition emerges from the representation of the identity
in the continuum, which is not automatic when the lattice operators are represented in terms
of field operators. Outside the physical subspace the theory contains mobile excitations and
thus corresponds to a type-I fractonic theory. However, inside the physical subspace, all the
excitations are completely immobile due to an infinite number of charge conservation laws
that effectively takes place in this subspace. The type-II fractonic character is embedded into
a type-I fractonic theory.

The physical properties inside the physical subspace are dictated by the operator
d2 =

∑

i jk

�

�εi jk
�

�∂ j∂k. In particular, the infinite set of conserved charges constructed out of
functions that are annihilated by d2 is an essential ingredient to ensure that all excitations
are completely immobile. In this way, it is natural to ask whether it is possible to construct a
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consistent effective theory involving a single derivative operator like d2, without the need of
any extra condition for selecting physical states. The action would be of the form (21) with
T (1,α)

a = 0 in (19) and T (2,α)
a satisfying T (2,α)

a Kab T
(2,β)

b = 0 (for gauge invariance). This
would be a pure type-II fracton theory, in the sense that it is not embedded into a type-I one.
Reversing the steps to obtain the microscopic model from the effective theory is possible, al-
though it does not lead to a consistent lattice model since the dictionary between Γ (I ,α) and
T (I ,α) is not one-to-one, i.e., two distinct T (I ,α) are mapped into the same Γ (I ,α). Thus, it is
possible to have a type-II fracton theory in the continuum with no obvious lattice model. The
details can be found in the Appendix D. Whether there exists a lattice model for this pure
type-II fracton continuum theory remains an open question.

5 Acknowledgements

We thank Guilherme Delfino for helpful discussions. This work is supported by the Brazilian
agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under grant
number 88881.361635/2019-01 (W. F.), the CNPq grant number 311149/2017-0 (P. G.), and
the DOE Grant No. DE-FG02-06ER46316 (C .C). W. F. acknowledges support by the Condensed
Matter Theory Visitors Program at Boston University.

A Gauge Invariance

In the main text we comment that the gauge invariance property of the effective theory emerges
from the fact that the lattice cubic operators commute among themselves. This property holds
at any order of the expansion of cube operators, because it relies only on the T -vector structure.
To see that, note that the differential operators can be written in general as

D(α)a =
7
∑

I=0

T (I ,α)a

∑

j

1
j!

 

∑

b=x , y, z

nI
b∂b

! j

, (51)

where the vectors nI
b =

�

nI
x , nI

y , nI
z

�

correspond to the corners of the cube. These positions
are taken by considering that the origin sits at the center of the cube, namely,

n1
b =(−1,−1,−1) , n2

b = (−1,+1,−1) , n3
b = (+1,−1,−1) , n4

b = (−1,−1,+1) ,

n5
b =(+1,+1,−1) , n6

b = (−1,+1,+1) , n7
b = (+1,−1,+1) , n8

b = (+1,+1,+1) . (52)

This allows us to write the derivatives as

D(1)a =
∑

j

1
j!

�

− T (4,1)
a

�

�

−∂x + ∂y − ∂z

� j
+
�

∂x − ∂y − ∂z

� j
+
�

−∂x − ∂y + ∂z

� j�

�

T (2,1)
a + T (3,1)

a

�

�

�

∂x + ∂y − ∂z

� j
+
�

−∂x + ∂y + ∂z

� j
+
�

∂x − ∂y + ∂z

� j�
(53)

−
�

T (1,1)
a + T (5,1)

a

� �

−∂x − ∂y − ∂z

� j
�

,

D(2)a =
∑

j

1
j!

�

T (5,2)
a

�

�

−∂x + ∂y − ∂z

� j
+
�

∂x − ∂y − ∂z

� j
+
�

−∂x − ∂y + ∂z

� j�

−
�

T (1,2)
a + T (2,2)

a

�

�

�

∂x + ∂y − ∂z

� j
+
�

−∂x + ∂y + ∂z

� j
+
�

∂x − ∂y + ∂z

� j�
(54)

−
�

T (3,2)
a + T (4,2)

a

� �

∂x + ∂y + ∂z

� j
�

.
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We can put this in a more convenient form by using the identity

(x + y + z)n =
∑

k1+k2+k3=n

�

n
k1, k2, k3

�

xk1 yk2 zk3 . (55)

Then the derivatives become

D(1)a =
∑

j

∑

k1+k2+k3= j

�

j
k1, k2, k3

�

1
j!

�

− T (4,1)
a

�

(−1)k1+k2 + (−1)k2+k3 + (−1)k1+k3
�

�

T (2,1)
a + T (3,1)

a

� �

(−1)k1 + (−1)k2 + (−1)k3
�

−
�

T (1,1)
a + T (5,1)

a

�

(−1)k1+k2+k3

�

∂ k1
x ∂

k2
y ∂

k3
z , (56)

D(2)a =
∑

j

∑

k1+k2+k3= j

�

j
k1, k2, k3

�

1
j!

�

T (5,2)
a

�

(−1)k1+k2 + (−1)k2+k3 + (−1)k1+k3
�

−
�

T (1,2)
a + T (2,2)

a

� �

(−1)k1 + (−1)k2 + (−1)k3
�

−
�

T (3,2)
a + T (4,2)

a

�

�

∂ k1
x ∂

k2
y ∂

k3
z . (57)

To proceed, we have to analyze the product KabD(α)a D(β)b . The product involving operators of
the same type, i.e., α = β , automatically vanishes due to the anti-symmetry of the K matrix.
The product that can be in principle nonzero is the one involving D(1)a and D(2)b . To analyze
this, we can focus the attention only on the T -vector structure that arises from this product,
which can be written as

−

� 3
∑

m=1

(−1)km

�� 3
∑

n=1

(−1)qn

�

�

T (2,1)
a + T (3,1)

a

�

Kab

�

T (1,2)
b + T (2,2)

b

�

−

� 3
∑

m=1

�

�εmi j
�

� (−1)ki+k j

�� 3
∑

n=1

|εnpr | (−1)qp+qr

�

T (4,1)
a KabT (5,2)

b

+

� 3
∑

m=1

(−1)qm+
∑

i ki

�

�

T (1,1)
a + T (5,1)

a

�

Kab

�

T (1,2)
b + T (2,2)

b

�

+

� 3
∑

m=1

�

�εmi j
�

� (−1)qi+q j

�

T (4,1)
a Kab

�

T (3,2)
b + T (4,2)

b

�

−

� 3
∑

m=1

(−1)km

�

�

T (2,1)
a + T (3,1)

a

�

Kab

�

T (3,2)
b + T (4,2)

b

�

−

� 3
∑

m=1

�

�εmi j
�

� (−1)qi+q j+
∑

a ka

�

�

T (1,1)
a + T (5,1)

a

�

KabT (5,2)
b . (58)

Now we have to check the situations where we have products between even (odd) dif-
ferential operators. The parity of D is encoded in the sums

∑

i ki and
∑

i qi . When we
have the situation where both D’s are even (odd) it amounts to analyze the cases in which
∑

i ki = even (odd) and
∑

i qi = even (odd). Let us analyze the even-even case, which can
be achieved in two different ways: (i) (k1, k2, k3) = even; (ii) (ki , k j) = odd, i 6= j and
km = even, m 6= i, j (similarly for the q’s). Therefore, the coefficients in (58) are such that
the remaining combinations of the products between the T -vectors can be cancelled using the
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commutation relations among the cubes C (1) and C (2),
�

T (2,1)
a + T (3, 1)

a

�

Kab T (5,2)
b = 0 ,

T (4,1)
a Kab

�

T (1,2)
b + T (2,2)

b

�

= 0 ,
�

T (1, 1)
a + T (5,1)

a

�

Kab

�

T (3, 2)
b + T (4,2)

b

�

= 0 ,
�

T (2,1)
a + T (3,1)

a

�

Kab

�

T (1,2)
b + T (2,2)

b

�

+ T (4,1)
a KabT (5,2)

b = 0 ,
�

T (1,1)
a + T (5,1)

a

�

Kab

�

T (1,2)
b + T (2,2)

b

�

+ T (4,1)
a Kab

�

T (3,2)
b + T (4,2)

b

�

= 0 ,
�

T (2,1)
b + T (3,1)

b

�

Kab

�

T (3,2)
a + T (4,2)

�

+
�

T (1,1)
a + T (5,1)

a

�

KabT (5,2)
b = 0 . (59)

For completeness, we also introduce the commutation relations between cubes of the same
type

T (4,1)
a Kab

�

T (2,1)
b + T (3,1)

b

�

= 0 , T (5, 2)
a Kab

�

T (1,2)
b + T (2, 2)

b

�

= 0 ,

T (4, 1)
a Kab

�

T (1,1)
b + T (5,1)

b

�

= 0 ,
�

T (3, 2)
a + T (4,2)

a

�

Kab T (5,2)
b = 0 ,

�

T (2,1)
a + T (3, 1)

a

�

Kab

�

T (1,1)
b + T (5, 1)

b

�

= 0 ,
�

T (1, 2)
a + T (2,2)

a

�

Kab

�

T (3, 2)
b + T (4,2)

b

�

= 0 . (60)

By symmetry the odd-odd case is the same. Therefore, we obtain that for a theory with
differential operators with the same parity, the condition that ensures gauge invariance under
the transformations

Aa→ Aa +D(α)a ζ(α) ,

A(α)0 → A(α)0 + ∂0 ζ
(α) , (61)

is given by Kab D(α)a D(β)b = 0 .
A similar relation can be obtained when the differential operators possess different parities,

i.e., one derivative is odd and the other is even. The difference now is that the coefficients in
(58) of the odd derivatives will acquire a relative sign, such that (59) can no longer be used
to cancel all the terms in (58). This is because the gauge invariance for these theories with
derivatives possessing different parities demands that we introduce an operator D̄(α)a , which
differs from D(α)a by a minus sign on every odd term. For these theories, the gauge invariance
under the transformations

Aa→ Aa + D̄(α)a ζ(α) ,

A(α)0 → A(α)0 + ∂0 ζ
(α) , (62)

follows from the condition KabD(α)a D̄(β)b = 0, which is ensured by (59) once again.

B Mobility in the Unconstrained Model

To see that the model with no constraint in the Hilbert space supports mobile excitations it is
convenient to introduce the set of orthonormal coordinates (l, u, v), defined as

l̂ ≡
1
p

3
( x̂ + ŷ + ẑ) , û≡

1
p

2
( ŷ − ẑ) , v̂ ≡

1
p

6
(−2 x̂ + ŷ + ẑ) . (63)

In terms of these new coordinates, the differential operators D(α)a become

D(α)a = T (1,α)
a

1
2

�

∂ 2
l + Duv

�

︸ ︷︷ ︸

d1

+T (2,α)
a

�

∂ 2
l −

1
2

Duv

�

︸ ︷︷ ︸

d2

, Duv ≡ ∂ 2
u + ∂

2
v , (64)
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which makes evident the underlying symmetries. We have the conservation of two global
charges

Q(α) ≡
∫

dl du dv J (α)0 . (65)

Moreover, we have an infinite number of conserved charges, which are responsible for certain
mobility restrictions on the excitations. Indeed, the charges

Q(α)f ≡
∫

dl du dv f (l, u, v) J (α)0 (66)

are conserved provided that f (l, u, v) satisfies ∂ 2
l f = Duv f = 0. The most general solution

of these conditions is f (l, u, v) = (c1 l + c2)h(u, v), where c1 and c2 are arbitrary constants
and h(u, v) is a harmonic function in the u− v plane, i.e., Duvh(u, v) = 0. Now consider, for
example, the density corresponding to a point charge q(α) located at (u0(t), v0(t), l0(t)), at the
time t, J (α)0 (t, u, v, l) = q(α)δ(u− u0(t))δ(v − v0(t))δ(l − l0(t)). Using this in (66) gives

Q(α)f = q(α)(c1 l0(t) + c2)h(u0(t), v0(t)) , (67)

which is conserved only if du0
d t =

dv0
d t =

dl0
d t = 0. In other words, conservation of this infinite

set of charges enforces all single-particle excitations to be completely immobile. However,
we can still have mobility along the l-direction of higher order multipoles, such as dipoles,
quadrupoles, etc. Consider the density with charges q(α) and −q(α) located at the positions
u0, v0, l0 and u1, v1, l1:

J (α)0 (t, u, v, l) =q(α) [δ(u− u0(t))δ(v − v0(t))δ(l − l0(t))

− δ(u− u1(t))δ(v − v1(t))δ(l − l1(t))] . (68)

This implies

Q(α)f = q(α)(c1 l0(t) + c2)h(u0(t), v0(t))− q(α)(c1 l1(t) + c2)h(u1(t), v1(t)) . (69)

Thus we see that if we set u1 = u0 = const, v1 = v0 = const and l0 − l1 = const, the above
charge will be conserved. This configuration corresponds to the motion of a dipole disposed
along the l-direction moving in parallel to its axis. In this sense, without the projection onto
the physical subspace (17), the enlarged effective field theory (21) describes type-I fractons.

C Higher Moment Conservations and the Associated Polynomials

Consider a general polynomial in three variables, (x , y, z), of degree d written in terms of a
monomial basis Rd(x , y, z)

P(d) =
∑

α

pα Xα , (70)

where pα = pabc and Xα = xa y b zc and α runs over all the elements that belong toRd(x , y, z).
In the following, we omit the dependence on the coordinates (x , y, z). The basis Rd has
dimension

κd = dim(Rd) =
(d + 2)!

d! 2!
. (71)

In the main text, we have argued that there are infinitely many conserved charges
that follow from the polynomial solutions P(d) of the equation d2 P(d) = 0, with
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d2 = ∂x ∂y + ∂x ∂z + ∂y ∂z realizing the mapping d2 : Rd → Rd−2. Then our problem amounts
to finding the kernel of the differential operator d2. The dimension of the kernel can be easily
found by counting the number of free coefficients after solving d2 P(d) = 0. Therefore, the
dimension of the kernel is

dim (ker(d2)) = κd − κd−2 =
(d + 2)(d + 1)− d(d − 1)

2
. (72)

The elements of the monomial basis Rd can be represented as

Rd =
�

xd , xd−1 y, xd−1 z, xd−2 y2, xd−2 y z, xd−2 z2, . . . yd , yd−1 z, yd−2 z2, . . . , zd
	

, (73)

and we associate a coefficient pα for each of the elements above, i.e., p1 is associated with the
element in the first entry, p2 is associated with the element at the second entry, and so on. It
is immediate to note that any polynomial built from R0 and R1 trivially satisfies d2 P(d) = 0
and the dimension of the kernels are 1 and 3, respectively. The first nontrivial case happens
for polynomials built from R2 with the generic form

P(2) = p1 x2 + p2 x y + p3 x z + p4 y2 + p5 y z + p6 z2 . (74)

Solving d2 P(2) = 0 fixes p2 = −p3 − p5, and therefore a solution is the polynomial

P(2) = p1 x2 + p3 ( x z − x y) + p4 y2 + p5 ( y z − x y) + p6 z2 . (75)

This polynomial is a solution for any p1, p3, p4, p5, p6 and will lead to the conservation of some
component (or combination of components) of the quadrupole moment. The same analysis
holds for higher degrees. In the following we write some solutions of higher orders,

P(3) =
∑

α/∈π(3)
pα Xα +

�

p6 − p3 + p9

�

x2 y +
�

p6 − p8 + p9

�

x y2 −
�

2p6 + 2p9

�

x y z , (76)

P(4) =
∑

α/∈π(4)
pα Xα +

�

2p6

3
− p3 − p10 − p14

�

x3 y +
�

p6 − 3p10 + p13 − 3p14

�

x2 y2

+
�

3p10 + 3p14 − 2p6

�

x2 y z +
�

2p13

3
− p10 − p12 − p14

�

x y3

+
�

3p10 − 2p13 + 3P14

�

x y2 z −
�

3p10 − 3p14

�

x y z2 , (77)

P(5) =
∑

α/∈π(5)
pαXα +

� p6

2
− p3 −

p10

2
+ p15 + p20

�

x4 y (78)

+
�

p6 − 2p10 + 6p15 − p19 + 6p20

�

x3 y2

+ (2p10 − 2p6 − 4p15 − 4p20) x3 y z +
�

6p15 − p10 + p18 − 2p19 + 6p20

�

x2 y3

+
�

3p10 − 12p15 + 3p19 − 12p20

�

x2 y2 z + (6p15 − 3p10 + 6p20) x2 y z2

+
�

p15 − p17 +
p18

2
−

p19

2
+ p20

�

x y4 +
�

2p19 − 4p15 − 2p18 − 4p20

�

x y3 z

+
�

6p15 − 3p19 + 6p20

�

x y2 z2 − (4p15 + 4p20) x y z3 , (79)
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P(6) =
∑

α/∈π(6)
pα Xα +

�

2p6

5
− p3 −

3p10

10
+

2p15

5
− p21 − p27

�

x5 y

+
�

p6 −
3p10

2
+ 3p15 − 10p21 + p26 − 10p27

�

x4 y2 (80)

+
�

3p10

2
− 2p6 − 2p15 + 5p21 + 5p27

�

x4 y z

+
�

4p15 − p10 − 20p21 − p25 + 4p26 − 20p27

�

x3 y3 (81)

+
�

3p10 − 8p15 + 30p21 − 4p26 + 30p27

�

x3 y2 z

+
�

4p15 − 3p10 − 10p21 − 10p27

�

x3 y z2 (82)

+
�

p15 − 10p21 + p24 −
3p25

2
+ 3p26 − 10p27

�

x2 y4

+
�

30p21 − 4p15 + 3p25 − 8p26 + 30p27

�

x2 y3 z (83)

+
�

6p15 − 30p21 + 6p26 − 30p27

�

x2 y2 z2

+
�

10p21 − 4p15 + 10p27

�

x2 y z3 +
�

2p24

5
− p21 − p23 −

3p25

10
+

2p26

5
− p27

�

x y5

+
�

5p21 − 2p24 +
3p25

2
− 2p26 + 5p27

�

x y4 z +
�

4p26 − 10p21 − 3p25 − 10p27

�

x y3 z2

+
�

10p21 − 4p26 + 10p27

�

x y2 z3 −
�

5p21 + 5p27

�

x y z4 , (84)

where π(3) =
�

p2, p4, p5

	

, π(4) = π(3) ∪
�

p7, p8, p9

	

, π(5) = π(4) ∪
�

p11, p12, p13, p14

	

,
π(6) = π(5) ∪

�

p16, p17, p18, p19, p20

	

. This construction continues to polynomials of higher
degrees. In each step the number of linearly dependent coefficients increases with the degree
of the previous polynomial, i.e., for a polynomial of degree seven the coefficients contained
in π(7) = π(6) ∪

�

p22, p23, p24, p25, p26, p27

	

will be given in terms of all others that are not
contained in π(7). In general, all linear dependent coefficients pi will be contained in the set

π(d) = π(d−1) ∪ {pi+2, pi+3, . . . , pi+d} , d > 2 , (85)

where pi is the coefficient that sits at the last entry of π(d−1). We are assuming that one
organizes these coefficients in increasing order. Note that the set represented by the curly
brackets contains (d − 1) elements.

The conclusion is that the effective theory for the Haah code contains infinitely many con-
served charges, and these charges can be interpreted as the components of higher moment
multipoles (dipoles, quadrupoles, octupoles and so on) or combinations thereof.

D A type-II Continuum Fracton Model Without an Apparent Lattice
Counterpart

In this section we expand the discussion in the main text about constructing a type-II frac-
ton field theory involving exclusively the d2 differential operator. We emphasize that we will
change the notation slightly. The corners of the cubes will be labeled from 0 to 7. As before,
the product of Dirac operators in a given corner is determined by a vector T (I ,α)a , I = 0, . . . , 7
according to (9). We will consider consider two cube operators similarly to Fig.(1), but with
arbitrary Dirac operators in each of the corners. Upon expansion of these cube operators (like
the one that led to (14)) one can demand that the coefficients of the differential operators
1, ∂i , ∂

2
i vanish identically and that the coefficients of ∂i ∂ j , i 6= j are such that the resulting

differential operator is D(α)a = T (α)a d2. These requirements give us a set of equations that allow
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us to determine the allowed T -vectors and hence the Dirac operators. However, as we shall
argue below, there are some ambiguities arising in returning from the continuum to the lattice
which render the lattice model inconsistent with the continuum one. Although we are able to
construct a continuum theory compatible with the physics of a pure type-II fracton model, it
seems very difficult to obtain a corresponding lattice model within the framework discussed
here.

To make this problem explicit, let us consider a generic cube operator

C (α)x = exp

�

i
7
∑

I=0

T (I ,α)a Kab Ab (x+ r̂ · nI)

�

, (86)

where r̂ = ( x̂ , ŷ , ẑ) and nI is a set of vectors specifying the positions of the corners of the cube
relative to its center, explicitly given by

n0 = −(1, 1, 1) , n1 = (−1, −1, 1) , n2 = (−1, 1, −1) , n3 = (−1, 1, 1) ,

n4 = (1, −1, −1) , n5 = (1, −1, 1) , n6 = (1, 1, −1) , n7 = (1, 1, 1) .

We shall impose constraints on the combinations of T -vectors emerging from the ex-
pansion so that the continuum effective theory contains the single differential operator
d2 =

∑

i jk

�

�εi jk
�

�∂ j∂k. Such theory is a candidate for a pure type-II fracton. We shall deter-
mine the corresponding T -vectors and then try to reconstruct the lattice model.

Expanding the cube operators in (86) leads to a continuum theory. The resulting terms in
the exponential can be organized according to the order of the derivatives they involve, namely,
1, ∂i , ∂

2
i , and ∂i∂ j , with i 6= j. The coefficients of each one of these differential operators are

linear combinations of the T -vectors. We then demand that the coefficients of 1, ∂i , and ∂ 2
i

vanish. In addition, we impose that the coefficients of the operators ∂i∂ j , with i 6= j, are the
same in order to identify the operator d2. These conditions lead to a system of equations that
can be solved. We find that only two T -vectors in each cube operator are independent, say,
T (6,α) and T (7,α). The remaining ones can be written in terms of these two vectors:

T (0,α) = 3T (6,α) + 2T (7,α) ,

T (1,α) = T (2,α) = T (4,α) = −2T (6,α) − T (7,α) ,

T (3,α) = T (5,α) = T (6,α) . (87)

The cube operators in (86) reduce to

C (α)x ∼ exp
�

iKabD(α)a Ab(x)
�

, (88)

where now D(α)a ≡ T (α)a d2, with T (α) ≡ 4
�

T (6,α)
a + T (7,α)

a

�

. We can immediately write down
the corresponding effective action in the form (21), which is invariant under gauge transfor-
mations Aa → Aa +D(α)a ζ(α), provided that KabD(α)a D(β)b = 0. This condition is equivalent to

T (α)a KabT
(β)

b = 0. Therefore, gauge invariance of the continuum theory imposes restrictions
only on T (α), but not on T (6,α) and T (7,α) individually. We refer to this condition as the weak
gauge condition.

With different discretization prescriptions for d2δ(x−x′) in the expression for charge den-
sity in the relation (27) but with D(α)a ≡ T (α)a d2, we can glimpse several charge arrange-
ments that would be present in the corresponding lattice model. For example, if we consider
∂i f (x)→ f (x+ εi)− f (x) in terms of the coordinates l, u, v, we obtain the configuration (a)
in Fig. 2, since in these coordinates d2 = ∂ 2

l − (∂
2
u + ∂

2
v )/2. On the other hand, using the

same discretization above, but in terms of coordinates x , y, z, we obtain the configuration
depicted in (b) of Fig. 2, since d2 = ∂x ∂y +∂y ∂z+∂x ∂z . It is important to stress that since the
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Figure 2: Charge distributions created by the operator d2. In configuration (a) we
set the lattice spacing as εu = εv = εl/

p
2, whereas in (b) we are considering equal

lattice spacing.

charge q(α) is only defined mod 2q(α), the black dots in Fig. 2 represents the positions of an
odd number of charges, since (2Z+1)q(α) ∼ q(α) and 2Zq(α) ∼ 0. Naturally, the discretization
procedure is not unique, since from the continuum perspective there is no a priori preferable
way of discretizing derivatives.

Let us try to reconstruct the lattice model. The main issue with the weak gauge condition
is that it likely will lead to a lattice model that is not given in terms of commuting projectors,
i.e., a lattice model where the cube operators are noncommuting. To obtain a lattice model
of commuting projectors we need some lattice input. We import the commutation relations
from the lattice, which correspond to restrictions on the vectors T (6,α) and T (7,α) individually,
namely,

T (6,1)
a Kab T (7,1)

b = 0 , T (6,2)
a Kab T (7,2)

b = 0 ,

T (6,1)
a Kab T (7,2)

b = 0 , T (7, 1)
a Kab T (6,2)

b = 0 ,

T (6, 1)
a Kab T (6,2)

b + T (7, 1)
a Kab T (7,2)

b = 0 . (89)

These conditions are stronger than the previous ones and, consequently, also ensure gauge
invariance of the continuum theory. Moreover, they ensure that all the cube operators
are simultaneously commuting. An explicit solution for this set is T (6,1) = (0,0, 0,1),
T (7,1) = (0,−1,1, 0), T (6,2) = (1,1,−1,1), and T (7,2) = (1,−1,0, 2). This enables us to identify
the following spin operators

T (6,1) → γ4, T (7,1) → γ2γ3, T (6,2) → γ5, T (7,2) → γ1γ2 . (90)

The corresponding cube operators are shown in Fig.(3). The lattice theory built from those
cubes is not compatible with the effective theory constructed from the operator (88). In fact,
the lattice model defined in terms of the cubes of Fig. (3) supports mobile excitations, corre-
sponding to a type-I fracton system. The mobility can be seen from the fact that one can act
with a local operator that anti-commutes with all operators in C (1) (or C (2)), and thus create
eight defects, an octupole configuration. For example, take the action of a γ2 operator on a
single site, since γ2 anti-commutes with all operators in C (1) (and C (2) as well in this case),
it will change the sign of eight neighboring cubes, thus creating an ocutpole excitation. The
octupoles can then be used to move quadrupole excitations.

So what goes wrong? The subtle point is that there are ambiguities in the lattice which
are not innocuous in the continuum theory. We have come across with this before: the
identity operator in the lattice is not automatic implemented in the continuum theory. Let
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Figure 3: Cubes obtained from the effective field theory.

us consider another example, say, two operators characterized respectively by T (6,1) and
T (0,1) = 3T (6,1) + 2T (7,1). While they are distinct from the continuum point of view, they
lead to the same lattice operator γ4, since the components of the T -vectors are defined mod
2. This violates the one-to-one map between T (I ,α) and the lattice operators, since two T -
vectors are mapped to the same operator. Therefore, this lattice model is not a valid one.
This can be made more explicitly if one starts with the lattice model defined by the cubes of
Fig.(3) and applies the procedure in the main text to obtain the effective theory. The result-
ing theory corresponds to a fracton system with mobile quadrupole excitations, representing
properly the lattice model, and not a type-II theory as the one that follows from (88). While
the passage from the lattice to the continuum using the framework described here and in [35]
safely produces a bona fide effective description, the reverse is not true. On the other hand,
the effective action that follows from (88) corresponds to a properly pure type-II continuum
fractonic theory, but with no any obvious corresponding lattice model.
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