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Abstract

We investigate whether the null energy, averaged over some region of spacetime, is
bounded below in QFT. First, we use light-sheet quantization to prove a version of the
“Smeared Null Energy Condition" (SNEC) proposed in [1], applicable for free and super-
renormalizable QFT’s equipped with a UV cutoff. Through an explicit construction of
squeezed states, we show that the SNEC bound cannot be improved by smearing on a
light-sheet alone. We propose that smearing the null energy over two null directions
defines an operator that is bounded below and independent of the UV cutoff, in what
we call the “Double-Smeared Null Energy Condition," or DSNEC. We indicate schemati-
cally how this bound behaves with respect to the smearing lengths and argue that the
DSNEC displays a transition when the smearing lengths are comparable to the correla-
tion length.
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1 Introduction

Energy conditions play a distinguished role at the interface between classical and quantum
physics. Nowhere, perhaps, is this better illustrated than in semi-classical gravity. Because
every metric solves the Einstein equations for some choice of stress-energy tensor, energy con-
ditions are needed to constrain the set of physically realizable spacetime geometries. Classi-
cally, one such constraint, obeyed by all sensible classical theories, is the Null Energy Condition
(NEC),

Tµνkµkν ≥ 0 , for kµkµ = 0 , (1)

where Tµν is the stress tensor of classical matter on a background geometry. Penrose showed,
using the NEC as an assumption, that trapped surfaces must lead to singularities [2], ruling
out traversable wormholes and bouncing cosmologies.

Quantum mechanically, the NEC is violated in even the most pedestrian of quantum field the-
ories. Our world is quantum mechanical. Thus the pressing question of “What spacetime
geometries can arise in semi-classical gravity?" requires further conditions on quantum null
energy. Lacking such conditions, it is unclear whether trapped surfaces must lead to singulari-
ties and whether exotic spacetimes such as traversable wormholes and bouncing cosmologies
can occur in semi-classical gravity.

Two important examples in this direction are the Achronal Average Null Energy Condition
(AANEC) [3–7] and the Quantum Null Energy Condition (QNEC) [8–11]; see [12] for a nice
review. While these results have varying degrees of applicability to semi-classical gravity, they
also illuminate the fact that energy inequalities are interesting objects in their own right for
a quantum field theory, revealing an interesting interplay between null energy, causality [13],
and quantum information [7,10].

While these previous results are of great interest, we note an important drawback to the quan-
tum energy conditions mentioned above: namely, the constraints they impose on the null
energy are either completely non-local (in the case of the AANEC) or state-dependent (in the
case of the QNEC). The QNEC, in particular, is motivated by an elegant and natural general-
ization of classical focusing theorems in what is known as the “Quantum Focusing Conjecture"
(QFC). However the quantity that is constrained by the QFC, the generalized entropy, is not
an observable due its dependence on an entanglement entropy. Complementary to these ap-
proaches, we will focus on semi-local, and state-independent conditions on the null energy that
can provide the right input into a Penrose-type singularity theorem1.

One such proposal is the Smeared Null Energy Condition (SNEC) [1], which posits that null en-
ergy, averaged over portion of an achronal null geodesic, Tsmear

++ , is bounded by, schematically,

〈Tsmear
++ 〉 ≥ −

1
32πGN (δ+)2

, (2)

where δ+ is the affine length of the smearing. The SNEC implies a semi-classical, Penrose-
type singularity theorem applicable in situations with NEC violation [15]. However, the SNEC
suffers from two key issues:

• Except in the context of induced gravity [16] in AdS/CFT, a proof of the SNEC has not
appeared in the literature.

1It is interesting to note a middle ground between these two perspectives: a quantum energy bound whose right-
hand side is state-dependent but lower-bounded by a fixed observable with sufficiently tame UV behavior [14].
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• In the field theory limit GN → 0, the bound diverges, and so should become sensitive to
the ultra-violet (UV) cutoff of the theory.

In this article we address both of this issues.

Firstly, we put the SNEC on more solid footing by proving the field theory limit of the SNEC
for free and relevantly (a.k.a. super-renormalizably) perturbed field theories directly on the
light-sheet. We find that the bound takes the schematic form

〈Tsmear
++ 〉 ≥ −

N
ad−2(δ+)2

, (3)

where N is the number of degrees of freedom, and δ+ is the smearing length, as before. The
above bound, the “field theory SNEC", was proposed by in [1]motivated by the lore that a field
theory equipped with a UV cutoff, a−1, should have N

ad−2 � 1
`d−2

P
, where `P is the Planck length

(see for instance [17]). To be clear however, this bound is, in principle, a different bound than
the original “gravitational SNEC" applying to field theories coupled to semi-classical gravity:
the above is a field theoretic bound in Minkowski space with no mention of semi-classical grav-
ity (nor with any mention of GN ). Because this bound makes explicit use of a short-distance
cutoff, a, one should imagine applying it to effective field theories up to an energy scale sig-
nificantly below a−1. Regardless, given the lore stated above, we regard our proof of the “field
theory SNEC" as strong credence to the validity of the original, gravitational, SNEC. We will
further remark on some utility of this bound in the Discussion, section 4.

Secondly, in the interest of defining an operator that is lower bounded in the continuum limit
(that is, without explicit reference to a UV cutoff), we investigate the efficacy of smearing the
null energy over more directions. A slightly different phrasing of this inquiry is the follow-
ing: “Under what conditions can we regard the null energy of an effective field theory as a
genuine operator?" For one, we show that no amount of smearing along the transverse light-
sheet coordinates provides such a definition. We propose instead that smearing T++ over two
null directions (a quantity we refer to as the double-smeared null energy, or DSNE) provides
such a definition. We argue that the DSNE is bounded below in free massive theories and
propose a general schematic for how this bound scales with the length scales of the smearing.
While we motivate this as a “regularization" of the SNEC by an additional smearing over x−,
this bound is true for general domains in the (x+, x−) plane. We further conjecture that this
double-smeared null energy condition, or DSNEC, remains true for interacting theories and dis-
plays a transition as a function of the ratio between the smearing lengths and the correlation
length. Schematically, our proposed bound is

〈Tsmear
++ 〉 ≥ −

N C
�

δ+δ−

`2

�

(δ+)d/2+1(δ−)d/2−1
, (4)

where N is the number of degrees of freedom, and δ± are the smearing lengths in the two
null directions. C is a function of the dimensionless ratio of the smearing lengths and the
correlation length (in the cases we consider it is the inverse of the scalar mass, `2 = m−2); we
will argue that it is O(1) (with respect to N and a) for nice enough smearing functions. When
the mass vanishes it is an O(1) constant. However when `−2δ+δ−� 1, we will see that C can
become damped and provide an even tighter bound. This dovetails nicely with known damp-
ing of negative Tµνu

µuν (where uµ is a future-directed time-like vector) expectation values for
massive scalar theories [18].
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Finally, let us pause to mention the following at the onset: while motivated by the role of null
energy conditions in semi-classical gravity, the results of this article are purely field theoretical.
In particular, Newton’s constant will not make an appearance in any of our key equations. We
will leave a fuller consideration of the DSNEC in the context of semi-classical gravity to future
investigations.

An overview of the organization of this paper follows: we first review necessary facts about
quantizing free bosons on a light-sheet and use the “pencil" decomposition of the theory to
bootstrap the smeared massless 2d bound to generic dimensions. We then construct an explicit
class of squeezed states that realize this bound, at least parametrically with the UV cutoff. After
this we propose the lower-boundedness of the DSNEC and argue for its validity through two
methods: firstly we calculate its vacuum two-point function and show that it is bounded and
secondly we reexamine the DSNE in the same class of smeared states saturating the SNEC. We
show that it can also be dimensionally reduced to an expectation value in a 2d massive theory
and use this prove its lower-boundedness. Along the way we prove a useful family of bounds
on the null-energy in 2d massive theories. Finally we end with a discussion of these results,
their interplay with interactions, and what further research they suggest.

A note on conventions

In this article we will work in d dimensional Minkowski space with the “mostly plus" signature
with natural units (c = ħh= 1)

ds2 = −(d x0)2 +
d−1
∑

i=1

(d x i)2 = −d x+d x− +
d−1
∑

i=2

(d y i
⊥)

2 , (5)

where x± = x0 ± x1 are lightcone coordinates. As suggested in the above equation, we will
typically reserve ~y⊥ for d − 2 transverse coordinates. Null derivatives are

∂± :=
1
2
(∂0 ± ∂1) , (6)

such that ∂±x± = 1 and ∂∓x± = 0. In momentum space we will denote

k± =
1
2
(k0 ± k1) , (7)

such that k+x+ + k−x− + ~k⊥ · y⊥ = kµxµ. Note that in these conventions the integration mea-
sures d x+d x− = 2d x0d x1 and dk+dk− =

1
2 dk0dk1; we will denote these by d2 x± and d2k±

for shorthand and to be clear with factors of two. Lastly, we will be contracting the stress
tensor along a null-vector, vµ+. To be definite, we will denote

T++ = vµ+vν+Tµν , vµ+ =
1
2
(1, 1, ~0⊥) . (8)

2 A lightsheet derivation of the SNEC

We begin with a derivation of the smeared null-energy condition in free scalar field theory
through the method of light-sheet quantization [19,20]. The conformal properties of free fields
on quantized on a lightsheet make this an powerful approach and similar techniques have been
used in proofs of the generalized second law [20], the QNEC in free theories [9, 21, 22] and
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Rényi QNEC variants [23]. We will not repeat the groundwork, which can be found in detail
in [20] but state the necessary facts as we go. While we will focus on the story for scalars; we
expect a very similar story to apply for spinors and vector bosons following section 4 of [20]2.

The core statement of light-sheet quantization is that free fields are ultra-local in tranverse
directions when quantized on the lightsheet: the operator algebra and the vacuum state are
tensor products of algebras and vacua associated to each null generator. To make this well-
defined and explicit, it is useful to discretize the transverse directions of the light-sheet and
view each null-generator as a finite width “pencil" of transverse area ad−2. This pencil area
will play the role of the (inverse) UV cutoff3. That is to say we take a lightsheet defined by
L= {xµ ∈ R1,d−1

�

� x− = 0} and realize it as the union of a countable set of these pencils:

L= ∪pPp , (9)

where p labels the pencil Pp = Rx+ × Dp for small “pixel" Dp in the transverse directions.

Ultra-locality is then the statement that the operator content is that of a collection of 2d chiral
bosonic CFTs, each local to a pencil:

�

Φ(x+1 , ~yp),∂+Φ(x
+
2 , ~yp′)

�

=
i

2ad−2
δpp′δ(x

+
1 − x+2 ) , (10)

and that the global vacuum decomposes as

|Ω〉L =
⊗

p

|Ω〉p , (11)

where each |Ω〉p is the unique null-translation invariant pencil vacuum annihilated by
P+,p =

∫

d x+∂+Φ̂(x+, ~yp)∂+Φ̂(x+, ~yp).

A given 2d “pencil CFT" has a stress-tensor T++,p which is related to the bulk stress tensor,
T++, pulled back to L by

T++,p(x
+) = ad−2T++(x

+, x− = 0, ~yp) . (12)

Now we can write a generic state on the light-sheet in a way that singles out a particular pencil,
Pp̄:

ρ =
∑

i j

�

ρΩp̄ σi j

�

⊗ρΩaux |i〉aux〈 j|aux + h.c. , (13)

where ρΩ
p̄
= |Ω〉p̄〈Ω|p̄ is the vacuum on the pencil, Pp̄, andσi j should be thought of as the sum-

mation of all possible operator insertions on the pencil Pp̄ : σi j ∼ δi j + a
d−2

2
∫

fi j∂+Φ̂+ ad−2 ×
∫

gi j∂+Φ̂∂+Φ̂+ . . . . This term also controls the entanglement of the state reduced to Pp̄ with
the other pencils, here labelled as “aux ." Without loss of generality we parametrize this “aux"
system by pulling out the tensor product of all the vacuua on its pencils, ρΩaux , and take the

2Namely that much like the free scalar, free spinors and Abelian gauge fields admit an ultra-local pencil de-
composition. For the spinor each pencil supports Nf /2 2d massless chiral fermion CFTs (where N f is the number
of components of the d dimensional spinor). For Abelian gauge fields, their pencil theory is of d − 2 2d massless
decoupled scalars. Importantly, for each theory the bulk null stress tensor is related to corresponding pencil stress
tensor by a2−d .

3To be precise: if we restrict ourselves to a field configurations with transverse momenta |~p⊥| � a−1 then we
expand a typical field configuration in a basis of top-hat functions of width a. This is explained in appendix A.
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basis states |i〉aux to be eigenstates of Kaux = −
1

2π logρ(vac)
aux with eigenvalue κi . The expecta-

tion value of the null stress tensor valued on the pencil Pp̄ can be then written as a sum of 2d
CFT stress tensor expectation values:




T++(x
+, 0, ~yp̄)

�

ρ
= a2−d

∑

i

e−2πκi 〈T++,p̄(x
+)〉ρΩ

p̄
σii+h.c. . (14)

Now let us define the smeared null-energy (SNE). We will take a square-integrable function on
the real line, f (s), normalized with

∫∞
−∞ ds f (s)2 = 1, and dropping quickly to zero for s� 1.

T++[ f ](~y) :=

∫

d x+

δ+
f (x+/δ+)2T++(x

+, x− = 0, ~y) . (15)

Here δ+ controls the length-scale of the smearing4. In these conventions, T++[ f ] has the same
engineering dimensions (d) and spin (2) as T++. The SNE expectation value in our light-sheet
state is then

〈T++[ f ]〉ρ = a2−d
∑

i

e−2πκi

∫ ∞

−∞

d x+

δ+
f (x+/δ+)2〈T++,p̄(x

+)〉
ρ
(vac)
p̄

σii+h.c. . (16)

Because each 〈T++,p̄〉 is really a 2d CFT expectation value we now leverage the methods of [24]
(we will provide an alternative to this method in appendix B). That is along the pencil, we
perform the coordinate transformation x+ → u(x+) (with u monotonically increasing with
x+). There then exists a unitary operator acting local to the pencil such that

Û†
p̄
[u]T++,p̄(x

+)Ûp̄[u] = u′(x+)2T++,p̄(u(x
+))−

1
24π

�

u(x+), x+
	

, (17)

with {u, x+}= u′′′
u′ −

3
2

�

u′′
u′

�2
the familiar Schwarzian derivative. Choosing u′(x+) = f (x+/δ+)−2

uniformizes the smearing over the stress tensor and yields the pencil ANEC operator plus an
anomaly:

Û†
p̄
T++[ f ]Ûp̄ = a2−d

∫ ∞

−∞

du
δ+

T̂++,p̄(u, 0, ~yp)−
1

12πad−2

∫ ∞

−∞

d x+

δ+

�

d
d x+

f (x+/δ+)
�2

. (18)

The ANEC operator is a positive operator and so the spectrum of T++[ f ] is bounded below by
the second Schwarzian term. Thus, noting the normalization ofρ,

∑

i

e−2πκi
�

ρp̄, vac σii + h.c.
�

= 1,

we have

〈T++[ f ]〉ρ ≥ −
1

12πad−2(δ+)2

∫ ∞

−∞
ds
�

f ′(s)
�2

. (19)

This is precisely the SNEC with the pencil area, ad−2, replacing GN as the (inverse) UV cutoff.
We pause to note that for decoupled theories5 where the full stress tensor is the sum of that
of each field, then the total number degrees of freedom, N , will multiply the right-hand side
of (19). As an example, for ns scalars, n f spinors (of N f components) and nv Abelian gauge
fields we will have

N = nb + ns
N f

2
+ (d − 2)nv . (20)

See footnote 2 for elaboration on this counting.

4To precisely fix this scaling in definite terms we will further fix the standard deviation of f 2 (thought of as a

probability distribution over R) to σ f :=
∫∞
−∞ ds s2 f (s)2 −

�

∫∞
−∞ ds s f (s)2

�2
= 1

5In fact, the fields can also be coupled as long as the coupling is relevant. See the discussion on interactions in
section 4.
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2.1 The futility of transverse smearing

One might hope that the current SNEC, (19), can be strengthened by appropriately smearing
in the transverse direction:

T++[F] =
∫ ∞

−∞

d x+

δ+

∫

dd−2 y⊥
Ad−2

F2
�

x+

δ+
,
~y⊥
A

�

T++(x
+, x− = 0, ~y⊥) , (21)

for some smooth square integrable functionF(s+,~s⊥) onL that falls off quickly as |s+|, |~s⊥| � 1
and normalized6 to

∫

ds+
∫

dd−2~s⊥F(s+,~s⊥)2 = 1. It is useful to keep in mind as a particular
example the Gaussian smearing function,

FGauss(s+,~s⊥) =
1

(2π)
d−1

4

e−
s2+
4 e−

|~s⊥|
2

4 . (22)

Indeed since the smearing over d − 2 transverse directions introduces another length scale,
Ad−2, it seems possible, at least on dimensional grounds, that this could lead to a bound
independent of the UV cutoff. We now show that this is not the case. In fact we find that (19)
carries over naturally:

〈T++[F]〉 ≥ −
1

12π ad−2(δ+)2

∫

dd−2~s⊥

∫

ds+
�

∂s+F(s+,~s⊥)
�2

. (23)

We will proceed firstly with a general argument from light-sheet quantization and then we will
construct example states that defy strengthening the SNEC through transverse smearing.

Proceeding forward, let us discretize our transverse smearing as a summation over pencils,
again of area ad−2, the inverse of the UV cutoff:

〈T++[F]〉ρ '
1
N

∑

p

∫

d x+

δ+
F2
(p)(x

+/δ+)〈T++(x+, 0, ~yp)〉ρ . (24)

For the sake of this argument we will take F to have compact support in the transverse direc-
tions and Ad−2/ad−2 = N is the number of pencils that F has support on. Focusing now on
this collection of pencils {Pp}p=1,...,N , let us reparameterize our state ρ as:

ρ =
∑

i j

�

ρΩ1 ⊗ . . .⊗ρΩN
�

Σi j ⊗ρΩaux |i〉aux〈 j|aux + h.c. . (25)

The operator Σi j has the dual purpose of entangling the collection of pencils {Pp} with the
“aux" pencils, as well as summing up all of the operator insertions on {Pp} preparing the
state. For the derivation of the bound in section 2, we were agnostic about the details of these
operator insertions. However, as was handily noted in [9], Σi j admits an expansion about the

vacuum with n-particle contributions having coefficients that scaling as an d−2
2 . Thus for small

a7 the leading contribution to the stress-tensor expectation value comes from two particle
insertions. Furthermore, it is easy to see that 〈T++(x+, 0, ~yp)〉ρ can only be non-zero if both of
those insertions occur on the same pencil, Pp. Thus the only relevant contributions to Σi j are
of the form

Σi j ⊃ δi j +
N
∑

p=1

σ
(p)
i j + . . . , (26)

6As before, we will also normalize the standard deviations of F as
∫

ds+
∫

dd−2s⊥ (s+)2F2 −
�∫

ds+
∫

dd−2s⊥s+F2
�2
=
∫

ds+
∫

dd−2s⊥ (s⊥)2F2 = 1.
7...compared to the characteristic wavelengths of the state.
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where σ(p)i j is a collection of operator insertions on Pp beginning with 2-particle insertions.
Thus we see that in the small a limit the relevant contributions to 〈T++〉 are diagonal in the
pencils

〈T++(x+, 0, ~yp)〉ρ =
∑

i

e−2πκi 〈T++(x+, 0, ~yp)〉ρΩpσ(p)ii +h.c. + . . . . (27)

We now know that smearing each one of these expectation values is bounded by the right-hand
side of (19). Thus we arrive at

1
N

∑

p

∫

d x+

δ+
F2
(p)(x

+/δ+)〈T++(x+, 0, ~yp)〉ρ ≥ −
1

12πNad−2(δ+)2
∑

p

∫ ∞

−∞
ds+

�

F ′(p)(s
+)
�2

.

(28)
Rewriting this sum as

∑

p ∼
1

ad−2

∫

dd−2 ~y we have

〈T++[F]〉ρ ≥ −
1

12πad−2(δ+)2

∫

dd−2~s⊥

∫

ds+
�

∂s+F(s+,~s⊥)
�2

. (29)

Note that if F factorizes F(s+,~s⊥) = F+(s+)F⊥(~s⊥), e.g. FGauss, then the transverse integral
drops out explicitly.

2.2 A series of squeezed states

Let us illustrate that (29) is not simply a failure of the pencil construction to strengthening the
SNEC by constructing a set of squeezed states with tunable negative null energy up to the UV
cutoff. The role of squeezed states (originally studied in the context of quantum optics [25])
in realizing negative energy densities in quantum field theory is well known [26–28]. To
construct the states, we first note the null Fock quantization of the fields

Φ(x+, 0, ~y) =

∫ ∞

0

dk+
(2π)

p

2k+

∫

dd−2~p⊥
(2π)d−2

�

âk+,~p⊥ e−ik+x+−i~p⊥·~y + â†
k+,~p⊥

eik+x++i~p⊥·~y
�

, (30)

with commutators

[âk+,~p⊥ , â†
k′+,~p′⊥

] = (2π)δ(k+ − k′+)(2π)
d−2δd−2(~p⊥ − ~p′⊥) , (31)

and mass-shell condition k− =
~p2
⊥+m2

4k+
and k+ ≥ 0. The normal ordering in T++ is with respect

to this Fock quantization.

The squeezed state in question is defined by a C-valued symmetric bi-function of momenta
ξ(k1

+, ~p1
⊥; k2

+, ~p2
⊥) = ξ(k

2
+, ~p2

⊥; k1
+, ~p1

⊥):

|ξ〉 := Ŝ[ξ]|Ω〉L , (32)

where

Ŝ[ξ] = exp
�

1
2

�

â† ◦ ξ ◦ â† − â ◦ ξ∗ ◦ â
�

�

, (33)

and we have introduced a distributional “matrix" notation, “◦," on momentum space bi-
functions

�

f̃1 ◦ f̃2
�

(k1
+, ~p1

⊥; k2
+, ~p2

⊥) =

∫

dk+
2π

∫

dd−2~p⊥
(2π)d−2

f̃1(k
1
+, ~p1

⊥; k+, ~p⊥) f̃2(k+, ~p⊥; k2
+, ~p2

⊥) . (34)
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In what follows we will take ξ ∈ R for notational simplicity. Since Ŝ[ξ] is unitary, our state
|ξ〉 is normalized. It is a simple enough exercise to show that Ŝ[ξ] acts by conjugation on the
Fock modes as

Ŝ[ξ]†âk+,~p⊥ Ŝ[ξ] =
�

cosh◦[ξ] ◦ â
�

k+,~p⊥
+
�

sinh◦[ξ] ◦ â†
�

k+,~p⊥
, (35)

and on â† by the Hermitian conjugation of the above. cosh◦[ξ] and sinh◦[ξ] are defined by
their Taylor expansion with the ◦ product defined in (34). Using this it is easy to evaluate
T++[F] in this state:

〈ξ|T++[F]|ξ〉=
∫

dd−2~p⊥dd−2~p′⊥
(2π)2d−4

∫

dk+dk′+
(2π)2

(k+k′+)
1
2
�

sinh2
◦(ξ)(k+, ~p⊥; k′+, ~p′⊥)RG̃δ+∆+,A∆⊥

− sinh◦(ξ) ◦ cosh◦(ξ)(k+, ~p⊥; k′+, ~p′⊥)RG̃δ+Σ+,AΣ⊥

�

, (36)

where R stands for the real part, G̃ is the Fourier transform of F2 (in dimensionless variables):

G̃ρ+, ~ρ⊥ =

∫

ds+
∫

dd−2~s⊥ F(s+,~s⊥)
2e−is+ρ+−i~s⊥· ~ρ⊥ , (37)

and
∆+ = k+ − k′+ , ∆⊥ = ~p⊥ − ~p′⊥ , Σ+ = k+ + k′+ , Σ⊥ = ~p⊥ + ~p

′
⊥ . (38)

We are interested in how low we can tune 〈T++[F]〉 by tuning ξ. Although partially hidden
by our notation, this is a complex minimization problem. We will simplify things by positing
an ansatz for ξ motivated by the following physical reasoning: the negative null energy can
apparently become arbitrarily negative when the damping in Σ⊥ fails. This is precisely when
the state is composed of particles of large and oppositely oriented transverse momenta (the
absence of this transverse momenta is why the smeared negative null energy in two dimensions
remains O(1)). Thus we will look at states with

ξ(k+, ~p⊥, k′+, ~p′⊥) = ξ(k+, k′+, |~p⊥|)(2π)d−2δd−2(~p⊥ + ~p
′
⊥) . (39)

Within this ansatz, the nth power (with respect to the ◦ product) of ξ is:
�

ξ
�n
◦ (k+, ~p⊥, k′+, ~p′⊥) = (ξ)

n
•(k+, k′+; |~p⊥|)(2π)d−2δd−2(~p⊥ − (−1)n~p′⊥) , (40)

where we’ve introduced another matrix notation, “•," for k+ integrations:

( f̃1 • f̃2)(k
1
+, k2

+) :=

∫

dk+
2π

f̃1(k
1
+; k+) f̃2(k+; k2

+) . (41)

Due to the difference in the even and odd powers of ξ this ansatz has the effect of completely
nullifying the dependence of the smearing functions on the transverse momenta:

〈T++[F]〉ξ =
∫

dd−2~p⊥
(2π)d−2

∫ ∞

0

dk+dk′+
(2π)2

(k+k′+)
1/2
�

sinh2
•(ξ)(k+, k′+; |~p⊥|)RG̃δ+∆+,0

− sinh•(ξ) • cosh•(ξ)(k+, k′+; |~p⊥|)RG̃δ+Σ+,0

�

. (42)

As such, one might suspect it is possible to relate (42) to an expectation value in an appropriate
2d theory defined along a light-ray. This is indeed the case as we show now. Consider the
smeared null energy of the scalar in two dimensions, restricted to the light-sheet, L, at x− = 0:

T++[ f ] =

∫

d x+

δ+
f
�

x+

δ+

�2

: ∂+ϕ∂+ϕ : (x+) ,

ϕ(x+, 0) =

∫

dk+
2π
p

2k+

�

α̂k+e−ik+x+ + α̂†
k+

eik+x+
�

, (43)
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and a 2d squeezed state8

|ξ(µ)〉2d = ŝ[ξ]|Ω〉2d , ŝ[ξ] = exp

�

1
2

∫

dk1
+dk2

+

(2π)2
ξ(k1

+, k2
+,µ)α̂†

k1
+
α̂†

k2
+
− h.c.

�

. (44)

Here µ appears as an auxiliary parameter in the squeezing function that we will be interested
in tuning within an ensemble of squeezed states. By similar manipulations to above, it is then
easy to show that indeed

〈T++[F]〉ξ =
Vd−3

(2π)d−3

∫ ∞

0

d|~p⊥|
2π
|~p⊥|d−3 〈ξ(µ)|T++[ f ]|ξ(µ)〉2d |µ=|~p⊥| , (45)

with a 2d smearing function related to d-dimensional smearing function via

f (s+)2 =

∫

dd−2~s⊥F(s+,~s⊥)
2 , (46)

and Vd−3 =
2π

d−2
2

Γ( d−2
2 )

is the surface volume of a d − 3 sphere. Because we are free to choose the

functional dependence of the squeezing function ξ on |~p⊥|, it should be clear that (45) has
the very real danger of diverging due to this transverse momenta. For instance, to make this
explicit we could choose

ξ(k+, k′+, |~p⊥|) = χ(k+, k′+)ΘM ,∆M (|~p⊥|) , (47)

where ΘM ,∆M
(|~p⊥|) is a Heaviside function with support on a shell of transverse momenta

centered at M and of width ∆M . Because Θ squares to itself (at least distributionally),
(ξ)n• = (χ)

n
• ×ΘM ,∆M and so

〈T++[F]〉ξ =
VM ,∆M

(2π)d−2
〈χ|T++[ f ]|χ〉2d , (48)

where VM ,∆M =
∫

dd−2~p⊥ ΘM ,∆M is the volume of the transverse momentum space shell. For
thin shells, ∆M/M � 1 it scales like M d−2:

VM ,∆M ≈
2π

d−2
2

Γ
� d−2

2

�

�

∆M
M

�

M d−2 . (49)

This is regardless of the details on how we choose the χ(k+, k′+) squeezing parameter. Because
|χ〉2d itself is a squeezed state in 2d, it is easy to arrange that

〈χ|T++[ f ]|χ〉2d =

∫ ∞

0

dk+dk′+
(2π)2

(k+k′+)
1/2
�

sinh2
•(χ)(k+, k′+)R

Þ( f 2)δ+∆+

− sinh•(χ) • cosh•(χ)(k+, k′+)R
Þ( f 2)δ+Σ+

�

< 0 , (50)

say by making the overall magnitude of χ small so that the second term dominates.9 In this
case the full d-dimensional expectation value will also be negative, with the additional VM ,∆M

8We are still taking ξ ∈ R, which precludes some generality. We are also ignoring the possible inclusion of a
“displacement operator" D[θ] = exp

�∫

dκ
2πθκα̂κ − h.c.

�

. Theses exclusions will not affect our conclusions.
9In fact for small χ, one can imagine expanding the exponential in (44) to first order in χ. The UV divergent

negative null energy is then related to a divergent negative null-energy in “0+2" particle states noted in [29].
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coming for the ride. Thus it seems possible to engineer states with 〈T++[F]〉 ∼ −M d−2. Be-
cause 〈T++[ f ]〉2d is bounded below by − 1

12π(δ+)2
∫

ds+ f ′(s+)2 for all states we can transplant
this to a bound on 〈T++[F]〉ξ, at least for this series of squeezed states

〈T++[F]〉ξ ≥ −c(∆M/M)
M d−2

(δ+)2

∫ ∞

−∞
ds+

�∫

dd−2~s⊥F(s+,~s⊥)∂s+F
�

s+,~s⊥
��2

∫

dd−2~s⊥F (s+,~s⊥)
2 , (51)

where c(∆M/M) =
V∆M ,M

6(2π)d−1M d−2 ≈
2∆M/M

3(4π)
d
2 Γ( d−2

2 )
. We can consider a series of states with in-

creasing M and with small but fixed ∆M/M . The only limiting factor on this series of states is
the validity of effective field theory, which is to say that we don’t excite states with momentum
on the order of a−1. Because of this, we find that is not possible to improve the bound (29)10,
by an order of the UV cutoff.

3 Double null smearing

So far we have seen that even for free scalar theories the null stress-tensor restricted to light-
sheet, L, fails to be a lower-bounded operator when the UV cutoff, a−1, is taken to infinity. It is
perhaps clear that if we want a lower bound on null-energy that is both (i) state independent
and (ii) independent of the UV cutoff then we will have to smear off the lightsheet. In this
section, following this logic, we investigate the null-energy smeared along both null-rays in
what we will coin the DSNE (for “double smeared null-energy"). Indeed, smearing in both x+

and x− is morally similar to smearing in a time-like direction and there is good evidence that
the null-energy is well behaved when averaged over a finite time-scale [30]. Firstly, we will
investigate the vacuum two-point function of the DSNE of the free massive boson and show
that it is bounded by a cutoff independent quantity. While this is does not constitute a proof of
the lower-boundedness of the DSNE, it establishes the plausibility of it as a bounded operator.
Secondly, by revisiting the same series of squeezed states from section 2.2, we will propose a
family of bounds that we will coin the DSNEC.

3.1 Alternative quantization

Before jumping head-first, let us briefly reorganize the Fock space of modes: (30) and (31) are
currently well suited for manipulations of null and transverse momenta, k+ and ~p⊥ (respec-
tively), however we will find it helpful to work explicitly with the set of two null momenta k+
and k−. In the trade-off we loose the norm of the transverse momenta, |~p⊥|, as a quantum
number but retain its direction, n̂~p⊥ which we conveniently label as a collective set of angles,
Ωd−3, on the unit Sd−3. It is easy to work out that the corresponding quantization is

Φ(x+, x−, ~y) =

∫

Dm2

d2k±
(2π)2

∫

dΩd−3

(2π)d−3
(4k+k− −m2)

d−4
4

×
�

âk+,k−,Ωe−ik+x+−ik−x−−i(k+k−−m2)1/2|y| cosΩ + h.c.
�

. (53)

10The right-hand side of (51) is consistent with (29) via the Cauchy-Schwarz integral inequality:
�∫

dd−2~s⊥ F∂s+F
�2

∫

dd−2~s⊥ F2
≤
∫

dd−2~s⊥ (∂s+F)2 , (52)

with equality when F factorizes F(s+,~s⊥) = F+(s+)F⊥(~s⊥). Regardless, this discrepancy is O(1) and so does not
change our conclusion that these squeezed states are concrete counterexamples to strengthening the SNEC by
O(Ad−2/ad−2) by transverse smearing.
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The null-momenta are restricted to the domain Dm2 = {k± ≥ 0
�

�4k+k− ≥ m2}. The oscillators
satisfy

[âk+,k−,Ω, â†
k′+,k′−,Ω′

] = (2π)d−1δ(k+ − k′+)δ(k− − k′−)δ
d−3
Sd−3(Ω−Ω′) , (54)

where δd−3
Sd−3(Ω) is the normalized delta function on the unit Sd−3 with the north-pole set as

the origin. This Fock set of modes is related to those in (31) as

âk+,k−,Ω =
p

2 k1/2
+ (4k+k− −m2)

d−4
4 âk+,~p , 4k+k− − ~p2

⊥ −m2 = 0 . (55)

When it does not cause confusion we will often continue to write ~p⊥ = (4k+k− − m2)1/2n̂Ω
for notational simplicity, with the tacit understanding that k+, k−, and Ω are the actual quan-
tum numbers. Now we smear the null stress tensor with a smooth, L2-normalized function
F(s+, s−) dropping off quickly11 for |s±| � 1:

T++[F](~y) =
∫ ∞

−∞

d2 x±

δ+δ−
F(x+/δ+, x−/δ−)2T++(x

+, x−, ~y)

=

∫

Dm2

d2k±d2k′±
(2π)4

∫

dΩd−3dΩ′d−3

(2π)2d−6
|~p⊥|

d−4
2 |~p′⊥|

d−4
2 (k+k′+)

×
¦

2R
�

G̃δ+∆+,δ−∆−ei(~p−~p′)⊥·~y
�

â†
k+,k−,Ωâk′+,k′−,Ω′

−
�

G̃δ+Σ+,δ−Σ− âk+,k−,Ωâk′+,k′−,Ω′e
i(~p+~p′)⊥·~y + h.c.

�©

, (56)

where

∆+ = k+ − k′+ , ∆− = k− − k′− , Σ+ = k+ + k′+ , Σ− = k− + k′− , (57)

and

G̃ρ+,ρ− =

∫ ∞

−∞
ds+ds−F(s+, s−)2eis+ρ++is−ρ− . (58)

Our first interest is gauging how negative expectation values of T++[F] can become. We will
proceed by evaluating the two-point function of T++[F] in the vacuum. This will give us a
rough order of magnitude of how large the fluctuations (both positive and negative) of T++[F]
can become.

3.2 The vacuum two-point function

From (56) we write the vacuum two-point function12:

〈(T++[F])2〉Ω =
2V 2

d−3

(2π)2(d−3)

∫

Dm2

d2k±d2k′±
(2π)4

(4k+k−−m2)
d−4

2 (4k′+k′−−m2)
d−4

2 k2
+k

′2
+

�

�G̃δ+Σ+,δ−Σ−

�

�

2
.

(59)
There are two regimes that we are interested in: (i) the smearing is much less than the cor-
relation length, `2 ∼ m−2, (δ+δ−m2 � 1) and (ii) much larger than the correlation length
(δ+δ−m2� 1).

11Again, we will fix
∫

d2s (s+)2F2 −
�∫

d2s s+F2
�2
=
∫

d2s (s−)2F2 −
�∫

d2s s−F2
�2
= 1 for definiteness and to

fix the smearing lengths δ±.
12Evaluated at the same transverse point, ~y⊥, which disappears as a consequence of translation invariance of the

vacuum.
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Let us first investigate m2 = 0. We rescale κ± = δ±k±:

〈(T++[F])2〉Ω
�

�

m2=0 =
22d−7V 2

d−3

(2π)2(d−1)
(δ+)−(d+2)(δ−)−(d−2)

×
∫ ∞

0

d2κ±d2κ′±
�

κ−κ
′
−

�
d−4

2
�

κ+κ
′
+

�
d
2

�

�

�G̃κ++κ′+,κ−+κ−

�

�

�

2
.

(60)

The integrals over (κ− κ′)± can be done leading to

〈(T++[F])2〉Ω
�

�

m2=0 = cd (δ
+)−(d+2)(δ−)−(d−2)

∫ ∞

0

d2ρ±,ρd+1
+ ρd−3

−

�

�G̃ρ+,ρ−

�

�

2
, (61)

with cd =
1

8(4π)d−1

Γ( d+2
2 )

Γ( d−2
2 )Γ( d−1

2 )Γ( d+3
2 )

. For |G̃|2 falling off faster than an appropriate polynomial

at large momenta,

lim
ρ+→∞

|G̃ρ+,ρ− |® ρ
− d+2

2
+ ,

lim
ρ−→∞

|G̃ρ+,ρ− |® ρ
− d−2

2
− , (62)

this expression already indicates that 〈(T++[F])2〉Ω is finite and that it scales with smearing

lengths as
�

δ+
�−(d+2) �

δ−
�−(d−2)

. The subsequent integral is an O(1) contribution controlled
by the moments of the smearing function in momentum space. While already a useful result,
we might want to investigate (61) in the cases where it can be expressed locally in position
space. This is, in general, not possible because the momentum integrals do not extend over the
entire plane. However when d is odd and F factorizes, F(s) = F+(s+)F−(s−) we can perform
the dual Fourier transform to find

〈(T++[F])2〉Ω
�

�

m2=0 = π
2 cd (δ

+)−(d+2)(δ−)−(d−2)

∫

ds+F2
+(s
+)(i∂s+)

d+1F2
+(s
+)

×
∫

ds−F2
−(s
−)(i∂s−)

d−3F2
−(s
−) . (63)

For small m2δ+δ− it is certainly possible proceed from (59) perturbatively in γ2 = m2δ+δ−

through the change of variables, v = δ+δ−(4k+k− −m2) and κ+ = δ+k+ which removes the
dependence on m2 in the integration region

〈(T++[F])2〉Ω =
V 2

d−3

8(2π)2(d−1)
(δ+)−(d+2)(δ−)−(d−2)

×
∫ ∞

0

dκ+dκ′+

∫ ∞

0

dvdv′ (vv′)
d−4

2 κ+κ
′
+

�

�

�

�

�

G̃
κ++κ′+, v+γ2

4κ+
+ v′+γ2

4κ′+

�

�

�

�

�

2

.

(64)

It is clear from (64) that expanding |G̃|2 in orders of γ2 leads to an expansion in 1/κ++1/κ′+
and so leads to tamer UV behavior. This expansion is somewhat subtle however: for high
enough orders the inverse powers of κ+ can lead to spurious IR divergences. We view this as
an artifact of the perturbation theory: in fact by examining the γ� 1 regime directly, we can
see that (64) is both UV and IR convergent for large masses. We do this now.

For small correlation lengths, γ2 = δ+δ−m2 � 1, our primary tool will be to simplify the
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integral by saddle-point. The broad strategy is the following: since |G̃(ρ+,ρ−)|2 is a positive
function we will write it as |G̃(ρ+,ρ−)|2 = exp (−S(ρ+,ρ−)) for some real S that grows faster
than a logarithm at large argument. It will be useful to introduce another change of variables,
κ+ = γ`+ and v = γ2w, to make the saddle-point arguments more natural:

〈(T++[F])2〉Ω =
V 2

d−3

8(2π)2(d−3)
(δ+)−d−2(δ−)2−dγ2d

×
∫ ∞

0

d`+d`′+
(2π)2

∫ ∞

0

dw dw′

(2π)2
(ww′)

d−4
2 `+`

′
+ e
−S

�

γ(`++`′+),γ
�

w+1
4`+
+ w′+1

4`′+

��

. (65)

In general, since e−S is a just a rewriting of the smearing function, it can be somewhat arbi-
trary (although positive) at small arguments, however at large argument we will assume that
it is damped so that the smearing function is appropriately smooth in position space. With
this assumption, the general strategy is to allow γ to be large enough such that the `+ and `′+
saddles of e−S lie in this damped regime and evaluation by saddle-point is a good approxima-
tion. While this strategy should work in general, the details of it are specific to the smearing
function. To be definite, let us illustrate this with a Gaussian smearing function:

FGauss(x+/δ+, x−/δ−) =
1
p

2π
e
− x+2

4δ+2 −
x−2

4δ−2 , (66)

for which we have the following two-point function:

〈(T++[F])2〉Ω =
V 2

d−3

8(2π)2(d−3)
(δ+)−(d+2)(δ−)−(d−2)γ2d

×
∫ ∞

0

d`+d`′+
(2π)2

∫ ∞

0

dw dw′

(2π)2
(ww′)

d−4
2 `+`

′
+ e
−γ2(`++`′+)

2−γ2
�

w+1
4`+
+ w′+1

4`′+

�2

. (67)

The `+ and `′+ integrals have a saddle at

¯̀
+ =
p

w+ 1
2

, ¯̀′
+ =
p

w′ + 1
2

. (68)

There is no saddle in the w and w′ integrals and we will simply expand the exponent to linear
order about their boundary value w̄= w̄′ = 0. We arrive at

〈(T++[F])2〉Ω ≈
V 2

d−3

217/2(2π)2d−3
(δ+)−(d+2)(δ−)−(d−2)γ2(d−1)e−2γ2

�∫ ∞

0

dw w
d−4

2
p

w+ 1 e−γ
2w

�2

.

(69)

The w integrals can now be done analytically to yield hypergeometric functions, however given
the level of approximation we have performed already it is consistent to look at the leading
contribution in the large γ limit:

〈(T++[F])2〉Ω ≈
1

211/2(4π)d−1
(δ+)−(d+2)(δ−)−(d−2)γ2 e−2γ2

. (70)

Thus we find that at small correlation lengths, fluctuations of the DSNE are further suppressed
by e−2γ2

. We emphasize that this particular suppression is not universal: it is exponential
because our smearing function is Gaussian. However on general grounds, we expect that
for large γ the two-point function to be suppressed by the Fourier transform of the smearing
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function evaluated at a “saddle" at order ∼ γ (in dimensionless variables and up to order one
factors) in its arguments:

〈(T++[F])2〉Ω ∼ (δ+)−(d+2)(δ−)−(d−2) p(γ) |G̃α+γ,α−γ|
2 , (71)

where p(γ) is a polynomial in γ and α± are order one constants. To recap what we have
learned from this subsection and what we will take into following section:

• Vacuum fluctuations of the DSNE are finite for suitable smearing functions and scale

with the smearing lengths by
�

δ+
�−(d+2) �

δ−
�−(d−2)

. This is multiplied by an O(1) factor
that is perturbative in γ2 := δ+δ−m2 when the correlation length is large compared to
the smearing length (γ2� 1).

• When the correlation length is much smaller than the smearing length, γ2 � 1, fluctu-
ations are further suppressed by Fourier transform of the smearing function at the scale
set by γ.

3.3 Towards a DSNEC: the squeezed states, part two

Given the boundedness of its vacuum fluctuations, our general expectation is that there is a
state-independent lower bound on the DSNE and this section we will make a conjecture on
its form. To motivate this conjecture we will first return to the states of section 2.2, which
we remind the reader realize the UV divergence in the SNEC lower bound. For our present
purposes we will express them in the Fock quantization introduced in section 3.1:

|ξ〉= exp

�

1
2

∫

Dm2

d2k±d2k′±
(2π)4

∫

Sd−3

dd−3Ωdd−3Ω′

(2π)2d−6

�

â†
k+,k−,Ωξ(k±,Ω; k′±,Ω′)â†

k′+,k′−,Ω′
− h.c.

�

�

|Ω〉 ,

(72)
where we will take the ansatz

ξ(k±,Ω; k′±,Ω′) = ξ(k+, k′+; k+k−)
q

k+k′+(2π)δ(k+k− − k′+k′−)(2π)
d−3δd−3(Ω+Ω′) . (73)

The motivation for this ansatz is clear from section 2.1: the negative energy receives consid-
erable contributions from modes with transverse momenta that are equal and anti-aligned.

On-shell, k+k− =
~p2
⊥+m2

4 and so the delta functions in (73) enforce this antipodal identification
of transverse momenta. We will allow ξ to be general function of the magnitude, k+k−, (sim-
ilar to as it was in section 2.2). The

Æ

k+k′+ factors are pulled out for convenience.

Using similar tricks as in section 2.2, and writing u = 4k+k−, from (56) we write the ex-
pectation value as

〈T++[F]〉ξ =
Vd−3

2(2π)d−3

∫ ∞

0

dk+dk′+
(2π)2

∫ ∞

m2

du
2π
(u−m2)

d−4
2

q

k+k′+

×
�

sinh2
•(ξ)(k+, k′+; u/4)RG̃

δ+∆+, δ
−u

4k+
− δ−u

4k′+

− sinh•(ξ) • cosh•(ξ)(k+, k′+; u/4)RG̃
δ+Σ+, δ

−u
4k+
+ δ
−u

4k′+

�

, (74)

where we recall the • “matrix" notation for integration over k+, (41). Much like section 2.2,
the key technique here is to relate (74) to an expectation value in a two-dimensional scalar
theory. However, unlike section 2.2, because we are smearing over both null directions and
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thus “pulling off" the light-sheet, this expectation value has to be taken in a massive theory. To

be specific, let T (µ
2)

++ [F] be the 2d double-null smeared stress-tensor

T (µ
2)

++ [F] :=

∫

d x+d x−

δ+δ−
F(x+/δ+, x−/δ−)2 : ∂+ϕ̂(x

+, x−)∂+ϕ̂(x
+, x−) : (75)

of the 2d massive scalar with mass µ2

ϕ̂(x+, x−) =

∫ ∞

0

dk+
2π
p

2k+

�

α̂k+e−ik+x+−i µ
2

4k+
x− + h.c.

�

. (76)

Note that in section 2.2, because we could restrict to x− = 0 the question of whether of ϕ
was massive was never an issue. Let us consider its expectation value in the 2d squeezed state
from section 2.2 which we reproduce here (to make explicit its µ2 dependence)

|ξ(µ2)〉2d = exp

�

1
2

∫ ∞

0

dk+dk′+
(2π)2

α̂†
k+
ξ(k+, k′+;µ2/4)α̂†

k′+
− h.c.

�

. (77)

For a given µ2, ξ defines a 2d squeezed state in the massive theory with fixed mass, however
we will be considering this in the context of an ensemble of massive theories, within which
we will allow µ2 to vary. It is then simple to show that the d-dimensional DSNE expectation
value is related by

〈T++[F]〉ξ =
Vd−3

2(2π)(d−3)

∫ ∞

m2

du
2π
(u−m2)

d−4
2 〈ξ(µ2)|T (µ

2)
++ [F]|ξ(µ

2)〉2d

�

�

�

µ2=u
. (78)

We note that (78) is essentially the generalization of equation (45) to double-null smearing.
In a similar spirit to section 2.2, if we can derive a bound on the massive 2d null-energy we
can apply it to lower-bound this expectation value. An additional difficulty to this, not present
in section 2.2 is that this 2d theory, once pulled off the light-sheet, is no longer a CFT (as the
integration in (78) is over a mass parameter) and which limits our toolbox for deriving such
a bound. However it is still a free field theory and so luckily our toolbox is still plentiful. In

fact, in appendix B we will show that even with µ2 6= 0, 〈T (µ
2)

++ [F]〉 obeys a (slightly weaker13)
“Schwarzian"-type lower bound we derived using CFT techniques:

〈T (µ
2)

++ [F]〉 ≥ −
1

8πδ+δ−

∫

d2 x±
�

∂+F
�

x+

δ+
,

x−

δ−

��2

. (79)

This bound is however not very useful in the present case: because it is insensitive to the
mass, the integral over u appearing in (78) is divergent. Introducing a hard UV cutoff of this

transverse momenta, Λu = 2π
�

d−2
Vd−3

�
2

d−2 a−2, we find

〈T++[F]〉ξ ≥ −
1

8πad−2

∫

d2 x±

δ+δ−

�

∂+F
�

x+

δ+
,

x−

δ−

��2

, (80)

which takes the familiar SNEC form trivially integrated over the x− direction.

Happily, in appendix B we prove a more general (and more useful) family of bounds on

13Recall that the bound implied by the “Schwarzian," e.g. that appearing in (19), has a coefficient of − 1
12π as

opposed to − 1
8π .
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〈T (µ
2)

++ [F]〉 of which (79) is a special case. This family of bounds depend on fixed reference
frames in momentum space which we label with a boost parameter, eη:

〈T (µ
2)

++ [F]〉 ≥ −
δ+δ−

4π

∫

d2q±
(2π)2

�

�F̃(δ+q+,δ−q−)
�

�

2
Θ(qη −µ)e−2ηqη

Ç

q2
η −µ2 , (81)

with qη = eηq+ + e−ηq−. Equation (81) is true for any state |ψ〉 and any η ∈ R. This free
parameter is useful as it allows us to pull out the appropriate scaling from (81) by choosing

eη =
q

δ+

δ− . Substituting (81) into (78) we can perform the u integration to arrive at

〈T++[F]〉ξ ≥ −
�

δ+
�− d+2

2
�

δ−
�− d−2

2

4(4π)
d−1

2 Γ
� d+1

2

�

∫

d2ρ±
(2π)2

|F̃(ρ+,ρ−)|2ρ0

�

ρ2
0 − γ

2
�

d−1
2 Θ (ρ0 − γ) , (82)

where we recall γ2 = δ+δ−m2 is the dimensionless mass to smearing ratio from the previous
section and we have introduced ρ0 = ρ++ρ− ≡ δ+q++δ−q−. We emphasize that the integral
in (82) is phrased completely in terms of dimensionless variables; we expect it to converge for
smearing functions with the following large ρ± behaviour

lim
ρ±→∞

|F̃(ρ+,ρ−)|® ρ
− d+1

2
± , (83)

only affecting O(1) constants and not the parametric dependence on the smearing lengths, at
least when the mass is small (i.e. γ2 � 1). We briefly point out that (82) implies a timelike
world-line bound on the null-energy of the massive scalar in d = 4 written down by Fewster
and Roman in 2002, [29]. To see this, we can set δ+ = δ− ≡ δ imagine letting F(s+, s−) fac-
torize as a function of (s0, s1)14. To be more specific, and to make contact with their notation,
we will let15:

1
δ
F
�

x+

δ
,

x−

δ

�

:=
1
p

2
g(x0)g1(x

1) , (84)

for which the dependence on g1 trivially integrates to one in the bound. We can then imagine
letting g1 being a sharply peaked Gaussian limiting to (g1(x1))2 = δ(x1). For d = 4 we find

∫

d x0 g(x0)2〈T++(x0, x1 = 0, ~y⊥ = 0)〉ξ ≥ −
(`µvµ+)

2

12π3

∫ ∞

m
dq0| g̃(q0)|2q0

�

q2
0 −m2

�3/2
, (85)

where g̃ is the Fourier transform of g, ` ≡ ∂t is the normalized tangent vector to the timelike
geodesic, and vµ+ comes from the definition of T++, (8). One can compare this to equation
(III.9) of [29].

It is also interesting to investigate (82) in the large mass scenario, γ2 � 1, to see if we find
the same suppression suggested by the two-point function in 3.2. To be specific we will again
take F = FGauss from equation (66) and precede by saddle-point in the ρ+ integral:

〈T++[FGauss]〉ξ ≥ −
(δ+)−

d+2
2 (δ−)−

d−2
2

2(4π)
d−3

2 Γ
� d+1

2

�

∫

d2ρ±
(2π)2

e−2ρ2
+−2ρ2

−ρ0

�

ρ2
0 − γ

2
�

d−1
2 Θ(ρ0 − γ) . (86)

14Some care needs to be taken to be consistent with how we fixed the variance of F with respect to s± (see
footnote 11), however this does not preclude such a factorization. For instance the Gaussian ansatz, (66) factorizes
in the (s0, s1) variables.

15The extra factors stem from matching the normalization
∫

d2 x±

δ2 F2 = 1 with the normalization
∫

d x0d x1 (g(x0)g1(x1))2 = 1.
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By writing ρ− =
u
ρ+

we find a saddle16 in the exponential at ρ̄+ =
p

|u|. Performing the
fluctuation integral in δρ+ = ρ+ −

p
u about this saddle we have

〈T++[FGauss]〉ξ ¦ −
(δ+)−

d+2
2 (δ−)−

d−2
2

23/2(4π)
d−2

2 Γ
� d+1

2

�

∫ ∞

0

du
2π

e−4u
�

4u− γ2
�

d−1
2 Θ

�

4u− γ2
�

. (87)

The u integral is now easy to perform leaving

〈T++[FGauss]〉ξ ¦ −
(δ+)−

d+2
2 (δ−)−

d−2
2

25/2(4π)d/2
e−m2δ+δ− . (88)

This kind of suppression is reminiscent of the well-known decay of massive field correlators at
space-like separations comparable with the correlation length, although we caution that the
specific exponentional decay arises from the choice of a Gaussian smearing function. More
generally, via saddle-point arguments, we would expect the right-hand side of (88) to be sup-
pressed by |F̃(α+m2δ+δ−,α−m2δ+δ−)|2 where α+ and α− are order one constants.

Lastly, we mention that this behavior has been hinted at before: in [18] it was noted that the
supremum of 〈Tµν〉uµuν along a portion of a time-like geodesic, λ, of fixed smearing length
τ0 (here uµ is the normalized velocity of that geodesic) is bounded below by a quantity that
is exponentially suppressed in the mass

sup
τ∈(−τ0/2,τ0/2)

〈Tµν(λ(τ))uµuν〉¦ −kd md (mτ0)e
−mτ0 , (89)

(where kd is a constant) which follows from optimizing world-line bounds derived in [30] for
smeared weak energy,

∫

dτ〈Tµν(λ(τ))uµuν〉 g(τ)2, over smearing functions.

4 Discussion

In this paper we investigated several new aspects of smeared null energy. While specifically
the computations we performed apply for the free massive scalar, we have some expectation
that our results apply broadly to Lorentzian quantum field theories for reasons we will discuss
shortly below. To recap our results, we used light-sheet quantization to prove a conjectured
bound on the SNE, the null energy smeared with a smooth function along a light-ray. This
bound makes explicit reference to a UV cutoff, which appears in this case as a transverse “dis-
cretization" of the light-sheet. Regardless of the appearance of the UV cutoff, this “field theory
SNEC" is still a potentially useful bound on its own. In the context of effective field theory,
one may have a physically motivated cutoff scale (restricting the momenta of relevant field
configurations) and for which a Gaussian theory with relevant interactions is a natural start-
ing place. Additionally, although the version of SNEC proven here is not directly related to
a bound in semi-classical gravity, given the general expectation that any realistic UV cutoff
should be much less than the inverse Planck length (divided by the number of fields [17]),
a−(d−2) � N−1`

−(d−2)
P , one may regard our proof as a heuristic argument in favor for the ex-

istence of the gravitational form of the SNEC, as originally proposed in [1], and in a regime
far from the proof of [16].

We went further on to argue that smearing over several light-rays along the same light-sheet

16There is also a saddle at ρ̄+ = −
p

|u|, however this does not contribute to the integral due to the Heaviside
function.
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does not improve the bound (in the sense of removing its cutoff dependence) and illustrated
this with a series of squeezed states whose negative smeared null-energy can take values all
the way up to the UV cutoff. Motivated by bounding null-energies without reference to a cut-
off, we posit that the null stress tensor smeared along both null directions (that is x+ and
x−) (what we coin the DSNE) is an operator that is bounded below for all states (at least for
smooth enough smearing functions). This is motivated by showing that fluctuations over the
vacuum are bounded and by evaluating the DSNE in the above series of squeezed states. The
squeezed state expectation values suggest a form of the lower bound of the DSNE which we
conjecture to be generally true. Importantly this conjectured bound displays a transition with
the ratio of the invariant smearing length with the correlation length and for massive theories
can be substantially tighter than the bound for massless theories.

The DSNEC proposed here can be seen a particular manifestation of a general expectation
that energy densities are well-behaved when smeared over time-like domains. Our result is
very reminiscent of time-like worldline bounds on energy densities and indeed we have shown
that with an appropriate choice of smearing functions, the DSNEC implies a worldline inequal-
ity. On the other hand, we suspect that such worldline inequalities do not necessarily imply
the DSNEC; at the very least it is unclear to us how to foliate a diamond in the (x+, x−) plane
with time-like worldlines without arriving at trivial lower bounds from either short worldlines
at the corners, or from boosted worldlines on the null edges. On a more practical note, the
DSNEC provides a cutoff insensitive regularization of the field theory SNEC along a single null
geodesic, say by smearing thinly in the x− direction, which is a utility fairly distinct from the
worldline inequalities.

Proving DSNEC

In this paper we did not undertake the harder task of proving the DSNEC, (4). We expect that
a proof of this (and more specifically of the bound (82)) is obtainable using the traditional
tool box of field theory techniques, at least for the current domain of free massive quantum
field theory. This will be addressed in a companion paper to appear in the near future [31].
The larger task of proving some version of the DSNEC for generic interacting field theories,
however, is much more difficult and likely to employ a completely different set of techniques
than outlined here or in the companion paper, [31]. See the below point.

Interactions

Because the techniques we have employed here are special to free field theories (either through
assuming conformal properties onL or through direct Fock quantization) it is reasonable to ask
what is the fate of the SNEC or the DSNEC in interacting field theories. We pause to note the
following distinction: the answer to this question is very different for relevant interactions as
opposed to marginal or irrelevant interactions. In particular, as emphasized in [20], the ultra-
locality of the horizon algebra and the horizon vacuum in null quantization are safe from the
introduction of interactions as long as they do not alter the canonical structure of the theory
on L. At tree-level, any interaction term devoid of derivatives couplings will suffice. However
at one-loop and higher, irrelevant and marginal couplings pose a real danger of spoiling the
light-sheet algebra either through the necessity of derivative coupling counterterms or through
(divergent) wave-function renormalization. Thus the regime of validity of our proof of SNEC
is for Gaussian field theories in d ≥ 3 dimensions with perturbative relevant interactions. It is
also our expectation that (4) holds in such theories as well, at least for a suitable definition of
the correlation length. Though admittedly not rigorous, our reason is the following: without
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derivative couplings, the null stress tensor, T++, is functionally identical to the Gaussian theory,
although its expectation values may differ from the Gaussian theory. However, by supposition,
at large momenta the contribution of interactions to those expectation values will be negligi-
ble and so we expect that since (4) holds for free theories, the expectation value 〈T++[F]〉,
if negative, will still be bounded below. Dimensional analysis and the behavior of T++ under
boosts suggests that this bound will still be of the form (4).

For strongly interacting field theories, we likely need a completely separate toolbox. An al-
legory can be drawn contrasting the techniques used in the proof of the QNEC for free field
theories [9] (drawing upon the properties of free fields on a light-sheet) and those used for
proving the QNEC in interacting field theories [10] (drawing upon properties of conformal
field theories under modular flow). Indeed, because strongly interacting field theories can
only be suitably defined via their flow to a RG fixed point, we expect formal CFT techniques
to be required to fully prove some generic version of the DSNEC. At present we are not certain
as to what will work and what will not,17 although perhaps investigating CFT states prepared
by stress-tensor insertions, e.g. as in [32], or investigating DSNE expectation values in holo-
graphic descriptions of negative energy states described in [33] will provide a nontrivial first
check. For now we will leave

〈T(C F T )
++ [F]〉ψ ≥ −

NC

(δ+)
d+2

2 (δ−)
d−2

2

, (90)

with C an O(1) constant and N a suitable measure of the degrees of freedom, simply as a
conjecture to revisit in the future.
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A Appendix: An almost-basis of functions on the light-sheet

In this appendix we add some details to the “pencil" quantization for free fields on the light-
sheet, L = {x− = 0}, by identifying an “almost-basis" of modes that makes the pencil decom-
position natural. One main outcome of this appendix is to see explicitly that this almost-basis
provides a good approximate basis for field configurations with transverse momenta much less
than the inverse pencil width: |~p⊥| � a−1, establishing a’s role as an (inverse) UV cutoff.

Firstly we imagine overlaying the transverse ~y⊥ directions of L with a fixed square lattice
with spacing a. We will label the vertices of this lattice by an integer vector ~p. These will be
the pencil labels of section 2. To each ~p we can associate a function on L

vk+,~p(x
+, ~y⊥) :=

e−ik+x+

p

2|k+|

d−1
∏

i=2

Θ
�

1− |y
i
⊥−p

i a|
a/2

�

p
a

, (91)

17For instance, isolating the null stress tensor from a light-cone OPE (ala [13]) will suffer additional contributions
from the finite separation in the other null direction.
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where Θ(x) is a Heaviside function taking the value 1 for x ∈ [0, 1) and zero everywhere else.

We will denote the transverse support of vk+,~p by D~p =
¦

~y⊥
�

�

� |y i −pia|< a/2
©

and the product

of Heaviside functions as ΘD~p(~y⊥).

It is easy to check that with respect to the Klein-Gordon norm on L,

( f1, f2) := i

∫

d x+dd−2 ~y⊥
�

f ∗1 (x
+, ~y⊥)∂+ f2(x

+, ~y⊥)− ∂+ f ∗1 (x
+, ~y⊥) f2(x

+, ~y⊥)
�

, (92)

that these functions are orthonormal:

(vk+,~p, vk′+,~p′)= δ~p,~p′(2π)δ(k+ − k′+) . (93)

Away from the lightsheet, vk+,~p(x+, ~y⊥) can be extended to a full solution, ψk+,~p(x+, x−, ~y⊥)
to the wave equation

4∂+∂−ψk+,~p = (∇2
⊥ −m2)ψk+,~p , (94)

with initial condition ψk+,~p(x+, x− = 0, ~y⊥) = vk+,~p(x+, ~y⊥). By writing ψk+,~p(x+, x−, ~y⊥) =
= eik+x+ψ̃k+,~p(x−, ~y⊥), ψ̃k+,~p satisfies a Schrödinger-type first order equation

i∂−ψ̃k+,~p(x
−, ~y⊥) =

1
4k+

�

∇2
⊥ −m2

�

ψ̃k+,~p(x
−, ~y⊥) , (95)

which uniquely specifies it.

The obvious downside to the collection {vk+,~p} is that they do not span the set of functions
on L and so do not provide a full basis of field configurations. However they do provide an
almost-basis for field configurations with long wavelengths compared to the pencil width: a
field configuration with |~p⊥| � a−1 can be expanded as a combination of {vk+,~p} up to an error
on the order of O(p2

⊥a2), which we show now. Let Φ(x+, ~y⊥) be a typical field configuration
on L expressed as

Φ(x+, ~y⊥) =

∫

dk+
2π
p

2|k+|

∫

dd−2p⊥
(2π)d−2

φ̃k+,~p⊥e−ik+x+−i~p⊥·~y⊥ , (96)

for some φ̃k+,~p⊥ . For such a Φ we define Φ(disc.) as

Φ(disc.)(x+, ~y⊥) :=

∫

dk+
2π

∑

~p

αk+,~pvk+,~p(x
+, ~y) , (97)

with coefficients αk+,~p given by

αk+,~p :=(vk+,~p,Φ)

=

∫

dd−2 y⊥
ΘD~p(~y⊥)

a
d−2

2

�∫

dd−2p⊥
(2π)d−2

e−i~p⊥·~y⊥φ̃k+,~p⊥

�

=a
d−2

2

∫

dd−2~p⊥
(2π)d−2

e−i~p⊥·(a~p) φ̃k+,~p⊥R(~p⊥a) , (98)

and we have defined

R(a~p⊥) :=
d−1
∏

i=2

�

2

api
⊥

�

sin

�

api
⊥

2

�

. (99)
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We can think of αk+,~p as the coarse-graining of Φ over the pencil centered at ~p (after the trivial
Fourier transform in x+). Now consider the overlap of Φ with Φ(disc.):

(Φ,Φ(disc.))=

∫

dk+
2π

∫

dd−2p⊥
(2π)d−2

dd−2p′⊥
(2π)d−2

φ̃∗k+,~p⊥
φ̃k+,~p′⊥

× (2π)d−2
∑

~z∈Zd−2

δd−2
�

~p⊥ − ~p′⊥ −
2π
a
~z
�

R(a~p⊥)R(a~p′⊥) , (100)

which also happens to be equal to (Φ(disc.),Φ(disc.)). The periodic delta function comes from a
sum of ad−2e−i(~p⊥−~p′⊥)·(~pa) over pencils and organizes the momenta in terms of the first Brillouin
zone, as is familiar in lattice physics. Importantly we see that if φ̃k+,~p⊥ only has support for
|~p⊥| � a−1 then the delta function can only be satisfied on the first band of this zone: ~p⊥ = ~p′⊥.
Moreover, perturbatively expanding the expression for R for this regime of momenta we have

(Φ,Φ(disc.))≈
∫

dk+
2π

∫

dd−2~p⊥
(2π)d−2

φ̃∗k+,~p⊥
φ̃k+,~p⊥

�

1−
1
24

a2p2
⊥ + . . .

�

. (101)

The error then in approximating Φ by Φ(disc.) is small for field configurations with wavelengths
much larger than the pencil width is

E[Φ] := (Φ−Φ(disc.),Φ−Φ(disc.))= O(a2~p2
⊥) . (102)

If one is worried about the Klein-Gordon norm not being positive definite, this argument can
be repeated with the L2 norm to the same conclusion. Thus if we adopt a−1 as a UV cutoff
and restrict the path-integral to field configurations with transverse momenta much less than
a−1 then we can imagine always approximating field configuarations by their corresponding
Φ(disc.) (we will from here on drop the superscript “(disc.)") and quantize the theory on L in
the pencil basis by promoting the coefficients αk+,~p to operators:

Φ̂(x+, x− = 0, ~y⊥ ∈ D~p) = a−
d−2

2

∫ ∞

0

dk+
2π
p

2k+

�

α̂k+,~pe−ik+x+ + α̂†
k+,~peik+x+

�

, (103)

satisfying commutation relations

[α̂k+,~p, α̂
†
k+,~p′] = (2π)δ(k+ − k′+)δ~p,~p′ . (104)

Note that {α̂k+,~p, α̂
†
k+,~p} satisfy the commutation relations of decoupled 2d chiral scalars,

{ϕ̂~p(x+, x−)} quantized on x− = 0. The pencil label, ~p, acts as an internal index of the scalars.
The original scalar is related to these chiral scalars via

Φ̂(x+, x− = 0, ~y⊥ ∈ D~p) = a−
d−2

2 ϕ̂~p(x
+, x− = 0) . (105)

This is of course the familiar relation noted by [20]; we have simply arrived at it in way that
makes the role of a−1 as a UV cutoff manifest.

B Appendix: Bounds on the null energy of the 2d massive scalar

In this section we consider the null-quantization of the 2d massive scalar with mass, µ2 and
its negative null-energy. In canonical quantization

ϕ̂(x+, x−) =

∫ ∞

0

dk+
2π
p

2k+

�

α̂k+e−ik+x+−i µ
2

4k+
x− + h.c.

�

. (106)
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The null stress-tensor is given by T++ =: ∂+ϕ̂∂+ϕ̂ :. In the free-theory the normal ordering
is unequivocally defined by Fock-mode normal ordering, but equivalently it is simply a sub-
traction of the bare stress-tensor, T (bare)

++ (x+, x−) = ∂+ϕ̂(x+, x−)∂+ϕ̂(x+, x−), of its contact
divergences which are encapsulated by its vacuum expectation value:

T++ = T (bare)
++ − 〈T (bare)

++ 〉Ω . (107)

To make sense of the above expression, we will define it through point splitting,

T (bare)
++ (x±) = lim

y±→x±
∂+ϕ(x

±)∂+ϕ(y
±) . (108)

Now we consider smearing T++ with F(x±/δ±)2. With the appropriate introduction of a
delta-function we have

T++[F] =
1

δ+δ−

∫

d2 x±d2 y±
∫

d2ρ±
(2π)2

e−iρ·∆xF
�

x±

δ±

�

F
�

y±

δ±

�

×
�

∂+ϕ(x
±)∂+ϕ(y

±)− 〈∂+ϕ(x±)∂+ϕ(y±)〉Ω
�

,

(109)

where ∆x± = x± − y±. The integrand is symmetric18 under x±↔ y± and so we can restrict

the ρ integration to an appropriate half-space:
∫ d2ρ±
(2π)2 → 2

∫

H
d2ρ±
(2π)2 . The first term of (109),

∫

H d2ρ±
∫

d2 x±d2 y±FxFy T (bare)
++ is an inherently a positive operator (integrating the product

of an operator and its Hermitian conjugate); it is the normal-ordering that is responsible for
sourcing any possible negative null-energy. Thus the smeared null-energy in any state |ψ〉 is
bounded below by the smeared vacuum expectation value:

〈T++[F]〉ψ ≥ −
2

δ+δ−

∫

d2 x±d2 y±
∫

H

d2ρ±
(2π)2

e−iρ·∆xF
�

x±

δ±

�

F
�

y±

δ±

�

〈∂+ϕ(x±)∂+ϕ(y±)〉Ω .

(110)
This statement is true for any halfspace of the ρ± plane, which essentially amounts to a choice
of reference frame. As such, any bound derived for a specific choice of H will break covari-
ance under Lorentz boosts. In principle, however, this bound could be optimized over all
possible reference frames and we expect that this minimization restores covariance. In this
appendix we will take the slightly less ambitious approach and consider a family of reference
frames related by a constant boost. That is we will use the momentum half-space defined by
Hη = {ρη = eηρ++ e−ηρ− ≥ 0}. We note that bound we will find depends explicitly on η. We
have

〈T++[F]〉ψ ≥ −δ+δ−
∫

Hη

d2ρ±
(2π)2

∫ ∞

0

dk+
2π

k+
�

�F̃(δ±q±)
�

�

2

q+=k++ρ+, q−=ρ−+
µ2

4k+

, (111)

with the constraint that ρη = eηρ+ + e−ηρ− = eηq+ + e−ηq− −
�

eηk+ + e−η µ
2

4k+

�

≥ 0. We can
replace the ρ integrals for q integrals keeping track over the appropriate integration domain:

〈T++[F]〉ψ ≥ −δ+δ−
∫

d2q±
(2π)2

�

�F̃(δ±q±)
�

�

2
∫ ∞

0

dk+
2π

k+Θ

�

qη − eηk+ − e−η
µ2

4k+

�

, (112)

where qη = eηq+ + e−ηq−. We perform the linear k+ integral over the domain lying between
e−η
2

�

qη ±
q

q2
η −µ2

�

:

〈T++[F]〉ψ ≥ −
δ+δ−

4π

∫

d2q±
(2π)2

�

�F̃(δ±q±)
�

�

2
Θ(qη −µ)e−2ηqη

Ç

q2
η −µ2 . (113)

18This is an obvious statement for the classical fields, but here remains true for the normal-ordered T++ because
the commutator of ϕ is state-independent.
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Equation (113) is true for any η ∈ R. Let us explore some interesting limits of (113). For
instance by taking the mass, µ2, and the boost parameter, η, to zero, we perform the inverse
Fourier transform to find

〈T++[F]〉ψ
�

�

µ2=0 ≥ −
1

8π

∫

d2 x±

δ+δ−

§

(∂+ + ∂−)F
�

x+

δ+
,

x−

δ−

�ª2

, (114)

consistent with the time-like bounds of [30]. Alternatively we can choose to boost this answer
to a lightsheet by taking the η→∞ limit. The leading terms in these integrals are

〈T++[F]〉ψ ≥ −
δ+δ−

4π

∫

d2q±
(2π)2

�

�F̃(δ±q±)
�

�

2
Θ (q+)q

2
+ , (115)

and so in the η→∞ limit we recover the “Schwarzian" bound, insensitive to the mass, with
however a slightly weaker coefficient ( 1

8π as opposed to 1
12π):

〈T++[F]〉ψ ≥ −
1

8π

∫

d2 x±

δ+δ−

�

∂+F
�

x+

δ+
,

x−

δ−

��2

. (116)
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