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Abstract

We employ a recently-developed transfer-matrix formulation of scattering theory in two
dimensions to study a class of scattering setups modeled by real potentials. The transfer
matrix for these potentials is related to the time-evolution operator for an associated
pseudo-Hermitian Hamiltonian operator bH which develops an exceptional point for a
discrete set of incident wavenumbers. We use the spectral properties of this operator
to determine the transfer matrix of these potentials and solve their scattering problem.
We apply our general results to explore the scattering of waves by a waveguide of fi-
nite length in two dimensions, where the source of the incident wave and the detectors
measuring the scattered wave are positioned at spatial infinities while the interior of the
waveguide, which is filled with an inactive material, forms a finite rectangular region
of the space. The study of this model allows us to elucidate the physical meaning and
implications of the presence of the real and complex eigenvalues of bH and its exceptional
points. Our results reveal the relevance of the concepts of pseudo-Hermitian operator
and exceptional point in the standard quantum mechanics of closed systems where the
potentials are required to be real.
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1 Introduction

The term exceptional point usually refers to a point R? in the space of parameters R of a linear
operator H[R] such that every perturbation of R? changes the number of linearly-independent
eigenvectors corresponding to one or more of the eigenvalues of H[R?], [1]. In other words,
it is a point where two or more of the eigenvectors for the same eigenvalue coalesce. The
fact that this can never happen for a Hermitian operator has naturally led to the belief that
exceptional points do not play any role in quantum mechanics of closed systems where the
observables and the Hamiltonian operator are required to be Hermitian. In this article, we
provide compelling evidence against this belief by identifying a set of exceptional points that
arise in the treatment of the two-dimensional scattering problem for real potentials of the
form,

v(x , y) =

�

V (y) for x ∈ [a−, a+] ,
0 for x /∈ [a−, a+] .

(1)

Here a± are real parameters such that a− < a+, and V (y) is a real-valued function that tends
to infinity as y →±∞.

Exceptional points entered physics literature through the works of physicists interested in
effective non-Hermitian matrix Hamiltonians describing open quantum systems [2–7] and the
geometric phases induced by their time-dependent variants [8–11]. See also [12]. The discov-
ery of the interesting spectral properties of the Schrödinger operator, −∂ 2

x + v(x), for complex
PT -symmetric potentials [13, 14] and the fact that the presence of exceptional points is a
generic feature of these operators have boosted the interest in their study [15–17]. The devel-
opments leading to the optical realizations of PT -symmetric potentials [18, 19] have subse-
quently intensified the search for applications of exceptional points in classical optics and made
the subject into a fruitful area of research in both theoretical and applied physics [20–27]. The
present investigation differs from the earlier works on the physical aspects of exceptional points
in that it deals with exceptional points arising in the treatment of a scattering problem for a
real potential. In the context of their optical or acoustic realizations, these are exceptional
points whose presence does not require active or lossy materials.

Standard approaches to potential scattering rely on general assumptions on the asymptotic
decay rate of the potential. In particular both the short- and long-range potentials considered
in the mathematical theories of scattering require the potential to tend to zero at spatial in-
finities [28–30]. There are, however, physical situations where one needs to deal with the
scattering by an interaction that has a nonzero strength in an infinitely extended region of
space. A typical example is the scattering problem for a grating potential of the form (1) with
V (y) being a periodic function. Because this class of potentials have a finite range along the
x-axis, it makes sense to speak of the asymptotic plane-wave solutions of the corresponding
Schrödinger equation,

�

−∂ 2
x − ∂

2
y + v(x , y)

�

ψ(x , y) = k2ψ(x , y) , (2)

where k is the incident wavenumber and “asymptotic” refers to the limits x →±∞. In partic-
ular, we can employ the standard definition of the scattering solutions of (2) to formulate the
scattering problem for such a potential, except in the vicinity of the y-axis. These are solutions
satisfying,

ψ(r)→
1

2π

�

eik0·r +

√

√ i
kr

eikr f(θ )

�

for r →∞ and θ 6= ±
π

2
, (3)

where r is the position vector having (x , y) as its Cartesian coordinates, k0 is the incident wave
vector, (r,θ ) are the polar coordinates of r, and f is the scattering amplitude [31].
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Recently, we have developed a transfer-matrix formulation of potential scattering in two
and three dimensions that is suitable for exploring the scattering phenomenon defined by
potentials having a short range along the scattering axis1 [32, 33]. In the present article, we
employ this formulation to explore the scattering properties of the potentials (1). This requires
the computation of the corresponding transfer matrix which is a linear operator acting in an
infinite-dimensional function space. We achieve this by constructing the spectral resolution of
a related pseudo-Hermitian operator bH, [34]. This operator develops exceptional points at a
discrete set of wavenumbers. Our main purpose is to explore the effects of these exceptional
points on the scattering properties of the potential. To achieve this we offer a comprehensive
treatment of the scattering problem for a waveguide having a finite length.

The organization of this article is as follows. In Sec. 2, we review the transfer-matrix
formulation of stationary scattering in two dimensions and determine bH for the potentials of
the form (1). Here we introduce the two-dimensional analogs of the reflection and transmis-
sion amplitudes of potential scattering in one dimension and provide a representation of the
S-matrix which resembles its one-dimensional analog’s. In Sec. 3, we solve the eigenvalue
problem for bH, identify its exceptional points, and use its spectral resolution to obtain an ex-
plicit expression for the transfer matrix. In Sec. 4 we give the solution of the scattering problem
for these potentials and compute their S-matrix. In Sec. 5 we address the scattering problem
for a finite-size waveguide. Here we explore the physical meaning of the solution we find for
the scattering problem and discuss the implications of the presence of an exceptional point. In
Sec. 6, we provide a summary of our findings and present our concluding remarks.

2 Transfer and scattering matrices in two dimensions

Consider a potential v(x , y) that vanishes outside the region bounded by a pair of lines parallel
to the y-axis, i.e., there are real numbers a± with a− < a+ such that

v(x , y) = 0 for x /∈ [a−, a+] . (4)

Then, every bounded solution ψ of the Schrödinger equation (2) satisfies

ψ(x , y) =



















∫ ∞

−∞

dp
4π2$(p)

�

A−(p) e
i$(p)x +B−(p)e−i$(p)x

�

eip y for x ≤ a− ,

∫ ∞

−∞

dp
4π2$(p)

�

A+(p) ei$(p)x + B+(p)e
−i$(p)x

�

eip y for x ≥ a+ ,

(5)

where

$(p) :=

� p

k2 − p2 for |p|< k ,
i
p

p2 − k2 for |p| ≥ k ,
(6)

and A−,B−,A+, and B+ are complex-valued functions2 such that

A−(p) = B+(p) = 0 for |p| ≥ k . (7)

1In a two (respectively three) dimensional scattering setup, the source of the incident wave lies on a line
(respectively plane) whose distance from the interaction region, where the potential has sizable strength, is large
enough so that the incident wave may be approximated by a plane wave. The term “scattering axis” refers to a
normal axis to this line (respectively plane) that passes through the interaction region.

2Ref. [33] uses the symbols Ă−,B̆−,Ă+, and B̆+ for what we call A−,B−,A+, and B+, respectively.
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Figure 1: Schematic view of the scattering setup for a left-incident wave (on the left)
and a right-incident wave (on the right). k0 and k are respectively the incident and
scattered wave vectors. For the left- and right-incident waves, the incidence angle
θ0 takes values in (−π2 , π2 ) and (π2 , 3π

2 ), respectively. The support of the potential lies
between the lines x = a− and x = a+ (region colored in purple.)

This relation together with (5) and (6) imply

ψ(x , y)→
∫ k

−k

dp
4π2$(p)

�

A±(p) e
i$(p)x + B±(p) e

−i$(p)x
�

eip y for x →±∞ , (8)

where

A+ := bΠkA+ , B− := bΠkB− , (9)

and bΠk is the projection operator defined on the set F of complex-valued (generalized) func-
tions of p according to

(bΠkφ)(p) :=

�

φ(p) for |p|< k ,
0 for |p| ≥ k .

(10)

Introducing
Fk := {φ ∈ F | φ(p) = 0 for |p| ≥ k } ,

we can express (7) and (9) as A±, B± ∈ Fk.
In analogy with one dimension [35], we identify the transfer matrix ÒM and the scattering

matrix bS of the potential with a pair of 2× 2 matrices with operator entries that satisfy [33]

ÒM

�

A−
B−

�

=

�

A+
B+

�

, bS

�

A−
B+

�

=

�

A+
B−

�

. (11)

Notice that these are not numerical matrices; they are linear operators acting in the infinite-
dimensional function space of two-component wave functions,

F 2×1
k :=

��

φ+
φ−

� �

�

�

�

φ± ∈ Fk

�

.

The scattering setup for a potential fulfilling (4) involves a source of the incident wave that
is located at either x = −∞ or x = +∞. These respectively correspond to the scattering of
left- and right-incident waves where the incidence angle θ0 ranges over (−π2 , π2 ) and (π2 , 3π

2 ).
See Fig. 1. In the following we use the superscript l/r to label the scattering amplitude f and
the coefficient functions A± and B± for the left/right-incident waves.
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Comparing the asymptotic expressions (3) and (8) for the left- and right-incident waves
and using a result derived in [32, Appendix A], we can show that [33]

Bl
+(p) = Ar

−(p) = 0 , Al
−(p) = Br

+(p) = 2π$(p0)δ(p− p0) , (12)

fl(θ ) =

�

T l(θ ) + i
p

2πδ(θ − θ0) for θ ∈ (−π2 , π2 ) ,
Rl(θ ) for θ ∈ (π2 , 3π

2 ) ,
(13)

fr(θ ) =

�

Rr(θ ) for θ ∈ (−π2 , π2 ) ,
T r(θ ) + i

p
2πδ(θ − θ0) for θ ∈ (π2 , 3π

2 ) ,
(14)

where p0 is the y-component of the incident wave vector k0, i.e., p0 := k sinθ0, and

Rl(θ ) := −
i
p

2π
Bl
−(k sinθ ) , T l(θ ) := −

i
p

2π
Al
+(k sinθ ) , (15)

Rr(θ ) := −
i
p

2π
Ar
+(k sinθ ) , T r(θ ) := −

i
p

2π
Br
−(k sinθ ) . (16)

Next, we substitute (12) in (11) to establish

ÒM22Bl
− = −2π$(p0) ÒM21δp0

, ÒM22Br
− = 2π$(p0)δp0

, (17)

Al
+ = 2π$(p0) ÒM11 δp0

+ ÒM12Bl
− , Ar

+ = ÒM12Br
− , (18)

and
�

Al
+ Ar

+
Bl
− Br

−

�

= 2π$(p0)bSδp0
, (19)

where bI := bI I, bI is the identity operator acting in F , I is the 2× 2 identity matrix, and δp0
is

the Dirac delta function centered at p0, i.e., δp0
(p) := δ(p− p0).

According to (13) – (16) and (19), the knowledge of the scattering matrix bS is sufficient
for the determination of the scattering amplitudes and consequently the reflection and trans-
mission amplitudes. Indeed, we can use (15), (16), and (19) to show that

�

T l(θ ) Rr(θ )
Rl(θ ) T r(θ )

�

= −i
p

2πbSδ(θ − θ0) , (20)

where

bSδ(θ − θ0) := k| cosθ0|
�

bSδp0

�

(p) = k| cosθ0| 〈p|bS|p0〉 for p = k sinθ . (21)

Equation (20) is the two-dimensional analog of the well-known relation between the S-matrix
and the reflection and transmission amplitudes in one dimension [36].

The transfer matrix ÒM also contains the information about the scattering amplitudes. To
compute the latter we can solve (17) for Bl/r

− , substitute it in (18) to determine Al/r
+ , and use

the result in (13) – (16) to find fl/r . This seems to make ÒM practically less advantageous than
bS, but it has two useful properties [33]:

1. It enjoys a composition property that is similar to that of the transfer matrix in one
dimension.

2. It can be expressed in terms of the evolution operator for a certain non-unitary quantum
system. In particular, it admits a Dyson series expansion.
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A proper derivation of these properties requires the use of an auxiliary transfer matrix [33].
This is a linear operator ÓM acting in

F 2×1 :=

��

ξ+
ξ−

� �

�

�

�

ξ± ∈ F
�

,

that satisfies

ÓM
�

A−
B−

�

=

�

A+
B+

�

. (22)

The auxiliary transfer matrix has two important features. Firstly, it is related to the (fun-
damental) transfer matrix ÒM via

ÒM= bΠk
ÓM bΠk , (23)

where bΠk is the projection operator defined on F 2×1 according to

bΠk

�

ξ+
ξ−

�

:=

�

bΠkξ+
bΠkξ−

�

for

�

ξ+
ξ−

�

∈ F 2×1 , (24)

and bΠk is the projection operator given by (10). Secondly, we can express it in terms of the
evolution operator bU(x , x0) for an effective non-unitary quantum system with the Hamiltonian
operator,

ÒH(x) :=
1
2

e−iÒ$xσ3 v(x , ŷ)K eiÒ$xσ3
Ò$−1 , (25)

where x plays the role of time,

Ò$ :=$(p̂) =

∫ ∞

−∞
dp$(p)|p〉〈p| , (26)

ŷ and p̂ are respectively the y-component of the standard position and momentum operators,
i.e., ( ŷφ)(p) = i∂pφ(p) and (p̂φ)(p) := pφ(p),

K :=

�

1 1
−1 −1

�

= σ3 + iσ2 ,

and σ j , with j ∈ {1, 2,3}, denote the Pauli matrices. We can view v(x , ŷ) as the operator
acting in F according to

�

v(x , ŷ)φ
�

(p) :=
1

2π

∫ ∞

−∞
dq ṽ(x , p− q)φ(q) , (27)

where a tilde over a function of (x , y) stands for its Fourier transform with respect to y , i.e.,
f̃ (x , p) :=

∫∞
−∞ d y e−ip y f (x , y).

It is easy to check that the time-independent Schrödinger equation (2) is equivalent to the
“time-dependent” Schrödinger equation,

i∂xΨ(x) = ÒH(x)Ψ(x) , (28)

provided that we identify Ψ(x) with the element of F 2×1 given by

�

Ψ(x)
�

(p) := π e−i x$(p)σ3

�

$(p)ψ̃(x , p)− i∂xψ̃(x , p)
$(p)ψ̃(x , p) + i∂xψ̃(x , p)

�

. (29)
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An important consequence of (5) and (29) is that Ψ(x) satisfies

Ψ(x) =

�

A−
B−

�

for x ≤ a− , Ψ(x) =

�

A+
B+

�

for x ≥ a+ . (30)

This together with (22) and Ψ(x) = bU(x , x0)Ψ(x0) justify the identification of the auxiliary
transfer matrix with bU(a+, a−). Because ÒH(x) vanishes for x /∈ [a−, a+], this is equal to
bU(x+, x−) for x− ≤ a− and x+ ≥ a+. In particular,

ÓM= bU(a+, a−) = lim
x±→±∞

bU(x+, x−) . (31)

This relation is responsible for the composition property of ÓM and consequently of ÒM, [33].
Because the Hamiltonian operator ÒH(x) depends on the ‘time’ variable x , the calcula-

tion of its evolution operator is generally intractable. For the potentials of the form (1),
v(x , ŷ) = V ( ŷ) for x ∈ [a−, a+], and we can determine the evolution operator for ÒH(x)
without much difficulty. To see this, we make the transformation,

Ψ(x)→ Φ(x) := ei xÒ$σ3Ψ(x) , (32)

and check that, for x ∈ [a−, a+], Φ(x) satisfies i∂xΦ(x) = bHΦ(x) for

bH :=
1
2
ÒV Ò$−1K− Ò$σ3 , (33)

where ÒV := V ( ŷ). The fact that bH is x-independent allows us to express its evolution oper-
ator in the form bU(x , x0) = e−i(x−x0)bH. In view of (32), bU(x , x0) = e−i xÒ$σ3 e−i(x−x0)bHei x0Ò$σ3 ,
whenever x and x0 belong to [a−, a+]. Substituting this relation in (31) and making use of
(23), we find

ÓM = bU(a+, a−) = e−ia+Ò$σ3 e−iabHeia−Ò$σ3 , (34)

ÒM = bΠke−ia+Ò$σ3 e−iabH eia−Ò$σ3
bΠk

= e−ia+Ò$σ3
bΠke−iabH

bΠk eia−Ò$σ3 , (35)

where a := a+ − a−, and we have benefitted from (24) and the fact that bΠk and p̂ commute.

3 Determination of the transfer matrix

For potentials of the form (1), (35) reduces the calculation of the transfer matrix ÒM to that of
e−iabH. In this section, we perform this calculation for situations where V is a real confining
potential, i.e., V (y)→ +∞ for y →±∞. In this case, the Schrödinger operator, p̂2+ ÒV , acts
as a Hermitian operator in the Hilbert space L2(R) of square integrable functions of y and has
a real and discrete spectrum consisting of nondegenerate eigenvalues En, where n ranges over
the set of positive integers.

The Hamiltonian operator bH is manifestly non-Hermitian. Yet its particular form allows
for the solution of its eigenvalue problem. To see this, first we introduce

|X n〉 :=
�

−1
1

�

|φn〉 , |Yn〉 :=
1
k

�

1
1

�

Ò$|φn〉 , |Zn〉 := k

�

1
1

�

Ò$−1†|φn〉 , (36)

where |φn〉 are the eigenvectors of p̂2+ ÒV that form an orthonormal basis of L2(R); they satisfy

(p̂2 + ÒV )|φn〉= En|φn〉 , (37)
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〈φm|φn〉 = δmn, and
∑∞

n=1 |φn〉〈φn| = bI , where bI is the identity operator. We can use (6) and
(37) to show that

�

Ò$2 − ÒV
�

|φn〉= w2
n|φn〉 , (38)

where

wn :=

¨ p

k2 − En for En ≤ k2 ,

i
p

En − k2 for En > k2.
(39)

In view of (33), (36), and (38), it is easy to check that

bH|X n〉= k|Yn〉 , bH|Yn〉=
w2

n

k
|X n〉 , (40)

bH†|X n〉=
w2

n

k
|Zn〉 , bH†|Zn〉= k|X n〉 . (41)

These relations identify the spans of {|X n〉, |Yn〉} and {|X n〉, |Zn〉} with invariant subspaces of
bH and bH†, respectively. This reduces the eigenvalue problem for these operators to that of the
2× 2 matrices,

�

0 w2
n/k

k 0

�

,

and leads to the following observations.

1. The spectrum of bH (and bH†) consists of eigenvalues of the form ±wn. Because wn are ei-
ther real or imaginary, it is invariant under reflections about both the real and imaginary
axes in the complex plane.

2. bH has finitely many (or no) real eigenvalues and infinitely many complex-conjugate pairs
of eigenvalues. The number of its real eigenvalues depends on the wavenumber k.

3. For k =
p

En, wn vanishes, and bH becomes non-diagonalizable. In particular, these
values of the wavenumber mark the exceptional points of bH.

4. As one increases k, complex-conjugate pairs of eigenvalues merge, become zero at ex-
ceptional points, and turn into pairs of real eigenvalues with opposite sign.

In view of the characterization theorems given in Refs. [34, 37–39], these show that bH is a
pseudo-Hermitian operator. The same holds for ibH.3

We can use (40) and (41) to construct a biorthonormal system consisting of the (general-
ized) eigenvectors of bH and bH†, [41]. To do this, first we consider situations where k2 does
not belong to the spectrum of p̂2 + ÒV , so that wn 6= 0 for all n ∈ Z+, and bH is diagonalizable.
Let

cW :=
∞
∑

n=1

wn|φn〉〈φn| (42)

=
q

k2
bI − (p̂2 + ÒV ) =

Æ

Ò$2 − ÒV . (43)

Then it is not difficult to show that the two-component wave functions defined by

|Ψn,±〉 :=
1

2k

�

Ò$∓cW
Ò$±cW

�

|φn〉 , Φn,± :=
k
2

�

Ò$−1† ∓cW †−1

Ò$−1† ±cW †−1

�

|φn〉 , (44)

3It is also easy to check that {σ1, bH} = 0. In the terminology of Ref [40], this signifies a “chiral symmetry” of
bH which we can interpret as the reason for its eigenvalues coming in pairs of opposite sign. We can also use the
pseudo-Hermiticity of bH and ibH to infer the existence of antilinear involutions commuting with these operator [38],
i.e., there are antilinear operators ÒS and bχ such that [bH, ÒS] = b0, {bH, bχ}= b0, and ÒS

2
= bχ2 =bI.
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satisfy

bH|Ψn,±〉= ±wn|Ψn,±〉 , bH†|Φn,±〉= ±w∗n|Φn,±〉 , (45)

〈Φm,µ|Ψn,ν〉= δmnδµν ,
∞
∑

n=1

�

|Ψn,+〉〈Φn,+|+ |Ψn,−〉〈Φn,−|
�

=bI , (46)

where bI is the identity operator acting in the Hilbert space H := C2 ⊗ L2(R) of two-
component square-integrable wave functions, 〈·|·〉 is the standard L2-inner product on this
space, m, n ∈ Z+, and µ,ν ∈ {−,+}.

Equations (45) and (46) show that whenever k2 6= En for all n ∈ Z+, {Ψn,±,Φn,±} forms
a complete biorthonormal system of eigenvectors of bH and bH† for the Hilbert space H . This
leads to the following spectral resolutions of bH and e−i x bH.

bH=
∞
∑

n=1

wn

�

|Ψn,+〉〈Φn,+|− |Ψn,−〉〈Φn,−|
�

, (47)

e−i x bH =
∞
∑

n=1

�

e−iwn x |Ψn,+〉〈Φn,+|+ eiwn x |Ψn,−〉〈Φn,−|
�

. (48)

Substituting (44) in (48) and simplifying the resulting equation, we find

e−i x bH =
1
2

�

Ò$bC(x)Ò$−1(I+σ1) + bC(x)(I−σ1) + i
�

cW 2
bS(x)Ò$−1 K+ Ò$bS(x)KT

�	

, (49)

where

bC(x) :=
∞
∑

n=1

cos(wn x)|φn〉〈φn|= cos(xcW ) , (50)

bS(x) :=
∞
∑

n=1

w−1
n sin(wn x)|φn〉〈φn|=cW−1 sin(xcW ) , (51)

cW is the operator defined in (42), and KT stands for the transpose of K. Notice that both
bC(x) and bS(x) are even functions of cW ; in view of (43), they are analytic functions of
k2
bI − (p̂2 + ÒV ) = Ò$2 − ÒV .

Having determined e−i x bH, we can use (35) to obtain the following more explicit expression
for the transfer matrix of the potential (1).

ÒM=
1
2

e−ia+Ò$σ3
�

Ò$ ÒC Ò$−1(I+σ1) + ÒC (I−σ1) + i
�

ÒRÒ$−1 K+ Ò$cS KT
�

�

eia−Ò$σ3 , (52)

where

ÒC := bΠk bC(a)bΠk , ÒR := bΠkcW
2
bS(a)bΠk cS := bΠkbS(a)bΠk . (53)

Next, we consider the scattering of incident waves whose wavenumber has the value
Æ

En?
for some positive integer n?. We call them “exceptional wavenumbers” and use kn? to label
them. Then wn? = 0, cW does not have an inverse, and the restriction of bH to the invariant
subspaceHn? spanned by {X n? ,Yn?} and consequently bH are not diagonalizable. In this case,
0 is a defective eigenvalue of bH, and the corresponding eigenvectors are proportional to Yn? .
In particular, Ψn?,± = Yn?/2. This shows that the set of the eigenvectors Ψn,± is not a basis
ofH . We can however extend it to a basis by adjoining a generalized eigenvector associated
with the eigenvalue 0, [42]. According to (40), X n? is such a generalized eigenvector of bH.
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Let us introduce

|Ψ+n?〉 := |Ψn?,+〉=
1
2
Yn? =

1
2k

�

1
1

�

Ò$|φn?〉 , |Ψ
−
n?
〉 :=

1
2
|X n?〉=

1
2

�

−1
1

�

|φn?〉 , (54)

|Φ+n?〉 := |Zn?〉= k

�

1
1

�

Ò$−1†|φn?〉 , |Φ−n?〉 := |X n?〉=
�

−1
1

�

|φn?〉 . (55)

Then we can use (36) – (41) and (44) to show that the sets,

B :=
¦

|Ψn,±〉
�

�

� n ∈ Z+ \ {n?}
©

∪
¦

|Ψ+n?〉, |Ψ
−
n?
〉
©

, (56)

B⊥ :=
¦

|Φn,±〉
�

�

� n ∈ Z+ \ {n?}
©

∪
¦

|Φ+n?〉, |Φ
−
n?
〉
©

, (57)

are bases of H that are biorthonormal dual of one another [41], i.e., for all m, n ∈ Z+ \ {n?}
and µ,ν ∈ {−,+}, we have

〈Φm,µ|Ψn,ν〉= δmnδµν , 〈Φµn? |Ψ
ν
n?
〉= δµν , 〈Φµn? |Ψn,ν〉= 〈Φm,µ|Ψνn?〉= 0 , (58)

|Ψ+n?〉〈Φ
+
n?
|+ |Ψ−n?〉〈Φ

−
n?
|+

∞
∑

n= 1
n 6= n?

�

|Ψn,+〉〈Φn,+|+ |Ψn,−〉〈Φn,−|
�

=bI . (59)

Furthermore, |Ψ−n?〉 and |Φ−n?〉 are generalized eigenvectors of bH and bH†, and B \ {Ψ−n?}
and B⊥ \ {Φ−n?} consist of their eigenvectors, respectively. These observations together with

Eqs. (36) – (41), (58), and (59) justify the following spectral expansions of bH and e−i x bH for
k = kn? =

Æ

En? .

bH = k |Ψ+n∗〉〈Φ
−
n∗
|+

∞
∑

n= 1
n 6= n?

wn

�

|Ψn,+〉〈Φn,+|− |Ψn,−〉〈Φn,−|
�

, (60)

e−i x bH = |Ψ+n?〉〈Φ
+
n?
|+ |Ψ−n?〉〈Φ

−
n?
|− ikx |Ψ+n∗〉〈Φ

−
n∗
| (61)

+
∞
∑

n= 1
n 6= n?

�

e−iwn x |Ψn,+〉〈Φn,+|+ eiwn x |Ψn,−〉〈Φn,−|
�

= bI− ikx |Ψ+n∗〉〈Φ
−
n∗
|+

∞
∑

n= 1
n 6= n?

�

(e−iwn x − 1)|Ψn,+〉〈Φn,+|+ (eiwn x − 1)|Ψn,−〉〈Φn,−|
�

.

With the help of the identities,

|Ψ+n?〉〈Φ
+
n?
|+ |Ψ−n?〉〈Φ

−
n?
|=

1
2

�

Ò$|φn?〉〈φn? |Ò$
−1(I+σ3) + |φn?〉〈φn? |(I−σ3)

�

, (62)

|Ψ+n∗〉〈Φ
−
n∗
|= −

1
2k

Ò$|φn?〉〈φn? |K
T , (63)

which follow from (54) and (55), we have shown that (49) holds also for k = kn? .
4 This in

turn implies that the expression (52) for the transfer matrix ÒM is valid also for the exceptional
wavenumbers. Note however that this expression hides the signature of the exceptional point.

4Note that because bS(x) := cW−1 sin(xcW ) = x
�

bI +
∑∞
`=1

(−1)` x2`

(2`+1)!
cW 2`

�

, this operator is defined also for the

exceptional wavenumbers where cW does not have an inverse.
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This is related to the third term on the right-hand side of (61). In view of (35), (61), and (63),
it contributes to the transfer matrix ÒM the term,

i
2

a bΠkÒ$|φn?〉〈φn? |bΠk KT , (64)

which is linear in a.

4 Solution of the scattering problem

We can use (52) to obtain the following formulas for the entries of the transfer matrix ÒM.

ÒM11 = e−ia+Ò$( ÒC+ + cS+)eia−Ò$ , ÒM12 = e−ia+Ò$( ÒC− + cS−)e−ia−Ò$ , (65)

ÒM21 = eia+Ò$( ÒC− − cS−)eia−Ò$ , ÒM22 = eia+Ò$( ÒC+ − cS+)e−ia−Ò$ , (66)

where

ÒC± := Ò$ ÒC Ò$−1 ± ÒC , cS± := i( ÒRÒ$−1 ± Ò$cS ) . (67)

Writing Eqs. (17) and (18) in the form

Bl
− = −2π$(p0)ÒM

−1
22
ÒM21δp0

, Br
− = 2π$(p0)ÒM

−1
22 δp0

. (68)

Al
+ = 2π$(p0)

�

ÒM11 − ÒM12ÒM
−1
22
ÒM21

�

δp0
, Ar

+ = 2π$(p0)ÒM12ÒM
−1
22 δp0

, (69)

substituting (65) and (66) in these equations, and using the result in (13), (14), (15) and (16),
we obtain a formal solution of the scattering problem for the potential (1). In the following,
we pursue an alternative route for solving this problem which aims at computing the scattering
matrix bS.

First, we introduce

Ǎ− := Ò$−1eia−Ò$A− , B̌− := Ò$−1e−ia−Ò$B− , (70)

Ǎ+ := Ò$−1eia+Ò$A+ , B̌+ := Ò$−1e−ia+Ò$B+ , (71)

bQ := (cW − Ò$)I+ (cW + Ò$)σ1 =

�

cW − Ò$cW + Ò$
cW + Ò$cW − Ò$

�

, (72)

and use (49) to establish the intertwining relation,

bQ Ò$−1e−i x bH
Ò$= e−i xcWσ3 bQ . (73)

According to (70) and (71),
�

A−
B−

�

= e−ia−Ò$σ3
Ò$

�

Ǎ−
B̌−

�

,

�

A+
B+

�

= e−ia+Ò$σ3
Ò$

�

Ǎ+
B̌+

�

,

If we substitute these relations together with (34) in (22), we find

Ò$−1e−iabH
Ò$

�

Ǎ−
B̌−

�

=

�

Ǎ+
B̌+

�

.

In light of (73), applying bQ to both sides of this equation yields

bQ

�

Ǎ−
B̌−

�

= eiacWσ3 bQ

�

Ǎ+
B̌+

�

.
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With the help of (72), we can express this equation in the form

e±
ia
2
cW
�

(cW ∓ Ò$)Ǎ+ + (cW ± Ò$)B̌+
�

= e∓
ia
2
cW
�

(cW ∓ Ò$)Ǎ− + (cW ± Ò$)B̌−
�

.

It is not difficult to check that this is equivalent to

bQ+

�

Ǎ+
B̌−

�

= bQ−

�

Ǎ−
B̌+

�

, (74)

where

bQ± :=

�

e±iacW/2(cW − Ò$) −e∓iacW/2(cW + Ò$)
e∓iacW/2(cW + Ò$) −e±iacW/2(cW − Ò$)

�

. (75)

Next, we multiply both sides of (74) by the 1× 2 matrices [1 ± 1] from the left and use
(75) to show that

bΩ1−(Ǎ+ − B̌−) = bΩ1+(Ǎ− − B̌+) , bΩ2−(Ǎ+ + B̌−) = bΩ2+(Ǎ− + B̌+) , (76)

where

bΩ1± :=cW cos( a
2
cW )± i sin( a

2
cW )Ò$ , bΩ2± := cos( a

2
cW )Ò$± icW sin( a

2
cW ) . (77)

Solving (76) for Ǎ+ and B̌− and using (70) and (71) to express A+ and B− in terms of A−
and B+, we obtain

�

A+
B−

�

= Ò$bE+bΓ bE−Ò$
−1

�

A−
B+

�

, (78)

where

bE± :=

�

e∓ia±Ò$ 0
0 e±ia∓Ò$

�

, bΓ :=

�

bΓ+ bΓ−
bΓ− bΓ+

�

, bΓ± :=
1
2

�

bΩ−1
1−
bΩ1+ ± bΩ−1

2−
bΩ2+

�

. (79)

Comparing (78) with the second equation in (11) and making use of (9) we arrive at the
following expression for the scattering matrix.

bS= bΠk Ò$bE+bΓ bE−Ò$
−1 . (80)

Having determined the S-matrix, we can use (13), (13), and (20) to calculate the reflec-
tion, transmission, and scattering amplitudes of the potential. This requires the knowledge
of the entries of 〈p|bS|p0〉. Using (79) and (80) we can express these in terms of 〈p|bΓ±|p0〉.
Substituting the result in (21), setting

p0 = k sinθ0 , p = k sinθ , (81)

and making use of (20), we find

Rl(θ ) = i
p

2π k cosθ eia−k(cosθ0−cosθ ) Γ−(k sinθ , k sinθ0) , (82)

T l(θ ) = −i
p

2π k cosθ eik(a− cosθ0−a+ cosθ ) Γ+(k sinθ , k sinθ0) , (83)

Rr(θ ) = −i
p

2π k cosθ eia+k(cosθ0−cosθ ) Γ−(k sinθ , k sinθ0) , (84)

T r(θ ) = i
p

2π k cosθ eik(a+ cosθ0−a− cosθ ) Γ+(k sinθ , k sinθ0) , (85)

where
Γ±(p, p0) = 〈p|bΓ±|p0〉 , (86)

and we have employed $(p) = k| cosθ | and $(p0) = k| cosθ0|, and taken into account the
relevant range of values of θ0 and θ in the expressions for Rl/r(θ ) and T l/r(θ ).5 Equations
(13), (14), and (82) – (86) reduce the solution of the scattering problem for the potentials of
the form (1) to the calculation of 〈p|bΓ±|p0〉.

5For Rl , cosθ0 > 0> cosθ ; for T l , cosθ0 > 0< cosθ ; for Rr , cosθ0 < 0< cosθ ; for T r , Rl , cosθ0 < 0> cosθ .
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Figure 2: Schematic view of the scattering of a left-incident wave by a two-
dimensional waveguide with length a, interior width b, and infinitely thick walls.
The potential v(x , y) becomes infinitely large inside the walls of the waveguide (re-
gions colored in red), takes a constant value V0 in its interior (region colored in light
blue), and vanishes elsewhere. The thick dark red lines signify the vertical bound-
aries of the guide which also contribute to the scattering of incident waves.

5 Application to a waveguide with a finite length

Consider the cases where V has the form,

V (y) :=

�

V0 for y ∈ [0, b] ,
+∞ for y /∈ [0, b] , (87)

where V0 and b are real parameters, and b > 0. Then the potential (1) describes the scattering
of waves by a two-dimensional rectangular waveguide of length a and width b that contains a
homogeneous inactive and lossless material and has impenetrable walls of infinite thickness.
Fig. 2 shows a schematic view of such a waveguide. V0 determines the scattering properties
of its content.

For this choice of V , p̂2+ ÒV is the Hamiltonian operator for a particle trapped in an infinite
rectangular potential well. Usually, it is taken to act in the Hilbert space L2[0, b] of square-
integrable functions defined on the interval [0, b]. Because this potential is an idealization of a
finite potential well with high walls, it is more convenient to retain L2(R) as the Hilbert space
of the system. To do this, first we recall the orthogonal direct sum decomposition of L2(R)
given by [43],

L2(R) = L2[0, b]⊕ L2(R \ [0, b]) , (88)

where for each S ⊆ R, L2(S) is the Hilbert space of sqaure-integrable functions ξ : S → C.
Equation (88) means that for each φ ∈ L2(R) there are unique �φ ∈ L2[0, b] and
φ̆ ∈ L2(R \ [0, b]) such that

φ(y) =

�

�φ(y) for y ∈ [0, b] ,
φ̆(y) for y /∈ [0, b] .

(89)
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Next, we let bΛ be the projection operator defined on L2(R) by

�

bΛφ
�

(x) :=

�

�φ(y) for y ∈ [0, b] ,
0 for y /∈ [0, b] ,

(90)

and identify p̂2+ ÒV for the infinite barrier potential (87) with the operator bΛ(p̂2+V0bI)bΛ that
is defined by

〈y|
�

p̂2 + ÒV
�

|φ〉 :=

�

−�φ′′(y) +V0
�φ(y) for x ∈ [0, b] ,

0 for x /∈ [0, b] ,
(91)

on the domain,

D :=
�

φ ∈ L2(R) | �φ′′ ∈ L2[0, b], �φ(0) = �φ(b) = 0
	

,

where �φ′′ denotes the second derivative of �φ.
The above extension of the standard Hamiltonian operator for the infinite potential well

(87) to the Hilbert space L2(R) adds an infinitely degenerate zero eigenvalue to its spectrum.6

The determination of nonzero eigenvalues and a corresponding orthonormal set of eigenfunc-
tions of this operator is an elementary exercise. They are respectively given by

En =
�πn

b

�2
+V0 , φn(y) =

�
p

2/b sin(πny/b) for y ∈ [0, b] ,
0 for y /∈ [0, b] ,

(92)

where n ∈ Z+. Notice however that the standard completeness relation for φn is replaced by

∞
∑

n=1

|φn〉〈φn|= bΛ . (93)

This is consistent with the fact that �φn form an orthonormal basis of L2[0, b].
The operator bΛ is an orthogonal projection operator [42]whose range and null space (ker-

nel) are respectively isomorphic to L2[0, b] and L2(R\ [0, b]). It is also clear that the range of
bΛ coincides with the null space of bI − bΛ. Therefore, the latter is isomorphic to L2[0, b]. Simi-
larly, the range of bI−bΛ which coincides with the null space of bΛ is isomorphic to L2(R\[0, b]).
For these reasons, in what follows we identify the range of bΛ and bI − bΛ with L2[0, b] and
L2(R \ [0, b]), respectively.

The scattering of waves by our waveguide system is due to two different interactions. A part
of the wave enters the waveguide, interacts with the material inside it, and gets partly reflected
and partly transmitted. The other part interacts with the impenetrable vertical boundaries of
the guide (represented by the thick dark red lines in Fig. 2) and is reflected. Since the scattering
phenomenon is defined by the Schrödinger equation which is linear, the scattered wave is the
superposition of the contributions of the interior and vertical boundaries of the guide.

Consider a general bounded solution ψ of the Schrödinger equation (2) which satis-
fies (5). For each x ∈ R, we use |ψ(x)〉 to label the function ψ(x , ·) : R → C, so that
〈y|ψ(x)〉 :=ψ(x , y). This allows us to write (5) in the form,

|ψ(x)〉=
1
p

2π
×
�

Ò$−1
�

ei xÒ$|A−〉+ e−i xÒ$|B−〉
�

for x ≤ a− ,

Ò$−1
�

ei xÒ$|A+〉+ e−i xÒ$|B+〉
�

for x ≥ a+ ,
(94)

where |A−〉, |B−〉, |A+〉, and |B+〉 respectively denote the coefficient functions A−,B−,A+,
and B+, and we have made use of 〈y|p〉= eip y/

p
2π.

6This is because every smooth function φ that vanishes in [0, b] belongs to D and satisfies (p̂2 + ÒV )|φ〉= 0.
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Next, we use (92) and (93) to express the boundary conditions,ψ(a±, y) = 0 for y /∈ [0, b],
at the vertical boundaries of the waveguide as

(bI − bΛ)|ψ(a±)〉= 0 . (95)

Substituting (94) in this equation, we arrive at

(bΛ− bI)|B−〉 = −(bΛ− bI)e2ia−Ò$|A−〉 , (96)

(bΛ− bI)|A+〉 = −(bΛ− bI)e−2ia+Ò$|B+〉 . (97)

These are non-homogeneous linear equations for |B−〉 and |A+〉. We can express their general
solution in the form

|B−〉 = |B0−〉+ (bI − bΛ)e2ia−Ò$|A−〉 , (98)

|A+〉 = |A0+〉+ (bI − bΛ)e−2ia+Ò$|B+〉 , (99)

where |B0−〉 and |A0+〉 represent the general solution of the homogeneous equation,

(bΛ− bI)|φ〉= 0 .

This means that |B0−〉 and |A0+〉 are associated with the Hilbert space L2[0, b]. It is also clear
that (bI − bΛ)e2ia−Ò$|A−〉 and (bI − bΛ)e−2ia+Ò$|B+〉 are associated with L2(R \ [0, b]).

For a left-incident wave, A−(p) = Al
−(p) = 2π$(p)δ(p − p0) and B+(p) = Bl

+(p) = 0.
Therefore, |A−〉 = 2πÒ$|p0〉 and |B+〉 = 0. Substituting these in (98) and (99), applying bΠk,
and employing (9), we obtain

|Bl
−〉 = bΠk|B l

0−〉+ 2π$(p0) e
2ia−$(p0)

bΠk(bI − bΛ)|p0〉 , (100)

|Al
+〉 = bΠk|A l

0+〉 , (101)

where we use the superscript “l” to emphasize that we consider left-incident waves. For |p|< k,
(100) and (101) imply

Bl
−(p) =B

l
0−(p) + Bl

1−(p) , Al
+(p) =A

l
0+(p) , (102)

where

Bl
1−(p) :=$(p0) e

2ia−$(p0)

�

2πδ(p− p0)−
∞
∑

n=1

φ̃n(p0)
∗φ̃n(p)

�

, (103)

and φ̃n(p) is the Fourier transform of φn(y), i.e.,

φ̃n(p) :=

∫ ∞

−∞
d y e−ip yφn(y) =







πn
p

2b[e−i(bp−πn) − 1]
(bp)2 − (πn)2

for p 6= πn/b ,

−i
p

b/2 for p = πn/b .
(104)

Note that φ̃n(p) =
p

2π〈p|φn〉.
Recalling that Bl

− and Al
+ respectively determine the left reflection and transmission am-

plitudes of the potential and that B l
0− and A l

0+ are associated with the same Hilbert space
as the one we use to describe the waves propagating inside the waveguide, we identify these
functions with those that encode the contribution of the content of the waveguide to the reflec-
tion and transmission of the left-incident waves. Following the same reasoning Bl

1− represents
the contribution of the vertical boundary of the waveguide located on the line x = a− to the
reflection of these waves. Clearly, the presence of the vertical boundary at x = a+ does not
affect the reflection or transmission of the left-incident waves.
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The treatment of the right-incident waves is analogous. Repeating the analysis of the
preceding section, we find

Br
−(p) =B

r
0−(p) , Ar

+(p) =A
r

0+(p) + Ar
1+(p) , (105)

where B r
0− and A r

0+ are coefficient functions belonging to L2[0, b] that represent the contri-
bution of the content of the guide to the scattering of right-incident waves, and

Ar
1+(p) :=$(p0) e

−2ia+$(p0)

�

2πδ(p− p0)−
∞
∑

n=1

φ̃n(p0)
∗φ̃n(p)

�

. (106)

Equations (13) – (16), (102), (103), (105), and (106) reduce the solution of the scattering
problem for our waveguide to the determination of B l/r

0− (p) and A l/r
0+ (p). We can compute

these using the machinery developed in Sec. 4. More specifically, they are given by the right-
hand side of (78). This in turn identifies the contribution of the content of the waveguide to
the reflection and transmission amplitudes with the right-hand sides of (82) – (85). Adding
the contribution of the vertical boundaries of the guide to the reflection amplitudes, which are
stored in Bl

1− and Ar
1+, we have

Rl(θ ) = −
i
p

2π
Bl

1−(k sinθ ) + i
p

2π k cosθ eia−k(cosθ0−cosθ ) Γ−(k sinθ , k sinθ0) , (107)

Rr(θ ) = −
i
p

2π
Ar

1+(k sinθ )− i
p

2π k cosθ eia+k(cosθ0−cosθ ) Γ−(k sinθ , k sinθ0) , (108)

where we have used (15), (82), (84), (102), and (105). Note also that the Bl
1−(k sinθ ) and

Ar
1+(k sinθ ) appearing in (107) and (108), are respectively given by (103) and (106) with

p0 = k sinθ0; they have the forms.

Bl
1−(k sinθ ) = e2ia−k cosθ0

�

2πδ(θ − θ0)− k cosθ0

∞
∑

n=1

φ̃n(k sinθ0)
∗φ̃n(k sinθ )

�

, (109)

Ar
1+(k sinθ ) = e2ia+k cosθ0

�

2πδ(θ − θ0) + k cosθ0

∞
∑

n=1

φ̃n(k sinθ0)
∗φ̃n(k sinθ )

�

. (110)

Because the transmission amplitudes T l/r(θ ) do not get affected by the presence of the vertical
boundaries of the waveguide, they are still given by (83) and (85).

Next, we explore the contribution of the interior of the waveguide. The waves propagating
inside the waveguide are described by functions vanishing outside [0, b]. This suggests that
the operator cW associated with our waveguide system is given by (42) with φn’s having the
form (92). In view of (93), this implies

cW bΛ= bΛcW =cW . (111)

In particular, L2(R \ [0, b]) is a subset of the kernel of cW . This identifies zero as an infinitely
degenerate eigenvalue of cW . We can use (39) and the first equation in (92) to determine other
eigenvalues of cW . They are given by

wn =

¨ Æ

k2 − (πn/b)2 −V0 for k2 > V0 and n≤ b
p

k2 −V0/π ,

i
Æ

(πn/b)2 +V0 − k2 otherwise.
(112)

Fig. 3 shows plots of the real and imaginary parts of the eigenvalues±wn of the effective Hamil-
tonian bH as functions of k for n = 1,2, 3,4, V0 = 0 (empty waveguide) and V0 = −(5π/2b)2.
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Figure 3: Plots of the real and imaginary parts of the eigenvalues ±wn of bH as func-
tions of k for n = 1, 2,3, 4, V0 = 0 (on the left) and V0 = −(5π/2b)2 (on the right).
The solid and dashed curves respectively correspond to the real and imaginary parts
of ±wn. Values of ±wn and k are in units of b−1. The blue (resp. red), orange (resp.
brown), purple (resp. green), and black (resp. gray) curves correspond to wn (resp.
−wn) with n= 1, 2,3, and 4, respectively. Their crossing points with the k-axis mark
the exceptional points. For V0 = −(5π/2b)2, there are no exceptional points for
n= 1,2.

The points on the k-axis where the graphs of ±wn intersect represent the exceptional points
of H. The corresponding (exceptional) wave numbers kn form an increasing sequence. For
V0 = 0 and k < kn, ±wn are purely imaginary, and as we increase k, they approach and collide
at an exceptional point and then separate as a pair of real eigenvalues having opposite sign.
This holds also for V0 6= 0, except that when V0 < −(π/b)2 and n ≤ b

p

|V0|/π, ±wn take
real values for all k. Therefore, no exceptional points arises for these values of n. This is also
depicted in Fig. 3; when V0 = −(5π/2b)2, exceptional points are absent for n= 1 and n= 2.

To identify the proper definition of the operator Ò$ that enters the calculation of the re-
flection and transmission amplitudes due to the interior of the waveguide, we reexamine the
role of the two-component wave function Ψ(x) in Sec. 3. Using |Ψ(x)〉 to denote this wave
function, we can express (29) as

|Ψ(x)〉 :=
1
2

e−i xÒ$σ3

�

Ò$|ψ(x)〉 − i∂x |ψ(x)〉
Ò$|ψ(x)〉+ i∂x |ψ(x)〉

�

. (113)

Let us confine our attention to values of x that lie in the interval (a−, a+). Then ψ(x , y) = 0
for y /∈ [0, b]. This means that bΛ|ψ(x)〉 = |ψ(x)〉. Therefore, |ψ(x)〉 belongs to the range
of bΛ which we identify with L2[0, b]. In light of (113), the same applies to the compo-
nents of |Ψ(x)〉. This observation together with the requirement that, for x ∈ (a−, a+), the
time-independent Schrödinger equation (2) be equivalent to the time-dependent Schrödinger
equation (28) suggests setting

Ò$ := bΛ$(p̂)bΛ , (114)

and
ÒH(x) :=

V0

2
bΛ e−iÒ$xσ3K eiÒ$xσ3$(p̂)−1

bΛ for x ∈ (a−, a+) , (115)

where we have also made use of (1) and (87). Enforcing (114) and (115), we can apply the
constructions of Secs. 3 and 4 to describe the propagation of waves inside the waveguide.
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According to (114),
bΛÒ$(bI − bΛ) = (bI − bΛ)Ò$bΛ= b0 , (116)

which in particular implies
[Ò$, bΛ] = b0 . (117)

Furthermore, in light of (6), (26), (92), (114), and the fact that for y ∈ [0, b],

〈y|p̂2|�φn〉= −�φ′′n (y) = −φ
′′
n (y) = (πn/b)2φn(y) = (πn/b)2 �φn(y) ,

we have

〈y|Ò$|φn〉=
�

$n
�φn(y) for y ∈ [0, b] ,
0 for y /∈ [0, b] ,

(118)

where

$n :=

¨ Æ

k2 − (πn/b)2 for n≤ bk/π ,

i
Æ

(πn/b)2 − k2 for n> bk/π.
(119)

Equations (92) and (118) show that

Ò$|φn〉=$n|φn〉 . (120)

An important consequence of (42), (93), (111), (116), and (120) is

[cW , Ò$] = cW Ò$− Ò$cW

= cW bΛÒ$(bI − bΛ) +cW bΛÒ$bΛ− Ò$cW

= cW Ò$bΛ− Ò$cW

= cW Ò$

∞
∑

n=1

|φn〉〈φn| − Ò$
∞
∑

n=1

wn|φn〉〈φn|

=
∑

n=1

�

$ncW −wnÒ$
�

|φn〉〈φn|

= b0 . (121)

This relation simplifies the calculation of bΓ± considerably. Using (77), (79), (111), and (121),
we find

bΓ+ =

�

4Ò$cW eiacW

(cW + Ò$)2 − (cW − Ò$)2e2iacW

�

bΛ , (122)

bΓ− =

�

(cW 2 − Ò$2)(bI − e2iacW )

(cW + Ò$)2 − (cW − Ò$)2e2iacW

�

bΛ . (123)

It is not difficult to see that these relations hold also for the exceptional wavenumbers, if
V0 6= 0. We can derive the corresponding relations for the cases where V0 = 0 and k is an
exceptional wavenumber from (122) and (123) by taking their V0→ 0 limit. We will examine
the role and consequences of setting k to one of its exceptional values at the end of this section.

In order to elucidate the physical implications of (122) and (123), first we consider incident
waves for which k2 ≥ π2/b2 + V0, i.e., k2 is not smaller than the ground state energy of the
infinite barrier potential (87). Let n? denote the integer part of b

p

k2 −V0/π, i.e.,

n? :=
�

b
π

Æ

k2 −V0

�

. (124)
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Then, n? ≥ 1, and according to (112), wn = |wn| for n ≤ n?, and wn = i|wn| 6= 0 for n > n?.
This together with (42) and (120) allow us to express bΓ± in the form,

bΓ± =
n?
∑

n=1

r±n |φn〉〈φn|+
∞
∑

n=n?+1

s±n |φn〉〈φn| , (125)

where

r+n :=
4|wn|$n eia|wn|

($n + |wn|)2 − ($n − |wn|)2e2ia|wn|
, s+n :=

4i|wn|$n e−a|wn|

($n + i|wn|)2 − ($n − i|wn|)2e−2a|wn|
, (126)

r−n :=
(|wn|2 −$2

n)(1− e2ia|wn|)

($n + |wn|)2 − ($n − |wn|)2e2ia|wn|
, s−n := −

(|wn|2 +$2
n)(1− e−2a|wn|)

($n + i|wn|)2 − ($n − i|wn|)2e−2a|wn|
. (127)

Inserting (125) in (86), we have

Γ±(p, p0) =
1

2π





n?
∑

n=1

r±n φ̃n(p0)
∗φ̃n(p) +

∞
∑

n=n?+1

s±n φ̃n(p0)
∗φ̃n(p)



 . (128)

In the appendix, we show that whenever k2 ≥ (π/b)2 +V0 and n> n?,

a|wn|>
p

2πaη(k)
b

, (129)

where

η(k) :=

√

√

n? + 1−
b
π

Æ

k2 −V0 .

Notice that by virtue of (124), 0 < η(k) ≤ 1. According to (129), if the waveguide’s length is
so much larger than its width that aη(k)/b� 1, then a|wn| � 1 for n > n?. In this case, we
can use (126) – (128) to obtain the following approximate expressions for Γ±(p, p0).

Γ+(p, p0)≈
1

2π

n?
∑

n=1

r+n φ̃n(p0)
∗φ̃n(p) , (130)

Γ−(p, p0)≈
1

2π





n?
∑

n=1

r−n φ̃n(p0)
∗φ̃n(p) +

∞
∑

n=n?+1

tn φ̃n(p0)
∗φ̃n(p)



 , (131)

where

tn :=
|wn|+ i$n

|wn| − i$n
. (132)

According to (83), (85), and (130), the transmission of high-energy waves by a finite-length
waveguide is determined by the first n? energy eigenvalues and eigenfunctions of the infinite
potential well (87), if k2 ≥ π2/b2 +V0. In the limit a→∞, the approximate relations (130)
and (131) become exact equalities and agree with the fact that an infinitely long rectangular
waveguide has finitely many propagating modes.

Next, we consider situations where k2 < π2/b2 +V0. Then wn = i|wn| for all n ∈ Z+, and
(122) and (123) take the form,

bΓ± =
∞
∑

n=1

s±n |φn〉〈φn| . (133)
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We can then use (86), (112), (126), (127), and (132) to infer that whenever

V0 >
1
a2
−
π2

b2
and k�

√

√

V0 +
π2

b2
−

1
a2

, (134)

we have

Γ+(p, p0)≈ 0 , Γ−(p, p0)≈
1

2π

∞
∑

n=1

tn φ̃n(p0)
∗φ̃n(p) . (135)

In light of (83) and (85), the first of these relations shows that the waveguide does not transmit
the waves, i.e., it acts as a filter, if V0 and k satisfy (134).

If the waveguide is empty, i.e., V0 = 0, cW = Ò$, wn =$n, and (122) and (123) become

bΓ+ = eiacW
bΛ , bΓ− = b0 . (136)

Substituting these in (86), we have

Γ+(p, p0) =
1

2π

∞
∑

n=1

eia$nφ̃n(p0)
∗φ̃n(p) , Γ−(p, p0) = 0 , (137)

where we have made use of (42) and (93). In view of (107) and (108), the second equation
in (137) is consistent with the fact that the reflection of an incident wave from an empty
waveguide is solely due to its vertical boundaries. Furthermore, when 1 � ak < πa/b,
$n = i

p

(πn/b)2 − k2 and all the terms contributing to Γ+(p, p0) become exponentially small.
This shows that the system acts as a filter for incident waves with such wavenumbers. If
k > π/b and ak� 1, then

Γ+(p, p0)≈
1

2π

bbk/πc
∑

n=1

eiak
p

1−(πn/bk)2φ̃n(p0)
∗φ̃n(p) . (138)

Therefore, the transmission amplitudes are determined by the Fourier transform of φn for
n≤ bbk/πc.

Equations (136) turn out to hold also for exceptional wavenumbers kn? . If k = k1 = π/b,
i.e., k equals the smallest exceptional wavenumber, and a� b, then ak� 1, (137) holds, and
(138) gives

Γ+(p, p0)≈
1

2π
φ̃1(p0)

∗φ̃1(p) . (139)

According to (83) and (85), this shows that the intensity of the transmitted wave does not
depend on the length of the waveguide a; it is invariant under continuous changes of a. This
is a physical consequence of the presence of an exceptional point in our scattering setup.
It is not difficult to see that the same phenomenon occurs if the waveguide is filled with a
homogeneous material so that V0 takes a nonzero real value. In this case, for a � b and
k =

p

(π/b)2 +V0, we have w1 = 0, a|wn| � 1 for n ≥ 2, (126) gives r+1 = 1, and (130)
reduces to (139).

In general, if k is an exceptional wavenumber, so that b
p

k2 −V0/π is a positive integer,
we have n? = b

p

k2 −V0/π, wn? = 0, and

$n? =

� p

V0 for V0 ≥ 0 ,
i
p

|V0| for V0 < 0.
(140)

We can describe the behavior of the reflection and transmission amplitudes in this case, by
examining the limit when k approaches the exceptional wavenumber

p

(πn?/b)2 +V0. This
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corresponding to evaluating the wn? → 0 limit of the formulas we have derived for the reflec-
tion and transmission amplitudes for non-exceptional wavenumbers, i.e., (83), (85), (107),
and (108) with Γ± given by (128). Clearly, this only affects the contribution of the mode
number n? to Γ±. Performing this limit in (126) and (127), we find

r+n? =
1

1− ia$n?
2

, r−n? =
ia$n?

2

1− ia$n?
2

= r+n? − 1 . (141)

Therefore, the presence of an exceptional point contributes the terms r±n?φ̃n?(p0)∗φ̃n?(p)/2π
to Γ±(p, p0). In view of (83), (85), (107), and (108), these correspond to the presence of terms
in the reflection and transmission amplitudes that are rational functions of the length of the
waveguide. For V0 = 0, $n?(0) = 0 and these terms become a-independent.

Another consequence of the above analysis is that if we arrange to inject a wave to the
waveguide from the left such that Al

− is proportional to φn? (and Bl
+ = 0), then this wave

will propagate through the guide in such a way that the transmitted wave only acquires a
multiplicative factor given by e−ia$n?/[1− ia$n?/2], i.e.,

A l
+ =

e−ia$n?

1− ia$n?
2

Al
− . (142)

To see this, we use (78), (79), (120), and (125) to express the S-matrix associated with the
interior of the waveguide in the form,

S0 =
∞
∑

n=1

�

e−ia$nΓ+n e−2ia+$nΓ−n
e2ia−$nΓ−n e−ia$nΓ+n

�

|φn〉〈φn|, (143)

where

Γ±n := 〈φn|bΓ±|φn〉=
�

r±n for n≤ n? ,
s±n for n> n? .

(144)

When Al
− is proportional toφn and Bl

+ = 0, (bI−bΛ)|Al
−〉= 0, and (98) and (99) implyB l

− =B
l
0−

andA l
+ =A

l
0+. We can use these relations together with (143) to conclude that

�

A l
+
B l
−

�

= S

�

Al
−

0

�

= S0

�

Al
−

0

�

=

�

e−ia$nΓ+n
e2ia−$nΓ−n

�

Al
− . (145)

Equation (142) follows from (141), (144), and (145). If the waveguide is empty,
$n? = wn? = 0, and (142) becomes A l

+ = Al
−. This shows that the transmitted wave is

identical to the injected wave both in amplitude and phase. There is also no reflected wave.
Therefore, the waveguide does not scatter the injected wave.

6 Concluding remarks

Exceptional points are exclusive features of non-Hermitian operators. Therefore they do not
appear in the standard formulation of quantum mechanics of closed systems where the observ-
ables and Hamiltonian are required to be Hermitian operators. Quantum mechanics may be
formulated using certain non-Hermitian operators that are related to Hermitian operators via
a similarity transformation [41], but these Hermitizable pseudo-Hermitian operators cannot
support exceptional points either. These observations support the view that exceptional points
do not play any role in quantum mechanics of closed systems. In the present paper, we have
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offered a concrete evidence to the contrary. The stationary quantum scattering theory admits
an interesting dynamical formulation allowing for a fundamental generalization of the notion
of transfer matrix to dimensions larger than one. This is a linear operator acting in an infinite-
dimensional function space that admits an expression in terms of the evolution operator for a
non-Hermitian effective Hamiltonian operator. Even for cases where the scattering potential
is real, this operator may possess exceptional points.

In this article, we have considered the application of the dynamical formulation of station-
ary scattering in two dimensions to a class of real potentials that do not vanish or decay to
zero in an infinite region of the space, yet they define a valid scattering problem. For these
potentials we have expressed the transfer matrix in terms of the evolution operator of a non-
Hermitian effective Hamiltonian operator bH, determined the spectral properties of this opera-
tor, shown that it is a pseudo-Hermitian operator having a non-real spectrum, and calculated
the transfer and scattering matrices. We have then confined our attention to the study of the
scattering of plane waves by a finite-size waveguide with infinitely thick walls and investigated
the contributions of the real and complex eigenvalues of bH and its exceptional points to the
scattering data. In particular, for an empty waveguide, we have shown that at the exceptional
wavenumbers, where bH develops an exceptional point, the transmitted wave includes a term
that is independent of the length of the waveguide. This might find applications in calibration
and sensing.

Our analysis may be applied to situations where the waveguide is filled with a homoge-
neous active or lossy material. This corresponds to situations where the constantV0 is complex.
In this case, the eigenvalues of the infinite potential well (87) gets shifted by a complex con-
stant but its eigenfunctions remain the same. Therefore, we can pursue the same approach to
determine the transfer and scattering matrices for the problem. The main difference is that
in this case, wn 6= 0, and bH no longer admits an exceptional point. This is indeed surprising,
because exceptional points are available when the potential is real; they disappear when it
becomes complex!
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Appendix: Derivation of (129)

Suppose that k2 ≥ (π/b)2 +V0 and n≥ n? + 1. Then (112) and (124) imply

|wn|2 = (πn/b)2 +V0 − k2

≥ (π/b)2(n? + 1)2 +V0 − k2

≥ (πn?/b)2 +V0 − k2 + (π/b)2(2n? + 1) . (146)

In view of (124), we also have

n? > (b/π)
Æ

k2 −V0 − 1≥ 0 , (147)

which implies

(πn?/b)2 >
�
Æ

k2 −V0 − (π/b)
�2

.
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Writing this relation in the form

(πn?/b)2 +V0 − k2 > −2(π/b)
Æ

k2 −V0 + (π/b)2,

combining it with (146), and using (147), we find

|wn|2 > 2(π/b)2
�

n? + 1− (b/π)
Æ

k2 −V0

�

> 0.

This implies (129).
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