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Abstract

Simulating the dynamics of many-body quantum systems is believed to be one of the first
fields that quantum computers can show a quantum advantage over classical comput-
ers. Noisy intermediate-scale quantum (NISQ) algorithms aim at effectively using the
currently available quantum hardware. For quantum simulation, various types of NISQ
algorithms have been proposed with individual advantages as well as challenges. In
this work, we propose a new algorithm, truncated Taylor quantum simulator (TQS), that
shares the advantages of existing algorithms and alleviates some of the shortcomings.
Our algorithm does not have any classical-quantum feedback loop and bypasses the bar-
ren plateau problem by construction. The classical part in our hybrid quantum-classical
algorithm corresponds to a quadratically constrained quadratic program (QCQP) with a
single quadratic equality constraint, which admits a semidefinite relaxation. The QCQP
based classical optimization was recently introduced as the classical step in quantum
assisted eigensolver (QAE), a NISQ algorithm for the Hamiltonian ground state prob-
lem. Thus, our work provides a conceptual unification between the NISQ algorithms for
the Hamiltonian ground state problem and the Hamiltonian simulation. We recover dif-
ferential equation-based NISQ algorithms for Hamiltonian simulation such as quantum
assisted simulator (QAS) and variational quantum simulator (VQS) as particular cases
of our algorithm. We test our algorithm on some toy examples on current cloud quan-
tum computers. We also provide a systematic approach to improve the accuracy of our
algorithm.
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1 Introduction

Digital quantum computers have made immense progress in recent years, advancing to solving
problems considered to take an unreasonable time to compute for classical computers [1,2]. In
short, we are now in the Noisy Intermediate-Scale Quantum (NISQ) era [3,4], which is char-
acterized by quantum computers with up to a few hundred noisy qubits and lacking full scale
quantum error correction. Thus, noise will limit the usefulness of the computations carried
out by these computers [3], preventing algorithms that offer quantum advantage for practical
problems, such as Shor’s algorithm for prime factorization [5], from being implemented.

However, just because such algorithms cannot be implemented on NISQ devices does not
mean that quantum advantage for practical problems cannot be found with NISQ devices.
There is currently great interest in the quantum computing and quantum information com-
munity to develop algorithms that can be run on NISQ devices but yet deal with problems
that are practical [4, 6, 7]. Some of the most promising avenues deal with the problems in
many-body physics and quantum chemistry. One major problem in this field is to develop al-
gorithms capable of estimating the ground state and energy of many-body Hamiltonians. To
such ends, algorithms like variational quantum eigensolver (VQE) [8,9] and quantum assisted
eigensolver (QAE) [10,11] have been proposed.

The other major problem is to be able to simulate the dynamics of these many-body Hamil-
tonians. This task can be extremely challenging for classical computers, and Feynman pro-
posed that this would be one of the areas where quantum computers could exhibit clear ad-
vantages over classical computers [12]. Powerful methods to simulate quantum dynamics on
fault-tolerant quantum computers have been proposed, such as the concept of using truncated
Taylor series by Berry et al [13].

On NISQ devices, a standard approach in simulating quantum dynamics is to utilize the
Trotter-Suzuki decomposition of the unitary time evolution operator into small discrete steps.
Each step is made up of efficiently implementable quantum gates, which can be run on the
quantum computer [14–20]. However, the depth of the quantum circuit increases linearly with
evolution time and the desired target accuracy. On NISQ devices, fidelity rapidly decreases af-
ter a few Trotter steps [21], implying long time scales will be unfeasible to simulate with this
method. Alternatives to Trotterization have been proposed, such as VQS [22–24], subspace
variational quantum simulator (SVQS) [25], variational fast forwarding (VFF) [26,27], fixed
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state variational fast forwarding (fsVFF) [28], quantum assisted simulator [29,30] and gener-
alized quantum assisted simulator (GQAS) [31] to name a few.

Recently, Otten, Cortes and Gray have proposed the idea of restarting the dynamics after
every timestep by approximating the wavefunction with a variational ansatz [32]. Building
on that, Barison, Vicentini and Carleo have proposed a new algorithm [33] for simulating
quantum dynamics. Their algorithm, named projected variational quantum dynamics (pVQD)
combines the Trotterization and VQS approaches [22,23]. They replace the differential equa-
tion with an optimization problem, although not well characterized, and require much simpler
circuits compared to VQS. However, pVQD requires a quantum-classical feedback loop and
might suffer from the barren plateau problem [34] as well the optimization problem may be
computationally hard [35]. Further, the feedback loop mandates that one has to wait for each
computation to finish before the next computation is run, which can be a major bottleneck on
cloud-based quantum computers that are accessed via a queue.

Here, we propose the truncated Taylor quantum simulator (TQS) as new algorithm to sim-
ulate quantum dynamics. Our algorithm is building on the ideas of pVQD [32, 33] combined
with the ansatz generation of QAS [29], which we further enhance by applying the concept
of truncated Taylor series by Berry et al [13]. Our contributions and our algorithm are as
following:

1. We recast the simulation of the quantum dynamics as a quadratically constrained
quadratic program (QCQP). This optimization problem, unlike the optimization prob-
lem in pVQD, is well characterized and invites rigorous analysis. The QCQP in our algo-
rithm admits a semidefinite relaxation [10]. Moreover, based on ideas from [10], one
can provide a sufficient condition for a local minimum to be a global minimum, which a
solver can further use as a stopping criterion. Since the classical optimization program
in QAE is also a QCQP, it helps us achieve a conceptual unification of TQS with QAE.

2. The differential equations which form the classical part of QAS and VQS can be recovered
in our framework. Since VQS is already a particular case of QAS [29], our approach
yields both VQS and QAS as special cases of TQS.

3. We remove the need for the classical-quantum feedback loop in pVQD. The absence of
the feedback loop yields our algorithm to be exceptionally faster than the feedback loop
based NISQ algorithms for simulating quantum dynamics such as [22,25–28].

4. Our algorithm avoids the trainability issues that plague other variational quantum algo-
rithms. The choice of a problem-aware ansatz and the structure of the TQS algorithm
helps bypass the barren plateau problem. It is known that in variational quantum algo-
rithms that rely on a parametric quantum circuit, there will always be a tradeoff between
trainability and expressibility, implying that a highly expressible ansatz cannot be easily
trainable [36]. In our case, we do not rely on parametric quantum circuits, thus we
bypass this problem. Furthermore, our algorithm provides a systematic way to obtain a
more expressible ansatz, which is missing in other algorithms.

2 TQS Approach

Let us first assume that the Hamiltonian H is expressed as a linear combination of r tensored
Pauli matrices

H =
r
∑

i=1

βi Pi , (1)
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with coefficients βi ∈ C. The unitary evolution under the action of the Hamiltonian H for time
∆t is given by

U (∆t) = exp (−ιH∆t) = exp

 

−ι∆t
r
∑

j=1

β j Pj

!

(2)

= I − ι∆t

 

r
∑

j=1

β j Pj

!

−
∆t2

2

 

r
∑

j=1

β j Pj

!2

+O
�

∆t3
�

. (3)

We do not need to implement the action of the unitary evolution in such a way. However, for
purposes of describing the algorithm, we will use this power series expansion first, and talk
more about alternatives later. We will now truncate the series, similar to [13]. If we choose
small values of ∆t with respect to the eigen energies of H, we can approximate the unitary
evolution with V (∆t)

U (∆t)≈ I − ι∆t

 

r
∑

j=1

β j Pj

!

≡ V (∆t) . (4)

The classical evolution timestep ∆t should be chosen smaller than all relevant timescales of
the Hamiltonian H to be simulated. This requires knowledge of the spectrum of H, which
in general is not available. However, we can find appropriate values for ∆t in an heuristic
manner. In our algorithm, the evolution with∆t is performed on a classical computer only and
thus we can choose any value for∆t without requiring any additional quantum computational
cost. Thus, we can simply evolve with a very small value for ∆t. To verify it is small enough,
we can repeat the classical evolution for an even smaller value such as ∆t/2. If the results for
both ∆t and ∆t/2 match, we can assume that ∆t provides sufficient accuracy.

Let us next choose the ansatz at time t as linear combination of elements from cumulative
K-moment states, CSK (refer to [29] for the formal definition). These states are defined in
the same way as in [29] and will be constructed with the help of the given Hamiltonian,
by essentially considering powers of the Hamiltonian. In terms of Pauli matrices, given a
set of r tensored Pauli unitary matrices obtained from the unitary terms of the Hamiltonian
P ≡ {Pi}ri=1 and a positive integer K and some efficiently preparable quantum state |ψ〉, the
K-moment states are the set of quantum states of the form

{|χ〉}K = {PiK . . . Pi2 Pi1 |ψ〉}
r
iK=1,...,i2=1,i1=1, (5)

for Pil ∈ P , where the indices i all run from 1 to r. We note that we only include unique states
within the set {|χ〉}K . This corresponds to removing any repeated Pauli unitary in P . It should
also be mentioned that the way the K-moment states are being generated is closely related
to the Taylor expansion of the time evolution operator. If we consider the evolution of an
arbitrary state by the time evolution operator, by observing that the Taylor expansion involves
powers of the Hamiltonian H, it is clear that choosing the ansatz in such a way is suitable, as
the |χi〉 ∈ {|χ〉}K states are essentially states in the Hilbert space of HK |ψ〉. This set is denoted
by SK . The cumulative K-moment states CSK are also defined in [29] as CSK ≡ ∪K

j=0S j .
Now the ansatz is expressed as

|ψ (α (t))〉K =
∑

|χi〉∈CSK

αi(t)|χi〉 , (6)

with some αi ∈ C. For small values of ∆t, the ansatz at time t +∆t is given by

|ψ (α (t +∆t))〉K =
V (∆t) |ψ (α (t))〉K

(〈ψ (α (t)) |K V † (∆t)V (∆t) |ψ (α (t))〉K)
1
2

. (7)
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Using the ideas in [33], our goal now is to variationally approximate the time evolution of
the system by adjusting our variational parameters. The crucial difference in our case is that
our variational parameters α are coefficients which do not change the basis quantum states
|χi〉. Thus, they can be solely updated via a classical computer and do not require a quantum-
classical feedback loop. To evolve by time ∆t, we update the αi parameters to α′i such that
the following fidelity measure is maximized

F
�

α′
�

=

�

�〈ψ
�

α′
�

|K V (∆t) |ψ (α)〉K
�

�

2

〈ψ (α) |K V † (∆t)V (∆t) |ψ (α)〉K
. (8)

Using the notation |φ〉= V (∆t) |ψ (α)〉K , the expression for fidelity becomes

F
�

α′
�

=
〈ψ
�

α′
�

|φ〉K〈φ|ψ
�

α′
�

〉K
〈φ|φ〉

. (9)

Using the notation Wφ ≡
|φ〉〈φ|
〈φ|φ〉 , the above expression further simplifies to

F
�

α′
�

= 〈ψ
�

α′
�

|KWφ |ψ
�

α′
�

〉K . (10)

The goal is to maximize the fidelity subject to the constraint that 〈ψ
�

α′
�

|ψ
�

α′
�

〉 = 1. Thus,
the optimization program at timestep t is given by

max
α′
〈ψ
�

α′
�

|KWφ |ψ
�

α′
�

〉K (11)

s.t. 〈ψ
�

α′
�

|ψ
�

α′
�

〉K = 1 . (12)

Using the elements from CSK and the Hamiltonian H, we define the overlap matrices E and
D as the following

Em,n = 〈χm|χn〉 , (13)

Dm,n =
∑

j

β j〈χm|Pj|χn〉 . (14)

Because of the way the |χn〉 states are constructed, these values can be easily computed on
a quantum computer, as they simplify to the expectation values of Pauli strings acting on the
original quantum state |ψ〉. The constraint in the optimization program 12 can written in
terms of α′ as

α′
†
Eα′ = 1 . (15)

We proceed to write the objective in the optimization program 12 in terms of the overlap
matrices E and D. In first order, we can simplify the expression

〈φ|φ〉= 〈ψ(α)|K
�

I + (∆t)2H2
�

|ψ(α)〉K
= α†Eα+O((∆t)2)≈ α†Eα. (16)

Further, using the notation G ≡ (E − ι∆tD) we find

〈ψ
�

α′
�

|φ〉K〈φ|ψ
�

α′
�

〉K = α′
†
Gαα†G†α′ . (17)

Using Eq.15,16,17 and the notation Wα ≡
Gαα†G†

α†Eα , the optimization program in 12 can be
re-expressed in terms of overlap matrices as

max
α′

α′
†
Wαα

′ (18)

s.t α′
†
Eα′ = 1 . (19)
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The aforementioned optimization program is a quadratically constrained quadratic program
with a single equality constraint. As described in [10], this QCQP admits a direct convex SDP
relaxation. Moreover, the results from [10] provide a sufficient condition for a local minimum
to be a global minimum, which a solver can further use as a stopping criterion. Alternatively,
the problem can be solved with the classic Rayleigh-Ritz procedure by finding the eigenvector
associated with the largest eigenvalue λ of the generalized eigenvalue problem Wαα

′ = λEα′.
It can be shown that in the limit of small ∆t, TQS reduces to QAS (see Appendix C).

This could potentially give us a way to obtain systematic higher-order corrections to the QAS
matrix differential equation. Interestingly, this is a conceptual unification of the ground state
problem (QAE) with the dynamics problem (QAS) in the quantum assisted framework. In
QAE, finding the ground state and ground state energy of a Hamiltonian was formulated to
become a QCQP. In TQS, the problem of simulating the dynamics is also given as a QCQP. This
is conceptually satisfying as the problem of finding the dynamics is expressed as e−i tH |ψ〉,
which is mathematically similar to using imaginary time evolution to finding the ground state
via e−τH |ψ〉. The aforementioned connection is also one of the primary justifications for ansatz
selection in [11]. We note that as alternative it is possible implement the unitary evolution
operator U(∆t) directly instead of the Taylor series expansion of Eq.7, however this would
require the usage of Hadamard tests (see Appendix D).

We want to emphasize again that the quantum computer is only required to measure the
overlap matrices E and D at the start of the algorithm. No quantum-classical feedback loop
for optimization is required. The only optimization steps required are performed solely on the
classical computer with knowledge of the overlap matrices. The algorithm is as follows:

1. Choose an efficiently implementable initial state |ψ〉, then choose some K>0 and form
the unique K-moment states |χi〉 to construct the ansatz.

2. With knowledge of the Hamiltonian H, calculate the overlap matrices E and D on the
quantum computer. The job of the quantum computer is now done.

3. Choose a small ∆t with respect to the eigenvalues of H and evolve the state forward in
time using a classical computer, by solving the optimization program 18 subject to the
constraint 19.

If a higher fidelity for the simulation is desired, one can increase K to acquire an ansatz with
a higher expressibility. The timestep∆t could be increased by including higher order terms in
the power series expansion of U(∆t) in our calculations (Described in Appendix E).

3 Results

We first use TQS to simulate a 2 qubit Heisenberg model

H2 =
1
2

X1X2 +
1
2

Y1Y2 +
1
2

Z1Z2 . (20)

We apply it to evolve an initial randomized 2 qubit state |ψ2〉. This initial state is generated
by 5 layers of U3 rotations and CNOT gates on the 2 qubits (see Appendix A). We ran the
TQS algorithm on the 5-qubit quantum computer ibmq_rome, available through IBM Quantum
Experience. We used error mitigation by calibrating the measurement errors and applying a
filter obtained from that calibration on our data with the toolbox provided in Qiskit [37]. The
results are shown in Fig.1. The evolution of the state under TQS reproduces the exact behavior
very well for an ansatz with K = 1 moment states, even in the presence of the noise of a real
quantum computer.
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Figure 1: Time evolution of TQS on a 2 qubit state, with Hamiltonian H2, simulated
on the IBM quantum processor ibmq_rome. a) Expectation value of 〈Z1〉 b) Fidelity
of the state.

Next, we apply TQS to simulate a 4 qubit XX chain model on a quantum computer

H4 =
1
2

X1X2 +
1
2

X2X3 +
1
2

X3X4 . (21)

Although this Hamiltonian is analytically solvable, we simulate this as a proof of principle. In
Fig.2, we simulate (21) on ibmq_rome with an initial randomized 4 qubit state, generated by
5 layers of U3 rotations and CNOT gates (see Appendix A). We run it for the K = 1 to K = 3
moment states. The evolution of the state under TQS again reproduces the exact behavior
very well for the K = 3 case. We would like to point out that our algorithm can accurately
simulate dynamics even for long time periods. The only errors that enter our algorithm are
due to the ansatz being not expressible enough, and noise in the measurement of the matrix
elements. Both type of errors affect only the initial conditions of the classical post-processing
part. However, errors do not enter during the computation of the evolution itself as they
are fully calculated on the classical computer. If we are able to obtain very accurate initial
measurements for our matrix elements, and use an ansatz that fully captures the solution
space, we believe that our algorithm in general will be able to simulate the dynamics accurately
for long timescales.

0 2 4 6 8
time

0.5

0.0

0.5

<
Z 1

>

K = 1
K = 2
K = 3
exact

a

0 2 4 6 8
time

0.25

0.50
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1.00

F

K = 1
K = 2
K = 3

b

Figure 2: Time evolution of TQS on a 4 qubit state with Hamiltonian H4 simulated
on the IBM quantum processor ibmq_rome. a) Expectation value of 〈Z1〉 b) Fidelity
with exact solution.
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Figure 3: Time evolution of TQS on a 8 qubit state, with Hamiltonian H8, simulated
on a classical computer, with a random initial state. The initial state was generated
with 3 successive layers of U3 rotations with randomized parameters on each qubit,
followed by CNOT/entangling gates. This is further described in Appendix A. a)
Expectation value of 〈Z1〉. b) Fidelity of the state.

Next, we investigate in Fig.3 the transverse Ising model with 8 qubits by simulating TQS
on a classical computer.

H8 =
7
∑

i=1

1
2

Zi Zi+1 +
8
∑

j=1

X j . (22)

With an initial random state, we find that the evolution of the state reproduces the exact
dynamics for the case of K = 3 moment expansion.

Lastly, we compare TQS to pVQD for a 2 qubit transverse Ising model on a simulation. We
consider the 2 qubit transverse Ising Hamiltonian

HT F I ,2 =
1
2

Z1Z2 +
2
∑

j=1

X j . (23)

We compare the algorithms with noisy simulators, where the noise models taken from the
IBM Quantum Experience provider. The results are shown in Fig.4. While both TQS and
pVQD show errors when simulating this Hamiltonian in the presence of noise, the expectation
values for TQS are closer to the exact results most of the time. This is especially the case for the
expectation value of 〈Z1〉. However, while the results might be argued to be somewhat similar,
the resource requirements of both algorithms on the quantum computer are quite different.
The TQS algorithm requires ≈ 30 circuits to be run, while the pVQD simulator requires well
over 4000 circuits, which is a major effort to run on the IBM Quantum Experience. We note
that to increase the simulation time for this example, no extra circuits are required with TQS
as the algebra already has closed, whereas the number of circuits in pVQD scales linearly with
simulation time. Furthermore, TQS performs well with circuit that are shallower compared to
pVQD, which requires a circuit with 8 variational parameters. This behavior of TQS requiring
less variational parameters to get a similar result seems to be consistent for the small models we
tested, as other variational algorithms usually need an over-parameterized ansatz to perform
well.

We also compare TQS to Trotterization on a noisy simulator for the same 2 qubit trans-
verse Ising Hamiltonian. A simple Trotterization of the time evolution operator for this case is
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1.0

0.5

0.0

0.5

1.0
Y 1

pVQD
Classical

TTQS

0 1 2 3 4 5
Time

1.0

0.5

0.0

0.5

1.0

Z 1

Figure 4: Time evolution of TQS and pVQD on a 2 qubit state, with Hamiltonian
HT F I ,2, simulated with a noisy simulator. The noise model was taken from the IBM
Quantum Experience provider, mimicking the noise of the real quantum processor
ibmq_bogota. pVQD was run for 100 optimization steps, and made use of a paramet-
ric quantum circuit with 8 parameters, made out of successive layers of single qubit
X rotations and 2-qubit Z Z rotations. The expectation values of 〈Y1〉 and 〈Z1〉 are
plotted.

decomposed as

e−iτH2,T F I ≈
N
∏

i=1

��

e−iδt i Z1Z2
� �

e−iδt i X1 e−iδt i X2
��

, (24)

with
∑N

i=1δt i = τ. The results are shown in Fig.5. As can be seen, even for a simple case
such as this, due to the circuit lengths in Trotter increasing linearly with the time, the circuit
lengths rapidly grow too long to obtain any meaningful results from the quantum computer.
This is in contrast to TQS, which is able to capture the dynamics faithfully.

In Fig.6, we study our algorithm for up to thousands of qubits N . We use a Hamiltonian
H =

∑r
i=1 Pi that consists of r randomly chosen N -body Pauli strings Pi = ⊗N

j=1σ j , where
σ j ∈ {I , X , Y, Z}. The cumulative K-moment states close at order K = r and yield the full
ansatz space necessary to describe the dynamics exactly. We use the product state |0〉N as initial
state for the dynamics. This choice makes the dynamics tractable for classical computation.
However, choosing an highly entangled initial state |ψ〉 would require a quantum computer
to evaluate the overlaps. For such intractable states, our method provides a possible quantum
advantage.
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Figure 5: Dynamics of H2,T F I compared between Trotterization and TQS. The noise
model was taken from the IBM Quantum Experience provider, mimicking the noise
of the real quantum processor ibmq_bogota. We used a total of 100 steps for the
Trotterized run. The expectation value of 〈Z1〉 is shown.

0 5 10 15 20
t

0.5

0.0

0.5

1.0

Z 1
(t)

N = 10
N = 100
N = 1000
N = 10000

Figure 6: Dynamics of Hamiltonians consisting of multi-body Pauli strings for varying
number of qubits N . Hamiltonians are composed of r different random Pauli strings
H =

∑r
i=1 Pi , where the Pauli strings Pi = ⊗N

j=1σ j consist of N tensored Pauli opera-

tors σ j ∈ {I , X , Y, Z}. The initial state |ψ〉 = |0〉⊗N is the N -qubit product state with
all zeros. The cumulative K-moment states consists of 2r = 128 ansatz states and
exactly captures the full dynamics.
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4 Discussion and Conclusion

The currently proposed NISQ algorithms face problems in scaling up to system sizes where
classical computers cannot simulate the same systems, or in other words, to the point where we
would see quantum advantage. For example, VQS/SVQS/pVQD require the use of a quantum-
classical feedback loop, usually require complicated circuits, share similar problems as VQE like
the barren plateau problem, and lack a systematic way to generate a parameterized ansatz.
VFF and fsVFF also suffer from lacking a systematic way to generate the ansatz, usually require
complicated circuits and have to run a quantum-classical feedback loop at the start. Further,
the no fast-forwarding theorem suggests that not all Hamiltonians will be able to be accurately
diagonalized with a reasonable amount of gates and circuit length, and the optimization step
of the cost function in VFF might be too difficult to carry out efficiently. However, the barren
plateau problem and ansatz state generation could be improved upon by applying various
techniques [36,38–41].

One problem that VQS and QAS share is that they require solving a differential equation
which includes the pseudo-inverse of a matrix, whose elements are measured on a quantum
computer. This matrix can be ill-conditioned. This procedure, via singular value decompo-
sition, can be numerically unstable and sensitive to noise, especially as the system increases
in size [42]. However, the sensitivity of these matrices has not been rigorously analyzed and
more work has to be done to understand the scaling of the sensitivity.

In this work, we develop TQS for simulating quantum dynamics on digital quantum com-
puters. TQS recasts the dynamical problem as a QCQP optimization program, which is well
characterized unlike the optimization program in pVQD, allowing us to avoid the aforemen-
tioned problem in VQS and QAS.

At the same time, TQS retains the advantages of QAS, namely providing us a systematic
method to select the ansatz, avoiding complicated Hadamard tests and controlled unitaries,
avoiding the barren plateau problem, and only requiring usage of the quantum computer at
the start, all of which are problems that are present in pVQD.

However, there are still many problems to tackle in our approach. One problem is an inher-
ited problem from QAS. As the Hamiltonian size and complexity increase, large K values may
be needed to generate enough states for a sufficiently expressible ansatz to produce accurate
results. It is clear from the connection between the Taylor expansion of the time evolution
operator and our K-moment states that in the general case, the further in time we want to
simulate, the exponentially larger our ansatz should be and the harder the difficulty of gener-
ating that ansatz. However, this is fundamentally a complexity theoretic statement which can
not be bypassed in the general case by any quantum simulation algorithm based on parametric
quantum circuits (variational quantum algorithms) or linear combination of quantum states
(our algorithm). This problem particularly emerges in variational algorithms for time evolu-
tion. For example, in algorithms such as VQE for finding the ground state of Hamiltonians,
we know that the ground state of locally gapped Hamiltonians fulfil area laws of entangle-
ment and thus do not need exponentially many parameters to be described. However, for the
time evolution over longer times a similar statement about the complexity of the problem is
not known. Though our algorithm uses a problem aware ansatz, more information from the
problem such as the combination coefficients βi and symmetries of the Hamiltonian could be
employed to further tame the complexity. A further discussion and analysis on the number of
states needed is given in Appendix B.

As the system size increases, it may be required to reduce ∆t to preserve accuracy in the
classical post-processing part of the algorithm. This will increase the computational cost of the
classical computer, however it requires no additional quantum computations. The number of
classical optimization steps to be carried out increases linearly with the number of discretiza-
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tions steps of the evolution time. Determining whether this poses a bottleneck for TQS when
applied to large systems requires further studies.

Furthermore, in the presence of noise, the calculated fidelity of our states can go above one.
A possible origin are small eigenvalues in the E overlap matrix, which can give the procedure
of optimizing or solving the generalized eigenvalue problem numerical instability. As we scale
up the system and consider more ansatz states, this issue can become more prevalent.

We expect our algorithm not to provide quantum advantage in the general case. However,
we believe our algorithm is capable of providing quantum advantage over classical methods
for certain cases. The conditions where we believe our algorithm will do so are:

• The basis states which are used to represent the initial quantum state are highly en-
tangled such that they cannot be stored on a classical computer. This will render the
calculation of corresponding overlaps classically hard, as it boils down to a circuit sam-
pling task. Note that the Quantum Threshold Assumption (QUATH) by Aaronson and
Chen [43] says that there is no polynomial-time classical algorithm which takes as input
a random circuit C and can decide with success probability at least 1

2 +Ω
� 1

2n

�

whether
|〈0n|C |0n〉|2 is greater than the median of |〈0n|C |xn〉|2 taken over all bit strings xn. In
other words, the circuit sampling task is difficult and hence classical algorithms will not
be able to compete with algorithms based on circuit sampling as system size scales. The
quantum part of TQS is based on circuit sampling which is classically difficult.

• The Hamiltonian possesses a particular structure. For example, the Hamiltonian consists
of a small number of unitaries, the Krylov subspace closes fast, or the Hamiltonian is a
low-rank matrix. We demonstrated such an example for a Hamiltonian consisting of a
limited amount of multi-body Pauli strings where our method can simulate the dynamics
of thousands of qubits. These Hamiltonians would be challenging for other methods
such as Trotter or variational quantum algorithms. For those algorithms, the multi-body
interactions and the large number of qubits would require an extensive number of gates
and circuit depth to accurately represent the evolved state. A further example where our
algorithm can perform well are quantum many-body scars. This quantum many-body
phenomena can arise when the Krylov subspace closes fast at a low order K [44], which
is exactly the condition needed for our algorithm to perform well. The timescales that
can be reasonably approximated by our algorithm is dependent on the Hamiltonian in
question. Arbitrary Hamiltonians without the aforementioned conditions explore the
full Hilbertspace during the evolution. Thus, it will be difficult for our ansatz to cover
the whole solution space and approximate the dynamics accurately. Note that other
variational quantum algorithms suffer similar problems as their ansatz is restricted to
polynomial number of parameters. In the case of general Hamiltonians, our algorithm
can provide systematic approximations for the quantum evolution of short time scales.

• The system size of interest and the amount of entanglement of the quantum state should
be beyond the reach of classical simulation methods. Here, our algorithm can make use
of the power of the quantum computer to prepare and measure classically intractable
states.

In the future, the NISQ community should investigate these challenges, so that we can
successfully run NISQ algorithms for larger qubit numbers.
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A Details on running circuits on the IBM quantum computer

For the runs on the real quantum computer, we generated an initial state with randomized
parameters to evolve with the following circuit. It comprised 5 layers of successive U3 rotation
with randomized parameters on each qubit, followed by a CNOT/entangling gate (see Fig.7
and 8). We sampled from each circuit with 8192 shots.

|0〉 Rx(Θ1) R y(Θ2) Rz(Θ3)

|0〉 Rx(Θ4) R y(Θ5) Rz(Θ6) Z

Figure 7: Circuit for two qubits that generate one set of U3 rotation with randomized
parameters, followed by a CNOT gate between the 2 qubits. 5 successive layers of
this circuit were used to generate the initial starting state for the 2 qubit case on the
IBM quantum computer for our runs of TQS. The Θs were randomly generated.

|0〉 Rx(Θ1) R y(Θ2) Rz(Θ3)

|0〉 Rx(Θ4) R y(Θ5) Rz(Θ6) Z

|0〉 Rx(Θ7) R y(Θ8) Rz(Θ9) Z

|0〉 Rx(Θ10) R y(Θ11) Rz(Θ12) Z

Figure 8: Circuit for four qubits that generate one set of U3 rotation with random-
ized parameters, followed by a series of CNOT gates between the adjacent qubits.
5 successive layers of this circuit were used to generate the initial starting state for
the 4 qubit case on the IBM quantum computer for our runs of TQS. The Θs were
randomly generated.

B Number of basis states considered for each K, and discussion
on scaling

The number of basis states that was used to construct the hybrid ansatz, for each K moment
expansion, for each Hamiltonian, is given in Table 1.
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Table 1: Comparison of the number of basis states used to construct the hybrid
ansatz for each K for each Hamiltonian. For example, the K = 2 expansion for the
4 qubit case, using the Hamiltonian H4, requires 4 quantum states to construct the
hybrid ansatz. We only considered unique states, which correspond to only taking
unique Pauli strings. For example, in the 8 qubit case, while the number of Pauli
strings in the Hamiltonian is 15, which might suggest the K = 3 expansion generates
153 + 152 + 15 + 1 = 3616 Pauli strings and thus 3616 states, many of them are
repeated and only 137 of those strings are unique. Thus, we only end up having 137
states in our ansatz which turns out to be sufficient to represent the full dynamics
of the 28 = 256 dimensional Hilbertspace. This could be due to the transverse Ising
model having underlying symmetries that reduce the number of basis states needed
to capture the full dynamics.

K = 1 K = 2 K = 3 K = 4
2 Qubit Case 1 4
4 Qubit Case 1 4 7 8
8 Qubit Case 1 17 137

Given a scalar τ, an N × N matrix A and an N × 1 vector v, the action of the matrix
exponential operator exp (τA) on v can be approximated as

exp (τA) v ≈ pK−1 (τA) v , (25)

where pK−1 is a K − 1 degree polynomial. The approximation in equation 25 is an element of
the Krylov subspace,

KrK−1 ≡ span
�

v, Av, · · · , AK−1v
	

. (26)

Thus, the problem of approximating exp (τA) v can be recast as finding an element from KrK .
Note that the approximation in equation 25 becomes exact when K−1= rank(A). In our case,
we can identify v with the initial state |ψ〉, τ with −ι t and A with the Hamiltonian H.

In the worst case, the number of overlaps scales as O(rK) for r terms in H. By observing
the Taylor expansion of the time evolution operator exp(−iH∆t), we can see that at longer
times we would struggle with finding an expressible enough ansatz in the general case, as we
need to keep considering higher powers of H. This is fundamentally an expressibility problem,
present in all NISQ variational algorithms, be it based on linear combination of states or those
based on parametric quantum circuits. It is known that to prepare an arbitrary state on an n
qubit quantum computer, we require a circuit depth of at least 1

n2n [45–48]. This suggests that
it is very hard to produce an expressible enough Ansatz to reproduce an arbitrary quantum
state in the Hilbert space.

It is known that the the Krylov subspace spans the entire space when you exponentiate the
Hamiltonian H to the power of K − 1, where K − 1 = rank(H). Thus, the number of states
that we require in our Ansatz scales linearly with the rank of the Hamiltonian.

Furthermore, one of the major contributions of the TQS algorithm is that, by using this
problem-aware Ansatz, it provides a systematic way to obtain a more and more expressible
Ansatz. The other variational algorithms like VQS and VFF still do not have a systematic
method to generate an expressible enough Ansatz, or to improve on an Ansatz in a efficient
way. Also, it has been shown that if we use a hardware efficient Ansatz, we would in general
expect to encounter the barren plateau problem, which makes it very hard for the algorithm to
train and optimize [34,49]. Furthermore, the usual technique of using more and more layers
of hardware efficient Ansatz circuits gives no guarantee that it will become more and more ex-
pressible in an efficient manner, when compared to the number of variational parameters that
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we are adding. There is also no guarantee that this will indeed improve the appropriateness
of the Ansatz. This is especially true for larger systems. In TQS, with the way we generate
the Ansatz with K moment states, we can see that at worst, we get an Ansatz with as many
states as the size of the Hilbert space, which is fully expressible. This is due to the group of
Pauli strings closing on itself eventually. Also, we can see that as we increase the K , we will
definitely improve our Ansatz and get to a point where it is eventually expressible enough. In
future, using the coefficients of the terms in the Hamiltonian, we expect to be able to slow
down the growth of the number of states.

Our algorithm also relies on being able to calculate expectation values of powers of the
Hamiltonian, 〈ψ|Hk|ψ〉 in an efficient manner. If we look at the Pauli string level (break our
Hamiltonian into linear sums of Pauli strings), the number of Pauli terms in Hk grows expo-
nentially in k. Right now, for current implementation of our algorithm on available quantum
computers, this breaking into Pauli strings is necessary due to the imperfections in said quan-
tum computers. However, if we allow more complex operations that cannot be performed very
well right now, such as complex controlled unitaries, the resources needed to measure such
〈ψ|Hk|ψ〉 values might scale less [50].

We would also like to mention that depending on the Lie algebra of the Pauli terms
in the Hamiltonian and the rank of the Hamiltonian, the number of required overlaps
can be a lot smaller compared to the upper bound. By considering specific kinds of
Hamiltonians, the number of states needed will be manageable. As an example, for
a system size with a multiple of 3 qubits, if we consider the Hamiltonian of the form
H = X Y ZX Y Z ...X Y Z + Y ZX Y ZX ...Y ZX + ZX Y ZX Y...ZX Y + X X X X X ...X X X , the set of K-
moment states is maximally size 8, implying that 8 ansatz states are sufficient to simulate the
dynamics with our algorithm.

C QAS and VQS as special cases of TQS

In this appendix, we show that in the limit of choosing a very small∆t, one obtains QAS from
TQS. Since VQS is a special case of QAS [29], we get VQS also as special case of TQS. We start
out with the series expansion of |ψ(~α+δ~α)〉

|ψ(~α+δ~α)〉= |ψ(~α)〉+
∑

j

∂

∂ α j
|ψ(~α)〉δα j . (27)

Now in TQS we want to maximize the overlap of U(∆t) |ψ(~α)〉 and |ψ(~α+δ~α)〉, which is
essentially the fidelity measure in equation 8

| 〈ψ(~α)|U†(∆t) |ψ(~α+δ~α)〉 |2

=



〈ψ(~α)|U†(∆t) |ψ(~α)〉+
∑

j

|ψ(~α)〉U†(∆t)
∂ |ψ(~α)〉
∂ α j

δα j



× [C. C.]

|ψ(~α)〉=
∑

j α j |χ j〉
=



〈ψ(~α)|U†(∆t) |ψ(~α)〉+
∑

j

|ψ(~α)〉U†(∆t) |χ j〉δα j



× [C. C.]

= | 〈ψ(~α)|U†(∆t) |ψ(~α)〉 |2 +
∑

j

〈ψ(~α)|U†(∆t) |χ j〉 〈ψ(~α)|U(∆t) |ψ(~α)〉δα j

+
∑

j

〈χ j|U(∆t) |ψ(~α)〉 〈ψ(~α)|U†(∆t) |ψ(~α)〉δα∗j

+
∑

j,k

〈ψ(~α)|U†(∆t)|χ j〉 〈χk|U(∆t)|ψ(~α)〉δα jδα
∗
k .

(28)
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Now in the same manner as QAS, using the Mclachlan’s variational principle [23, 29, 30,
51], we demand that the variation of this fidelity is equal to 0 with respect to α j:

=⇒ 〈ψ(~α)|U†(∆t) |χ j〉 〈ψ(~α)|U(∆t) |ψ(~α)〉+
∑

k

〈ψ(~α)|U†(∆t)|χ j〉 〈χk|U(∆t)|ψ(~α)〉δα∗k = 0

=⇒ 〈ψ(~α)|U(∆t) |ψ(~α)〉+
∑

k

〈χk|U(∆t)|ψ(~α)〉δα∗k = 0 . (29)

Now we substitute in U(δt) = I − i∆tH:

=⇒ 〈ψ(~α)|ψ(~α)〉 − i∆t 〈ψ(~α)|H |ψ(~α)〉

+
∑

k

〈χk|ψ(~α)〉δα∗k − i∆t
∑

k

〈χk|H|ψ(~α)〉δα∗k = 0 . (30)

Now we take the derivative of this equation with respect to ∆t. Note that d
d∆tδα

∗
k = δα̇

∗
k. We

then discard any terms remaining that are linear in ∆t or in δα (implying we have chosen
such a small ∆t that δα is also very small).

=⇒ −i 〈ψ(~α)|H |ψ(~α)〉+
∑

k

δα̇∗k 〈χk|ψ(~α)〉δα∗k = 0 . (31)

Using the above definition of the E and D matrices in equation 13 and 14, this simplifies to:

=⇒ −i ~α†D~α+ ~̇α†E ~α= 0

=⇒ E ~̇α= −iD~α . (32)

This is exactly the same differential equation that we aim to solve in QAS. If we do not ignore
the higher order terms, we could obtain systematic higher order corrections to the QAS matrix
differential equation using such a method.

D Unitary implementation

As alternative, we could implement the unitary evolution operator U(∆t) directly instead of
the Taylor series expansion of Eq.7

|ψ (α (t +∆t))〉K = U (∆t) |ψ (α (t))〉K . (33)

and defining the matrix Rm,n = 〈χm|U(∆t)|χn〉 to solve the program

max
α′

α′
†
Rαα†R†α′ (34)

s.t α′
†
Eα′ = 1 , (35)

U(∆t) could be implemented with a Trotter decomposition or with an oracle. However, this
complicates the circuits needed to calculate the R matrix, requiring the usage of Hadamard
tests.

E Higher order approximations

We investigate higher order expansion for the evolution operator in this section. First, we
define the overlap matrix J

Jm,n =
∑

i, j

βiβ j〈χm|Pi Pj|χn〉 . (36)
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Considering the next highest power expansion of U(∆t):

U(∆t)≈ I − ι∆t

 

r
∑

j=1

β j Pj

!

−
∆t2

2

 

r
∑

j=1

β j Pj

!2

≡ V2 (∆t) , (37)

and defining |φ〉 = V2(∆t) |ψ(α)〉K , the constraint in the optimization program 12 turns out
to be still the same as equation 15:

〈ψ(α′
†
)|ψ(α′

†
)〉= α′

†
Eα′ . (38)

It turns out that 〈φ|φ〉 is actually exactly equal to α†Eα, which is the result we used earlier in
equation 16, as all the 2nd order terms nicely cancel out.

Now, using the notation G2 ≡
�

E − ι∆tD− ∆t2

2 J
�

,

〈ψ
�

α′
�

|φ〉K〈φ|ψ
�

α′
�

〉K = α′
†
G2αα

†G†
2α
′ . (39)

Now the optimization program in 12 can be re-expression in this higher order approxima-
tion as

max
α′

α′
†

�

G2αα
†G†

2

α†Eα

�

α′ (40)

s.t α′
†
Eα′ = 1.

And using the notation W2,α ≡
G2αα

†G†
2

α′Eα , we further condense the above optimization program
as

max
α′

α′
†
W2,αα

′ (41)

s.t α′
†
Eα′ = 1 . (42)

Once again, the only work that the quantum computer need to do is to calculate overlap
matrices in the start, in this case having to calculate E , D and J . In fact, when going from
lower order approximations to higher order approximations, you can reuse the saved matrices
and only calculate the new ones needed. In this case, in the original TQS, which uses a first
order approximation for U(∆t), we already have the E and D matrices, so if we deem the
results not up to our desired accuracy, we can easily go to the second order approximation
showed here, and only require calculation of one additional matrix J .
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[48] M. Plesch and Č. Brukner, Quantum-state preparation with universal gate decompositions,
Phys. Rev. A 83, 032302 (2011), doi:10.1103/PhysRevA.83.032302.

[49] E. Grant, L. Wossnig, M. Ostaszewski and M. Benedetti, An initialization strategy for
addressing barren plateaus in parametrized quantum circuits, Quantum 3, 214 (2019),
doi:10.22331/q-2019-12-09-214.

[50] K. Seki and S. Yunoki, Quantum power method by a superposition of time-evolved states,
PRX Quantum 2, 010333 (2021), doi:10.1103/PRXQuantum.2.010333.

[51] A. D. McLachlan, A variational solution of the time-dependent Schrodinger equation, Mol.
Phys. 8, 39 (1964), doi:10.1080/00268976400100041.

20

https://scipost.org
https://scipost.org/SciPostPhys.12.4.122
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.1088/1367-2630/ac325f
https://doi.org/10.1007/BF01400115
https://arxiv.org/abs/1612.05903
https://doi.org/10.1038/s41567-021-01230-2
https://arxiv.org/abs/quant-ph/9508006
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.92.177902
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.1103/PRXQuantum.2.010333
https://doi.org/10.1080/00268976400100041

	Introduction
	TQS Approach
	Results
	Discussion and Conclusion
	Details on running circuits on the IBM quantum computer
	Number of basis states considered for each K, and discussion on scaling
	QAS and VQS as special cases of TQS
	Unitary implementation
	Higher order approximations
	References

