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Abstract

We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven
by a far detuned laser whose phase is modulated at a frequency comparable to the trans-
verse cavity mode spacing. We show that a strong, dispersive atom-photon coupling can
be reached for many transverse cavity modes at once. The resulting Floquet polari-
tons involve a superposition of a set of cavity modes with a density excitation of the
atomic cloud. The mutual interactions between these modes lead to distinct avoided
crossings between the polaritons. Increasing the laser drive intensity, a low-lying mul-
timode Floquet polariton softens and eventually becomes undamped, corresponding to
the transition to a superradiant, self-organized phase. We demonstrate the stability of
the stationary state for a broad range of parameters.

Copyright C. H. Johansen et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 23-09-2021
Accepted 14-02-2022
Published 16-03-2022

Check for
updates

doi:10.21468/SciPostPhys.12.3.094

Contents

1 Introduction 2

2 Theoretical description 3
2.1 Model 3
2.2 Polarisability of the Floquet-driven bosonic gas 6
2.3 Symmetric trap and harmonic phase modulation 8

3 Multimode Floquet Polaritons 9
3.1 No phase-modulation 10
3.2 Including phase modulation 11

4 Multimode superradiance 14

5 Experimental considerations 16
5.1 Proposed realizations and observability 16
5.2 Modulation schemes 17
5.3 Detection methods 18

6 Conclusion 18

A Derivation of dynamical polarizability 19

1

https://scipost.org
https://scipost.org/SciPostPhys.12.3.094
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.12.3.094&amp;domain=pdf&amp;date_stamp=2022-03-16
https://doi.org/10.21468/SciPostPhys.12.3.094


SciPost Phys. 12, 094 (2022)

B Mode overlaps 23

C Estimating coupling strength between modes 24

References 25

1 Introduction

The implementation of strong interactions between photons mediated by a medium [1] is
essential for quantum-information processing [2, 3], and at the same time allows for the ex-
ploration of the quantum many-body physics of light [4,5]. Photons inherit interactions from
the material through the formation of polaritons [6], hybrid quasiparticles corresponding to
an excitation present both in the electromagnetic field and in the material.

The creation of interacting polaritons having access to a macroscopic number of modes
is essential for the study of thermodynamic phases of photons and complex types of order
[4, 5, 7–15]. The strong-coupling between matter and light, required to implement photon
interactions, can be realized by reducing the electromagnetic-mode volume using optical cav-
ities or evanescent fields [1]. The former can also be combined with the use of Rydberg atoms
to further enhance interactions [16]. This task obviously becomes more challenging if it needs
to be achieved for a whole set of electromagnetic modes, which are in general separated in
frequency. One solution is to shape the cavity geometry such that a set of quasidegenerate
modes is formed [4, 17–19]. Another option is to use a set of propagating modes as in cavity
arrays [14] or photonic crystals [20].

An alternative route towards interacting multimode polaritons has been recently demon-
strated experimentally via Floquet engineering of Rydberg levels in a non-degenerate optical
cavity [21]. Starting from a given atomic transition resonantly coupled to a single cavity
mode, the periodic amplitude modulation of the laser dressing effectively splits the transition
into multiple levels separated by the modulation frequency, one of them becoming resonant
with a second cavity mode. The resulting two-mode polaritons strongly interact via the Ryd-
berg component inherited from the atomic levels. This demonstrated the potential to Floquet
engineer interacting multimode polaritons for the exploration of the many-body physics of
light.

In this work, adopting similar ideas, we theoretically study a first example of a phase
transition to an ordered phase emerging for multimode Floquet polaritons. Differently from
the setup used in [21], the realization of polaritons and their interactions is achieved here via
the dispersive coupling between the motional degrees of freedom of an ultracold Bose gas and
the transverse electromagnetic (TEM) modes of a near-planar Fabry-Perot resonator [22,23],
with mode-spacing in the GHz range. Similarly to the case of plasmon-polaritons in electronic
matter [24], here the polaritons mix a cavity photon with a density excitation in the gas of
neutral atoms.

This type of atom-cavity interaction leads to different linear and non-linear susceptibilities
compared to [21]. In their case the non-linear susceptibility is dominated by the strongly repul-
sive Rydberg interaction, which has no counterpart in our system. Coupling to the motional
state of the atoms, on the other hand, one can study real-space crystallisation and varying
driving schemes makes it possible to program the couplings to the modes supported by the
cavity.

If performed at a frequency close to the TEM mode spacing, a periodic phase modulation
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of the laser can bring a large number of modes into resonance. This is achieved without
heating the atoms, since ultracold density excitations are in the kHz range, and the internal
dynamics typically evolves at hundreds of GHz for a correspondingly detuned laser. The mutual
interactions between multimode Floquet polaritons induce avoided crossings, controlled not
only by the effective light-matter coupling and detunings, but also by the phase-modulation
parameters. As a consequence, a low-lying multimode Floquet polariton can be red shifted to
zero frequency and subsequently become undamped, corresponding to an instability towards
a multimode superradiant phase with macroscopic occupation of the polariton.

The observation of the avoided crossings between coupled Floquet polaritons, in our case,
requires sub-recoil resolution achievable in long cavities [23]. Using ultracold bosons cou-
pled to such cavities, single-mode superradiance has already been observed [25], and Floquet
modulation has also been studied, but at frequencies far below the transverse mode spac-
ing [26,27].

Multimode superradiance has been recently observed using ultracold bosons coupled to
degenerate confocal resonators [28–31], and is expected to give access to beyond–mean-field
effects due to the increased locality of the light-matter coupling [32–36], as well as both
static [32] and dynamic [33] frustration. Multimode superradiance is also technologically
interesting for implementing quantum models for associative memory, as studied both for
confocal cavitites [37] and non-degenerate cavities with multi-frequency drive [38].

Floquet superradiance has so far only been studied in the single-cavity-mode case. Here we
show that one can enter the multimode regime even in non-degenerate cavities. The number
of modes one can actually bring into play with the present Floquet protocol is limited by
the achievable amplitudes of phase modulation, which in turn decreases with the modulation
frequency. With the types of non-degenerate cavities currently employed in ultracold-atom
experiments [39], while interesting multimode nonlinear physics can be realized, it does not
seem feasible for our single EOM protocol to reduce the cavity-mediated interaction range
significantly below the cavity waist. For this purpose, an extension with multi-frequency drives
like [40], which is discussed in section 5.2, should be better suited.

2 Theoretical description

2.1 Model

We consider a cloud of bosonic atoms trapped inside a near-planar optical cavity and transver-
sally pumped by a laser, as depicted in Fig. 1. This laser is phase modulated (PM) with a
frequency comparable to the energy difference between the TEM modes of the cavity. The
pump laser is described as a classical field

E(t,x) = 2ληp(x) cos (ωc t + f (t)) , (1)

with ωc being the carrier frequency of the pump, λ the pump power and ηp its spatial profile.
The PM function, f (t), is assumed to be periodic f (t + T ) = f (t) and real. Because of the
periodicity one can represent e−i f (t) as a discrete Fourier series

e−i f (t) =
∞
∑

α=−∞
cαe−iαΩt , (2)

where Ω = 2π
T . In experiments, the PM can be generated using an electro-optical modulator

which has a limited bandwidth. In this case the coefficients cα are functions of the modulation
depth Bm. With this realization in mind, we consider a series with finite support and define
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Figure 1: The physical setup considered, consists of a linear cavity with a waist of
w0. Inside the cavity ultracold bosonic atoms are confined within a cigar-shaped
harmonic trap, with a transverse harmonic oscillator length of LH . Each atom is
modelled as a two-level system with excitation energy ωe. The atoms are transver-
sally pumped with a laser of frequency ωc and pump strength λ. The laser is sent
through an electro-optical modulator which introduces a periodic phase-modulation
with period 1/Ω and depth Bm. Photons are lost from the cavity mirrors with rate κ,
making the system driven and dissipative.

αM as the index where the sum can be truncated, c|α|>αM
∼ 0. The carrier frequency of the

pump is red detuned from the atomic transition, ωe, in such a way that the detuning between
atoms and carrier frequency, ∆a, satisfies ∆a = ωe −ωc � ωe +ωc . For instance, for 87Rb
atoms, the S1/2 → P1/2 transition has a frequency ωe ≈ 378 THz [41]. In that case ∆a ∼ 102

GHz will easily satisfy the inequality. Similarly, the PM frequency is chosen to be much smaller
than ∆a, such that ∆a + αMΩ ∼ ∆a. Under these conditions it is well justified to apply the
rotating-wave approximation [42].

Since ∆a is large compared to the inverse lifetime of the excited state, the occupation
of the latter remains small and saturation effects are negligible. Therefore, the ground and
excited states of the atoms can be represented as two independent bosonic fields. The resulting
Hamiltonian, in the frame rotating with the carrier frequency, in units where ħh= 1, reads

H =

∫

dr

�

ψ†

�

−
∇2

2m
+ Vg(r)

�

ψ+φ†∆aφ

+ φ†

 

∑

j

g jη j(r)a j +ληp(r)e
−i f (t)

!

ψ+H.c. +
∑

j

∆ ja
†
j ai

)

.

(3)

Here ψ (φ) is the bosonic annihilation field operator for the ground (excited)-state of the
atoms with mass m. For clarity the space-time dependence of field operators has been sup-
pressed. As ∆a is much larger than both kinetic and trapping energy of the excited state,
these terms have been neglected. η j(r) is the spatial mode function for the j’th cavity mode
that couples with strength g j to the atoms. As the spatial mode functions have explicitly been
written in the Hamiltonian, g j is independent of the mode volume. The j’th transverse cavity
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(a)
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Figure 2: The scattering processes that determine the polarizability of a BEC driven
by a PM laser. In these energy-momentum Feynman diagrams, the straight (wavy)
lines represent propagation of a bare atom (photon) labeled by its frequency. The
momentum/mode indices have been suppressed for brevity. Green solid lines repre-
sent atoms in the electronic ground state and blue dashed ones atoms in the excited
state. The purple wavy line indicate cavity photons. In addition, there are external
sources, represented by lines ending in a cross. Those can be photons from a given
sideband of the phase-modulated laser (see discussion in section 2.1), depicted as a
black wavy line, or atoms from the BEC, depicted as solid green lines. Panel a) shows
the normal process, whereas panel b) shows the anomalous process where the laser
acts as a false vacuum.

mode has detuning ∆ j =ω j −ωc and is annihilated by the bosonic operator a j . We consider
the case where the higher-order cavity modes of interest have an approximate linear energy
spacing ∆ j ≈ ∆0 + jωT . Choosing a PM frequency Ω that is comparable to ωT means that
the detuning between higher-order modes and the atomic transition can be compensated by
coupling to the higher-frequency pump sidebands, generated by the PM. As the PM is periodic,
the sidebands are equidistant in frequency and separated by Ω.

All modes couple to all sidebands but the coupling is inversely proportional to the detuning,
∆ j . Because Ω is large the only relevant modes are the near-resonant ones

∆i ±αΩ∼∆0 , (4)

where α refers to the laser sideband from eq. (2). The cavity is an intrinsically lossy system,
which compensates the energy input from the continuous pumping. This loss is included by
coupling the cavity to a continuum of electromagnetic modes playing the role of a bath [43]. At
optical frequencies the electromagnetic bath is effectively at zero temperature and is therefore
well described with a Markovian loss for the photons. This means that in the von Neumann
equation

dρ
d t
= −

i
ħh
[H,ρ] + Dρ , (5)

the unitary Hamiltonian term is supplemented with a Lindblad dissipator [43]

Dρ = −
∑

j

κ j

�

1
2

¦

a†
j a j ,ρ

©

− 2a jρa†
j

�

. (6)

This Markovian modeling of the environment is also valid when the PM is included, as long as
the environment spectral function appears flat over the energy range ωc ±αMΩ.

The atom number is assumed to be constant over the duration of the experiment. By
coupling the atoms to the cavity the total energy, on the other hand, is not conserved. In the
regime where the cavity-mode detunings are comparable to the recoil energy εr = Q2/(2m),
where Q = 2π/λc and λc is the carrier wavelength, this leads to a non-thermal state of the
bosonic atoms [44]. In the following, we will neglect this effect by assuming that the time,
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τrel, required to reach that state is longer than the experimental time, which is realistic for
sufficiently large detunings and trap sizes, since τrel scales inversely with these quantities [44].
We will therefore assume the atoms to be initially cooled down to an ultracold temperature T
much smaller than the recoil energy, so that thermal excitations are of little concern and we
can model the atoms as a perfect BEC.

2.2 Polarisability of the Floquet-driven bosonic gas

Collective polaritonic excitations correspond to the normal modes of the electromagnetic field
including polarization effects, that is, the modification of the propagation of light due to the
medium. In our case, the latter is a gas of ultracold bosonic atoms, whose internal electronic
transition is off-resonantly driven by a PM laser, as described in section 2.1. The assumption
that the bosons are initially in a perfect BEC at zero temperature corresponds to all atoms
being in the electronic ground state and also in the lowest motional state. The motional scales
of cold atoms are in the kHz range while the considered PM frequencies are comparable to the
TEM mode spacing, which here is considered to be on the order of GHz.

The effect of this driven, polarizable medium on the cavity photons is depicted in Fig. 2,
where we illustrate the relevant scattering processes. In Fig. 2 (a), a cavity photon, at fre-
quencyω+αΩ, excites an atom out of the BEC and takes it to an electronically and motionally
excited state (see second line in Eq. (3)). As Ω � ∆a, the electronic excited state is largely
unaffected by the increased frequency, αΩ, of the photon. For the ground state the energy
scale is the recoil energy, εr , which is a much smaller energy than Ω. The scattering process
is therefore significantly suppressed if the incoming cavity photon excites the atomic ground
state to energies which are large compared to the recoil energy, unless the excess energy is
compensated by the laser. With a single laser frequency this is impossible, which leads back
to a single-mode scenario. However, via PM the laser sidebands can be brought close to reso-
nance with the high-energy modes. In the formalism this can be efficiently accounted for by
splitting the energy (ω′) into Floquet sectors ω′ = ω ± αΩ, where ω ∈ {−Ω/2,Ω/2} is the
quasienergy. In the diagrams of Fig. 2, this means that if a photon at energy ω+ αΩ excites
the atoms, then the laser has to remove an energy αΩ for the process to be non-negligible.

The whole sequence is then repeated backwards, leading to the emission of a photon back
into the cavity. Due to the modulation, the pump photon used to excite the electronic ground
state can be shifted by βΩ, which leads to emission into the cavity at this frequency. The same
scattering process can clearly also take place with the role of cavity and laser being exchanged,
which corresponds to the anomalous process [45, 46] depicted in Fig. 2 (b), where the laser
plays the role of a false vacuum.

The crucial point is that, in all these processes, due to the periodic PM of the driving laser,
the initial and the final cavity photon can have different frequencies without the atomic ground
state propagating at a high energy and thus far off-shell. Due to the absorption and emission
of laser photons from different sidebands the polarizability of such a Floquet-driven BEC is
thus not diagonal in frequency space as it couples different Floquet sectors of the cavity field
differing by multiples of Ω. The modulation removes the penalty of coupling parts of the
system modulo Ω but does not affect momentum conservation.

In the situation considered here, the cavity modes differ in their transverse profile,which
to a good approximation is given by a Laguerre-Gauss or Hermite-Gauss function, so that the
transverse momentum is not conserved, as we shall discuss below in more detail.

Besides the process illustrated in Fig. 2 (a), the cavities can also couple directly through
atoms without any laser. These processes can only couple modes at similar energies (on the
scale of recoil energy) and we are considering an experimental regime where the pump power
is much higher than the direct atom-cavity coupling. In this case the processes without the laser
are significantly suppressed due to the large detuning from the excited state and can therefore
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be neglected. Furthermore, one could also consider higher-order processes that would lead
to density-density coupling of the cavity. Doing a scaling analysis, like in [45,46], shows that
such processes become negligible as one approaches the thermodynamic limit.

Under the condition, stated in section 2.1, that the highest sideband of the laser is still far
detuned from the electronic transition, one can adiabatically eliminate the electronic excited
state from the diagrams in Fig. 2. This leads to the following dynamical polarizability:

χi, j;α,β(ω) = Λ
2 c̄αcβΠ

R
i, j(ω) , (7)

which has been expressed as a matrix in the TEM-mode basis, with indices i, j, and in the
Floquet basis, denoted by α,β . A detailed derivation is given in appendix A. We introduce a
single parameter, the effective light-matter coupling strength Λ= λg

p
n0/∆a, which increases

linearly with the pump strength and is proportional to the density of the atoms. This can be
captured in a single parameter because the energetic difference between the transverse modes
is on the order of GHz while the total energy in the electric field is hundreds of THz [47]. This
justifies approximating all modes to have a similar coupling to the atoms and, because we
explicitly kept the mode functions separated from the coupling strength, the approximation
amounts to gi = g.

Again due to the large energy difference between the atomic ground-state motion and the
PM frequency Ω the density response, ΠR in Eq. (7), is diagonal in frequency, and takes the
form of a bosonic analog of the Lindhard function [48], which specified for a perfect BEC in a
trap [45] reads

ΠR
i, j(ω) =

∑

n6=0

−2En

(ω+ i0+)2 − E2
n

× 〈ψ0|η jηp|ψn〉〈ψn|ηiηp|ψ0〉 , (8)

where En is the energy of the atomic eigenmode |ψn〉. We have assumed that the wave func-
tions of the cavity modes, as well as those of the atomic eigenstates, are real. Again, since
the transversal modes are not plane waves, momentum is not a good quantum number so the
summation over atoms modes is not constrained by momentum conservation.

We see that in this regime the non-diagonal frequency structure of the polarizability, cou-
pling two different Floquet sectors α,β , is simply encoded in the product of two Fourier co-
efficients c̄αcβ of the periodic modulation of the pump phase. Each coefficient quantifies how
much of the pump intensity goes into the corresponding sideband i.e. how strong that side-
band couples to the electronic transition. According to the process shown in Fig. 2, these
weights clearly have to enter the polarizability. The remaining part of the polarizability is then
given by the retarded density response of the medium, which only depends on the low-energy
motional degree of freedom of the atoms in their electronic ground state.

The physical content of the density-response function is quite transparent: it features the
matrix element of the transition from the trap ground state |ψ0〉 to a motionally excited state
|ψn〉, and back to the ground state. The transition out of (back to) the ground state is induced
by the spatially-varying optical potential ηiηp (η jηp), created by the interference between
the laser and the cavity field of the i’th ( j’th) TEM mode. As it is clear from inspection of the
matrix elements, for a generic choice of the atom trap, the density response, and in turn the
polarizability, need not be diagonal in the cavity-mode basis.

In summary, the Floquet-driven bosonic medium can change both the frequency (by multi-
ples of the modulation frequency Ω) and the TEM mode of an incoming photon. Whether and
how this happens depends on the specific choice of the PM of the laser, the cavity geometry
and the trapping potential for the atoms, as we discuss next.
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2.3 Symmetric trap and harmonic phase modulation

We consider the radially symmetric configuration of a cigar-shaped harmonic trap in the center
of a near-planar cavity. In order to evaluate the density response in Eq. (8), one needs to
compute the energy En of the state to which the atom is excited out of the condensate and
back, as well as the corresponding transition-matrix elements. Assuming a long, cigar-shaped
BEC at zero temperature, the longitudinal wave function is well localized in momentum space
with a negligible width ∆k � Q. Upon absorption of a photon, the atoms therefore scatter
into a state with longitudinal momentum Q and recoil energy εr .

In the transverse direction the atomic state is more complicated due to the presence of the
optical lattice formed by the pump standing wave. Assuming a sufficiently weak pump and a
transverse trap length much larger than the pump wavelength, we can still approximate the
state in the transverse direction to feature again a simple recoil kick, as in the longitudinal
direction. We therefore approximate the total energy of the lowest-lying atomic excited state
as E1 = 2εr ≡ Er . From here on we will refer to this effective recoil energy, Er , simply as the
recoil energy.

Let us now turn to the evaluation of the matrix elements involving the cavity modes. In
the longitudinal direction the latter are standing waves and thus momentum conservation is
enforced since the atomic states are very close to plane waves as argued above. Instead, in
the transverse direction there is no momentum conservation as the cavity modes are Hermite-
Gauss or Laguerre-Gauss functions. Still, as the cavity mode function is transversally much
broader than the modulation of the atomic states induced by the pump standing wave, we can,
to lowest order, approximate the pump mode function as a constant in the matrix element.

The transverse modes which we seek to couple are Laguerre-Gauss (LG) modes, which for
the cavity read [49]

LG jp(r,Θ) =
e−r2/2w2

0+ipΘ
r

j!
(p+ j)!

�

r
w0

�|p|
L|p|j

�

r2

w2
0

�

w0
, (9)

with L|p|j (x) being the associated Laguerre polynomial of order j. Due to the approximation
of the pump mode function, ηp = 1, the ground-state atoms have similar transverse mode
functions but with w0 replaced by LH .

For atom clouds that are radially symmetric around the cavity axis, angular momentum
conservation implies that for each overlap the angular index must be conserved. The BEC is
in the ground state with zero angular momentum and therefore only radial cavity modes with
the same absolute angular momentum are coupled. Having the carrier frequency being only
slightly detuned from the zeroth TEM mode means that only cavity modes with p = 0 are
relevant and thus η j(x) = w0LG j0(r) cos (Qz), rendering all mode functions and eigenstates
in the density response function real. The remaining radial overlap has a closed form solution
shown in appendix B. The simplest case is when the BEC is significantly narrower than the
cavity waist. In this case all overlaps are negligible except the one with the atomic state in the
zeroth radial mode and a motional state with recoil momentum Er . In this case, the density
response takes a simple form

ΠR
i, j(ω) =

−2Er

(ω+ i0+)2 − E2
r

, (10)

which is the same as the single-mode result [45]. As the atoms have been integrated away we
will from here one refer to the different cavity modes as LG jp unless otherwise stated.

For non-zero modulation depth it is necessary to parametrize the PM, which can be any
real function that is periodic in time. A simple, yet flexible choice is a harmonic modulation:

f (t) = Bm sin(Ωt) ,
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Figure 3: A plot of the first six phase-modulation coefficients as a function of the
modulation amplitude. The coefficients are given by the Bessel functions of the first
kind.

with the amplitude Bm being a real number. From the Jacobi-Anger expansion [50], the dis-
crete Fourier coefficients are known to be Bessel functions of the first kind ei f (t) =

∑

α cαeiαΩt ,
with cα = Jα(Bm). As shown in Fig. 3, for zero modulation depth, the zeroth-order coefficient
is the only non-zero component, which is exactly equivalent to having no PM. Because of the
orthonormal nature of the coefficients, the weight in the zeroth-order component is distributed
as the modulation is increased. As discussed in section 2.2, since the coefficients directly de-
termine how strongly different modes are coupled by the medium, one can tune the amount
of multimodality to a large extent by simply changing the modulation depth.

The modulation frequency Ω is equally important, as it determines the effective detunings
of the different cavity modes. If the modes are exactly linearly spaced one can make the
system energetically degenerate by choosing Ω equal to the mode spacing. If one wants to
energetically suppress either higher- or lower-order modes, one can choose a frequency that
is either smaller or greater than the mode spacing. Thus, even though the specified harmonic
modulation has only two parameters, it is nevertheless highly tunable and has the advantage
of being easy to implement experimentally.

3 Multimode Floquet Polaritons

Having determined the polarizability of the Floquet-driven BEC, we can now investigate how
this modifies the propagation of cavity photons and leads to the formation of polaritons. As
already mentioned above, polaritons are the normal modes of the electromagnetic field inside
the medium. As such, they appear as poles of the Green’s function of the electromagnetic field.
In the present case, this Green’s function reads

DR
i, j;α,β (ω) =

�

PR
i, j;α,β(ω) +χi, j;α,β(ω) χi, j;α,β(ω)

χi, j;α,β(ω) PA
i, j;α,β(−ω) +χi, j;α,β(ω)

�−1

, (11)

where the positive- and negative-frequency components of the electromagnetic field have been
separated. The resulting Nambu matrix depends on the inverse Green’s function of the bare
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Figure 4: Distribution of the spectral weight in the LG00-component of the cavity field.
a) when no phase-modulation is applied to the laser, Bm = 0 and b) when Bm = 0.9,
Ω = ωT + 0.19 Er . The remaining parameters are ∆0 = 0.8Er , w0/Q = 200,
LH = 10−3w0 and κ= 0.02Er with the parameters described in section 2.3. The hor-
izontal dashed lines in b) represent the effective detunings of higher-order modes,
while the decreasing dashed line represents the position of the spectral line from a).
The three green crosses mark the values used in Fig. 5.

cavity
PR/A

i, j;α,β(ω) = δi, jδα,β

�

ω−∆ j −αΩ± iκ j

�

,

where R/A indicate the causality of the Green’s functions being retarded or advanced. This
combination of Green’s functions appears here because both positive and negative frequencies
are present.

Due to the polarization function in Eq. (11), the Green’s function of the electromagnetic
field is non-diagonal in both frequency and LG-mode space, such that its computation, in
general, becomes rather cumbersome. However, as long as the polarizability decays on an
energy scale much smaller than Ω ∼ ωT , the calculations allow for simplifications. In this
case the cavity modes that actually contribute to the electromagnetic Green’s function are the
ones that are near-resonant modulo a multiple of the modulation frequency: ∆i + αΩ ∼ ∆0.
This effectively couples the sideband α with only one mode i, largely reducing the number of
non-zero elements in Eq. (11).

In order to visualize the poles of the electromagnetic Green’s function, we will use the
so-called spectral function of the cavity

Ai, j;α,β = i
�

DR
i, j;α,β −

�

DR
j,i;β ,α

�∗�
. (12)

This function has peaks in correspondence to the real part of the poles (the polariton fre-
quency), with a width set by the imaginary part (the polariton damping or inverse lifetime).
The features observed in the spectral function can be measured by pump-probe [52] or trans-
mission experiments [53].

3.1 No phase-modulation

To put our results into perspective and highlight effects of the coupling between many cavity
modes, we first review some features of the single-mode calculation [45, 54]. The spectral
function for the unmodulated cavity is shown in Fig. 4 (a). When the cavity couples weakly
to the atoms the cavity spectrum is dominated by the free Lorentzian peak centered at the
detuning ∆0 with a width determined by the cavity loss κ. As the pump strength is increased
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the atoms start to hybridize with the cavity. This leads to a second peak in the cavity spec-
tral function initially at the recoil frequency, corresponding to the characteristic energy of the
density excitation in the atoms. This signature is initially extremely narrow but broadens as
the pump strength is increased. In addition, the repulsion between the hybridized modes is
also continuously increasing, thereby moving away from the bare resonances. This repulsion
between the cavity and atomic peaks signals appreciable hybridization i.e. mixed atom-photon
character of the polaritons.

By increasing the coupling Λ, the low-lying polariton is pushed to lower and lower ener-
gies until its frequency reaches zero. At this point, its damping is still finite and the peak in
the spectral function is no longer Lorentzian [44,45]. By further increasing the coupling to a
critical value Λc , also the polariton damping vanishes and the normal phase becomes unsta-
ble. In the current parameter regime where only the lowest-order atomic transverse mode is
relevant, the critical coupling strength Λc can be found analytically [55]

Λ2
c =

κ2 +∆2
0

4∆0
Er . (13)

If the cavity loss is significantly smaller than the detuning, then Λc is approximately linearly
dependent on ∆0.

3.2 Including phase modulation

Considering the same system, but turning on the PM, additional cavity modes can be brought
into play. How strongly these couple to the atoms is determined by the modulation depth
according to Eq. (7). As seen in section 2.3, for small atom clouds the density response becomes
independent of the mode index, that is the spatial structure of the LG j0 cavity modes plays no
role in determining how strongly they couple. Therefore, assuming that they have similar
detunings (modulo the PM frequency Ω), the cavity mode admixture is fully determined by
the PM of the laser. This allows one to create polaritons with a photonic part consisting of a
superposition of several cavity modes.

When multiple cavity modes are available, the photon Green’s function is a matrix in the
cavity-mode basis (see Eq. (11)). As argued above, for the parameters considered here, the
matrix structure in the Floquet basis can be suppressed since its index is fixed by the cavity
mode, i.e. the Green’s function in Eq. (11) is proportional to δiαδ jβ . The spectral function is
thus also a matrix in the cavity-mode basis and the four-index spectral function simplifies to a
two-index spectral function: Ai, j;α,β → Ai, j . In order to illustrate the effect of the PM, we show
the diagonal entry of the spectral function corresponding to the LG00 mode in Fig. 4 (b). This
allows a direct comparison with the unmodulated case of Fig. 4 (a). Using a PM frequency of
the form Ω=ωT + ε, the effective detunings of the higher-order modes become

∆n =∆0 − nε . (14)

Choosing the sign of ε allows one to switch between cases where higher-order modes are
effectively lower or higher in frequency than the zeroth mode.

For the spectral function plotted in Fig. 4 (b), ε is chosen to be a small positive number,
which causes the higher-order modes to be energetically preferred. With a weak modulation
depth (Bm = 0.9) the only new relevant modes are LG10 and LG20, which are given by Eq. (9).
The magnitude of the pump sidebands, generated by the PM, is given by the corresponding
Fourier coefficient squared. The effective light-matter coupling strength between each mode
and the atoms is therefore given by the Fourier coefficient of the nearest sideband (Fig. 3).
The relevance of each mode is determined by its atom-coupling strength and the magnitude
of the effective detuning. For the specific case of the figure, this means that the LG j0 mode
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Figure 5: The overlap of different LG modes with the total cavity field at the three
points, in (ω,Λ) space, marked by green crosses in Fig. 4 (b): p1 = (0.04, 0.77),
p2 = (0.42, 0.49), p3 = (0.62, 0.37). The inset shows the resulting total intensity
profiles of the modes in real space, which are radially symmetric. The intensity I is
defined as the absolute square of the mode function.

couples only to the j’th sideband, which has a magnitude of J j(Bm)2. Coupling to all the other
sidebands leads to far-detuned processes with very small magnitudes.

A first clear signature of the multimode nature is the appearance of more peaks in the
spectral function. Looking at Fig. 3 at Bm = 0.9 one sees that the zeroth mode has the largest
coupling to the atoms. This means that at small Λ this mode is the only contribution seen. As
Λ is increased, LG10 starts having a non-negligible coupling to the atoms. Because this mode
is ε closer to its sideband than LG00 is to the carrier frequency, LG10 becomes more favourable
for the system and one observes a clear avoided crossing near the frequency of the bare LG10-
mode. This repeats when the LG20 starts being relevant and a second avoided crossing is
observed at ∆2.

These avoided crossings signal the strong hybridization between cavity modes and the
emergence of multimode Floquet polaritons. This is confirmed by Fig. 5, where the contribu-
tions of the LG modes to the total cavity field are shown for different points on the polariton
branches of Fig. 4 (b). This also explicitly demonstrates that the LG30 can be neglected as
presumed based on its coefficient in Fig. 3.

The avoided crossings allow one to estimate the effective coupling strength between the
modes. This is done by fitting the spectrum to that of two linearly coupled modes. The lowest-
order procedure is done simply by finding the distance between the two peaks in the spectral
function, at an avoided crossing, and dividing it by two. The derivation for this procedure
can be found in appendix C. For the first avoided crossing at (Λ/Λc)2 = 0.24, in Fig. 4 (b),
the effective coupling strength between the LG00 and the LG01 mode is gLG00,LG01

≈ 3.4κ. The
second avoided crossing involves the composite mode, consisting of LG00 and LG01, and the
LG02 mode. As the energy of the composite mode is unknown, the exact position of the avoided
crossing is also unknown. Furthermore, since three modes are important, the fitting of the
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Figure 6: Distribution of the spectral weight as a function of the modulation am-
plitude for different components of the cavity field, corresponding to the first four
radial transverse modes LGpl with p ∈ {0, 1,2, 3}. The PM frequency is chosen
such that the higher-order modes have a large effective detuning (ε = −0.09Er)
and Λ2 = 0.7Λc(Bm)2, with the renormalized coupling strength defined in Eq. (15).
These figures correspond to cuts through Fig. 4 at (Λ/Λc)2 = 0.7 with a detuning
∆0 = 0.6 for the zeroth mode, while the remaining parameters are as in Fig. 4.
The red lines are poles of the real part of the cavity Green’s function in Eq. (11) and
therefore indicate the polariton frequencies.

two-mode model is insufficient. This problem can be overcome by investigating the spectral
function for the LG02 mode (A22). In this spectral function only two peaks appear (one for
the composite mode and the one for LG02) and the effective coupling is proportional to the
distance between the two peaks when they have equal height. This avoided crossing is found
at (Λ/Λc)2 = 0.55 and the effective coupling strength is gLG00,01,LG02

= 1.27κ. The magnitude
of the effective couplings has a strong dependence on the amplitude of the sidebands but the
exact dependence is non-trivial to extract, as it has to be disentangled from the effects arising
from the continuously changing composite nature of the modes. These effects are essential to
include, as can be seen from the overlaps at p3 in Fig. 5.

In the inset of Fig. 5 the resulting mode profile of the total cavity field is shown. Already
for the few modes involved here, it is clearly seen that the PM leads to a significant decrease of
the waist of the cavity field, which is bounded from below by the central waist for the highest
involved TEM mode. The observed reduction of the waist of the cavity field directly implies a
reduction of the range of the cavity-mediated interactions [29]. More prominent effects can
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be achieved by increasing the PM amplitude, but also by displacing the atom cloud from the
center of the cavity. The oscillating nature of higher-order transverse modes can then lead to
interference effects that further decrease the interaction range.

Changing the modulation depth Bm gives the freedom to choose how strongly the different
modes couple to the atoms. The parameters Bm and ε are independent and therefore allow one
to tune between a wide range of different multimode scenarios. In Fig. 4 (b) we showed how
choosing ε > 0 leads to avoided crossings due to the higher-order modes being energetically
favoured. In Fig. 6 we choose ε < 0 which means the zeroth mode is always energetically
most preferable. The ratio Λ/Λc = 0.7 is kept fixed for all modulation amplitudes, while the
latter is varied over a range where only the first four modes are relevant. In order to facilitate
the visualization of the avoided crossings, the approximate polariton frequencies are overlaid
as red-dashed lines.

Consider first the case of no modulation (Bm = 0). The LG00 mode’s spectral function
shows the familiar two peak structure discussed in Fig. 4 (a), whereas the higher-order modes
have no atom peak in the spectrum but only their bare Lorentzian lineshape at the respective
detunings. As Bm is increased the other modes start to couple through the atoms at the price
of decreasing the atom coupling of the LG00 mode. This is seen by the fact that the LG10 line
starts showing up in A00. As seen in Fig. 3, the coefficient c0 vanishes near Bm ≈ 2.3. This
means that the LG00 mode no longer couples to the atoms, and both the atom peak and what
will become the superradiant peak vanish from A00. At that modulation depth, A00 is simply
the free Lorentzian line shape at∆0. Meanwhile, both LG10 and LG20 couple relatively strongly
to the atoms, and therefore effectively to each other, which introduces multiple peaks in the
corresponding components of the spectral function. Further increasing Bm reintroduces the
LG00 mode in the polariton peaks.

This shows that one can tune Bm such that the polaritons have contributions from many
modes. In particular, the polariton becoming unstable at the superradiant transition will then
be a linear combination of all modes LG j0 with j < αM , with weights given by histograms
similar to Fig. 5. As the higher modes have a larger detuning than the zeroth mode, it is
necessary to increase the pump power in order to keep the ratio Λ/Λc fixed. This shows up in
the spectral functions, where the atomic peak is pushed to higher energies as Bm is increased.
It is interesting to note that, even though the higher-energy modes are red detuned, one can
choose a modulation depth which results in anti-crossings, especially prominent at around
Bm = 4. This demonstrates that non-trivial multimode effects can be seen using both ε < 0
and ε > 0.

4 Multimode superradiance

Having multiple cavity modes available affects several features of the transition to the super-
radiant phase. The first clear effect is that the hybridization between multiple cavity modes
can give rise to an increase in the critical coupling Λc compared to the unmodulated system, as
seen in Fig. 6 by the atom peak being pushed to higher energies. The behaviour of Λc is plotted
as Bm is changed in Fig. 7 (a). To isolate the effect, consider first the case where Ω = ωT .
In this case all modes in the system have the same effective detuning. The value of Λc one
would observe in an experiment is the black dashed line increasing non-monotonically as the
PM is increased. This rise in the critical coupling strength is due to the PM being symmetric
around the carrier frequency. The higher-order modes see only the closest laser sideband, but
the PM also induces sidebands at a lower energy than the carrier frequency. For these negative
frequency sidebands the cavity has no stable modes as they correspond to very high transverse
quantum numbers with a lower longitudinal quantum number. These modes are lossy due
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Figure 7: a) A plot of how the critical coupling strength Λc changes with the modula-
tion amplitude. The two different colors represent Ω = ωT (black) and an effective
detuning between the modes Ω=ωT +0.1 (red). The remaining parameters are the
same as the ones used in Fig. 6. The dashed lines are obtained for the same systems
but with the critical coupling strength being renormalized to make up for the lost
power in the unused laser sidebands given by Eq. (15). b) Plot of the dominant in-
stability of the system as a function of the PM parameters with the same parameters
as in Fig. 6 but with κ= 0.05 Er . In the white region the system experiences a tran-
sition to a superradiant phase at the finite critical coupling strength Λc . The colored
region indicates parameters where a finite-frequency instability takes place.

to their large transverse size and are generally not stable. The power in the lower frequency
peaks is therefore effectively lost. This means that the total effective pumping power of the
cavity is decreased by the weight in the negative frequency coefficients. This effect can be
taken into account by renormalising the coupling

Λ2→
Λ2

∑

0≤α<αM
c2
α

= Λ(Bm)
2 . (15)

We always use the explicit Bm dependence to denote the renormalized coupling strength.
Employing this renormalization one sees that Λc(Bm) stays constant through all modulation
depths. When ε > 0, as in Fig. 4 (b), the higher-order modes have a smaller detuning, and
one again sees that Λc is increasing with Bm. This might seem counter-intuitive, as the higher
modes have smaller effective detunings and one would therefore expect Λc to decrease with
Bm, which is indeed observed when using the renormalized coupling strength. We note that
the loss of pump power due to unused sidebands can be avoided in a simple manner by placing
the carrier frequency close to a higher-order cavity mode.

Another important modification to single-mode superradiance is that with a positive ε,
higher-order modes have a lower frequency than the zeroth mode. For a range of values of
ε, Bm and ∆0, a situation arises where some higher-order modes are effectively red detuned
from their nearest sideband. In this case the magnitudes of their detunings are still small,
compared to ωT , but now have negative signs. For a single-mode system, this leads to an
instability at a much smaller Λc than for a similarly blue-detuned cavity mode. The critical
coupling is much smaller because the bare atomic part of the system has a vanishingly small
loss and once the cavity is red detuned the atomic part of the system is easily rendered un-
stable, even at very weak interaction strengths. This type of “atomic instability” happens at
finite frequency, that is, the atomic polariton becoming unstable still has a finite energy. This
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Figure 8: Modulation scheme for ε > 0. The detuning ∆n between higher-order
modes (lineshapes indicated by the Lorentzian peaks spaced by ωT ) becomes in-
creasingly smaller. For weak PM, the amplitudes of the sidebands (colored lines)
decrease. The blue arrows indicate the coupling between the different cavity modes
due to the interaction with the atomic system. The spectra in the vicinity of the
different modes of the cavity can be conveniently separated with a heterodyne de-
tection system by tuning the frequency of the local oscillator close to a cavity mode
frequency and electronically filtering out the contributions from the modes. This
results in several heterodyne spectra as indicated by the grey ellipses.

instability is thus of a very different nature than the superradiant transition happening at Λc ,
via a zero frequency excitation.

The results presented so far assume that the system remains stable up to Λc , which means
that we have to choose the parameters such that the finite-frequency instability is avoided.
Fig. 7 (b) shows the nature of the leading instability as a function of the PM parameters. For
ε < 0.15Er the transition always happens to a stationary, superradiant phase. This is explained
by the fact that we have considered a system with 5 available modes and with ∆0 = 0.6. This
means that the smallest detuning for this region is∆4 =∆0−4ε≥ 0, which does not allow for
a finite-frequency instability. Clearly, the constraint on the number of cavity modes imposed by
the physical setup plays an important role for the existence of the finite frequency instability.
When moving to larger values of ε it can be seen that, due to the effective interactions between
multimode polaritons, the boundary between zero- and finite-frequency instabilities is highly
non-linear and shows the, for dynamical systems, often occurring Arnold tongues. For the
parameters considered in the present work, there is thus a large region where the PM can
be used to generate multimode Floquet polaritons without encountering a finite-frequency
instability.

5 Experimental considerations

5.1 Proposed realizations and observability

The scheme proposed here can be realized in several state-of-the-art laboratories. The main
feature we discussed is the presence of anti-crossings, which is a clear signature of the forma-
tion of the multimode Floquet polaritons. A prerequisite for achieving appreciable hybridiza-
tion between different cavity modes is that two resonances in the spectral function have to
be brought close to each other. As all cavity modes have a positive detuning, the correspond-
ing peaks move towards zero frequency when coupling to the atoms. In order to generate an
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(avoided) crossing, we therefore need to make a mode of higher energy move to zero faster
than a lower-energy mode, while they both couple to the atoms.

To achieve this there are two different strategies that can be realized with different pa-
rameter choices of the PM: First, by having ε > 0 there is a higher-order mode that has a
smaller detuning. This situation is shown in Fig. 8, and the resulting spectrum was displayed in
Fig. 4 (b). By introducing a shallow PM, the zeroth order cavity mode will couple most strongly
to the atoms. This will push it faster towards zero than the higher-order mode which couples
weaker to the atoms. As the zeroth mode comes close to the higher-order cavity mode, their
repulsion will be determined by how strongly they respectively interact through the atoms.
This is a good strategy because the highest energy mode (LG00) is, for shallow modulation
depth, more strongly coupled to the atoms and can therefore lead to a large intersection angle
with the lower energy modes. Nevertheless, one could also use ε < 0 in combination with a
deeper modulation, as described in Fig. 6. Generating the strongest hybridization between the
cavity modes is therefore a question of choosing the parameters such that the higher-energy
mode moves faster but the lower-energy mode still couples significantly to the atoms. Both
approaches allow for hybridization of the different modes but work in different regimes. The
choice of the ideal approach thus depends on the specific realization.

A general requirement to observe the mode crossing is to have cavity modes with detun-
ings smaller than the effective recoil energy of the atoms. This is a significant constraint for
the experimental observability, as it means that the cavity loss rate has to be smaller than the
effective recoil energy. The weaker the losses, the sharper the avoided crossings that can be
observed. Loss rates below the recoil energy can be obtained in long cavities (several centime-
tres) given that the current technologies only allow for a finesse of the order of typically 5 ·105

in optical cavities. Nevertheless, by choosing geometries with tight focuses (near confocal con-
figurations), strong collective atom-light interaction can still be achieved, as demonstrated in
an experiment using 87Rb atoms [21,23,56]. Here the mode diameter is small at the position
of the atom cloud and the loss is kept small because of the long round trip distance of the
cavity photon. It is worth mentioning that due to the mass dependence of the recoil energy,
the numbers are more favourable for lighter atoms such as Lithium. Recoil resolution here can
be reached in cavities with larger line widths [57], which reduces the technical challenges.

5.2 Modulation schemes

The pump modulation scheme discussed so far assumed a PM of the carrier frequency of a laser,
e.g. by driving an electro-optical modulator with a single frequency. Such a PM of a laser field
generates upper and (in the discussed scheme unused) lower sidebands at integer multiples
of the modulation frequency and with relative weights dictated by the Bessel function, see
Fig. 3. This restricts the possible effective photon couplings that can be induced with the
scheme described, but nevertheless can address dozens of modes if one reaches high enough
PM depths with the EOM. Many more modes can be accessed using optical frequency combs
as they can be generated using two-stage modulation schemes [40].

The set of realizable interactions can be significantly extended if the electro-optical mod-
ulator is driven by multiple frequencies in the weak modulation regime, where only the J1
Bessel function, which describes the spectral weight of the first sideband, is considerably pop-
ulated and grows monotonously in modulation depth. This way, each tone creates its own
sideband with arbitrary coupling that is set by its individual amplitude, phase, and frequency
which are all determined by the synthesized signal of e.g. an arbitrary waveform generator or
with software defined radio techniques. This approach would extend our proposed scheme to
hundreds of transverse modes, each coupled with tailored coupling strength.

Reaching this high numbers of modes would allow to appreciably reduce the
cavity-mediated interaction range below the cavity waist, making the study of models with
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finite-range interactions possible. Moreover, the additional tailoring of the coupling to each
cavity mode separately would allow to go beyond an interaction potential which monotonously
decays in space. From a fundamental perspective, this prompts the investigation of strong
frustration effects and further exotic types of spatial correlations. From a technological per-
spective, such a flexibility could for instance enhance the efficiency of quantum annealing
protocols [58].

5.3 Detection methods

The interactions between the induced multimode Floquet polaritons can be experimentally
characterized in different ways. The light field leaking from the cavity will carry information
both in its spatial profile and in its frequency spectrum. Different from the situation of a fully
degenerate multimode cavity [28], the contribution of the individual modes can be analysed
in frequency space, as is indicated in Fig. 8. The light field leaking from the cavity is sent to a
heterodyne detection scheme, where the frequency of the local oscillator is tuned to be close
to the cavity mode of interest, such that the effect from all other modes can be filtered. The
heterodyne detection then allows to access the spectrum of the field in vicinity of that mode.
The required frequency separation between the cavity modes (∼ωT ) and the spectral features
(∼ Er) is naturally given in the proposed scheme.

Clear multimodality should also be observable by decomposing the cavity output light
after entering the superradiant phase, as has been demonstrated for degenerate cavities [28].
Differently from the avoided crossings, a multimodal cavity output should be visible even
when the loss rate is much larger than the effective recoil energy. Additionally, absorption
images of the atomic cloud after ballistic expansion from the superradiant phase will allow to
characterize the atomic mode composition of the polaritons.

6 Conclusion

We have shown that the periodic phase modulation of the driving laser can generate a large
dispersive coupling between an ultracold atomic cloud and many modes of a non-degenerate
cavity. This leads to the formation of multimode Floquet polaritons. Their mutual interactions
mediated by the atoms are visible as avoided crossings and ultimately lead to a phase transition
to a multimode superradiant state. This scenario should be experimentally testable in state-
of-the-art platforms.

In this investigation, we have focused on the energetic effect of the PM and simplified
the degrees of freedom by considering small atom clouds at the center of the cavity. Having
seen that multimode Floquet polaritons can be generated, a very interesting aspect is to ex-
plore regimes where the cloud has significantly different overlaps with the different resonant
modes. This allows one to establish an added competing effect that can further enrich the
multimode correlations. Moreover, the multimode nature of the polaritons and their mutual
interactions might give rise to a richer scenario for finite-frequency instabilities. This adds sig-
nificant structure to the ordered phase, which gives rise to qualitative features that can differ
from the known single-mode case. We defer these studies to future work.
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A Derivation of dynamical polarizability

In this appendix, we will derive the polarization function of the Floquet driven bosonic gas
given in Eq. (7) and Eq. (8), which is used in the main text to compute the cavity spectrum.
Because the cavity has losses, it is important to treat both the unitary and non-unitary evolu-
tion of the system on the same footing. To this extent we use a path integral formulation of the
time evolution of the system on the Keldysh contour. The Keldysh real-time contour is com-
posed of a backward and a forward piece, which allows to treat situations away from thermal
equilibrium and in particular open systems whose state is described by a density matrix. In this
path-integral formulation, each field corresponding to a given degree of freedom acquires a
further index with two possible values, one for each piece of the time contour. Here we rotate
these two additional indices by performing the so-called Keldysh rotation [51], after which
we deal with a “classical” and a “quantum” component of the field. For bosons, the classical
field can be thought of as the field that can acquire a finite expectation value, whereas the
quantum field describes fluctuations around this value. Due to the doubling of the fields, the
theory also has two independent Green’s function: the retarded (or advanced) and the Keldysh
Green’s function. The retarded Green’s function only contains spectral information about the
excitations of the system, while the Keldysh Green’s function also encodes the occupation of
these excitations. All the results discussed in this paper are solely relying on the spectral prop-
erties. The Lindblad master equation, Eq. (5), is used as the starting point for constructing the
action [59].

A main advantage of the Keldysh path-integral formulation is that it allows to apply all
the standard field-theory techniques available also in thermal equilibrium. Here we make use
in particular of Feynman diagrams to organise and interpret the different contributions to the
photon self-energy. The latter describes the dressing of the photon via the interaction with
the atomic medium, that is, the polarization function of the medium. The periodic phase-
modulation of the laser dressing the atoms complicates the energy structure of the scattering
between cavity photons and atoms, and the diagrammatic formulation turns out to be ex-
tremely useful for the understanding. To construct Feynman diagrams one needs to construct
the non-equilibrium action from Eq. (5). The free action takes the form

S0 =

∫

dxdx′
��

ψ̄c
ψ̄q

�T

x

�

0 GA−1

ψ

GR−1

ψ
PK
ψ

�

x,x′

�

ψc
ψq

�

x′
+

�

φ̄c
φ̄q

�T

x

�

0 GA−1

φ

GR−1

φ
PK
φ

�

x,x′

�

φc
φq

�

x′

�

+

∫

dt dt ′
∑

i

�
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where x = (t, r) denotes the full space-time coordinate and c/q are the previously mentioned
"classical" and "quantum" indices, denoting how the fields are distributed on the Keldysh con-
tour [51]. Here we follow the notation used for the Hamiltonian in Eq. (3).

The non-interacting inverse Green’s functions for the atoms are given by

�

GR/A
ψ

�−1
(x,x′) = δ(x− x′)

�

i∂t ′ +
∇2

2m
− Vg(r

′) +µψ ± i0+
�

,

PK
ψ(x,x′) = i 2δ(x− x′)Fψ(x’)0+ ,

�

GR/A
φ

�−1
(x,x′) = δ(x− x′)

�

i∂t ′ −∆a ± i0+
�

,

PK
φ (x,x′) = i 2δ(x− x′)0+ .

(17)

Fψ is the energy distribution function of the atoms in their internal ground state, which in
Fourier space reads Fψ(ω,k) = coth

�

(ω − Ek)/2T
�

. µψ is the chemical potential and since
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we are considering thermal bosons, it must always be smaller than or equal to zero [48]. As
∆a is the largest energy scale, the excited state is only virtually occupied and its distribution
function is therefore 1 [51]. The components of the inverse cavity Green’s function are given
by

�

DR/A
i

�−1
(t, t ′) = δ(t − t ′) (i∂t ′ −∆i ± iκi) ,

PK
a,i(t, t ′) = i 2δ(t − t ′)κi .

(18)

When expressed in the classical/quantum basis, the interaction part of the action is found
to be

SI =−λ
∫

dx
�

e−i f (t)

�

φ̄c
φ̄q

�T

x

σ1ηp(r)

�

ψc
ψq

�

x

+H.c.
�

(19)

−
∑

i

gip
2

∫

dx
�

ηi(r)

�

φ̄qψc + φ̄cφq
φ̄qψq + φ̄cψc

�T�
ai,c
ai,q

�

+H.c.
�

. (20)

We are only considering the non-superradiant phase which means that, the cavity is on
average empty so that there is no additional external potential for the atoms. One can there-
fore use the appropriate eigenbasis (depending on the trap) to diagonalise the spatial part
of problem. In the dispersive regime, the spatial features of the excited internal state can be
neglected, so any orthonormal basis can be used. As described in the main text, we consider
a perfect BEC at zero temperature for the ground-state atoms. To include the macroscopically
occupied ground state the "classical" field is written asψc = ξ0+

∑

n′ψc,n′ , with ξ2
0 = n0 being

the density of the condensate and ψc,n′ the non-condensate component of the classical field
in eigenstate n′ with n′ 6= 0. We are neglecting fluctuations of the condensate itself, which
means that the quantum field only has non-condensate components ψq =

∑

′nψq,n′ . Because
the driving is periodic, the system exhibits a discrete time-translation invariance which makes
the physical interpretation simpler after Fourier transforming the action. In Fourier space the
interaction has the form

SI =−
∑

m,α

λ

∫

dωdε
2π

cα

�

∑

n′
〈φm|ηp |ψn′〉

�

φ̄c,m
φ̄q,m

�T

ω

σ1

�

ψc,n′

ψq,n′

�

ε

δ(ω−αΩ− ε)

+ 〈φm|np |ψ0〉 φ̄q,mξ0δ(ω−αΩ) +H.c.
�

−
∑

i,m

gip
2

∫

dωdεdρ
(2π)2

�

∑

n′
〈φm|ηi |ψn′〉 aβ ,iψγ,n′φ̄ν,mMβ ,γ,νδ(ω− ε−ρ)

+ 〈φm|ηi |ψ0〉
�

φ̄c,m
φ̄q,m

�T

ω

σ1

�

ac,i
aq,i

�

ε

ξ0δ(ω− ε) +H.c.
�

,

(21)

where n′/m labels the non-condensate component of internal ground/excited state of the
atoms, and α stems from the Fourier series representation of the drive modulation in Eq. (2).
The Einstein summation notation has been used to simplify the Keldysh index combinations
with Mβ ,γ,ν = (σγ,ν

1 ,1γ,ν)β , with the classical (quantum) index being the first (second) posi-
tion. The free Green’s functions are easily Fourier transformed as they are fully time-translation
invariant but it is instructive to first inspect the interaction more thoroughly. As discussed in
the main text, the periodic nature of the drive makes it convenient to fold everything into one
energy interval of width Ω. Because of the similarity to the Bloch construction for spatially
periodic potentials, this first energy interval is commonly referred to as the 1st Floquet Bril-
louin zone (1FBZ). We choose the 1FBZ to be symmetric around 0 such that the quasi-energy
is ω= {−Ω2 , Ω2 }.
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The condensate is described as a classical field with a macroscopic value. It is featured
in the spectral function as a delta peak at zero energy and is only present in the zero’th en-
ergy band at quasi-energy 0. Here it is macroscopically occupied with a density of n0. The
non-condensate component is unoccupied, but contributes to the spectral content with peaks
appearing in correspondence to all non-zero motional eigenstates of the atoms in their elec-
tronic ground state. Even though these peaks sit at non-zero energies, the motion of the atoms
is still much slower than the PM frequency. The non-condensate peaks of atoms in internal
ground state are therefore also only present in the zero’th energy band. This is in contrast
to the internal excited state, which has spectral weight at the large energy scale ∆a. As this
scale is by far the largest in the problem, and in particular much larger than the modulation
frequency, we approximate the spectral weight of the internal excited state of the atom to be
the same in all energy bands.

Finally, each cavity mode has a different weights in each energy bands, but the constraint
described by Eq. (4) is such that a given mode effectively contributes to just a single band. In
summary, the non-interacting Green’s functions for the unoccupied degrees of freedom in the
1FBZ are then given by

GR/A
ψ,α,n′(ω) = δα,0

�

ω− En′ ± i0+
�−1

,

GK
ψ,α,n′(ω) = GR

ψ,α,n′(ω)− GA
ψ,α,n′(ω) ,

GR/A
φ,α,m(ω) =

�

∆−1
a ± i0+

�−1
,

GK
φ,α,m(ω) = GR

φ,α,m(ω)− GA
φ,α,m(ω) ,

�

DR/A
i,α

�

(ω) = (ω−∆i −αΩ± iκi)
−1 ,

PK
a,i,α(ω) = i2κi .

(22)

The chemical potential of the ground-state atoms is set to zero so that the energy of the ideal
BEC identically vanishes.

Given the interaction in Eq. (21), we construct all the contributions to the cavity-photon
self-energies up to second order in the cavity-atom coupling strength gi . The self-energy is
most simply represented using diagrams in the energy representation like the ones shown in
Fig. 2. In this representation, the direction of the arrows indicates which way the energy
(given by the label next to the line) is flowing. Because the laser is included in the diagrams,
the vertices are energy conserving. The self-energy is equal to the polarizability except for
a different sign convention. Using the self-energies one can solve the corresponding Dyson
equations, as in Eq. (11), which is a resummation to infinite order of the chosen perturbative
processes, yielding the photon Green’s function.

The diagrams are used to illustrate the physical processes, so for conciseness we do not
include the the Keldysh structure in the diagrams. The Keldysh structure leads to a large
number of similar diagrams with the same topology many of which can be related and cancel
due to causality [51]. This structure is important to find the actual value of the self-energies
but not to understand the physical processes considered here.

The first process that emerges, due to the adiabatic elimination of the excited state, is the
Stark shift diagram shown in Fig. 9 (a). This process virtually excites the ground state by
coupling to the laser and subsequently decays back to the ground state by emitting into the
laser. The cavity is not involved in the process but the process renormalises the ground-state
atoms which does affect the cavity coupling. Because the ground-state atoms move slowly
compared to the PM frequency the ground-state atoms only sees the time-averaged Stark shift.
Due to the normalisation of the PM the average is equivalent to the unmodulated Stark shift.
The shift, which is of order O(λ2/∆a), can then be absorbed into the chemical potential of the
ground-state atoms. This new effective chemical potential contains both the Stark shift, the
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(a)

ω ω + αΩ ω

αΩ αΩ
(b)

αΩ

αΩ

αΩ

0

c)

ω + αΩ

ω + ω′ + αΩ

ω + αΩ

ω′

d)

ω + αΩ

αΩ

−ω + βΩ

−ω + βΩ

−ω

αΩ

βΩ

(e)

ω + αΩ

αΩ βΩ

ω + βΩ

αΩ βΩ

−ω

Figure 9: All the "geometrically" different Feynman diagrams describing the different
processes in the system up to O(g2). The notation is equivalent to the one used
for the two diagrams in the Fig. 2. a) Due to the coupling to the excited-state the
ground-state experiences a Stark shift. The pump excites the ground-state and the
excited-state then decays by emitting into the pump. b) The process that is first order
in cavity coupling. The cavity excites the atom which then decays into the laser. The
opposite process also exists. c) The two-photon process which is second order in
cavity coupling. A photon excites the atom and the excited state subsequently decays
into the same cavity mode. This process is not amplified by the laser. d) An example
of the opposite anomalous process shown in Fig. 2 (b). e) The opposite process of
Fig. 2 (a) that gives the second term in the self-energy/polarizability.

vacuum fluctuations and the chemical potential itself. Because we are considering the atom
to be in a perfect BEC this effective chemical potential is forced to zero and the ground state
Green’s function is therefore effectively unmodified by the Stark shift.

The first type of processes that involves the cavity are of order O(gi/∆a) and shown in
Fig. 9 (b). In this process a cavity excites the atom which then decays into the laser. This type
of processes vanishes because we assume a homogeneous atom cloud (non-superradiant phase
and large longitudinal trap). A homogeneous cloud leads to purely destructive interference
among the scattered photons so there is effectively no Rayleigh scattering. In the equations
this manifests by the longitudinal spatial integral evaluating to zero.

The next process is of order O(|gi|
2/∆a) and is the two photon process without the laser,

shown in Fig. 9 (c). Because the laser is not partaking in this process, it does not lead to any
coupling between higher-order cavity modes. As the cavity-atom coupling is a small parameter
while ∆a is huge, there is a large regime where these processes can be neglected compared to
the process that are amplified by the laser driving.

If the laser is involved in the scattering then the processes shown in Fig. 9 (e) and 2 (a)
emerge. This is of order O(λ2 gi ḡ j/∆

2
a). This type of process can be made important by

increasing the laser strength to make up for the small cavity-coupling strength and the large
atom detuning. In this regime the PM can be used to push the higher-order cavity modes
closer to the bare detuning and thereby making them energetically relevant. In this scattering
process a cavity photon is first annihilated in one mode and then created again at another (or
the same). We call this a normal process. This is in contrast to the process shown in Fig. 9 (d)
and Fig. 2 (b) where two cavity photons are either annihilated or created by using the laser as
a false vacuum. We use the nomenclature from superconductivity and denote these processes
as the anomalous scattering processes. The anomalous processes have the same value as the
normal process and are therefore as important. To include them we rewrite the action in a
Nambu form [48] which directly leads to the matrix structure of the retarded Green’s function
in Eq. (11).

Both of the above relevant scattering processes are affected by our assumption of all initial
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occupation being in the BEC. This means that all diagrams that only involve thermal ground
states cancel out and the only remaining diagrams are ones of similar topology but with one
of the thermal ground states being replaced by the condensate as is the case in Fig. 9 (d), (e)
and Fig. 2 (a), (b). Because of the BEC coupling, all diagrams where the BEC appears, are
enhanced by the atom density. This makes the self-energies important within laser powers
easily reachable by experiments.

The retarded cavity self-energy describes how the free cavity spectrum is affected by the
coupling to the atoms. Adiabatically eliminating the excited state, the normal part of the
retarded self-energy is given by the sum of Fig. 9 (e) and Fig. 2 (a) which gives the equation

ΣR
i, j;α,β(ω) = −χi, j;α,β(ω) =

λ2 gi ḡ jn0

∆2
a

c̄αcβ
∑

n′

�

〈ψn′ |ηiη̄p |ψ0〉 〈ψ0|ηpη̄ j |ψn′〉GR
ψ,0,n′(ω)

+ 〈ψ0| η̄pηi |ψn′〉 〈ψn′ | η̄ jηp |ψ0〉GA
ψ,0,n′(−ω)

�

. (23)

The term with GR is described by the diagram Fig. 2 (a) while the second term is from Fig. 9 (e).
The density response is then everything inside the summation. Using a constant laser structure
factor, real spatial mode functions and inserting the Green’s functions from Eq. (22) one arrives
at the density response in Eq. (8).

B Mode overlaps

To calculate the density response, Eq. (8), one has to compute the overlaps between atom
cloud, cavity and laser. In general these overlaps will have to be solved numerical but a
closed form solution can be found when the atomic states are well described as eigenstates
of the radially symmetric, harmonic trap. Furthermore, the laser form-factor ηp also has to
be approximated as a constant. With a shallow longitudinal trap and if the atoms are in a
zero-temperature BEC then the longitudinal part of the atom eigenstate is tightly localized in
momentum space. This means that the longitudinal part of the overlap leads to the atoms
scattering into a state with momentum Q, set by the cavity geometry. The transverse part of
the overlap can be computed both for centred and and non-centred atom clouds. For the more
general case when radial symmetry is broken, one finds that the integral over three Hermite
polynomials leads to three finite sums with a shared combinatoric pre-factor. However, in the
radially symmetric case the result simplifies significantly with the integral to be solved given
by

〈ψ0|η jα

�

�ψnβ

�

=
1

πL2
H

√

√ j!n!
( j + |α|)!(n+ |β |)!

×
∫ 2π

0

dθ

∫ ∞

0

dr r exp
�

iθ (α− β)− r2
�

L−2
H +

1
2 w−2

0

��

×
�

r
LH

�|β |� r
w0

�|α|
L|α|j

�

r2

w2
0

�

L|β |n

�

r2

L2
H

�

,

(24)

where the mode indices have been split into a radial mode index (Roman letter) and a angular
index (Greek letter). The non-BEC scattering state in Eq. (8) leads to a decoupling of cavity
modes with different angular index, through the δα,β from the angular integral. Starting in
angular momentum zero we therefore consider only the states with zero angular momentum.
The remaining radial integral then has a closed form solution given by

〈ψ0|η j0 |ψn0〉= 〈ψn0|η j |ψ0〉=
Γ ( j + n+ 1)

2n ! j!

�

δ2 − 1
2

� j

�

δ2 + 1
2

� j+n+1 2F1

�

−n,− j;−n− j;−δ
2 + 1

2

δ2 − 1
2

�

, (25)

23

https://scipost.org
https://scipost.org/SciPostPhys.12.3.094


SciPost Phys. 12, 094 (2022)

where δ = w0/LH is the relative size of the cavity waist compared to the transverse harmonic
trapping length, 2F1 is the Gauss hypergeometric function and Γ the Gamma function. Clearly
these overlaps are fully determined by the cavity waist and radially symmetric harmonic trap
strength which sets LH . The simplest case is when the BEC is significantly narrower than
the cavity waist. In this limit δ2 � 1 and therefore limδ→∞ 〈ψ0|η j0 |ψn0〉 = δn0. In all
calculations presented in the main text the result from Eq. (25) has been used and the number
of atomic states have been truncated only after convergence has been achieved.

C Estimating coupling strength between modes

To estimate the effective coupling strength we model the system as having only two modes.
We assume the system is far enough away from the critical point such that the Nambu struc-
ture is not essential. Furthermore we assume that the crossing happens far enough away from
the atom pole such that we can approximate the density response to be constant and real:
ΠR(ω) = ΠR. As we are only looking for an estimate of the coupling strengths we also approx-
imate the two cavity modes to have identical loss rates. Using the self-energy notation from
appendix A the retarded Green’s function for this system can be written as

DR (ω) =

�

ω−∆1 + iκ−Λ2Σ11 −Λ2Σ12
−Λ2Σ21 ω−∆2 + iκ−Λ2Σ22

�−1

, (26)

where the different self-energies are real numbers depending on all the microscopic parameters
of the full system and∆i/κmodel the two effective modes of the system. Exactly at an avoided
crossing the energies of the two modes coalesce. This can happen if increasing the laser power
(Λ) can bring the two detunings closer to each other, as described in the main text. Exactly at
the avoided crossing the laser power satisfies the equation

∆1 +Λ
2
acΣ11 =∆2 +Λ

2
acΣ22 , (27)

where we have defined Λac to be the specific value of Λ that solve the above equation. At this
point we define the new parameters

Ω2 = Λ2
acΣ12 = Λ

2
acΣ21 and ∆̃=∆i +Λ

2
acΣii . (28)

Using these parameters in DR one can write the "11" component of the spectral function
(Eq. 12) as

A11(ω) =

��

�

ω− ∆̃
�2
+ κ2

�

κ+Ω2κ
��

�

ω− ∆̃
�2
+κ2

�

��

�

ω− ∆̃
�2
+κ2 −Ω2

�

�

ω− ∆̃
�

�2
+
��

�

ω− ∆̃
�2
+κ2

�

κ+Ω2κ
�2 . (29)

The peaks in the spectral function emerges when
�

�

ω− ∆̃
�2
+κ2 −Ω2

�

�

ω− ∆̃
�

= 0 . (30)

This has three solutions: ω j ∈
�

∆̃, ∆̃±
p
Ω2 − κ2

	

. At these specific values of ω the peak
height is given by

�

ω j − ∆̃
�2
+ κ2

�

�

ω j − ∆̃
�2
+ κ2

�

κ+Ω2κ
. (31)

We are focusing on the situation where the linewidth is much smaller than the coupling, such
that the peaks are well resolved. In this limit the peak height for the ω = ∆̃ solution is
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proportional to κ/Ω2 while the two other peaks, at ω= ∆̃±
p
Ω2 −κ2, have identical heights

of the order 1/2κ. In the considered regime the solution with the two peaks, separated by
twice the coupling strength, clearly dominate the spectral function.

The approach is then to identify an avoided crossing in the system by sweeping the laser
power. Once an avoided crossing has been identified the specific laser power, that has two
equal-height peaks, is used to define Λac . The coupling strength can then be read off from
the splitting between the peaks. Due to all the approximations this is clearly a lowest-order
estimate that can easily be improved if a more accurate number is important. For the consid-
ered system the approximations are fairly good and even the lowest order estimate will give a
result of the right order of magnitude.
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