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Abstract

We study the effects of quantum fluctuations in the two-component Bose-Hubbard model
generalizing to mixtures the quantum Gutzwiller approach introduced recently in [Phys.
Rev. Research 2, 033276 (2020)]. As a basis for our study, we analyze the mean-field
ground-state phase diagram and spectrum of elementary excitations, with particular em-
phasis on the quantum phase transitions of the model. Within the quantum critical
regimes, we address both the superfluid transport properties and the linear response
dynamics to density and spin probes of direct experimental relevance. Crucially, we find
that quantum fluctuations have a dramatic effect on the drag between the superfluid
species of the system, particularly in the vicinity of the paired and antipaired phases
absent in the usual one-component Bose-Hubbard model. Additionally, we analyse the
contributions of quantum corrections to the one-body coherence and density/spin fluc-
tuations from the perspective of the collective modes of the system, providing results for
the few-body correlations in all the regimes of the phase diagram.
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1 Introduction

The precision control available in ultracold atomic gas experiments has opened up a plat-
form where models of condensed matter physics can be simulated in a relatively defect-free
environment. In particular, ultracold atoms trapped in optical lattices are described by Hub-
bard models [1, 2], which are of central importance to the study of solid-state materials [3].
The reduction of three-body losses in lattices makes possible the study of strongly-correlated
regimes absent in the continuum, such as the paradigmatic Mott insulator (MI) to superfluid
(SF) quantum phase transition for single-component bosons [4]. In the two-component Bose-
Hubbard (BH) model a richer phase diagram emerges, including the additional possibility of
pair (PSF) and counterflow (CFSF) superfluids, supersolidity, charge-density quasiorder, and
peculiar magnetic states [5–10]. Such coupled superfluids can undergo also mutual dissipa-
tionless transport with an induced entrainment or counterflow of one component due to a non-
zero superfluid velocity of the other. This phenomenon, better known as superfluid drag, was
first discussed by Andreev and Bashkin in the context of three-fluid hydrodynamics [11], but
is of universal relevance to systems ranging from neutron-star matter [12–16] to multicompo-
nent superconductors [17–19] and ultracold atomic mixtures [9,20–28]. Direct measurement
of this effect has however remained elusive, due in part to the low miscibility of superfluid
3He and 4He and recombination heating in strongly-interacting ultracold atomic mixtures.
Recently, the PSF and CFSF phase transitions of the two-component BH model have emerged
as promising candidates where the drag can saturate at its maximum value [25, 26]. Still, a
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deeper understanding of the fundamental role played by quantum fluctuations is needed to
gain insight into the physics of such strongly-correlated quantum critical regimes of Hubbard
models at zero temperature.

The Gutzwiller approach provides a simple solution of the BH model able to interpolate
between a coherent-state description of a dilute Bose-Einstein condensate (BEC) and a MI with
integer occupation of each lattice site [29–31]. Its generalization to the two-component BH
model is based on the wave function ansatz [32,33]

|ΨG〉=
⊗

r

∞
∑

n1,n2=0

cn1,n2
(r) |n1, n2, r〉 , (1)

which is a site-factorized product of local Fock states with occupation of ni atoms in the ith com-
ponent at site r weighted by normalized complex amplitudes cn1,n2

(r), which can capture at the
mean-field level paired and antipaired ground states and superfluidity [32]. The Gutzwiller de-
scription is however inadequate in strongly-interacting and critical regimes, where quantum
fluctuations are enhanced. Of course, also the basic assumptions of the celebrated Bogoli-
ubov theory of quantum fluctuations about a coherent-state BEC break down in the vicinity
of the phase transitions [34,35]. In this spirit, a canonical quantization procedure c→ ĉ was
proposed in Ref. [36], which enables an order-by-order layering of quantum fluctuations on
top of the mean-field Gutzwiller ground state, remaining valid in the whole phase diagram.
Predictions of the resultant quantum Gutzwiller theory (QGW) featured a successful compar-
ison across the MI-SF phase transition for single-component bosons to the available quantum
Monte Carlo (QMC) data, while requiring only modest computational costs and providing a
valuable description of the role of quantum fluctuations through a semi-analytical formalism.
Moreover, the QGW theory was used recently to study the non-Markovian spin decoherence
of a two-level impurity embedded in a two-dimensional BH model [37]. It is important to
note that, at the level of Gaussian fluctuations, the QGW approach is analogous to slave boson
methods (c.f Refs. [38–40]). However, in the two-component BH model comparatively little
is known about time-dependent phenomena and the role of quantum fluctuations in quantum
critical regimes, motivating the establishment of the QGW theory for bosonic mixtures.

In this work, we study a homogeneous system of two-component bosons on a square lat-
tice considering short-range intra and interspecies interactions, which can be realized in optical
lattices loaded with atoms of two different species or internal states [41–43]. Although the
derivations presented in this work are completely general, our numerical findings are spe-
cific to two dimensions where existing QMC results [25] make quantitative comparisons with
our predictions for the drag possible, and where there exists a strong motivating analogy be-
tween the fermionic version of the problem and high-temperature superconductivity [44]. We
first study the rich phase diagram of the model for both repulsive and attractive interspecies
interactions, finding counterflow and paired superfluid phases in addition to the MI and SF
phases which carry over from single-component bosonic systems. We show how, in the case of
mixtures, the QGW approach provides a straightforward way to calculate linear response and
correlation functions to a desired order in the quantum fluctuations. This permits a systematic
study of the role of quantum corrections, which we first investigate by considering the linear
response dynamics of the system to density and spin perturbations. In this respect, we high-
light the experimentally relevant signatures of the onset of the PSF and CFSF phases in the
dynamical structure factor. We then focus on superfluid transport in quantum critical regimes,
finding in particular a large interspecies drag comparable in magnitude with the superfluid
density in the vicinity of the CFSF and PSF phases. Furthermore, we address the one and
two-body correlation functions, focusing on the strongly-interacting regime, where quantum
fluctuations play a crucial role. Specifically, we find that the PSF and CFSF transitions behave
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as channel-selective MI transitions with respect to the spin and density degrees of freedom,
respectively.

We have structured the present work in a relatively self-contained manner, which we hope
may prove useful also as a starting point and reference for future studies. In Sec. 2, we first
outline the time-dependent Gutzwiller method for the two-component BH model, and then
study the ground state and elementary excitations of the system for both repulsive and attrac-
tive interactions, expanding on Ref. [32] where possible. Subsequently, to include the effects
of quantum fluctuations, we introduce the QGW approach, which generalizes the formalism
of Ref. [36] to mixtures. Section 3 is focused on applying the QGW method to study the effects
of beyond mean-field local and non-local quantum correlations in a range of experimentally
relevant observables. Here, general semi-analytical formulas are derived for the susceptibility,
compressibility, density and spin sound speeds, superfluid components (including the drag),
one-body coherence function, and spin and density pair correlation functions. In particular,
the order-by-order contributions of quantum fluctuations are made always explicitly clear. We
conclude in Sec. 4 by providing also an outlook for future studies. The appendices contain
additional details on the QGW approach and derivations of the linear response formalism for
mixtures.

2 Model and Theory

In Sec. 2.1, we analyze the two-component BH model using the C-number Gutzwiller ansatz.
Subsequently, in Sec. 2.2.1 (2.2.2), we discuss in depth the ground state and elementary ex-
citations for repulsive (attractive) interactions between the two components of the system.
We complete our theoretical background in Sec. 2.3, where we go beyond the mean-field
Gutzwiller approximation by generalizing the QGW method introduced in Ref. [36] to Bose
mixtures.

2.1 Lagrangian formulation within the Gutzwiller ansatz for mixtures

We start from the two-component Bose-Hubbard (BH) model [1]

Ĥ =
2
∑

i=1

∑

r



−Ji

d
∑

j=1

�

â†
i,r âi,r+e j

+ h.c.
�

+
Ui

2
n̂i,r

�

n̂i,r − 1
�

−µi n̂i,r



+ U12

∑

r

n̂1,r n̂2,r , (2)

where r is the site index in d dimensions with unit vector e j , while Ji , µi , Ui and U12 are the
species-dependent tunneling coefficient between neighboring sites, chemical potential and on-
site intra/interspecies interaction strengths, respectively. In this work, we examine only the
Z2-symmetric case where J1 = J2 = J , µi = µ2 = µ and U1 = U2 = U , keeping always
|U12/U | < 1 to avoid phase separation, as well as to prevent the system from collapsing [45].
The bosonic operators â†

i,r and âi,r create and destroy, respectively, a particle of species i at

the lattice site r, and are related to the corresponding local density operator via n̂i,r = â†
i,r âi,r.

We define also the total and spin densities as given by n̂d,r =
∑

i n̂i,r and n̂s,r = n̂1,r − n̂2,r,
respectively. In the following, we consider a uniform square lattice of volume V composed by
I sites with lattice spacing a1, such that the “bare” effective mass is m≡ ħh2/

�

2Ja2
�

.
The two-component Gutzwiller mean-field ansatz for the many-body wave function in-

troduced in Eq. (1) is a site-factorized product of local Fock states weighted by normalized

1In this work, the QGW results are obtained on a lattice of size I = 1282 unless otherwise specified. This lattice
is sufficiently large such that our calculations are free from finite-size effects.
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complex amplitudes cn1,n2
(r) such that
∑

n1,n2

�

�cn1,n2
(r)
�

�

2
= 1. Within the Gutzwiller ansatz,

the local density is given by

ni(r) = 〈n̂i,r〉=
∞
∑

n1,n2

�

n1δi,1 + n2δi,2

� �

�cn1,n2
(r)
�

�

2
. (3)

In addition to the Mott insulator (MI) and superfluid (SF) phases in common with the one-
component case (cf. Ref. [29]), the two-component Bose mixture exhibits also the possibility
of counterflow superfluid (CFSF) and pair superfluid (PSF) phases, see Refs. [6,7,10,46]. To
distinguish between these phases, besides the one-body order parameters

ψ1(r) = 〈â1,r〉=
∞
∑

n1,n2

p

n1 c∗n1−1,n2
(r) cn1,n2

(r) , (4a)

ψ2(r) = 〈â2,r〉=
∞
∑

n1,n2

p
n2 c∗n1,n2−1(r) cn1,n2

(r) , (4b)

which are non-zero only in the SF phase, we introduce the pair and antipair order parameters

ψP(r) = 〈â1,r â2,r〉 − 〈â1,r〉 〈â2,r〉=
∑

n1,n2

p

n1 n2 c∗n1−1,n2−1(r) cn1,n2
(r)−ψ1(r)ψ2(r) , (5a)

ψC(r) = 〈â1,r â†
2,r〉 − 〈â1,r〉 〈â

†
2,r〉=
∑

n1,n2

Æ

n1(n2 + 1) c∗n1−1,n2+1(r) cn1,n2
(r)−ψ1(r)ψ

∗
2(r) , (5b)

which identify univocally the PSF and CFSF phases, respectively. Notice that, in constructing
the pair/antipair order parameters, possible contributions of the one-body order parameters
have been explicitly removed to ensure that ψP/C ̸= 0 reflects intrinsically particle + hole
(CFSF) or particle + particle (hole + hole) (PSF) correlations between the two species.

From the Hamiltonian expectation value 〈ΨG| Ĥ |ΨG〉, we can readily build a Lagrangian
for the Gutzwiller ansatz,

L[c, c∗] =
∑

r

∑

n1,n2

§

iħh
2

�

c∗n1,n2
(r) ċn1,n2

(r)− c.c.
�

−Hn1,n2

�

�cn1,n2
(r)
�

�

2
ª

+ J

2
∑

i=1

∑

r

d
∑

j=1

�

ψ∗i (r)ψi(r+ e j) + c.c.
�

, (6)

where the dots indicate temporal derivatives and

Hn1,n2
=

2
∑

i=1

�

U
2

ni(ni − 1)−µni

�

+ U12 n1 n2 . (7)

The classical Euler-Lagrange equations of motion for the Gutzwiller amplitudes, with the com-
plex conjugate parameters c∗n1,n2

(r) = ∂L/∂ ċn1,n2
(r) playing the role of canonical momenta,

are given by the two-component time-dependent Gutzwiller equations (2GE)

iħh ċn1,n2
(r) = Hn1,n2

cn1,n2
(8)

−J

d
∑

i=1

§

p

n1 + 1 cn1+1,n2
(r)
�

ψ∗1(r+ ei) +ψ
∗
1(r− ei)
�

+
p

n1 cn1−1,n2
(r) [ψ1(r+ ei) +ψ1(r− ei)]

+
p

n2 + 1 cn1,n2+1(r)
�

ψ∗2(r+ ei) +ψ
∗
2(r− ei)
�

+
p

n2 cn1,n2−1(r) [ψ2(r+ ei) +ψ2(r− ei)]
ª

,
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which were derived previously in Ref. [32]. The 2GE are straightforward generalizations of
their one-component counterparts (cf. Ref. [29]) with the additional contribution of the diag-
onal interspecies coupling U12. In order to explore solutions of the 2GE, we search first for the
stationary solutions cn1,n2

(r) = c0
n1,n2

e−iω0 t independent of the site index r. The ground state
energy is then given by

ħhω0 = −4 d J

2
∑

i=1

�

�ψ0,i

�

�

2
+
∑

n1,n2







2
∑

i=1

�

U
2

ni(ni − 1)−µni

�

+ U12 n1 n2







�

�

�c0
n1,n2

�

�

�

2
, (9)

where the “0” sub/superscript indicates quantities evaluated with respect to the ground state
Gutzwiller amplitudes c0

n1,n2
obtained by diagonalizing Eq. (8). For instance, the expression of

the mean-field total density is simply given by

n0,d =
∞
∑

n1,n2

(n1 + n2)
�

�

�c0
n1,n2

�

�

�

2
. (10)

In the remainder, it is assumed always that the ground state parameters c0
n1,n2

are real numbers.
In order to study the linear response dynamics of the system around the ground state, we

consider small perturbations around the stationary solution of the form

cn1,n2
(r) =
�

c0
n1,n2

+ c1
n1,n2
(r, t)
�

e−iω0 t , (11)

which can be expanded in terms of plane waves as

c1
n1,n2
(r, t) =
∑

k

�

uk,n1,n2
ei(k·r−ωk t) + v∗k,n1,n2

e−i(k·r−ωk t)
�

. (12)

Linearizing the 2GE with respect to the amplitudes uk,n1,n2
and vk,n1,n2

, one obtains an eigen-
value problem

ħhωk

�

uk
vk

�

= Lk

�

uk
vk

�

, L̂k =

�

Hk Kk
−Kk −Hk

�

, (13)

where the vectors uα,k

�

vα,k

�

contain the particle (hole) components uα,k,n1,n2

�

vα,k,n1,n2

�

, re-

spectively. The positive eigenvaluesωk of the pseudo-Hermitian matrix L̂k describe the multi-
branch excitation spectrum of the fluctuations and are identified with the collective modes of
the system. The elements of the matrix blocks Hk and Kk have expressions

H
n1,n2,n′1,n′2
k =







2
∑

i=1

�

U
2

ni(ni − 1)−µni

�

+ U12 n1 n2 −ħhω0



δn1,n′1
δn2,n′2

− J(0)ψ0,1

�q

n′1δn′1,n1+1 +
p

n1δn1,n′1+1

�

δn2,n′2

− J(0)ψ0,2

�q

n′2δn′2,n2+1 +
p

n2δn2,n′2+1

�

δn1,n′1

− J(k)
h

p

n1 + 1
q

n′1 + 1 c0
n1+1,n2

c0
n′1+1,n′2

+
p

n1

q

n′1 c0
n1−1,n2

c0
n′1−1,n′2

i

− J(k)
h

p

n2 + 1
q

n′2 + 1 c0
n1,n2+1 c0

n′1,n′2+1 +
p

n2

q

n′2 c0
n1,n2−1 c0

n′1,n′2−1

i

,

(14a)

K
n1,n2,n′1,n′2
k =− J(k)

h

p

n1 + 1
q

n′1 c0
n1+1,n2

c0
n′1−1,n′2

+
p

n1

q

n′1 + 1 c0
n1−1,n2

c0
n′1+1,n′2

i

− J(k)
h

p

n2 + 1
q

n′2 c0
n1,n2+1 c0

n′1,n′2−1 +
p

n2

q

n′2 + 1 c0
n1,n2−1 c0

n′1,n′2+1

i

,
(14b)
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with J(k) = 2 d J − ε(k) and where

ε(k) = 4 J

d
∑

j=1

sin2

�

k j a

2

�

, (15)

is the free-particle dispersion law on a d-dimensional lattice. It follows that the dependence
on k of the excitations is solely determined by the variable

x =





1
d

d
∑

j=1

sin2

�

k j a

2

�





1/2

, (16)

which varies from 0 to 1 and scales as x ≈ |k| a/
�

2
p

d
�

at small momenta.
For later convenience, we conclude this subsection by introducing some useful defini-

tions. Making use of Eq. (12), the linear response dynamics of the one-body order parameter
ψi(r, t) =ψ0,i +ψ1

i (r, t) can be expanded in plane waves as

ψ1
i (r, t) =
∑

k

�

Ui,k ei(k·r−ωk t) + V ∗i,k e−i(k·r−ωk t)
�

, (17)

where we have introduced the particle-hole amplitudes

U1,k =
∑

n1,n2

p

n1

�

c0
n1−1,n2

uk,n1,n2
+ c0

n1,n2
vk,n1−1,n2

�

, (18a)

V1,k =
∑

n1,n2

p

n1

�

c0
n1,n2

uk,n1−1,n2
+ c0

n1−1,n2
vk,n1,n2

�

, (18b)

U2,k =
∑

n1,n2

p
n2

�

c0
n1,n2−1 uk,n1,n2

+ c0
n1,n2

vk,n1,n2−1

�

, (18c)

V2,k =
∑

n1,n2

p
n2

�

c0
n1,n2

uk,n1,n2−1 + c0
n1,n2−1 vk,n1,n2

�

. (18d)

It is possible also to study the linear response dynamics of the pair and antipair order param-
eters by defining analogous pair/antipair amplitudes UP/C,k and VP/C,k, which are discussed
further in App. A.2. Finally, the linear response of the local density for each species is given by

ni(r, t) = n0,i +
∑

k

�

Ni,k ei(k·r−ωk t) + c.c.
�

, (19)

where the density fluctuation amplitude reads

Ni,k =
∑

n1,n2

ni c0
n1,n2

�

uk,n1,n2
+ vk,n1,n2

�

. (20)

In the following, we use the above formal results to analyze in the detail the specific prop-
erties of the ground state and collective excitations of the MI and superfluid (SF, CFSF and
PSF) phases of the BH model for both a repulsive (Sec. 2.2.1) and an attractive (Sec. 2.2.2)
coupling between the two Bose components.
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2.2 Ground state and excitations

In this subsection, we explore the phase diagram of the system for repulsive (U12 > 0) and at-
tractive (U12 < 0) interspecies interactions. Moreover, we perform a detailed characterization
of the excitations of the system across the various quantum phase transitions of the BH model.
Looking ahead, the analysis of this subsection will facilitate an in-depth understanding of the
quantum correlations in terms of the spectral structure of the collective modes by means of
the QGW approach, which is the subject of the remainder of this work.

We preface our discussion by noting that in contrast to the single-species BH model, in
the present context one also finds CFSF and PSF phases intruding between the MI regions,
signalled by non-zero values of the pairing order parameters ψ0,C and ψ0,P, respectively. Ad-
ditionally, these quantities may be non-zero in the vicinity of the various phase transitions
alongside a finite one-body condensate ψ0,i , which marks the entrance into the SF region.
Ultimately, the pair/antipair order parameters vanish in the limit 2 d J/U ≫ 1 as expected.

2.2.1 Repulsive interaction (U12 > 0)

(Mott Insulator) – In Figs. 1(a)-(b), we show the ground state phase diagram for two values
of U12 > 0. In general, for strong enough U we find MI regions [light blue areas] at even total
filling whose ground state is |n0,d/2, n0,d/2〉 with energy

ħhω0 = U
n0,d

2

�n0,d

2
− 1
�

−µn0,d + U12

n2
0,d

4
. (21)

Within the MI lobes, the excitation spectrum can be calculated analytically from Eq. (13) as

ħhω±,k =
1
2

¦q

J2(k)− 2 J(k)U(n0,d + 1) + U2 ±
�

J(k)− U(n0,d − 1)− 2 U12 + 2µ
�

©

, (22)

which is a modification of the one-component result to include the mean-field interaction
energy between different species. This spectrum describes four dispersive branches in total, a
pair of degenerate particle (‘+’) branches and a pair of degenerate hole (‘−’) branches.2

The second-order phase transition boundary between the MI and SF phases is determined
by the onset of a finite one-body order parameterψ0,i and the disappearance of the gap in the
excitation spectrum (ωk=0 = 0). From Eq. (22), we find that this occurs for

2 d
�

J
U

�

c
=
(n0,d/2−µ/U + U12/U)(µ/U − U12/U − n0, d/2+ 1)

1+µ/U − U12/U
, (24)

which can be linked to the MI boundary of the one-component case via the mapping
µ→ µ− U12. The maximal value of 2 d (J/U)c determines the locations of the O(2) tip tran-
sitions at

2 d
�

J
U

�max

c
=

�√

√n0,d

2
+ 1−

√

√n0,d

2

�2

. (25)

2On top of the particle-hole excitations, Eq. (13) presents an infinity of non-zero, uncoupled diagonal elements
which describe non-dispersive bands with energy

ħhωn1 ,n2
=

2
∑

i=1

�

U
2

ni(ni − 1)−µni

�

+ U12 n1 n2 −ω0 , (23)

where the occupation indices n1 and n2 must be chosen not to fall into the 4× 4 block that yields the dispersive
bands (22). Therefore, Eq. (23) applies to non-negative integers n1 and n2 such that neither (n1, n2) = ( j, j ± 1)
nor ( j ± 1, j) are satisfied, with j ∈ N. We note also that, as a consequence of the Z2 symmetry, these bands are
doubly degenerate ωn1 ,n2

=ωn2 ,n1
for n1 ̸= n2 and singly degenerate for n1 = n2.
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Figure 1: Ground state phase diagram for repulsive interspecies interactions (a)
U12/U = 0.5 and (b) U12/U = 0.9. First and second-order transition lines are in-
dicated by dashed and solid lines respectively, separating the MI (CFSF) lobes, iden-
tified by light blue (yellow) areas, from the SF region. The O(2) tip transitions are
indicated by red dots, while the dot-shaped illustrations depict the particle-hole an-
tipairs coupling the two components in the CFSF phase. (c) Behavior of the order
parameters at the crossing of the second-order MI-to-SF transition for fixed n0,d = 2
and U12/U = 0.5. (d) Behavior of the order parameters at the crossing of the first-
order MI-to-SF transition for fixed n0,d = 2 and U12/U = 0.9. (e) Behavior of the
order parameters at the crossing of the second-order CFSF-to-SF transition for fixed
n0,d = 1 and U12/U = 0.9. The solid red lines in (a) and (b) correspond to the µ(U)
lines along which the data in (c), (d), and (e) are evaluated prior to the superfluid
transition.

Again, we note that the chemical potential of the tip critical points is similarly shifted from the
one-component value and is given by

�µ

U

�

c
=

√

√n0,d

2

�n0,d

2
+ 1
�

+
U12

U
− 1 . (26)

In Fig. 2(a), we show how the band structure changes as the second-order MI-to-SF tran-
sition is traversed through the edge of the lobe (namely, away from the tip), specifically for
n0,d = 2 at 2 d (J/U)c ≈ 0.167 for U12/U = 0.5 and µ/U = 1. In general, in the MI phase,
if the chemical potential is set above (below) its value at the tip, the first two bands are a
pair of degenerate gapped particle (hole) bands of mixed spin or density character, whereas
the next two bands correspond to degenerate gapped hole (particle) excitations. The doubly
degenerate non-dispersive band ω0,2 is also visible as a dotted horizontal line. At the tran-
sition point, the gap of the lowest pair of degenerate particle (hole) bands vanish, while the
degenerate hole (particle) bands remain gapped. Additionally, the gapless modes are purely
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Figure 2: Excitation spectra across the MI-to-SF second-order (a) edge transition at
µ/U = 1 and (b) O(2) transition at (µ/U)c ≈ 0.914, as well as (c) in the superfluid
phase for µ/U = (µ/U)c , choosing U12/U = 0.5 at fixed n0,d = 2 in d = 2. For the
edge transition in panel (a), the chosen hopping energies are 2 d J/U = 0.12 (red
lines) and 2 d (J/U)c ≈ 0.167 (blue lines); for the O(2) transition in panel (b), the
hopping energies 2 d J/U = 0.12 (red lines) and 2 d (J/U)max

c ≈ 0.172 (blue lines)
are considered. The hopping energy in the SF phase in panel (c) is 2 d J/U = 0.18.
The parentheses in panels (a)-(b) refer to the degeneracy of the hybridized particle
and hole bands, while the spin and density Goldstone modes are indicated explicitly.
The blue dotted horizontal lines correspond to the doubly degenerate non-dispersive
band ω0,2.

quadratic at low momenta, signalling the characteristic vanishing of the speed of sound in
common with the one-component case [29]. In Fig. 2(b), we perform a similar analysis of
the spectral features of the second-order MI-to-SF transition when traversed through the tip
critical point at 2 d (J/U)max

c ≈ 0.172 for U12/U = 0.5 and (µ/U)c ≈ 0.914. Most importantly,
we observe that at the tip transition point the gaps of the doubly degenerate particle and hole
bands vanish simultaneously. Also, their dispersion becomes degenerate and perfectly linear
at low momenta, which is characteristic of a finite sound speed at the O(2) transition [29].

Once the SF phase takes over, both at the edge and at the tip transition, the excitation bands
which become gapless hybridize into spin and density modes (see Fig. 2(c)). These excitations
correspond to the Goldstone modes that result from the breaking of the two U(1) symmetries
of the model, one for the density and the other for the spin channel. Their dispersion relation
approaches the Bogoliubov bands [29]

ħhωd/s,k =
Ç

ε(k)
�

ε(k) + n0,d (U ± U12)
�

, (27)

in the weakly-interacting limit 2 d J/U ≫ 1. Close to the transition, the first two gapped
branches, which also display individual density and spin character, are referred to as the Higgs
modes of the system, in analogy to the single-component BH model [47–50]. The ħhω0,2 band
becomes dispersive and hybridizes into spin and density excitations as well.

The transition between MI and SF phase can also be of first-order, as discussed in Refs. [6,
32, 46, 51]. In this case, the one-body order parameters ψ0,i exhibit a discontinuity across
the critical boundary, as shown in Fig. 1(d). The behavior of the discontinuity at the first-
order transition was studied in the mean-field Gutzwiller analysis of Ref. [32], where it was
found that: (i) the jump of the order parameter increases with U12 and then rapidly goes to
zero as the phase separation boundary U12/U ∼ 1 is approached; (ii) the hopping window
corresponding to the first-order transition widens with increasing U12 starting from the tip
and reaching J = 0 when approaching the phase separation condition. Across the first-order
critical point, the structure of the excitation spectrum changes discontinuously between the
different spectral features explored before, such that the modes in the MI and SF phases cannot

10

https://scipost.org
https://scipost.org/SciPostPhys.12.3.111


SciPost Phys. 12, 111 (2022)

be smoothly connected.

(Counterflow Superfluid) – In Figs. 1(a)-(b), the phase diagram displays also CFSF phases
[yellow areas] at odd total filling, characterized by a finite antipair order parameter ψ0,C and
whose size increases with larger U12. Within the CFSF lobes, one finds that the Fock states
| (n0,d+1)/2, (n0,d−1)/2 〉 and | (n0,d−1)/2, (n0,d+1)/2 〉 are doubly degenerate with ground
state energy

ħhω0 = U (n0,d − 1)2 + U12 n0,d (n0,d − 1) +µ (1− 2 n0,d) . (28)

Comparing this energy with Eq. (21), we find the boundary between neighboring MI and CFSF
lobes at J = 0, which in the case of the n0,d = 2 MI lobe and n0,d = 1 CFSF lobe occurs at
µ = U12. In order to obtain the correct ground state, we symmetrize the antipair state as
[ | (n0,d + 1)/2, (n0,d − 1)/2 〉+ | (n0,d − 1)/2, (n0,d + 1)/2 〉 ]/

p
2 as predicted in Refs. [6, 7, 9,

10,47,52].
In the CFSF phase, single-particle and hole excitations involve the subset of states

{|(n0,d+1)/2±1, (n0,d−1)/2〉; |(n0,d+1)/2, (n0,d−1)/2±1〉}, which amount to three particle-
like excitations and one (three) hole-excitations for the CFSF phase at n0,d = 1 (n0,d ≥ 3).
From those excitations, one can construct three (four) modes belonging to the density chan-
nel, plus one (two) belonging to the spin channel. The general behaviour is such that a pair of
particle and hole excitations in the density channel lower their energy while moving towards
the boundary of the CFSF lobe, with the particle (hole) excitation closing the gap if the transi-
tion in crossed above (below) the tip chemical potential. Exactly at the tip, the lowest particle
and hole excitations in the density channel close the gap simultaneously. Remarkably, the dis-
tinction between the edge and tip critical points in the density channel closely resembles the
properties of the MI-to-SF transition.

For the CFSF phase at n0,d = 1, the excitation spectrum can be calculated analytically from
Eq. (13). In that case, the spin channel hosts only one particle branch, decoupled from the
rest and given by

ħhωk = U −µ− J(k) . (29)

This corresponds to a free-particle dispersion, shifted by the mean-field interaction energy
U − µ. In the density sector, we extract two particle branches and one hole branch, whose
excitation energies are the solutions of the equation

J(k)
�

U U12 − (ħhωk ±µ)2
�

∓ (ħhωk ±µ)(U ∓ħhωk −µ)(U12 ∓ħhωk −µ) = 0 . (30)

Similarly to the spectrum of the MI phase, all the other excitations consist in
an infinite sequence of non-dispersive bands, the first two of which have energies
ħhω0,1 = ħhω1,0 = −µ − ħhω0 = 0. In particular, these branches correspond to cost-free ex-
citations and mirror the degeneracy of antipair states characterizing the mean-field ground
state of the CFSF phase3.

The second-order phase transition boundary between the CFSF and SF phases is deter-
mined from the closure of the smallest gap in the CFSF excitation spectrum. From Eq. (30),
we find that for n0,d = 1 the gap closing occurs at

2 d
�

J
U

�

c
=
µ

U
(1−µ/U) (µ/U − U12/U)

(µ/U)2 − U12/U
, (31)

3We note that the flat bands ω0,1 = ω1,0 describe (trivial) excitations within the the antipair sector
{u0,1, u1,0, v0,1, v1,0} and cannot describe the excitation and tunnelling of antipairs out of the ground state. De-
scribing pairing collective modes within our model leads to violated completeness relations (see App. A.3). In
Ref. [32], these bands were found to acquire a sound-like profile when higher-order hopping processes are in-
cluded perturbatively in CFSF phase. These processes are however neglected in the 2GE (8), such that we find
higher gapped excitation modes, absent in that work, whose low-energy behavior is strongly tied to the appearance
of the SF phase and determines the one-body correlations in the CSFS phase (see Sec. 3).
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Figure 3: Excitation spectra across the CFSF-to-SF second-order for U12/U = 0.9 at
fixed n0,d = 1 in d = 2 for: (a) the edge transition at µ/U = 0.5; (b) the O(2)
transition at (µ/U)c ≈ 0.391; (c) the superfluid phase for µ/U = (µ/U)c . For the
edge transition in panel (a), the chosen hopping energies are 2 d J/U = 0.1 (red
lines) and 2 d (J/U)c ≈ 0.154 (blue lines); for the O(2) transition in panel (b), the
hopping energies are 2 d J/U = 0.14 (red lines) and 2 d (J/U)max

c ≈ 0.162 (blue
lines). The hopping energy in the SF phase in panel (c) is 2 d J/U = 0.172. The
particle (hole) and spin (density) characters of gapped excitations, as well as the
physical nature of the Goldstone modes, are indicated explicitly by the labels “p”
(“h”) and “s” (“d”), respectively.

whose maximal value gives the location of the tip of the CFSF lobe. As a reference, for
U12/U = 0.9, the location of the tip of the n0,d = 1 CFSF lobe shown in Fig. 1(b) is located at
{(µ/U)c ≈ 0.391, 2 d (J/U)max

c ≈ 0.164}.
In Fig. 3(a), we show how the excitation spectrum appears as the second-order CFSF-to-SF

transition for n0,d = 1 and U12/U = 0.9 is crossed through the edge point at 2 d (J/U)c ≈ 0.154
at µ/U = 0.5. Above (below) the tip chemical potential, the gap is closed by the lowest
of particle (hole) band in the density channel, while the other bands remain gapped. More
specifically, the particle band in the spin channel corresponding to Eq. (29), which in this case
at x = 0 is the third in ascending order, never participates in the gap closure. In Fig. 3(b), we
consider the evolution of the band structure across the tip transition at 2 d (J/U)max

c ≈ 0.162
for U12/U = 0.9 and (µ/U)c ≈ 0.391, while holding n0,d = 1 fixed. Indeed, we observe that
at the transition point the gaps of the two lowest-energy bands in the density channel vanish,
while the remaining modes retain a finite gap. In the SF region, illustrated in Fig. 3(c), the
two lowest bands in the density channel participate in the creation of the density Goldstone
and the density Higgs excitation, respectively. The spin Goldstone mode emerges from the
non-dispersive antipair band as described before.

2.2.2 Attractive interaction (U12 < 0)

(Mott Insulator) – In Figs. 4(a)-(b), we show the ground state phase diagram for two different
values of U12 < 0. For attractive interactions, the MI lobes present the same ground state and
spectral properties as their repulsive counterparts, with the spin/density character of the exci-
tation modes being reversed. Furthermore, the MI-to-SF criticality is found again to be of either
first or second order. However, at odds with the repulsive case, the first-order boundaries ap-
pear initially at small J/U rather than close to the tip, as shown in Fig. 4(b) for U12/U = −0.4,
eventually spanning the entire lobe boundary, as shown in Fig. 4(b) for U12/U = −0.7. In ad-
dition, the boundary between the vacuum lobe [green area] and the superfluid phase becomes
also a first-order transition line. Along this boundary, the density Goldstone mode acquires a
purely quadratic dispersion ωd,k∝ k2 at small momenta, as shown in Fig. 4(d), which indi-
cates the vanishing of the sound velocity of density excitations (cd → 0), while the spin sound
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Figure 4: Ground state phase diagram for attractive interspecies interactions (a)
U12/U = −0.4 and (b) U12/U = −0.7, with the order of the transition lines and O(2)
critical points within the MI lobes indicated as in Fig. 1. The PSF phase is identified
by the purple horizontal lines, with total filling n0,d evaluated in the η→ 0+ limit.
The dot-shaped illustrations depict the particle-particle pairs that develop between
the two components of the gas in the PSF phase. (c) Behavior of the order parameters
along the PSF-to-SF transition line at the border between the vacuum (green-shaded
area) and the n0,d = 2 MI lobes for U12/U = −0.7 and fixed n0,d ≈ 1.47. (d)-(e)
Excitation spectrum and compressibility near the first-order vacuum to superfluid
transition for µ/U ≈ −1.00956, 2 d J/U = 1, and U12/U = −0.6 with critical filling
n0,d ≈ 0.239. The log-log scale of the vertical axis of panel (d) reveals the quadratic
power law of the density Goldstone mode at all momenta.

velocity remains finite (cs > 0). Accordingly, the (mean-field) compressibility ∂ n0,d/∂ µ di-
verges due to the discontinuity in the filling, as shown in Fig. 4(e). These behaviors indicate
that the system collapses along the first-order vacuum-to-SF transition boundary. Along this
line, the critical filling decreases for increasing 2 d J/U , vanishing eventually in the deep SF
regime (not shown) where the transition becomes again of second order. As U12/U becomes
more attractive, the collapse transition line extends towards larger values of 2 d J/U .

(Pair Superfluid) – The MI lobes shown in Figs. 4(a)-(b) are separated by sharp transition
lines [purple horizontal lines], extending towards increasingly large values of 2 d J/U as U12
becomes more and more attractive. On these lines at the boundary of the n0,d = 2 j and
n0,d = 2 ( j + 1)MI lobes, one finds that the states with the lowest eigenenergies | j+1, j+1〉 and
| j, j〉 are degenerate, thus corresponding to a PSF phase with a finite pair coherence ψ0,P ̸= 0.
When imposed in the 2GE, such degeneracy condition pinpoints the location of the PSF lines
on a discrete set of critical chemical potentials (µ/U)c through the equation

−U12 − 2 j (U + U12) + 2µc = 0 , (32)

valid for any non-negative integer j. Thus, in general the ground state is given by the super-
position α | j+1, j+1〉+β | j, j〉, where the coefficients α and β are restricted to lie on the unit
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Figure 5: Variation of (a) n0,d and ψ0,P and (b) α and β as functions of µ/U
in the vicinity of the PSF line at (µ/U)c = −0.35 for fixed 2 d J/U = 0.12 and
U12/U = −0.7. Solid (dashed) lines correspond to the symmetry-breaking offset
η= 10−3(2× 10−3).

circle |α|2+|β |2 = 1. However, these coefficients are undetermined within the usual Gutzwiller
approximation, as the individual states are already Z2-symmetric.

In the QMC results of Ref. [25], α and β were found to vary with µ at fixed U12 and J . The
determination of α and β in the mean-field Gutzwiller theory requires the introduction of an
ad hoc perturbative order parameter ψ0,i = η > 0 along the PSF line mimicking the tunneling
of residual background fluctuations, such that ground states with broken U(1) symmetry can
be accessed. As we show in Fig. 5(a), this turns out to uniquely fix α [orange lines] and β [light
blue lines] along the PSF lines described by Eq. (32) regardless of the value of η, provided that
η remains sufficiently small. In particular, for the PSF line separating the vacuum region from
the n0,d = 2 MI lobe, we obtain α ≈ 0.858 and β ≈ 0.513, from which we derive n0,d ≈ 1.47.
Similarly, for the PSF line separating the n0,d = 2 and n0,d = 4 MI lobes, we find α ≈ 0.794
and β ≈ 0.608, which gives n0,d ≈ 3.260 in the PSF phase. In this way, we reliably obtain a
PSF ground state with a well-defined value of the pair order parameter ψ0,P ̸= 0.

The symmetry-breaking offset η ̸= 0 makes the PSF phase line to develop a finite width,
as shown in Fig. 5(b), where the variation of n0,d and ψ0,P is studied for fixed µ/U . We find
that n0,d [light blue lines] changes continuously between the filling of the two neighboring
MI lobes, which is qualitatively consistent with the QMC results of Ref. [25], with the major
difference being the size of the transition width in the chemical potential µ/U . Secondly, we
also see that ψ0,P [orange lines] behaves smoothly, vanishing identically as one enters the MI
lobes and reaching a maximum in between. This reveals that the PSF-to-MI transitions are
of second-order within the present approach. In general, the maximum of ψ0,P is found to
occur for µ/U below the exact PSF line, becoming increasingly shifted for larger η. Also, the
maximum is located where α = β = 1/

p
2 [black solid line], which can be seen easily by

matching the results of the two panels of Fig. 5. However, we observe that not only α and
β , but also n0,d and ψ0,P are invariant with respect to the choice of the value of η if taken
precisely along the PSF line (µ − µc = 0). Moreover, as a function of 2 d J/U , the width of
the PSF region shrinks with decreasing 2 d J/U , collapsing onto the PSF line in the strongly-
interacting limit. Therefore, an infinitesimal symmetry-breaking perturbation η→ 0+ can be
safely applied for practical purposes (cf. Ref. [53]). In the remainder of this work, this limit
is assumed whenever the PSF phase is discussed, in virtue of its essential insensitivity to the
choice of η.

Along the PSF line, Eq. (13) can be treated analytically to obtain the excitation spectrum.
For the n0,d ≈ 1.47 PSF phase separating the vacuum from the n0,d = 2 MI lobe, one obtains
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Figure 6: Excitation spectra (a) along the PSF-to-SF second-order transition with
n0,d ≈ 1.47 and (µ/U)c = −0.35 and (b) in the SF phase for µ/U ≈ −0.35 and
U12/U = −0.7 in d = 2. In panel (a), the hopping energies are 2 d J/U = 0.08
(red lines) and 2 d (J/U)c ≈ 0.131 (blue lines). In the superfluid phase, we consider
2 d J/U = 0.14. The parentheses refer to the degeneracy of the hybridized quasipar-
ticle bands.

the implicit equation
¦

J2(k)
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�
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�

µ2 +
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1− 2β2
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U2 + 2
�

4β4 − 2β2 − 1
�

µU −ħh2ω2
k

�

+2 J(k)
�

µU2 + 2β2µ2 U − 2
�

β2 − 1
�

Uω2
k +
�

2β2 − 1
�

µ
�

µ2 −ħh2ω2
k

��

+
�

µ2 −ħh2ω2
k

� �

(µ+ U)2 −ħh2ω2
k

�	2
= 0 , (33)

which describes two distinct gapped bands, both doubly degenerate and with a mixed quasi-
particle characteristic. In analogy with the CFSF phase, all the remaining excitations have a
flat band dispersion; in particular, the zero-energy modes ħhω0,0 = ħhω1,1 = 0 describe cost-
free density fluctuations due to the formation of local particle-hole pairs in the PSF ground
state predicted by Gutzwiller mean-field theory.

Once again, the second-order phase transition from the PSF to the SF phases is identified
by the closure of the gap in the excitation spectrum. From Eq. (33), we find that along the
n0,d ≈ 1.47 PSF line, the critical hopping strength is given by

2 d
�

J
U

�

c
=
µ

U
1+µ/U

µ/U (2− 2β2)− (1+µ/U) (2αβ + 1)
. (34)

In Fig. 6(a), we show how the excitation spectrum of the PSF phase of density n0,d ≈ 1.47
evolves as the second-order transition point 2 d (J/U)c ≈ 0.131 is reached for U12/U = −0.7
along the critical line at (µ/U)c = −0.35. At the PSF-to-SF transition point, only the energy
gap of the lowest quasiparticle branches vanishes, such that the band structure appears remi-
niscent of the MI-to-SF and CFSF-to-SF second-order tip transitions in Fig. 2(b) and Fig. 3(b)
respectively but with the two gapless modes being degenerate. More distinctly, the O(2) na-
ture of the PSF-to-SF transition is suggested in Fig. 6(b), where we observe that the gapless
quasiparticle band splits into the Goldstone and Higgs modes active in the spin channel, while
the density Goldstone mode emerges from the non-dispersive band ω0,0 =ω1,1.

It is important to note that the flatness of the lowest spin bandsω0,1 andω1,0 for CFSF and
density bandsω0,0 andω1,1 for PSF is an artifact resulting from the mean-field approximation.
A more careful treatment of non-local fluctuations would alter these modes to produce linear
Goldstone dispersions as a result of the broken U(1) spin or density symmetries, respectively.

15

https://scipost.org
https://scipost.org/SciPostPhys.12.3.111


SciPost Phys. 12, 111 (2022)

2.3 Quantum Gutzwiller theory for mixtures

In this subsection, we briefly review the quantum Gutzwiller (QGW) theory developed in
Ref. [36] for the one-component BH model and extend it to the two-component case. The
quantization of the Gutzwiller theory provides us with a simple tool for going beyond the
mean-field approximation, which proves to be of key importance in determining the structure
of non-trivial correlation functions and the superfluid components of the system.

Following the derivation outlined in Ref. [36], the essential idea behind the QGW method
is to include quantum fluctuations on top of the Gutzwiller state via a canonical quantization
[54, 55] of the coordinates of the Lagrangian (6). Specifically, we promote the Gutzwiller
variables and their conjugate momenta to operators as cn1,n2

(r)→ ĉn1,n2
(r) and impose equal-

time commutation relations between them, namely
�

ĉn1,n2
(r1), ĉ†

m1,m2
(r2)
�

= δr1,r2
δn1,n2

δm1,m2
. (35)

We stress that, in the same way as the Gutzwiller ansatz (1) assigns a weight to each local con-
figuration, the corresponding Gutzwiller operators cannot be decomposed into single-species
operators without overlooking a relevant fraction of the interspecies correlations: this sharply
contrasts with Bogoliubov’s theory [34,56], where the quantum fields of different species are
always treated separately. It follows that the two-component QGW approach can take into
accurate account local pair correlations, while quantization allows for an approximate view
on the non-local quantum correlations missed by mean-field theory.

In analogy with the number-conserving approaches in dilute ultracold atomic gases [57,
58], the next step consists in expanding the operators ĉn1,n2

around their ground stateC-values
c0

n1,n2
as

ĉn1,n2
(r) = Â(r) c0

n1,n2
+δĉn1,n2

(r) . (36)

The normalization operator Â(r) is a functional of the fluctuation fields δĉn1,n2
(r) and is

defined in order to ensure that the physical constraint
∑

n1,n2
ĉ†

n1,n2
(r) ĉn1,n2

(r) = 1̂ is ful-
filled exactly. By restricting ourselves to local fluctuations orthogonal to the ground state
∑

n1,n2
δĉ†

n1,n2
(r) c0

n1,n2
= 0 as usual, one has

Â(r) =

�

1̂−
∑

n1,n2

δĉ†
n1,n2
(r)δĉn1,n2

(r)

�1/2

. (37)

Physically, Â(r) in Eqs. (36)-(37) serves to deplete the weight of the ground state parame-
ters c0

n in response to the onset of quantum fluctuations. This role is especially important in
determining quantum correlations in the strongly-interacting regime.

The Fourier transform of the Gutzwiller operators is given by

δĉn1,n2
(r)≡

1
p

I

∑

k

eik·rδĈn1,n2
(k) . (38)

Inserting Eq. (38) in the quantized Gutzwiller Hamiltonian

ĤQGW =
∑

r







−J

2
∑

i=1

d
∑

j=1

�

ψ̂†
i (r) ψ̂i

�

r+ ej

�

+ h.c.
�

+
∑

n1,n2

Hn1,n2
ĉ†

n1,n2
(r) ĉn1,n2

(r)







, (39)

and keeping only terms up to the quadratic order in the fluctuations, we obtain

Ĥ(2)QGW = E0 +
1
2

∑

k

[δĈ
†
(k),−δĈ(−k)] L̂k

�

δĈ(k)
δĈ

†
(−k)

�

, (40)
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where E0 = ħhω0 + z J
∑2

i=1

�

�ψ0,i

�

�

2
is the mean-field ground state energy, the vector δĈ(k)

collects the Fock components δĈn1,n2
(k) and L̂k coincides with the pseudo-Hermitian matrix

introduced in Eq. (13). The quadratic form (40) can be easily diagonalized by a suitable
Bogoliubov rotation of the Gutzwiller operators in terms of the many-body excitation modes
of the system,

δĈn1,n2
(k) =
∑

α

uα,k,n1,n2
b̂α,k +
∑

α

v∗α,−k,n1,n2
b̂†
α,−k . (41)

This allows a recasting of the Hamiltonian as

Ĥ(2)QGW =
∑

α

∑

k

ħhωα,k b̂†
α,k b̂α,k , (42)

where each mode b̂α,k corresponds to a different collective excitation with frequency ωα,k,
labeled by its branch index α and momentum k. Bosonic commutation relations between the
annihilation and creation operators b̂α,k and b̂†

α,k,

�

b̂α,k, b̂†
β ,p

�

= δk,pδα,β , (43)

are enforced by choosing the usual Bogoliubov normalization condition

u∗α,k · uβ ,k − v∗α,−k · vβ ,−k = δα,β . (44)

The effective, quadratic description of the two-component BH model in terms of its quasi-
particle excitations provides a simple and versatile tool for the computation of any expectation
value. Drawing on the quantization procedure described above and the Bogoliubov rotation
(41), the evaluation of a generic observable

¬

Ô
�

âi,r, â†
i,r

�¶

amounts to the application of a
straightforward calculation protocol first outlined in Ref. [36] and included for completeness
in App. A.1. Briefly, in a similar fashion as the QGW quantization of the BH Hamiltonian
(39), each observable is projected along its Gutzwiller representation Ô

�

ĉ, ĉ†
�

and expanded
in terms of the quantum fluctuations. Therefore, expectation values are calculated via the sim-
ple application of Wick’s theorem to the quantized excitations b̂α,k with respect to the ground
state of the system.

In the following section, the QGW quantization protocol is applied to calculate a range of
experimentally relevant one-body and two-body observables in the two-component BH model.
These observables are calculated always assuming a zero-temperature vacuum of the quasi-
particle modes of the theory |Ω〉, formally defined by b̂α,k|Ω〉 = 0 for each (α,k). We clarify
that the quantization procedure does not lead to a substantial change in the ground state and
spectral properties discussed in Secs. 2.2.1-2.2.2, but rather yields a transparent formalism for
accessing quantum fluctuations in a systematic manner. In order to make our discussion of
the QGW result consistent, from now on we calculate the lattice filling ni by always including
the second-order quantum corrections as detailed in App. A. We refer the interested reader to
this appendix for further details on the application of the quantization protocol to a specific
observable.

3 Correlation Functions

In this section, we apply the QGW approach to calculate several relevant correlation func-
tions in two dimensions: the density-density and spin-spin structure factors (Sec. 3.1), the
current-current correlation functions and associated superfluid densities (Sec. 3.2), the coher-
ence function (Sec. 3.3), and the local density-density and spin-spin fluctuations (Sec. 3.4).

17

https://scipost.org
https://scipost.org/SciPostPhys.12.3.111


SciPost Phys. 12, 111 (2022)

With the QGW we develop a formalism that can be straightforwardly applied to study these
quantities across the entire phase diagram of the two-component BH model. In the follow-
ing discussion, we provide directly the semi-analytical expressions as predicted by the QGW
evaluation protocol, whose derivation is explicitly carried out in Apps. A and B.

3.1 Density and spin response

As a first application of the QGW approach, we investigate the role of quantum fluctuations
in the linear response of the two-component BH system to density/spin probes. The density
and spin response of an ultracold system reflects the underlying correlations and collective
modes of the system, and can be probed experimentally using a variety of methods, e.g. Bragg
scattering (cf. Ref. [34]). In the present case, the spin and density susceptibilities represent
important tools in differentiating the CFSF and PSF transitions, where density and spin degrees
of freedom are expected to separate. In general terms, we consider the effect of an external
field applied at a fixed frequency ω. The local operator associated with the perturbation is
denoted by Ĝr, while we denote by F̂r the local operator whose linear response dynamics is
under study.

Dynamic structure factors In a two-component system, the most interesting response func-
tions are the density and the spin or magnetisation response functions, corresponding to
Ĝr = F̂r = n̂1,r + n̂2,r and Ĝr = F̂r = n̂1,r − n̂2,r, respectively. Such response functions are
related to the density and spin structure factors of the system. Let us start from the species-
resolved density response function, i.e. Ĝr = F̂r = n̂i,r, which, up to second-order in the
quantum fluctuations, reads (see App. B.2 for the derivation details)

χn̂i
(q,ω) =

2
ħh

∑

α

N2
i,α,qωα,q

(ω+ i 0+)2 −ω2
α,q

, (45)

at zero temperature. The response functions for the total density and spin channels are ob-
tained by simple extensions of Eq. (45), namely

χn̂d
(q,ω) =

2
ħh

∑

α

�

N1,α,q + N2,α,q

�2
ωα,q

(ω+ i 0+)2 −ω2
α,q

, (46)

and

χn̂s
(q,ω) =

2
ħh

∑

α

�

N1,α,q − N2,α,q

�2
ωα,q

(ω+ i 0+)2 −ω2
α,q

, (47)

respectively. At zero temperature, the imaginary part of the response functions is proportional
to the corresponding dynamic structure factors via the relation SF̂ (q,ω) = −ℑ[χF̂ (q,ω)/π].
Useful information on and from the dynamical structure factors is provided by their energy
momenta, a.k.a. sum rules

mp
F̂
(q) =

∫ +∞

0

dωωp SF̂ (q,ω) . (48)

In particular, m0
F̂
(q) = SF̂ (q) is the so-called static structure factor. Within our approximation

in Eqs. (45)-(47), the dynamic structure factors are simply given by a sum of Dirac delta
functions at the values of the quasiparticle energies ωα,q,

Sn̂d
(q,ω) =

1
ħh

∑

α

�

N1,α,q + N2,α,q

�2 �
δ
�

ω−ωα,q

�

−δ
�

ω+ωα,q

��

, (49)
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Figure 7: Normalized dynamical structure factors S̃F̂ (k,ω) = SF̂ (k,ω)/SF̂ (k) for (a)-
(a′) the one-component density channel F̂r = n̂1,r, (b)-(b′) the total density channel
F̂r = n̂1,r + n̂2,r and (c)-(c′) the spin channel F̂r = n̂1,r − n̂2,r in the SF phase in the
vicinity of CFSF (a)-(c) and PSF (a′)-(c′) transitions for d = 2. For panels (a)-(c),
the parameters are U12/U = 0.9, µ/U = 0.391, 2 d J/U = 0.172 and nd = 1, see
Fig. 3(c). For (a′)-(c′) panels, the parameters are U12/U = −0.7, µ/U ≈ −0.35,
2 d J/U = 0.14 and nd ≈ 1.47, see Fig. 6(c).

Sn̂s
(q,ω) =

1
ħh

∑

α

�

N1,α,q − N2,α,q

�2 �
δ
�

ω−ωα,q

�

−δ
�

ω+ωα,q

��

, (50)

and therefore the sum rules are easily determined.
In Ref. [32], the normalized dynamical structure factor S̃F̂ (q,ω) = SF̂ (q,ω)/SF̂ (q) (cf.

Ref. [34]) has been analyzed in the SF regime for both repulsive and attractive interspecies
interactions, for which it was found that: (i) the low-momentum part of the gapped modes
does not respond significantly to any of the density-type probes, in agreement with the single-
component case [29, 47]; (ii) the density and spin Goldstone modes are strongly excited by
the total density and spin probes, respectively; (iii) the single-species density fluctuations are
strongest for the lowest gapless mode. In [32] the density response in the PSF and CFSF
regimes were also considered, although for an effective Hamiltonian including ad hoc pertur-
bative hopping processes in the strongly-interacting limit of the model.

In Fig. 7, we show our results for the normalized dynamical structure factors in the im-
mediate vicinity of the CFSF (a)-(c) and PSF (a′)-(c′) transitions, confirming the qualitative
picture of Ref. [32] and displaying detailed signatures of the pairing phase transitions. These
calculations have been performed for a total filling nd = 1 which includes the second-order
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Figure 8: Upper panels: dependence of the compressibility (blue diamonds) and
susceptibility (red diamonds) in the vicinity of the O(2) (a) CFSF and (b) PSF transi-
tions. Lower panels: dependence of the density (blue circles) and spin (red circles)
sound velocities close to the same transitions. The data in (a) and (a′) correspond
to fixed nd = 1 and U12/U = 0.9, while the data in (b) and (b′) are derived for fixed
nd ≈ 1.47 and U12/U = −0.7. The calculations are always performed for d = 2.

quantum corrections to the mean-field filling n0,d as detailed in App. A.3. We carry this nota-
tion throughout the remainder of the work. Starting from panels (a)-(a′), we illustrate that
single-species perturbations are sufficient for testing the proximity of the antipaired and paired
phases, as S̃F̂ (q,ω) receives a dominant contribution from the lowest-lying Goldstone mode,
while both the density and spin Goldstone excitations are found to have approximately the
same weight in the deep SF region. More precisely, close to the CFSF (PSF) transition, the
spin (density) mode (which softens at the transition) dominates the system response and en-
hances the amplitude of the structure factor at low energies for all momenta. Moving to the
total density channel, in panel (b) we see that, despite the CFSF phase being dominated by spin
fluctuations, the structure factor receives an increasing contribution by the density Goldstone
mode at low momenta as the critical point is approached; as expected, the same mode controls
entirely the total density response of the system close to the PSF transition, depicted in panel
(b′). The situation is reversed in the case of the spin channel, considered in panels (c)-(c′):
here, the projection of the structure factor over the spin Goldstone mode acts as a marker of
both the CFSF and the PSF transitions, albeit on different momenta and energy ranges.

Static response and sum rules The energy moments of the dynamic structure factors allow
to obtain a number of important quantities and identities that characterize the system. First of
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all, the uniform limit of the inverse-energy-weighted sum rule m−1
F̂
(q) gives the static response

of the system to the selected perturbation. Using the QGW expressions of Eq. (46), we obtain
the relations

m−1
d (q) =

1
ħh

∑

α

�

N1,α,q + N2,α,q

�2

ωα,q
=

q→0

κ

2
, (51)

m−1
s (q) =

1
ħh

∑

α

�

N1,α,q − N2,α,q

�2

ωα,q
=

q→0

χ

2
, (52)

for the compressibility κ and the susceptibility χ of the two-component BH system, where the
subscripts d and s are just shorthand notations for F̂ = Ĝ = n̂d/s. In particular, we note that
the former compressibility relation generalizes the result of Ref. [29] to mixtures.

Our results for the compressibility and the spin susceptibility are shown in Fig. 8 in the
vicinity of the CFSF transition [panel (a)] and the PSF transition [panel (b)]. Notably, we find
that the spin susceptibility (compressibility) diverges near the CFSF (PSF) transition. Close to
the CFSF regime, this finding parallels the decreasing energy cost to produce spin excitations
(see Fig. 3), which corresponds to an increase in the response of the system towards magnetic
perturbations. On the other hand, in the PSF regime, the divergence of the compressibility
corresponds to the decreasing energy of density excitations (see Fig. 6), hence the increasing
sensitivity of the system to density fluctuations. Additionally, we find that the compressibility
(susceptibility) tends to vanish near the CFSF (PSF) transition due to the opening of a spectral
gap in the density (spin) channel.

The divergence of the static response functions – which would suggest an instability of the
system towards phase separation or collapse – is due the lack of a proper inclusion of pairing
quantum correlations when describing the CFSF and the PSF phases within the Gutzwiller
approximation: specifically, it is simply related to the presence of a zero-energy flat dispersion
relation for the density and the spin modes, respectively. As shown in Fig. 8(a’)-(b’), the
appearance of such modes reflects into the vanishing behaviour of the spin (density) sound
velocities at the CSF (PSF) critical points.

An explicit relationship between sound velocities and static response functions can be di-
rectly uncovered by making use again of sum rules. Indeed, upon approaching the CFSF (PSF)
phase, the low-momentum response function is exhausted by the spin (density) Goldstone
mode, as shown in Fig. 7. Thus, the sum rules satisfy the general relation

mp
d(s)(q→ 0)≃ωp−k

d(s),q mk
d(s) ≃
�

cd(s)|q|
�p−k

mk
d(s)(q) , (53)

from which a number of identities can be derived. For instance, by considering p = 0 and
k = −1, one can write the identities

m0
d(q,ω) =
�

N1,d,q + N2,d,q

�2
=

q→0

κ

2
cd |q| , (54)

and
m0

s (q,ω) =
�

N1,s,q − N2,s,q

�2
=

q→0

χ

2
cs |q| , (55)

which we verified numerically and generalize the single-component identity given in Ref. [29]
relating the Goldstone mode structure factor to the compressibility and the sound speed.
The latter equations are moreover not independent. In fact, within the present Bogoliubov-
like approach, the p = 1 sum rule (a.k.a. f -sum rule) is given its exact value [34]:
m1

d(s)(q) = 〈[δρ̂d(s),q, [Ĥ,δρ̂d(s),q]]〉 ∝ q2 for |q| → 0, where δρ̂d(s),q = ρ̂d(s),q − 〈ρ̂d(s),q〉eq

and n̂d(s),r =
∑

q ρ̂d(s),qeiq·r/
p

I . From this, using the single-mode sum rule relation
m1

d(s)(q) = ω
2
d(s),q m−1

d(s)(q), we immediately infer that c2
d(s) ∝ 1/κ (1/χ). Therefore, if the

sound dispersion becomes flat, the corresponding static response must diverge.
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3.2 Current response and superfluid components

We now investigate the role of quantum fluctuations in the linear response of the two-
component BH system to current probes. The response of an ultracold system to current
probes reflects its superfluid properties, which are expected to behave remarkably different
in the CFSF and PSF phases due to a large collisionless superfluid drag between the two com-
ponents [25].

In this subsection, we consider the transverse (i) intraspecies current response with
Ĝr = F̂r = ĵi and (ii) interspecies current response with F̂r = ĵ1 and Ĝr = ĵ2, evaluated at
ω = 0 along x-directed links of the square lattice. Here, ĵi is the current operator referred to
ith species taken in the uniform limit q→ 0, that is

ĵi,q→0|x =
ħh

m a

∑

k

sin(kx a) â†
i,k âi,k . (56)

In App. B.3, the intra/interspecies current response functions are derived within the QGW
formalism, giving the results

χT
ĵi , ĵi
(q→ 0,ω= 0) = −

ħh
(m a)2

∑

α,β

∑

k

�

Ui,α,k Vi,β ,k − Ui,β ,k Vi,α,k

�2

ωα,k +ωβ ,k
sin2(kx a) , (57)

χT
ĵ1, ĵ2
(q→ 0,ω= 0) = −

ħh
(m a)2

∑

α,β

∑

k

∏2
i=1

�

Ui,α,k Vi,β ,k − Ui,β ,k Vi,α,k

�

ωα,k +ωβ ,k
sin2(kx a) , (58)

respectively. The above equations naturally generalize the findings of Ref. [27] provided
by the Bogoliubov approximation. In that case, one has only spin and density Goldstone
modes given by Eq. (27) and consequently the current response functions satisfy the rela-
tion χT

ĵ1, ĵ1
(q→ 0,ω = 0) = −χT

ĵ1, ĵ2
(q→ 0,ω = 0) exactly. Due to the presence of additional

excitation bands with a substantial spectral weight for strong enough interactions, the very
same equality is approximately fulfilled within the QGW approach only in the deep SF phase.
Physically, the violation of the aforementioned identity reflects the breaking of Galilean invari-
ance (c.f. Ref. [27]), which allows for a non-zero normal component of the gas contributing
to superfluidity even at zero temperature, as we discuss in the following.

We proceed to introduce the relevant superfluid quantities in the two-species BH model.
For a homogeneous two-component superfluid system, the relations between the mass current
densities mi ji of each species and the velocities of the gas components are governed by the
two-fluid model originally introduced in Ref. [11] and read

m1 j1 = ρn,1 vn +ρs,1 v1 +ρ12 v2 , (59a)

m2 j2 = ρn,2 vn +ρs,2 v2 +ρ12 v1 , (59b)

where mi is the bare mass of the ith species of the system, ρs,i and vi are respectively the
superfluid (mass) densities and velocities for each component, ρ12 is the so-called drag inter-
action and ρn,i are the normal (mass) densities of the system, which are assumed to flow both
at the same velocity vn. The physical role of the superfluid drag, also known as the Andreev-
Bashkin effect, has a self-evident explanation: a superflow in one component can be induced
by the collisionless drag from the superflow in the other component of the system and vice
versa. For a continuous system, by Galilean invariance Eqs. (59) are supplemented by a close
relationship mi Ni/V = ρn,i + ρs,i + ρ12 between the normal part of the system and the su-
perfluid densities, such that at zero temperature, where ρn,i = 0, the whole volume density
of the system (N1 + N2)/V participates in the superfluid flow [59]. On a lattice, the breaking
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of Galilean invariance requires the mass current densities to satisfy a different transformation
rule in presence of a vector potential acting as a probe, such that the density Ni/V is replaced
by −Ki/
�

2 J ad
�

, where Ki =



K̂i

�

is the local kinetic energy referring to the ith species along
the direction of the phase twist induced by the vector potential [27]. In particular, the local
kinetic operator acting along x-directed links of a square lattice is given by

K̂i(r)|x = −J
�

â†
i,r+ex

âi,r + h.c.
�

. (60)

As noted earlier, the normal component nn,i may not vanish at zero temperature on a lattice.
Therefore, recovering a result derived in Ref. [21], for the two-component BH model we obtain

−
Ki|x
2J
= nn,i + ns,i + n12 , (61)

where we have rescaled the superfluid (normal) number densities ns(n),i ≡ adρs(n),i/m and
the drag n12 ≡ ad ρ12/m to facilitate a direct comparison to the filling factors on a lattice.
The average kinetic energy Ki|x within the QGW theory is calculated explicitly in App. B.4 and
reads

Ki|x ≈ −2 J
�

�ψ0,i

�

�

2 −
2 J
I

∑

α

∑

k

�

�Vi,α,k

�

�

2
cos(kx a) . (62)

To quantify how the superfluid drag impacts on the effective mass of the gas components, we
define the dimensionless parameter ξ∗i through the equations

nn,i + ns,i = −ξ∗i
Ki|x
2J

, (63)

n12 = −
Ki|x
2J

�

1− ξ∗i
�

, (64)

where ξ∗ = m/m∗ reflects the extent to which the bare effective mass m = ħh2/
�

2 J a2
�

on a
lattice is renormalized by the interaction between the superfluid flows to produce the renor-
malized effective mass m∗. Explicitly, when ξ∗i > 1 (ξ∗i < 1) the renormalized effective mass
is smaller (larger) than the bare effective mass. This extends the concept of the renormal-
ized effective mass discussed in Refs. [11, 22] to the lattice, as Eq. (64) is exactly analogous
to Eq. (4) in the second work. We note that in those works, translational invariance ensures
that the renormalized effective mass remains always larger than the bare effective mass due
to the guaranteed positivity of n12. On a lattice, the inclusion of nn,i in Eq. (63), which is
trivially absent for a continuous superfluid at zero temperature, adds additional complexity
while ensuring that the variation of ξ∗i is due solely to the collisionless drag.

Having introduced the relevant superfluid components, we now resort to the formal results
of Ref. [27] to relate them to the current-current response functions of the two-component BH
model. Explicitly, one has

ns,i =
m
I
χT

ĵi , ĵi
(q→ 0,ω= 0)−

Ki|x
2J

, (65)

n12 =
m
I
χT

ĵ1, ĵ2
(q→ 0,ω= 0) . (66)

A third relation provides a sum rule for the total normal fraction of the system nn = nn,1+nn,2
as the total transverse current response function, reading

nn = −
m
I

h

χT
ĵ1, ĵ1
(q→ 0,ω= 0) +χT

ĵ2, ĵ2
(q→ 0,ω= 0) + 2χT

ĵ1, ĵ2
(q→ 0,ω= 0)
i

. (67)

From Eq. (67), we notice how, upon exchanging ĵ1 with ĵ2, opposite values of the current
response functions χT

ĵ1, ĵ1
(q→ 0,ω = 0) = −χT

ĵ1, ĵ2
(q→ 0,ω = 0) results in nn = 0, as would
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Figure 9: Collisionless drag versus the interspecies coupling strength U12/U for fixed
nd ≈ 0.5 and 2 d J/U = 0.4 in d = 2. Here, we compare the QGW prediction (or-
ange solid line) with the Bogoliubov result from Refs. [21, 27] (light-blue dashed
line) and the QMC data (yellow dotted line) from Ref. [25] evaluated on a lattice
of size I = 102. The hollow square and circle for the QGW and Bogoliubov results,
respectively, indicate the point of the collapse.

be predicted by the Bogoliubov approximation, in clear contrast with the correct physics of a
strongly-interacting lattice system at zero temperature.

It is worth mentioning that measuring the superfluid drag is a challenging task experi-
mentally, however recently it has been proposed to use fast response to directly access the
entrainment in continuous systems [27,60]. We note that the same proposals can be applied
in the presence of a lattice.

3.2.1 Superfluid regime

In the deep SF regime, the current response functions and the average kinetic energy match
their expressions given by the mean-field Gutzwiller approximation, namely
χT

ĵi , ĵ j
(q→ 0,ω = 0) = 0 and K0,i|x = −2 J

�

�ψ0,i

�

�

2
, respectively. This leads to equal super-

fluid and condensate densities, namely ns,i =
�

�ψ0,i

�

�

2
, as well as a vanishing drag n12 = 0 and

a trivial renormalization of the effective mass ξ∗ ≈ 1.
At intermediate 2 d J/U , the superfluid drag was calculated using quantum Monte Carlo

(QMC) simulations in Ref. [25]. The comparison of the QGW results with the Bogoliubov
predictions (see Refs. [21,27]) and the QMC data is shown in Fig. 9, for a hopping energy equal
to 2 d J/U = 0.4 and a fixed total filling nd ≈ 0.5. We remark here that the accuracy of our drag
estimation hinges on the correct calculation of the total filling, which must include second-
order quantum corrections accounted for by the QGW theory (see App. A.3). For repulsive
interactions, these corrections are always less than ∼ 10% and therefore can be essentially
neglected. By contrast, for attractive interactions quantum corrections increase for larger |U12|
and can be as large as ∼ 25% due to the diverging compressibility near the collapse transition
(see Sec. 2.2.2). We find that including the quantum corrections has the effect of shifting the
collapse transition towards more attractive U12 than one would obtain holding instead the
mean-field filling constant. This fact restricts the calculation of the drag to well before the
Bogoliubov prediction for the collapse point (U12/U ≤ −1) [26,27].

The QGW results of Fig. 9 [orange solid line] are obtained on the same I = 102 lattice
considered in the QMC calculations of Ref. [25] [yellow dotted line]. We find that in general
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Figure 10: Transport quantities in two dimensions across the MI-to-SF second (left
panel) and first (right panel) order transitions at fixed µ/U = 1.4 and µ/U = 1 for
U12/U = 0.5 and U12/U = 0.9, corresponding to the nd = 2 MI lobes in Fig. 1(a)
and Fig. 1(b), respectively. The one-component densities ni include the corrections of
the second-order quantum fluctuations. The tan-shaded area indicates the MI region.
Thick black and grey lines indicate the QGW predictions for the superfluid density ns,1
and the (vanishingly small) superfluid drag n12 respectively, while the black dashed
and dotted lines refer to the normal component nn,1 and condensate fraction |ψ0,1|2.
Pink dotted and blue dashed lines are the contributions to ns,1 from the average
kinetic energy Ki|x and the intraspecies current response function χT

ĵi , ĵi
, respectively.

(Insets) Renormalization of the effective mass across the MI-to-SF transitions due to
the collisionless drag.

the drag increases for smaller lattice sizes, in contrast to the results of that work. Furthermore,
we also observe that the collapse point is shifted towards less attractive U12 for smaller lattices.
Additionally, we note that, regardless of the sign of U12, the collisionless drag remains always
positive in the SF regime, and consequently the renormalized effective mass is larger than the
bare one. Physically, this indicates that the dressing effect of individual particle motions of
one species due to the superfluid flow of the other component has a particle (rather than hole)
character.

On the whole, the QGW predictions underestimate the QMC results, but qualitatively re-
produce the asymmetry of the superfluid drag with respect to U12. On the other hand, the
Bogoliubov results [light-blue dashed line] are symmetric with respect to U12, do not capture
the first-order transition and lie well below of the QMC points. In this regard, the QGW ap-
proach can be viewed as a major improvement over the standard Bogoliubov treatment of
quantum fluctuations in presence of strong correlations [21,27,35]. Indeed, it is well known
that Bogoliubov’s theory underestimates the current response functions, as it takes into ac-
count only the excitation vertex of the Goldstone modes in Eqs. (57)-(58) and neglects the
contribution of all the other excitation modes, which acquire a sizeable spectral weight away
from the deep SF limit.

3.2.2 Phase transitions for U12 > 0

In this subsection, we study the superfluid components across the various phase transitions
characterized in Sec. 2.2.1 for repulsive interspecies interactions. To that end, we begin by
discussing the first and second-order MI-to-SF transitions, passing to the second-order CFSF-
to-SF transition in the second place.

(Mott Insulator to Superfluid) – In Fig. 10(a) and Fig. 10(b), we show the QGW results for
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the relevant transport quantities, which include the superfluid components, the intraspecies
current response, and the average kinetic energy across the second and first-order MI-to-SF
transitions of the n0,d = 2 lobes for U12/U = 0.5 and U12/U = 0.9, respectively. Qualita-
tively, the behavior of the superfluid fraction exhibits a number of features in common with
the QGW results of Ref. [36] for the single-component BH model. Specifically, in the SF regime,
the superfluid density ns,i [black solid line] remains always larger than the condensate frac-
tion [black dotted line] and approaches the total density of the corresponding species in the
deep SF limit. Furthermore, ns,i vanishes discontinuously (continuously) at the first-order
(second-order) critical point and is exactly zero in the MI phase as in the single component
case. As found in the single-component BH model [36], this latter feature is ensured by the
exact cancellation between the current response function χT

ĵi , ĵi
[pink dashed line], given by

Eq. (57), and the contribution of zero-point fluctuations to the average kinetic energy Ki|x
[cyan dashed line] provided by Eq. (62). As expected, both the quantities tend towards zero
in the strongly-interacting limit 2 d J/U → 0. The collisionless drag [gray solid line] remains
always on the order of a few percent of ns,i , reaching the maximal value close to the MI-to-SF
critical point and vanishing entirely within the MI phase. Because the superfluid drag is small,
the renormalization of the effective mass is also negligible and the normal components nn,i
[black dashed line] are dominated by the contribution of the intraspecies current response
function χT

ĵi , ĵi
, as one can see by comparing Eqs. (66)-(67).

It is now worth commenting on the relative weight of the various excitation vertices that
contribute the most to the results displayed in Fig. 10. In the SF regime, the spin-density
Goldstone vertex makes the largest contribution to the expression of χT

ĵi , ĵi
in Eq. (57), followed

by smaller terms coming from the vertex between the Goldstone mode and the Higgs mode
with density character. This is in strong contrast to the single component case treated in
Ref. [36], which showed that χT

ĵi , ĵi
was nearly saturated by the Goldstone-Higgs vertex, since in

this case only one Goldstone excitation is present. Similarly, the interspecies current response
χT

ĵ1, ĵ2
, and therefore the superfluid drag, is nearly saturated by the vertex involving spin and

density Goldstone modes. On the other hand, the zero-point fluctuations in the average kinetic
energy Ki|x [cyan dashed line] are dominated by the contribution of the spin Goldstone mode,
in addition to the mean-field effect of the order parameter ψ0,i .

Inside the MI phase, the spectral summation of the intraspecies response χT
ĵi , ĵi

is saturated

by the vertices of particle-hole excitations, while the average kinetic energy Ki|x is dominated
by the contribution of the lowest particle or hole bands, depending on the chemical poten-
tial. As the MI-to-SF transition is crossed, these excitations turn into the Goldstone modes,
such that the spectral content of Ki|x changes smoothly across the criticality. An analogous
reasoning applies to χT

ĵi , ĵi
. On the other hand, we note that the interspecies response χT

ĵ1, ĵ2
is

not fully saturated by the vertices involving only the first few particle-hole bands, requiring
also the contribution of higher-energy excitations in order to give a perfect cancellation of the
superfluid drag in the MI lobe.

(Counterflow Superfluid to Superfluid) – The QGW results for the superfluid components,
the intraspecies current response, and the average kinetic energy across the second-order CFSF-
to-SF transition of the n0,d = 1 lobe for U12/U = 0.9 are shown in Fig. 11.

In the SF region close to the CFSF phase, the results are equivalent to the ones found in
the SF phase close to the MI lobe previously discussed. In the CFSF regime, we find that the
superfluid drag reaches the negative saturation threshold n12/

p

ns,1 ns,2 = −100%, a result
that strongly recalls the QMC calculations in Ref. [25], performed in d = 2 as well. Notably,
we also observe that in the CFSF phase, even though the drag is saturated, the net superflu-
idity ns,1 + n12 = 0 vanishes. This mirrors the fact that counterflow superfluidity occurs when
particles and holes of different species flow along counter-directed paths, such that equal and
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Figure 11: Transport quantities in two dimensions across the CFSF-to-SF second-
order edge transition, traversed at fixed chemical potential µ/U = 0.5 for
U12/U = 0.9, corresponding to the nd = 1 CFSF lobe in Fig. 1(b). The one-
component filling ni includes the corrections of the second-order quantum fluctu-
ations. The tan-shaded area indicates the MI region. Thick black and grey lines
indicate the QGW predictions for the superfluid density ns,1 and the superfluid drag
n12 respectively, while the black dashed and dotted lines refer to the normal com-
ponent nn,1 and condensate fraction |ψ0,1|2. Pink dotted and blue dashed lines are
the contributions to ns,1 from the average kinetic energy Ki|x and the intraspecies
current response function χT

ĵi , ĵi
, respectively. (Inset) Renormalization of the effective

mass across the CFSF transition due to the collisionless drag.

opposite current densities for each component are established [6,25]. Importantly, within the
QGW formalism this perfect balance is due solely to quantum fluctuations, as the mean-field
Gutzwiller theory trivially predicts ns,1 = n12 = 0. Qualitatively speaking, such finding agrees
with the statement in Ref. [32] that superfluidity in the CFSF phase arises through second-
order hopping processes not captured by mean-field theory; however, the ad hoc introduction
of such processes performed in that work is not explicitly comprised in the O

�

J2
�

contribution
of quantum fluctuations to Eqs. (57) and (58), which is thus a genuine result of the QGW
quantum theory. The collisionless drag remains large and negative across the CFSF-to-SF tran-
sition, so that the renormalized effective mass becomes significantly less than its bare value,
particularly at the critical point. We remark here that the onset of a negative superfluid drag
indicates that a traveling particle transports, in addition to it’s own bare mass, holes of the
other species resulting in a reduced effective mass. As the deep SF regime is approached, the
drag n12 changes sign leading to an increased effective mass as discussed in Sec. 3.2.1.

As before, we comment on the relative weight of the various excitations vertices that con-
tribute to the quantities shown in Fig. 11. In the CFSF regime, the average kinetic energy Ki|x
is almost saturated by the gapped hole mode with the lowest energy. Correspondingly, both
the intraspecies χT

ĵi , ĵi
and interspecies χT

ĵ1, ĵ2
current response functions are dominated by the

all-to-all vertices of the lowest four particle-hole bands. It is curious to observe that the spec-
tral weight of these particle-hole excitations is sufficient to obtain the −100% saturation of the
superfluid drag, even when the antipair excitations are described by flat bands ω0,1, which do
not contribute to the transport physics in our theory. As the transition point is crossed into the
SF regime, Ki|x is saturated by the density Goldstone mode, while the response functions χT

ĵi , ĵi
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Figure 12: Transport quantities in two dimensions across the PSF-to-SF phase transi-
tion along the (µ/U)c = −0.35 critical line, which separates the vacuum region from
the nd = 2 MI lobe for U12/U = −0.7, see Fig. 4(b). The one-component filling ni
include the corrections of the second-order quantum fluctuations. The tan-shaded
area indicates the MI region. Thick black and grey lines indicate the QGW predic-
tions for the superfluid density ns,1 and the superfluid drag n12 respectively, while the
black dashed and dotted lines refer to the normal component nn,1 and condensate
fraction |ψ0,1|2. Pink dotted and blue dashed lines are the contributions to ns,1 from
the average kinetic energy Ki|x and the intraspecies current response function χT

ĵi , ĵi
,

respectively. (Inset) Renormalization of the effective mass across the PSF transition
due to the collisionless drag.

and χT
ĵ1, ĵ2

get a large contribution by the vertices between the density Goldstone mode and the

first gapped modes of the SF phase.

3.2.3 Phase transitions for U12 < 0

In this last subsection, we study the superfluid components across the the second-order PSF-to-
SF transition described in Sec. 2.2.2. The analysis of the MI-to-SF critical behavior given in the
previous subsection is found to remain valid also in the case U12 < 0, with the only difference
that the physical roles of the spin and density Goldstone modes are swapped. Therefore, in
the following we proceed to investigate in detail the behavior of the superfluid components
across the PSF-to-SF transition.

(Pair Superfluid to Superfluid) – The QGW predictions for the transport quantities across the
second-order PSF-to-SF for U12/U = −0.7 with (µ/U)c = −0.35 and n0,d ≈ 1.47 are presented
in Fig. 12.

In the PSF regime, we find that the superfluid drag fulfills the positive saturation condi-
tion n12/
p

ns,1 ns,2 = +100%, which is again compatible with the QMC findings in Ref. [25].
Unlike the CFSF phase, however, here the saturation of the drag results in net non-zero su-
perfluidity ns,1 + n12 > 0. Physically speaking, this can be interpreted from the point of view
of pairs of particles of different species following co-directed paths and resulting in pair su-
perfluidity [25]. Similarly to the QGW representation of the CFSF phase, this result can be
directly ascribed to the quantum fluctuations captured by our theory. Indeed, the collisionless
drag remains large and positive along the whole PSF line and through the transition into the
SF phase. Consequently, the effective mass is strongly renormalized, so as to be significantly

28

https://scipost.org
https://scipost.org/SciPostPhys.12.3.111


SciPost Phys. 12, 111 (2022)

larger than the bare mass, in particular at the transition point. We note that this increase of the
effective mass is much larger than in the SF and MI regimes due to the tendency of a traveling
particle to transport, in addition to its own mass, particles of the other species that conse-
quently follow co-directed paths and increasing the dressing effect of the medium. We note
that as the system approaches the deep SF regime, the drag remains positive but becomes in-
creasingly small such that the effective mass always remains slightly larger than the bare mass
as expected from Sec. 3.2.1.

We conclude by inspecting the spectral composition of the various quantities shown in
Fig. 12. On the verge of the PSF side of the transition, the average kinetic energy 〈K̂i|x〉 is
strongly dominated by the lowest quasiparticle band (with hybrid spin and density character).
The same observation partially applies to both the current response functions χT

ĵi , ĵi
and χT

ĵ1, ĵ2
,

in which the coupling between different quasiparticle bands plays a major role. As for the
CFSF phase in Fig. 11, it is surprising to verify that these gapped quasiparticle modes are
sufficient to reproduce the superfluid drag saturation of the PSF phase, such that they can
be regarded as the only excitations responsible for the transport of particle pairs. Once the
critical point is reached and the SF phase develops, Ki|x gets a major contribution from the
spin Goldstone mode, while the current response functions are saturated by the coupling of the
same mode with the Higgs-like branches that populate the high-energy part of the spectrum,
in strict analogy with the case of repulsive interactions.

3.3 Coherence function

To obtain a better understanding of the role of quantum fluctuations across the phase diagram,
we now turn our attention to the study of the equal-time correlation functions directly, which
can also be probed experimentally using e.g. quantum gas microscopy [61,62]. In particular,
we anticipate that the separation between density and spin degrees of freedom in the CFSF
and PSF phases is shown to be connected to Mott or superfluid-like behaviors of the correlation
functions in the two excitation channels. In analyzing the single-particle coherence functions,
we restrict ourselves to the investigation of intraspecies correlations, as the approximate de-
scription of the CFSF and PSF phases within the Gutzwiller framework [32] is expected to miss
non-local coherence effects involving strongly-correlated pairs, in contrast with the results for
the current response functions studied in Sec. 3.2.

The normalized single-particle coherence function for the ith species is defined as

g(1)i (r)≡
〈â†

i,r âi,0〉

〈â†
i,0 âi,0〉

. (68)

The QGW quantization scheme maps the microscopic operator âi,r into the effective Bose field
ψ̂i(r), which carries both a macroscopic contribution due to condensation and the effect of
short-range quantum correlations on the one-body coherence. In strict analogy with Bogoli-
ubov’s theory, the first-order expansion of ψ̂i(r) in terms of quantum fluctuations reads

ψ̂i(r)≈ψ0,i +
1
p

I

∑

α

∑

k

�

Ui,α,k ei k·r b̂α,k + V ∗i,α,k e−i k·r b̂†
α,k

�

, (69)

where the quasiparticle (quasihole) amplitudes Ui,α,k

�

Vi,α,k

�

have been introduced in Eqs. (18)
and saturate the Bogoliubov normalization condition

∑

α

�
�

�Ui,α,k

�

�

2 −
�

�Vi,α,k

�

�

2�
= 1 , (70)
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Figure 13: One-body coherence function g(1)i (r) for d = 2 and U12/U = 0.9 evaluated
at fixed µ/U = 1.4 across the (a) MI to (b) SF first-order transition.

in the whole phase diagram. Most importantly, the completeness relation (70) implies that the
QGW Bose field (69) satisfies the usual Bose commutation relation

�

ψ̂i(r1), ψ̂
†
i (r2)
�

= δr1,r2

identically, thus justifying the physical interpretation of ψ̂i(r) (see App. A.2 for a detailed
derivation). Applying our evaluation protocol to Eq. (68) and inserting the operator expansion
(69), the single-particle coherence function can be recast into the form

g(1)i (r) =
〈ψ̂†

i (r) ψ̂i(0)〉

〈ψ̂†
i (0) ψ̂i(0)〉

≈

�

�ψ0,i

�

�

2
+ I−1
∑

α

∑

k

�

�Vi,α,k

�

�

2
cos(k · r)

�

�ψ0,i

�

�

2
+ I−1
∑

α

∑

k

�

�Vi,α,k

�

�

2 , (71)

which is a straightforward generalization of the one-component result in Ref. [36]. In the
numerator of the right-hand side of Eq. (71), the first term reflects the long-range order of the
one-body density matrix in the SF phase, while the second term reproduces the destructive
interference of quantum fluctuations at finite distances, such that only the condensate fraction
�

�ψ0,i

�

�

2
survives in the r→∞ limit (see the relevant discussion in Sec. 2.2 of Ref. [53]).

We do not show here explicit results for the second-order MI-to-SF transition, because
it presents the same features as in the one-component case discussed in [36]. Specifically,
the QGW approach drastically improves mean-field theory by predicting the onset of off-site
coherence in the strongly-interacting regime: in the MI phase, the one-body correlations are
generally suppressed exponentially as g(1)(r) ∼ exp(−r/ξ) with a finite coherence length ξ,
whereas in the SF phase g(1)(r) always decays as a power law. More generally, in the deep SF
limit (2 d J/U ≫ 1) the spectral sum in Eq. (71) is almost saturated by the density and spin
Goldstone modes only and the behavior of a weakly-interacting gas is recovered [35, 36]. As
a strongly-correlated SF develops, the contribution of other excitation modes to the quantum
depletion becomes relevant and the Bogoliubov predictions are naturally amended by the QGW
scenario.

In the two-component system, we find that the very same behavior carries over also to the
first-order MI-to-SF transition, shown in Fig. 13, and to the second-order CFSF-to-SF transition
and the PSF-to-SF critical point, illustrated in Fig. 14. In particular, in analogy with the physics
of the MI-to-SF transition in the one-component system [36], the QGW theory is able to cap-
ture the different critical behaviors of the CFSF-to-SF transition depending on whether this is
approached at integer or non-integer filling, namely across either the tip or the edge of the
CFSF lobes. Upon reaching the SF phase through the edge of the CFSF lobe [Fig. 14(a), from
purple to green lines], the correlation length ξ grows monotonically but remains bounded. As
soon as one enters the SF phase, the long-range behavior of g(1)i (r) changes abruptly into a
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Figure 14: One-body coherence function g(1)(r) for d = 2 and U12/U = 0.9 evaluated
at fixed µ/U = 0.5 (a-b) and µ/U ≈ 0.39 (c-d) across the edge and O(2) CFSF-to-SF
transitions, respectively. In panel (c), the approaching of the PSF-to-SF transition
from the PSF side is also shown for (µ/U)c = −0.35 and U12/U = −0.7.

power-law scaling [Fig. 14(b)]. On the contrary, when approaching the SF phase at the tip of
the CFSF region, the correlation length ξ diverges [Fig. 14(c)] and a power-law dependence
for g(1)i (r) gradually sets in [Fig. 14(d)]. In panel (c), the evolution of g(1)i (r) along the PSF
critical line is also shown, displaying an analogous behavior.

As in the single particle case, this difference in the behavior of g(1)i (r) is due to the different
spectral properties of the collective excitations close to the edge/tip critical points of the CFSF
lobe. At the edge transition, either a particle or a hole excitation out of the four dispersive
branches becomes gapless. Since our description of the short-distance coherence in the CFSF
phase relies on virtual particle-hole excitations via Eq. (71), the exponential decay of g(1)i (r)
is dominated by the gap of the particle (hole) excitation that remains finite at the transition.
On the contrary, at the tip critical point, both the lowest-energy particle and hole modes be-
come gapless (before turning into the density and spin Goldstone modes on the SF side of the
transition), which explains the divergent coherence length [63].

3.4 Density and spin fluctuations

In this subsection, we address the local structure of equal-time two-body correlations for both
the density and spin channels, focusing on their behavior across the quantum phase transi-
tions of the system as determined by second-order quantum fluctuations. Crucially, the QGW
method treats local and non-local observables separately. Whereas non-local two-body corre-
lations G(2)d/s(r ̸= 0) = 〈n̂d/s(r ̸= 0) n̂d/s(0)〉 are directly related to the Fourier transform of the
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Figure 15: Local density-density correlation g(2)d (r = 0) evaluated for d = 2 as a
function of 2 d J/U across (a) the first-order MI-to-SF edge transition (blue dotted
lines) for U12/U = 0.9 and µ/U = 1.4 at fixed nd = 2, (b) the second-order MI-to-SF
edge transition (red solid line) for U12/U = 0.5 and µ/U = 1 at fixed nd = 2, (c)
the second-order CFSF-to-SF edge transition (purple dashed line) for U12/U = 0.9
and µ/U = 0.5 at fixed nd = 1, and (d) the second-order PSF-to-SF transition (pink
dashed-dotted line) for U12/U = −0.7 and (µ/U)c = −0.35 with nd = 1.47. The
point located on each curve indicates the location of the respective phase transition.

static structure factors Sd/s(q) (and share then the pathologies discussed in Sec. 3.1), on-site
fluctuations can be always computed as expectation values of individual local operators, as
shown explicitly in the following. Ultimately, the Gutzwiller ansatz (1) is a local approxima-
tion of the ground state, and therefore we expect predictions presented in this subsection for
local two-body correlations to remain accurate even in the vicinity of the pair and anti-paired
phases.

With these caveat in mind, we first consider the two-body correlation function for an indi-
vidual species

G(2)i (r= 0) = 〈n̂2
i (0)〉 −→ 〈D̂i(0)〉 , (72)

where we have introduced the QGW square density operator

D̂i(r) =
∑

n1,n2

�

n2
1δi,1 + n2

2δi,2

�

ĉ†
n1,n2
(r) ĉn1,n2

(r) , (73)

which, importantly, is distinct from the square of the density operator N̂i(r) (see App. A.2).
Expanding D̂i(0) up to second-order in the fluctuations and calculating its quantum average,
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Figure 16: Local spin-spin correlation g(2)s (r = 0) evaluated for d = 2 as a function
of 2 d J/U across the same phase transitions as in Fig. 15.

we obtain

G(2)i (0) = (1− F) d0,i +
1
I

∑

α

∑

k

∑

n1,n2

�

n2
1δi,1 + n2

2δi,2

� �

�vα,k,n1,n2

�

�

2
, (74)

at zero temperature, which is a generalization of the result found in Ref. [36] for the one-

component BH model. Here, d0,i =
∑

n1,n2

�

n2
1δi,1 + n2

2δi,2

�

�

�

�c0
n1,n2

�

�

�

2
is the mean-field value of

the square density, while

F = 〈Â2(0)〉=
1
I

∑

α

∑

k

∑

n1,n2

�

�vα,k,n1,n2

�

�

2
, (75)

is the control parameter of the theory, see App. (A.3) for a detailed derivation. The quantiza-
tion protocol corrects the mean-field value of local observables in a two-fold way. On the one
hand, the second term of Eq. (74) makes a positive contribution due to quantum fluctuations;
on the other hand, the quantity F , which measures the magnitude of quantum fluctuations,
renormalizes the mean-field value d0,i .

Next, we calculate the two-body correlation function between different species
G(2)12 (r= 0) = 〈n̂1(r= 0) n̂2(0)〉, which is given by

G(2)12 (0) = 〈D̂12(0)〉 , (76)

where we have defined the composite density operator

D̂12(r) =
∑

n1,n2

n1 n2 ĉ†
n1,n2
(r) ĉn1,n2

(r) . (77)
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We find the result

G(2)12 (0) = (1− F) d0,12 +
1
I

∑

α

∑

k

∑

n1,n2

n1 n2

�

�vα,k,n1,n2

�

�

2
, (78)

where d0,12 =
∑

n1,n2
n1 n2

�

�

�c0
n1,n2

�

�

�

2
is the mean-field prediction.

Having outlined the form of single-species and pair correlations, the on-site two-body cor-
relation functions for the total density and spin channels can be obtained directly from

G(2)d/s(0) = 〈[n̂1(0)± n̂2(0)]
2〉= G(2)1 (0) + G(2)2 (0)± 2 G(2)12 (0) . (79)

For convenience, we analyze the normalized density and spin variances g(2)d/s(0). Estimating

the variances amounts to shifting G(2)d/s(0) by n2
d/s; additionally, because ns = 0 in our model,

we normalize the correlation functions by the squared mean density n2
d to produce

g(2)d/s(0) =
G(2)d/s(0)− n2

d/s

n2
d

. (80)

Our calculations for the density correlation g(2)d (0) across the various phase transitions
of the model are shown in Fig. 15. In the SF region, we observe the typical antibunching
g(2)d (0)< 1 of local fluctuations due to the onsite interaction U . Moving towards the MI phase
[panels (a)-(b)], the qualitative features of density correlations are strongly reminiscent of the
behavior of a single-component BH model [36], except for the the first-order MI-to-SF transi-
tion, at which the antibunching factor shows a discontinuity. In particular, in the MI region,
where mean-field theory would predict g(2)d (0) = 0, the QGW approach is able to account

for the virtual excitation of doublon-hole pairs, which leads to the scaling g(2)i (0)∝ (J/U)
2

at low J , in excellent agreement with perturbative calculations in the strongly-interacting
limit [31,32]. Remarkably, we observe that the CFSF phase [panel (c)] shares the same prop-
erties of the MI state in the density channel. This can be understood as a consequence of
the similarity between the spectral structure of the two phases. In the CFSF phase, density
fluctuations build on the lowest-lying, gapped particle-hole excitations, which have a strong
density character exactly as their counterparts in the MI phase. By contrast, g(2)d (0) exhibits a
quite different behavior across the PSF-to-SF transition. Instead of being suppressed, sizeable
density fluctuations survive in the whole PSF region and saturate to a finite value at low J/U .
This result clearly agrees with the physical picture of the PSF phase [panel (d)], where the for-
mation of local pairs is explicitly favoured, differently from the CFSF state, in which particles
belonging to different species repel each other. However, we believe that the independence of
g(2)d (0) on J/U is a by-product of the inability of our theory to capture density excitations in
the PSF phase.

A complementary view on two-body correlations is provided by the spin fluctuations
g(2)s (0), which are reported in Fig. 16 along the same phase transition paths of Fig. 15. Across
the MI-to-SF transition [panels (a)-(b)], spin correlations mimic the behavior of density fluc-
tuations, meaning that the Mott interactions freeze equally both density and spin degrees of
freedom. This is not the case for the paired phases, where the density and spin channels de-
couple. On the one hand, despite its Mott-like character in the density channel, the CFSF
phase [panel (c)] is characterized by a large g(2)s (0), indicating that counterflow superfluid-
ity is linked to the creation of local magnetic moments with large spin fluctuations, such as
in a spinful Mott state [64, 65]. Notice that, however, g(2)s (0) < 1 for finite values of J/U ,
signalling that the local moments possess a finite stiffness due to the particle-hole excitations
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of the CFSF phase. On the other hand, we find that g(2)s (0) is strongly suppressed in the PSF
phase [panel (d)], where the spin degrees of freedom interact repulsively, in analogy again
with the physics of the MI-to-SF transition [5].

4 Conclusions and Outlook

In this work, we have studied the properties of quantum fluctuations in the two-component
BH model at zero temperature, for both repulsive and attractive interspecies interactions. Ex-
panding on the mean-field ground-state phase diagram first reported in Ref. [32], we have
analyzed the band structure of the model in the whole phase diagram with particular atten-
tion paid to its quantum phase transitions and the limitations inherent in the local nature of
the Gutzwiller ansatz for the many-body wave function. Through a canonical quantization of
the variational parameters of the ansatz, we have generalized to bosonic mixtures the single-
component QGW theory of Ref. [36], which permits a study of the quantum corrections to
obsevables in a systematic, order-by-order fashion in the spirit of the Bogoliubov theory of
dilute weakly-interacting gases. Importantly, we have shown how the QGW method provides
a comprehensive description of both local and non-local correlations across the entire phase
diagram of the model and, in particular, across its quantum critical regimes.

We have first illustrated that the formation of pair correlations can be directly connected to
the analytical behavior of the compressibility and spin susceptibility, which reflect the strength
of critical fluctuations upon reaching the PSF and CFSF transitions, respectively. Notably, by
the application of spectral sum rules [34] together with the fluctuation-dissipation theorem,
we are able to relate the physical picture of the response functions to the sound velocities of
the Goldstone modes and the static structure factors of the SF state. These results indicate
that experimental probes of strongly-correlated paired phases can yield direct information on
the spectral properties of the system in quantum critical regimes.

Within the QGW approach, we have also studied the properties of superfluid transport,
finding an interspecies collisionless drag whose origin is due solely to quantum fluctuations.
In this respect, we have compared quantitatively to QMC predictions [25] within the SF phase
over a range of interspecies couplings, and study the matrix of superfluid components across
the various phase transitions. In particular, we have found that the drag is saturated in the
vicinity of the PSF and CFSF phases, where strong pair correlations prevail over single-particle
coherence. Moreover, we have offered a clear interpretation of the superfluid components
in terms of multi-mode scattering processes involving the collective excitations of the system,
including not only the density and spin Goldstone modes, but also the Higgs modes and gapped
quasiparticle excitations appearing at strong interactions.

Finally, we have shown that the QGW theory gives an accurate account of the role of
quantum fluctuations in equal-time few-body correlations in the whole phase diagram of the
system. In particular, we have demonstrated how the critical behaviors of the one-body coher-
ence function are analogous to those found for MI-SF transition in the single-component BH
model in Ref. [36]. Remarkably, at the two-body level, we have also found that the CFSF/PSF
phase transitions strongly mirror the MI transition physics in the density/spin channels, re-
spectively. Throughout our analysis, we have highlighted how quantum correlations closely
link with the character of collective modes in distinct interaction regimes.

The QGW approach developed in this work proves to be a flexible, semi-analytical method
to study the rich phase diagram of bosonic mixtures in an optical lattice, including the effects
of quantum fluctuations while remaining computationally inexpensive. Although only the
zero-temperature case is considered in this work, we also note that finite temperature effects
can be incorporated in a straightforward manner. In particular, this method is expected to
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be capable of describing also non-linear interactions between quasiparticles, for instance in
Landau/Beliaev-type decay processes [66,67].

The generalization of the present theory to multi-component Bose-Fermi and Bose-Bose
mixtures and to different trapping geometries, where novel types of superfluid drag are pre-
dicted [28,68], poses intriguing problems for future research. Additionally, an improvement in
the description of non-local fluctuations, crucial for instance to introduce hopping-induced cor-
relations into the paired phases, appears possible within a cluster extension of the Gutzwiller
theory (c.f. Refs. [69–77]). Such an extension is required, for example, to describe long-
range interactions or magnetic ordering in supersolid phases where translational symmetry is
spontaneously broken (c.f. Refs. [5,78,79]). Relaxing the Z2-symmetry constraint also opens
exciting questions on the imbalanced two-component BH model, whose fermionic counterpart
is currently the subject of intense interest in the ultracold community (c.f. Refs. [80,81]).

From a more formal perspective, the systematic way in which quantum fluctuations can
be incorporated in the QGW theory raises interesting curiosities about its diagrammatic repre-
sentation in quantum field theory. Conversely, such a connection might enable the translation
of the comparatively sizeable literature of diagrammatic techniques into the language of QGW
theory to diagnose possible issues in the method or introduce concepts already well-known in
that context (c.f. [82,83]).
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A Quantum corrections within the QGW approach

In this appendix, we provide additional technical details on the structure of quantum fluctu-
ations within the QGW theory and outline the explicit derivation of the quantum correlations
incorporated by the quantization procedure.

A.1 Evaluation protocol for the observables

Here, we provide a brief recap of the QGW quantization protocol of Ref. [36] for evaluating
an expectation value of a given observable Ô

�

âi,r, â†
i,r

�

:

1. Determine the average value of the observable O[c, c∗] =



ΨG

�

� Ô
�

�ΨG

�

in terms of the
C-valued Gutzwiller variables.

2. Define the operator Ô
�

ĉ, ĉ†
�

by promoting the Gutzwiller parameters in O[c, c∗] to the
corresponding operators without modifying their ordering.

3. Expand the operator Ô order by order in the fluctuations δĉn1,n2
and δĉ†

n1,n2
, including

the contribution due to the normalization operator Â properly. Using Eq. (41), this step
provides a convenient decoding of the original microscopic operator Ô in terms of the
quantized modes of the theory.
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4. Taking advantage of the quadratic character of the QGW Hamiltonian (42), invoke Wick’s
theorem to compute the expectation value of products of the quasiparticle operators b̂α,k

on Gaussian states – such as ground or thermal states obtained from H(2)QGW .

In the following, we apply the above quantization procedure to the single and two-particle
observables addressed in this work and clarify the order-by-order derivation of the quantum
corrections accessed by our quantum theory.

A.2 First-order fluctuations

The spectral features of the first-order fluctuations can be estimated either by using the lin-
earized 2GE (8) as done in Ref. [32] or alternatively employing the QGW protocol, which
has the formal advantage of associating the creation/annihilation of a well-defined collective
mode with a given spectral amplitude, as outlined in this subsection.

(Density) – Within the QGW formalism, the species-resolved density n̂i(r) is mapped into
the operator

N̂i(r) =
∑

n1,n2

�

n1δi,1 + n2δi,2

�

ĉ†
n1,n2
(r) ĉn1,n2

(r) . (A.1)

Expanding the ĉ’s to lowest order in the fluctuations, one finds

N̂i(r)≈ n0,i +δ1n̂i(r) = n0,i +
∑

n1,n2

�

n1δi,1 + n2δi,2

�

c0
n1,n2

�

δĉn1,n2
(r) +δĉ†

n1,n2
(r)
�

, (A.2)

where n0,i =
∑

n1,n2

�

n1δi,1 + n2δi,2

�

�

�

�c0
n1,n2

�

�

�

2
is the mean-field density of the ith species. Using

Eq. (41), the first-order operator δ1n̂i(r) can be expressed straightforwardly in terms of the
quasiparticle operators as

δ1n̂i(r) =
1
p

I

∑

α

∑

k

Ni,α,k

�

ei k·r b̂α,k + e−i k·r b̂†
α,k

�

, (A.3)

where the spectral weight of single-mode density excitations Ni,α,k is given by Eq. (20).
(Square density) – According to the QGW mapping, the upgrade of the square density

operator reads d̂i(r) = n̂2
i (r)→ D̂i(r) as given by Eq. (73). Specifically, up to the lowest order

in the fluctuations, one obtains

D̂i(r) =
∑

n1,n2

�

n2
1δi,1 + n2

2δi,2

�

ĉ†
n1,n2
(r) ĉn1,n2

(r)≈ d0,i +δ1D̂i(r) , (A.4)

where d0,i =
∑

n1,n2

�

n2
1δi,1 + n2

2δi,2

�

�

�

�c0
n1,n2

�

�

�

2
is the mean-field square density of the ith species.

The expansion of the first-order operator δ1D̂i(r) in terms of the quasiparticle excitations is

δ1D̂i(r) =
∑

n1,n2

�

n2
1δi,1 + n2

2δi,2

�

c0
n1,n2

�

δĉn1,n2
(r) +δĉ†

n1,n2
(r)
�

,

=
1
p

I

∑

α

∑

k

Di,α,k

�

ei k·r b̂α,k + e−i k·r b̂†
α,k

�

,
(A.5)

where we have defined the amplitude

Di,α,k =
∑

n1,n2

n2
i c0

n1,n2

�

uα,k,n1,n2
+ vα,k,n1,n2

�

. (A.6)
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(One-body boson field) – The quantization protocol of the QGW method upgrades the order
parameter of the one-body condensate to an effective boson field as ψi(r) → ψ̂i(r). It is
important to observe that ψ̂i(r) is a macroscopic object (related to the coherence properties
of the system) and is distinct from the microscopic field operators âi,r defined within second
quantization at the beginning of Sec. 2.1. To lowest order in the fluctuations, we find

ψ̂1(r) =
∑

n1,n2

p

n1 ĉ†
n1−1,n2

(r) ĉn1,n2
(r)≈ψ0,1 +δ1ψ̂1(r) , (A.7)

ψ̂2(r) =
∑

n1,n2

p
n2 ĉ†

n1,n2−1(r) ĉn1,n2
(r)≈ψ0,2 +δ1ψ̂2(r) , (A.8)

where ψ0,i is the one-body order parameter of the ith species at the mean-field level – see
Eq. (4) – and

δ1ψ̂i(r) =
1
p

I

∑

α

∑

k

�

Ui,α,k ei k·r b̂α,k + V ∗i,α,k e−i k·r b̂†
α,k

�

. (A.9)

The previous result clearly shows that the spectral amplitudes Ui,α,k

�

Vi,α,k

�

, introduced in
Eqs. (18), quantify the particle (hole) character of the excitation (α,k) for the ith component
of the system. When dealing with the calculation of expectation values in momentum space, it
is often convenient to replace the microscopic bosonic fields by the corresponding expression
in terms of quasiparticle operators as

âi,k −→
p

Iψ0,i δk,0 +
∑

α

�

Ui,α,k b̂α,k + V ∗i,α,k b̂†
α,−k

�

. (A.10)

The structure of the particle (hole) amplitudes Ui,α,k

�

Vi,α,k

�

is strictly related to the bosonic
statistics of the collective excitations, since

�

δ1ψ̂i(r),δ1ψ̂
†
i (s)
�

=
1
I

∑

k

ei k·(r−s)
∑

α

�
�

�Ui,α,k

�

�

2 −
�

�Vi,α,k

�

�

2�
= δr,s , (A.11)

where last equality is verified provided that
∑

α

�
�

�Ui,α,k

�

�

2 −
�

�Vi,α,k

�

�

2�
= 1. In practice, we find

that the previous identity is numerically satisfied if a sufficiently large number of excitation
branches are included into the α-summation.

(Pair/antipair field) – The quantized pair and antipair fields read

ψ̂P(r) =
∑

n1,n2

p

n1 n2 ĉ†
n1−1,n2−1(r) ĉn1,n2

(r)− ψ̂1(r) ψ̂2(r) , (A.12)

ψ̂C(r) =
∑

n1,n2

Æ

n1(n2 + 1) ĉ†
n1−1,n2+1(r) ĉn1,n2

(r)− ψ̂1(r) ψ̂
†
2(r) . (A.13)

Including first-order fluctuations only, the pairing operators can be expanded as

ψ̂P(r)≈ψ0,P +δ1ψ̂P(r) , (A.14)

ψ̂C(r)≈ψ0,C +δ1ψ̂C(r) , (A.15)

where the mean-field quantities ψ0,P and ψ0,C are respectively the pair and antipair order
parameters given by Eqs. (5) and

δ1ψ̂P(r) =
∑

n1,n2

p

n1 n2

�

c0
n1,n2

δĉ†
n1−1,n2−1(r) + c0

n1−1,n2−1δĉn1,n2
(r)
�

−ψ0,2δ1ψ̂1(r)−ψ0,1δ1ψ̂2(r) ,
(A.16)
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δ1ψ̂C(r) =
∑

n1,n2

Æ

n1(n2 + 1)
�

c0
n1,n2

δĉ†
n1−1,n2+1(r) + c0

n1−1,n2+1δĉn1,n2
(r)
�

−ψ0,2δ1ψ̂1(r)−ψ0,1δ1ψ̂
†
2(r) .

(A.17)

Recasting the δĉ’s in the quasiparticle basis, we can rewrite the first-order expansions (A.16)-
(A.17) in a compact, suggestive form

δ1ψ̂P/C(r) =
1
p

I

∑

α

∑

k

�

UP/C,α,k ei k·r b̂α,k + V ∗P/C,α,k e−i k·r b̂†
α,k

�

−ψ0,2δ1ψ̂1(r)−ψ0,1δ1ψ̂
†
2(r) ,

(A.18)

where the particle-hole amplitudes UP/C,α,k and VP/C,α,k are explicitly given by

UP,α,k =
∑

n1,n2

p

n1 n2

�

c0
n1−1,n2−1 uα,k,n1,n2

+ c0
n1,n2

vα,k,n1−1,n2−1

�

, (A.19)

UC,α,k =
∑

n1,n2

Æ

n1(n2 + 1)
�

c0
n1−1,n2+1uα,k,n1,n2

+ c0
n1,n2

vα,k,n1−1,n2+1

�

, (A.20)

VP,α,k =
∑

n1,n2

p

n1 n2

�

c0
n1,n2

uα,k,n1−1,n2−1 + c0
n1−1,n2−2 vα,k,n1,n2

�

, (A.21)

VC,α,k =
∑

n1,n2

Æ

n1(n2 + 1)
�

c0
n1,n2

uα,k,n1−1,n2+1 + c0
n1−1,n2+2 vα,k,n1,n2

�

, (A.22)

in complete analogy with Eqs. (18).
Recalling the discussion on the completeness relation concerning the one-body Bose fields

(A.11), a natural question that arises from the decompositions in Eqs. (A.16)-(A.17) is whether
they reproduce the canonical commutators

�

â1,r â2,r, â†
1,s â†

2,s

�

= δr,s [1+ n̂d] , (A.23)

�

â1,r â†
2,r, â†

1,s â2,s

�

= −δr,s n̂s , (A.24)

where n̂d and n̂s were defined in Sec. 2.1. Inserting the QGW expression of the pairing fields
(A.18), the first-order approximation of the commutation rules (A.23)-(A.24) reads

�

δ1ψ̂P/C(r),δ1ψ̂
†
P/C(s)
�

=
1
I

∑

k

ei k·(r−s)
∑

α

�
�

�Uα,P/C,k

�

�

2 −
�

�Vα,P/C,k

�

�

2�
. (A.25)

Notably, we find numerically that, due to the only approximate description of the excitation
spectrum of the CFSF and PSF phases, in particular the flat bands describing pairing and an-
tipairing excitations in Figs. 3 and 6 respectively, the above canonical relations are not satis-
fied in general. Likewise, we expect a similar result when the higher-order contributions are
included. For these reasons, only intraspecies coherence functions have been considered in
Sec. 3.3.

A.3 Second-order fluctuations

Having illustrated how first-order quantized excitations build on top of the mean-field observ-
ables, we now estimate the corrections to observables due to second-order quantum fluctua-
tions.
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Figure 17: (a) Control parameter F as defined in Eq. (A.26) plotted in two dimen-
sions as a function of 2 d J/U for fixed n0,d corresponding to the transitions shown in
the right panel. The point located on each curve indicates the location of the respec-
tive phase transition. (b)-(d) Quantum corrections to the order parameters and total
density for the transitions considered in the (a). (b) First-order MI-to-SF transition
for U12/U = 0.9 and nd = 2. (c) Second-order MI-to-SF transition for U12/U = 0.5
and nd = 2. (d) CFSF-to-SF transition for U12/U = 0.9 and nd = 1. (e) PSF-to-SF
transition for U12/U = −0.7 and nd ≈ 1.47. (f) Quantum corrections to the CFSF or-
der parameter for fixed total density nd = 1 at U12/U = 0.9 and along the µ/U = 0.5
line within the CFSF phase. (g) Quantum corrections to the PSF order parameter for
fixed total density nd ≈ 1.47 at U12/U = −0.7 and along the (µ/U)c = −0.35 critical
line within the PSF phase.

(Control parameter of the theory) – Following Ref. [36], we start our analysis by inspecting
the magnitude of quantum fluctuations around the Gutzwiller mean-field state, identified by
the control parameter

F = 1− 〈Â2(r)〉=
∑

n1,n2

〈δĉ†
n1,n2
(r)δĉn1,n2

(r)〉=
1
I

∑

α

∑

k

∑

n1,n2

�

�vα,k,n1,n2

�

�

2
. (A.26)

Within the QGW theory of the one-component Bose Hubbard model, it was found in Ref. [36]
that, for d = 3 and fixed 〈n̂d〉, F is peaked at the MI-to-SF transition and approaches zero
in the limiting regimes away from the transition. For the present two-component case, we
show results for d = 2 in Fig. 17(a) for fixed nd across the first and second-order MI-to-SF
transitions [blue and orange lines, respectively], the PSF-to-SF transition [purple line], and
the CFSF-to-SF transition [yellow line].

In fixing the total filling and approaching the deep SF regime, one travels along the line
µ ∼ −2 d J for increasing J , such that the limit nd U → 0 is reached. In three dimensions,
this limit coincides with the dilute, weakly-interacting regime, as the two-body scattering am-
plitude is density-independent. On the contrary, from renormalization group arguments it is
known that in two dimensions the dilute limit is more subtle, since the two-body scattering am-
plitude in the weakly-interacting regime depends logarithmically on the diluteness parameter
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nd a2
2D, where a2D is the two-dimensional scattering length [34, 84–86]. The bare interaction

strength U used throughout our analysis cannot capture this behavior. Consequently, we do
not extend our study of quantum fluctuations for d = 2 beyond 2 d J/U ∼ 1.

The pathologies that arise when the dilute limit is approached in our d = 2 QGW theory
can be seen in Fig. 17(a). Here, it is shown how the control parameter increases monotonically
for large 2 d J/U , which strongly contrasts with the monotonic decay seen in the d = 3 QGW
study of the one-component BH model [36]. Although the mean-field description provides the
usual one-body coherent state in this limit [29], the growth of F indicates that this is not the
exact ground state of the dilute gas. Nonetheless, for smaller values of 2 d J/U , including the
critical regions and the deep MI, CFSF and PSF regimes, we observe in Fig. 17(b)-(e) that F
remains small, which supports the overall reliability of our approach.

(Quantum corrections) – Now that we identified the range of validity of the QGW method,
we turn to study the quantum corrections to the local order parameters and densities. Expand-
ing the corresponding Gutzwiller operators to second order in the fluctuations, these quantities
are modified as

〈N̂i(r)〉= n0,i + 〈δ2n̂i(r)〉 , (A.27)

〈D̂i(r)〉= d0,i + 〈δ2D̂i(r)〉 , (A.28)

〈ψ̂i(r)〉=ψ0,i + 〈δ2ψ̂i(r)〉 , (A.29)

〈ψ̂P(r)〉=ψ0,P + 〈δ2ψ̂P(r)〉 , (A.30)

〈ψ̂C(r)〉=ψ0,C + 〈δ2ψ̂C(r)〉 , (A.31)

where we note that the first-order fluctuations analysed in App. A.2 make a vanishing contri-
bution and hence do not correct the mean-field predictions. The second-order terms appearing
on the right-hand side of Eqs. (A.27)-(A.31) are explicitly given by

〈δ2n̂i(r)〉= −F n0,i +
∑

n1,n2

�

n1δi,1 + n2δi,2

�

〈δĉ†
n1,n2
(r)δĉn1,n2

(r)〉 , (A.32)

〈δ2D̂i(r)〉= −F d0,i +
∑

n1,n2

�

n2
1δi,1 + n2

2δi,2

�

〈δĉ†
n1,n2
(r)δĉn1,n2

(r)〉 , (A.33)

〈δ2ψ̂1(r)〉= −Fψ0,1 +
∑

n1,n2

p

n1 〈δĉ†
n1−1,n2

(r)δĉn1,n2
(r)〉 , (A.34)

〈δ2ψ̂2(r)〉= −Fψ0,2 +
∑

n1,n2

p
n2 〈δĉ†

n1,n2−1(r)δĉn1,n2
(r)〉 , (A.35)

〈δ2ψ̂P(r)〉c =− Fψ0,P +
∑

n1,n2

p

n1 n2 〈δĉ†
n1−1,n2−1(r)δĉn1,n2

(r)〉

−
�

ψ0,2 〈δ2ψ̂1(r)〉+ψ0,1 〈δ2ψ̂2(r)〉
�

,
(A.36)

〈δ2ψ̂C(r)〉c =− Fψ0,C +
∑

n1,n2

Æ

n1(n2 + 1) 〈δĉ†
n1−1,n2+1(r)δĉn1,n2

(r)〉

−
�

ψ∗0,2 〈δ2ψ̂1(r)〉+ψ0,1 〈δ2ψ̂
†
2(r)〉
�

,
(A.37)

where the symbol 〈·〉c on the left hand-side of Eqs. (A.36)-(A.37) emphasizes that one-body
correlations are subtracted on the right hand side so that only genuine pairing/antipairing
quantum fluctuations are retained, in accordance with Eqs. (5). At zero temperature, the
second-order expectation values appearing in Eqs. (A.32)-(A.37) can be evaluated straightfor-
wardly by a generalization of the following two examples,

〈δ2n̂i(r)〉= −F n0,i +
1
I

∑

α

∑

k

∑

n1,n2

�

n1δi,1 + n2δi,2

� �

�vα,k,n1,n2

�

�

2
, (A.38)
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〈δ2ψ̂i(r)〉= −Fψ0,i +
1
I

∑

α

∑

k

∑

n1,n2

�

δi,1
p

n1 vα,k,n1−1,n2
+δi,2

p
n2 vα,k,n1,n2−1

�

vα,k,n1,n2
. (A.39)

from which we obtain self-contained expressions for the one-species filling and the one-body
order parameter corrected by quantum fluctuations,

〈N̂i(r)〉= (1− F)n0,i +
1
I

∑

α

∑

k

∑

n1,n2

�

n1δi,1 + n2δi,2

� �

�vα,k,n1,n2

�

�

2
, (A.40)

〈ψ̂1(r)〉= (1− F)ψ0,1 +
1
I

∑

α

∑

k

∑

n1,n2

p

n1 vα,k,n1−1,n2
vα,k,n1,n2

. (A.41)

Accordingly, the expectation value of the total density is approximated by
nd ≈ n0,d +
∑

i〈δ2n̂i(r)〉, as taken into account in Sec. 3 when discussing the results of the
QGW approach.

It is interesting to observe that, within the QGW formalism, quantum-corrected local ob-
servables are always given by the sum of two distinct terms, one given by quantum fluctuations
only and the other, proportional to the mean-field average, deriving exclusively from the nor-
malization operator via the expectation value




Â2(r)
�

defining the control parameter F . This
result makes more explicit the physical role of Â(r), which accounts for the feedback of quan-
tum fluctuations onto the Gutzwiller ground state. Along these lines, we also remark that this
contribution is of key importance in giving accurate predictions for the local density and spin
correlations presented in Sec. 3.4.

The relative quantum corrections to the total density and the one-body order parameters
are shown in Fig. 17(b)-(e) for fixed nd . In the deep CFSF, PSF and MI phases, quantum
fluctuations are always small. This remains true also near the transition points, whereas the
corrections grow as either the collapse point or the limit nd U → 0 is approached. These in-
creasingly large corrections mirror the pathologies of this limit in two dimensions. It is worth
noticing that, in Fig. 17(b)-(e), the corrections to the one-body order parameters appear to
diverge on the brink of the phase transitions. We expect that the self-consistent inclusion of
these effects into the phase diagram description would shift the CFSF, PSF and MI bound-
aries towards larger hopping energies in agreement with the results of quantum Monte Carlo
simulations [36,52].

The quantum corrections to the CFSF and PSF order parameters are shown in Fig. 17(f)-
(g) for fixed nd and across the respective phase transitions to the SF regime. In the deep CFSF
and PSF phases, these corrections are small, which indicates that the effect of fluctuations in
these phases within the QGW picture is minimal. The corrections remain of the order of 10−1

across the transitions and then monotonically increase as the pathological limit nd U → 0 is
reached. However, we note that the amplitude of relative quantum corrections is amplified
by the fact that both ψ0,C and ψ0,P decrease rapidly for weak interactions – see panels (c) of
Fig. 1 and Fig. 4.

B Linear response formalism within the QGW approach

This appendix is dedicated to a detailed review of the linear response formalism (c.f. Ref. [55])
applied to the QGW quantum theory. For this purpose, we derive the relevant expressions for
the density, spin and current response functions; in particular, the latter objects are the basic
quantities from which the superfluid matrix is calculated in Sec. 3.2.
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B.1 Linear response formalism

Suppose that a Hermitian, time-dependent perturbation is applied to the Hamiltonian of the
system at time t = 0,

Ĥp(t) = Ĥ + θ (t) Ĝ(t) . (B.42)

Let us define |ψN
n 〉 as the nth eigenstate of Ĥ with a total number of particles equal to N . For

t < 0, the system is in the true many-body ground state |ψN
0 〉 and the time evolution of the

system is given by |ψ(t)〉 = Û(t)|ψN
0 〉 where Û(t) is the evolution operator with boundary

condition Û(0) = 1. Assuming that the perturbation Ĝ(t) is sufficiently small with respect to
all the energy scales of Ĥ, Û(t) can be approximated by the Born approximation of the solution
to the equation iħh∂t Û(t) = Ĥp(t) Û(t), namely

Û(t)≈ e−i Ĥ t/ħh −
i
ħh

∫ t

0

dτ e−i Ĥ(t−τ)/ħh Ĝ(τ) e−i Ĥ τ/ħh . (B.43)

Now, we wish to calculate the time evolution of some observable 〈F̂(t)〉, which we determine in
the Heisenberg picture via the relation F̂(t) = ei Ĥ t F̂ e−i Ĥ t . Evaluating 〈F̂(t)〉 using Eq. (B.43),
we find




F̂(t)
�

=



ψN
0

�

�Û†(t) F̂ Û(t)
�

�ψN
0

�

≈



F̂
�

eq −
i
ħh

∫ t

0

dτ



ψN
0

�

�

�

Ĝ(τ), F̂(t −τ)
��

�ψN
0

�

, (B.44)

where the “eq” subscript indicates the equilibrium expectation value. The kernel of the above
integral is known as the time-domain response function

χF̂ ,Ĝ(t) = −
i
ħh
θ (t)



ψN
0

�

�

�

F̂(t), Ĝ(0)
��

�ψN
0

�

. (B.45)

In frequency space, we have

χF̂ ,Ĝ(ω) = lim
ϵ→0+

∫ ∞

−∞
d t e−ϵ t eiω t χF̂ ,Ĝ(t) , (B.46)

where the infinitesimal regularization parameter ϵ→ 0+ ensures that at t = −∞ the system
is governed by the unperturbed Hamiltonian Ĥ. Written in terms of the perturbation operator
and the probed observable, we find then the general expression

χF̂ ,Ĝ(ω) = −
i
ħh

lim
ϵ→0+

∫ ∞

0

d t e−ϵ t eiω t

�

F̂(t), Ĝ(0)
��

. (B.47)

In the following subsections, we proceed to specialize Eq. (B.47) to the case of the density
and current response functions of the two-component BH model under the QGW quantum
theory. Although the linear fluctuations around the mean-field Gutzwiller state would provide
a similar result at lowest order, the QGW formalism makes the calculation straightforward
and particularly transparent. Moreover, the higher-order correlations accessed by the QGW
quantum theory are shown to introduce the effect of multi-mode fluctuations into the response
functions: in particular, this last feature is at the roots of our accurate predictions for the
current response functions and, in turn, of the superfluid components of the system.

B.2 Density response function

As a standard yet relevant case of study, we are interested in the linear response of the q-
component of the density operator

ρ̂i,q =
∑

k

â†
i,k−q âi,k , (B.48)
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for the ith species under the same type of density perturbation. Therefore, we set F̂ = Ĝ = δ ρ̂i,q

with δρ̂i,q = ρ̂i,q −



ρ̂i,q

�

eq, where the equilibrium contribution vanishes in a uniform system
unless at q= 0. The density-density response function is given by rephrasing Eq. (B.47) into

χn̂i
(q,ω) = −

i
ħh

lim
ϵ→0+

∫ ∞

0

d t e−ϵ t eiω t

�

δρ̂i,q(t),δρ̂i,−q(0)
��

. (B.49)

In order to evaluate this response function within the QGW formalism, we apply the usual
quantization procedure to the expectation value in Eq. (B.49), which at the lowest order in
the fluctuations is mapped into

〈
�

δρ̂i,q(t),δρ̂i,−q(0)
�

〉 −→
∑

r

e−i q·r 〈[δ1n̂i(r, t),δ1n̂i(0, 0)]〉 , (B.50)

where δ1n̂i(r, t) is the first-order expansion of the QGW density operator defined in Eq. (A.3),
whose time-dependence is controlled by the interaction picture of the QGW Hamiltonian (42).
Therefore, evaluating the commutator in Eq. (B.50), we readily obtain

χn̂i
(q,ω) =

2
ħh

∑

α

N2
i,α,qωα,q

(ω+ i 0+)2 −ω2
α,q

. (B.51)

As anticipated, our result forχn̂i
(q,ω) agrees exactly with the linear response result in Ref. [32]

– see in particular Eq. (29) and App. A therein – based on the time-dependent Gutzwiller ap-
proximation, although our quantum formalism offers a more transparent and straightforward
tool for the estimation of response functions, as well as the unexplored possibility of including
non-Gaussian fluctuations in the density (spin) channel.

B.3 Current response functions

B.3.1 Current operator

As a starting ground, we determine the species-resolved local current operators by resorting
to the continuity equation, which is given by

∇r ĵi,r = −
∂ n̂i,r

∂ t
=

i
ħh
�

n̂i,r, Ĥ
�

. (B.52)

where ∇r has to be intended according to its definition on a lattice. Inserting the BH Hamil-
tonian (2) on the right-hand side of Eq. (B.52), one finds

ĵi,r =
i J a
ħh

d
∑

j=1

�

â†
i,r+ej

âi,r − h.c.
�

ej . (B.53)

For later convenience, we introduce the current operator acting along a specific direction of
the square lattice, for instance the x-directed links, for which we have

ĵi,r|x =
i J a
ħh

�

â†
i,r+ex

âi,r − h.c.
�

. (B.54)

In momentum space, the unidirectional current operator Eq. (B.54) transforms into

ĵi,q|x =
i J a
ħh

∑

k

�

e−i kx a − ei(kx+qx )a
�

â†
i,k âi,k+q , (B.55)
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which in the uniform limit q→ 0 becomes

ĵi,q→0|x =
ħh

m a

∑

k

sin(kx a) â†
i,k âi,k . (B.56)

The uniform current operator derived above is the fundamental object by which we estimate
the relevant current response functions in the following subsections.

B.3.2 Intraspecies response

First, we consider the case where both the probe and the response operators correspond to the
same current species ĵi,q. Let us take the momentum vector q to lie along the z axis, then the
longitudinal and transverse components of the current operator are given by ĵi,q|z and ĵi,q|x ,
respectively. In the following, we consider only the static (ω= 0) and uniform (q→ 0) limits
of the transverse response function [87,88], which represents the paramagnetic contribution
to the superfluid matrix discussed in Sec. 3.2. The relevant response function is

χT
ĵi , ĵi
(q→ 0,ω= 0) = −

i
ħh

lim
ϵ→0+

∫ ∞

0

d t e−ϵ t

�

ĵi|x(t), ĵi|x(0)
��

. (B.57)

Starting from Eq. (B.56) and making use of the mapping (A.10), the QGW quantization of the
uniform current operator ĵi,q→0(t)|x is found to be

Ĵi|x =
ħh

m a

∑

α,β

∑

k

�

U∗i,α,k b̂†
α,k + Vi,α,k b̂α,−k

��

Ui,β ,k b̂β ,k + V ∗i,β ,k b̂†
β ,−k

�

sin(kx a) , (B.58)

in which the presence of the condensate plays no role as sin(kx a) vanishes at k= 0. Next, on
the right-hand side of Eq. (B.57) we insert a complete basis of excited states as a resolution of
the identity operator to obtain

χT
ĵi , ĵi
(0, 0) = −

i
ħh

lim
ϵ→0+

∫ ∞

0

d t e−ϵ t
∑

N ,n>0

�


ψN
0

�

�Ĵi|x(t)
�

�ψN
n

� 


ψN
n

�

�Ĵi|x(0)
�

�ψN
0

�

− c.c.
�

. (B.59)

At zero temperature, we obtain that the first-order term of the QGW current operator
(B.58) produces a vanishing contribution to the transverse current response. Therefore, we
immediately recognize that only expectation values of the kind 〈ψN

0 | b̂α,k b̂β ,p |ψN+2
n 〉 and

〈ψN
0 | b̂α,k b̂β ,p |ψN+2

n 〉 provide a finite result. More precisely, the second-order of Ĵi(t)|x gen-
erating such contributions can be written in a symmetric form as

∑

α,β

∑

k

Ui,α,k Vi,β ,k sin(kx a) b̂α,k b̂β ,k =
1
2

∑

α,β

∑

k

�

Ui,α,k Vi,α,k − Ui,β ,k Vi,α,k

�

sin(kx a) b̂α,k b̂β ,k , (B.60)

where we have used the fact that the particle (hole) amplitudes Ui,α,k

�

Vi,α,k

�

are even functions
of momentum in our system. Plugging the right-hand side of Eq. (B.60) back into the linear
response function (B.59) and computing the time integral, we find

χT
ĵi , ĵi
(0, 0) = −

ħh
(m a)2

22

4

∑

α,β

∑

k

�

Ui,α,k Vi,β ,k − Ui,β ,k Vi,α,k

�2

ωα,k +ωβ ,k
sin2(kx a) , (B.61)

where we have neglected the conjugation of the particle (hole) amplitudes Ui,α,k

�

Vi,α,k

�

for
simplicity, as they turn out to be always real in the present case. In the above equation, al-
though the numerical factors cancel each other, we have chosen to write them explicitly in or-
der to emphasize their origins. The factor of 1/4 arises from the symmetrization of the current
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operator in Eq. (B.60); one factor of 2 descends from the inner product 〈ψN
0 |b̂α,k b̂β ,p|ψN+2

n 〉
(appearing twice), while the other factor of 2 comes from the complex conjugate term in
Eq. (B.59).

B.3.3 Interspecies response

Now, we consider the case in which the probe is proportional to the current of one species
while we measure the linear response of the current of the other species, in the transverse di-
rection and in the static-uniform limit as before. This corresponds to the off-diagonal response
function

χT
ĵ1, ĵ2
(q→ 0,ω= 0) = −

i
ħh

lim
ϵ→0+

∫ ∞

0

d t e−ϵ t

�

ĵ1|x(t), ĵ2|x(0)
��

. (B.62)

The calculation of χT
ĵ1, ĵ2
(q→ 0,ω = 0) within the QGW framework can be performed analo-

gously to the intraspecies case by considering the current operator (B.58) for both the bosonic
flavours. The final result is

χT
ĵ1, ĵ2
(0, 0) = −

ħh
(m a)2

22

4

∑

α,β

∑

k

∏2
i=1

�

Ui,α,k Vi,β ,k − Ui,β ,k Vi,α,k

�

ωα,k +ωβ ,k
sin2(kx a) , (B.63)

where the numerical factors have the same interpretations as for Eq. (B.61).
It is instructive to briefly comment on how Eq. (B.63) fundamentally differs from the equiv-

alent result of Ref. [27]within the Bogoliubov approximation. In the first place, the expression
of χT

ĵ1, ĵ2
(q→ 0,ω= 0) in that work contains an additional factor of 1/2. This is due to the fact

that the U ’s and V ’s for the spin and density Goldstone modes are each normalized to one in
Ref. [27], whereas in the present case the normalization condition for the U ’s and V ’s is given
by the sum over all the excitation branches (see the relative discussion in App. A.2), which
typically takes more than two branches to saturate numerically. Furthermore, the two results
differ by a minus sign. When only the first two excitation branches are considered in the QGW
method, one finds that the U ’s and V ’s for the density Goldstone mode differ by a minus sign
between the two species, whereas they are identical for the spin mode. This results in an over-
all minus sign when only these two branches are considered in Eq. (B.63). However, we notice
that the normalization condition is far from being saturated if limited to the Goldstone modes,
so a good agreement with the Bogoliubov result is expected only in the weakly-interacting
regime. These remarks resolve the apparent discrepancies between the Bogoliubov and QGW
predictions.

B.4 Average kinetic energy

Albeit not being a proper response function, we conclude by calculating the mean value of the
average kinetic energy along x-directed links of the lattice, Ki|x , which is exactly proportional
to the density ni in the well-known expression for the superfluid matrix on the continuum [27].
The local kinetic energy operator for the ith species along the x direction is defined as

K̂i|x(r) = −J
�

â†
r+ex,i âr,i + h.c.
�

. (B.64)

Within the mean-field Gutzwiller approximation, one obtains K0,i|x(r) = −2 J
�

�ψ0,i

�

�

2
,

which is trivially proportional to the condensate fraction. To improve this physical descrip-
tion of the kinetic energy, we evaluate the average kinetic energy by rewriting the operator
(B.64) in terms of the QGW Bose fields (A.7)-(A.8). It follows that, up to the lowest-order in

46

https://scipost.org
https://scipost.org/SciPostPhys.12.3.111


SciPost Phys. 12, 111 (2022)

the quantum fluctuations, the QGW local kinetic energy operator reads

K̂i|x(r)≈− 2 J
�

�ψ0,i(r)
�

�

2 − J
�

ψ0,i(r)δ1ψ̂
†
i (r+ ex) +ψ

∗
0,i(r+ ex)δ1ψ̂i(r) + h.c.

�

− J
�

δ1ψ̂
†
i (r+ ex)δ1ψ̂i(r) + h.c.

�

.
(B.65)

For a uniform lattice, the average value of K̂i|x(r) is given by

Ki|x ≈ −2 J
�

�ψ0,i

�

�

2 −
2 J
I

∑

α

∑

k

�

�Vi,α,k

�

�

2
cos(kx a) , (B.66)

where we have made use of Eq. (A.9) and neglected finite-temperature contributions. We
notice that only the first term on the right-hand side of Eq. (B.66) agrees with the prediction of
mean-field theory, while the second term is due to zero-point fluctuations properly accounted
by our quantum theory. In this regard, the expression of Ki|x recalls the average kinetic energy
of the one-component system derived in Ref. [36].

References

[1] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner and P. Zoller, Cold bosonic atoms in optical
lattices, Phys. Rev. Lett. 81, 3108 (1998), doi:10.1103/PhysRevLett.81.3108.

[2] M. P. A. Fisher, P. B. Weichman, G. Grinstein and D. S. Fisher, Boson lo-
calization and the superfluid-insulator transition, Phys. Rev. B 40, 546 (1989),
doi:10.1103/PhysRevB.40.546.

[3] A. Altland and B. D. Simons, Condensed matter field theory, Cambridge University Press,
Cambridge, UK, ISBN 9780521769754 (2010).

[4] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Quantum phase transition
from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39 (2002),
doi:10.1038/415039a.

[5] E. Altman, W. Hofstetter, E. Demler and M. D. Lukin, Phase diagram of two-
component bosons on an optical lattice, New J. Phys. 5, 113 (2003), doi:10.1088/1367-
2630/5/1/113.

[6] A. Kuklov, N. Prokof’ev and B. Svistunov, Commensurate two-component bosons in
an optical lattice: Ground state phase diagram, Phys. Rev. Lett. 92, 050402 (2004),
doi:10.1103/PhysRevLett.92.050402.

[7] A. B. Kuklov and B. V. Svistunov, Counterflow superfluidity of two-species ultra-
cold atoms in a commensurate optical lattice, Phys. Rev. Lett. 90, 100401 (2003),
doi:10.1103/PhysRevLett.90.100401.

[8] A. Isacsson, M.-C. Cha, K. Sengupta and S. M. Girvin, Superfluid-insulator transi-
tions of two-species bosons in an optical lattice, Phys. Rev. B 72, 184507 (2005),
doi:10.1103/PhysRevB.72.184507.

[9] A. Hubener, M. Snoek and W. Hofstetter, Magnetic phases of two-component
ultracold bosons in an optical lattice, Phys. Rev. B 80, 245109 (2009),
doi:10.1103/PhysRevB.80.245109.

47

https://scipost.org
https://scipost.org/SciPostPhys.12.3.111
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1038/415039a
https://doi.org/10.1088/1367-2630/5/1/113
https://doi.org/10.1088/1367-2630/5/1/113
https://doi.org/10.1103/PhysRevLett.92.050402
https://doi.org/10.1103/PhysRevLett.90.100401
https://doi.org/10.1103/PhysRevB.72.184507
https://doi.org/10.1103/PhysRevB.80.245109


SciPost Phys. 12, 111 (2022)

[10] A. Hu, L. Mathey, I. Danshita, E. Tiesinga, C. J. Williams and C. W. Clark, Counterflow
and paired superfluidity in one-dimensional Bose mixtures in optical lattices, Phys. Rev. A
80, 023619 (2009), doi:10.1103/PhysRevA.80.023619.

[11] A. Andreev and E. Bashkin, Three-velocity hydrodynamics of superfluid solutions, J. Exp.
Theor. Phys. 42, 164 (1976).

[12] M. A. Alpar, S. A. Langer and J. A. Sauls, Rapid postglitch spin-up of the superfluid core in
pulsars, Astrophys. J. 282, 533 (1984), doi:10.1086/162232.

[13] O. Sjöberg, On the Landau effective mass in asymmetric nuclear matter, Nucl. Phys. A 265,
511 (1976), doi:10.1016/0375-9474(76)90558-3.
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