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Abstract

In recent years it has become understood that quantum oscillations of the magnetiza-
tion as a function of magnetic field, long recognized as phenomena intrinsic to metals,
can also manifest in insulating systems. Theory has shown that in certain simple band
insulators, quantum oscillations can appear with a frequency set by the area traced by
the minimum gap in momentum space, and are suppressed for weak fields by an in-
trinsic “Dingle damping” factor reflecting the size of the bandgap. Here we examine
quantum oscillations of the magnetization in excitonic and Kondo insulators, for which
interactions play a crucial role. In models of these systems, self-consistent parameters
themselves oscillate with changing magnetic field, generating additional contributions
to quantum oscillations. In the low-temperature, weak-field regime, we find that the
lowest harmonic of quantum oscillations of the magnetization are unaffected, so that
the zero-field bandgap can still be extracted by measuring the Dingle damping factor of
this harmonic. However, these contributions dominate quantum oscillations of magne-
tization at all higher harmonics, thereby providing a route to measure this interaction
effect.
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1 Introduction

Quantum oscillations (QO) of observables as a function of applied magnetic field have been
understood as a phenomenon intimately tied to the idea of a Fermi surface ever since they were
first discovered [1]. The well-established Lifshitz-Kosevich theory [2] of QO directly relates the
frequency of the oscillations to extremal cross-sectional areas of the Fermi surface. This has al-
lowed the technique to become a useful experimental tool for examining the geometry of Fermi
surfaces in materials. However, this long-held understanding has been challenged recently by
the measurement of quantum oscillations in insulators, notably the strongly-correlated Kondo
insulators SmB6 [3–5] and YbB12 [6, 7], and the insulating phase of WTe2 [8, 9], believed to
be an excitonic insulator [10], which all lack a traditional notion of a Fermi surface entirely.

Many theoretical works [11–30] have been put forward in response, seeking to understand
the phenomenon in these specific materials and how QO may arise in insulators more generally.
In this second direction, a direct calculation shows that generating QO in insulating systems
is actually relatively straightforward—if the minimum band gap is not much larger than the
cyclotron energy and traces out a nonzero area in the Brillouin zone, then oscillations can
be found at the frequency corresponding to this area as though it were a Fermi surface cross
section [11,14]. The condition on the ratio of the gap to the cyclotron energy for visibility of
these oscillations arises from an intrinsic “Dingle damping” factor–an exponential suppression
of the form exp(−B0/B), where B is the applied magnetic field strength. In metallic systems
the Dingle factor accounts for the effect of disorder; B0 is related to the finite quasiparticle
relaxation time [31] and will vary between samples. However, in an insulator B0 is directly
related to intrinsic properties the gapped band structure itself. This implies that for band insu-
lators QO contain important information about electronic structure just as they do for metals,
and fundamental properties of the band structure may be extracted from careful analysis of
the field dependence of oscillation amplitudes.

The question we examine here is whether this result also holds for systems where the band
structure is strongly affected by interactions, such as excitonic and Kondo insulators. In the
mean field descriptions of these systems at zero field, the mean field parameters obey self-
consistent constraints and determine the form of the bands. When a magnetic field is applied
these constraints necessarily introduce B-dependence to these parameters, which causes the
bands themselves to modulate with field and introduces additional contributions to QO not
present in ‘rigid’ band insulators.

To analyze each of these systems we employ the following general procedure. First we
analyze the mean field description of the system at zero field, in particular identifying the
self-consistent equations that the mean field parameters must obey. With the introduction of a
magnetic field we assume that electronic dispersions are quantized into Landau levels and the
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mean field parameters acquire B-dependent oscillatory components, which for weak fields are
small compared to the zero-field parts. We then linearize the self-consistent conditions around
the zero-field values and determine the leading effect of the magnetic field on top of the rigid
band case.

We find very generally that when considering mean field theories the fundamental har-
monic of QO of the magnetization is unaffected, and the oscillatory component of the mean
field affects second and higher harmonics only. For both excitonic and Kondo insulator models
these new contributions to higher harmonics have exactly the same exponential sensitivity to
the size of the gap as for the corresponding rigid band insulators using the fixed B = 0 gap,
but have different overall dependence on the field strength allowing them to be the dominant
contribution to all harmonics to which they contribute.

The remainder of the paper is organized as follows: We begin in Section 2 by examining
QO for the case of a rigid band insulator, which is the background around which we linearize in
the following sections. In Section 3 we analyze a model excitonic insulator, first applying the
mean field approximation at B = 0, then considering the oscillations the mean field parameter
acquires upon introduction of a magnetic field and it’s contributions to QO. In Section 4 we
then do the same for the case of a Kondo insulator using the mean field slave-boson formalism.

2 Rigid Band Insulator

We first consider a spinless, two-dimensional band insulator at zero temperature described by
the Hamiltonian [11]

H0 =
∑

k

Ψ†
k

�

εc
k g

g εv
k

�

Ψk . (1)

Here and throughout the rest of our calculations we set ħh = 1, c and v label conduction
and valence bands, and Ψk = (ψc,k,ψv,k)T , with ψ†

i,k and ψi,k the creation and annihilation
operators for electrons in band i. The conduction band dispersion is εc

k, which we take to be
approximately parabolic in the region of interest, and we set the valence band dispersion to
be εv

k = ε0−ηεc
k, with η a dimensionless constant and ε0 the shift of the valence band relative

to the conduction band. The limit η → 0 yields the flat valence band of a heavy fermion
system. We take ε0 > 0 so the conduction and valence bands cross and the interband tunneling
amplitude g opens a hybridization gap at the band crossing point. The single-particle energies
of the system are then

E±k =
1
2

�

εc
k + ε

v
k ±

q

(εc
k − ε

v
k)

2 + 4g2
�

, (2)

which are shown in Fig. 1. We assume a ground state with the lower band entirely filled and
the upper band empty, so the system is an insulator. In writing this model we have implicitly
assumed that the physics of interest is captured by a two-band model. This is expected as long
as any additional bands are well separated in energy from the gap opening point.

Applying a magnetic field B perpendicular to the system quantizes εc
k into discrete Landau

levels (LL), indexed by n= 0,1, 2, . . . , via the replacement εc
k→ ε

c
n = (n+γ)ωc , with cyclotron

frequencyωc and phase shift γ. If εc
k = k2/2mc exactly, with effective conduction electron mass

mc , then this replacement is exact, the cyclotron energy and phase shift are ωc = eB/mc and
γ= 1/2, and η= mc/mv represents the ratio of effective masses of the two bands. Otherwise
this substitution is an approximation valid for weak fields, with γ ∈ [0, 1) in general. Within
E±k this replacement gives the energies E±n , and sums over momentum are replaced by sums
over LL index,

∑

k → nΦ
∑∞

n=0, with nΦ = B/Φ0 the degeneracy of each LL and Φ0 = h/e
the magnetic flux quantum. Because the hybridization is spatially homogeneous, after these
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Figure 1: An example band structure of the sort we consider. The solid lines show the
energies E±k in Eq. (2), while the dashed lines show εc

k and εv
k, the two bands in Eq. (1)

prior to hybridization. We have indicated the offset energy ε0 and hybridization gap
2g, and marked in red the point on the lower band where the gap is minimized.
Inset: a 3D view of the bands. The area traced by the minimum gap, setting the QO
frequency, is indicated with the red dashed line.

replacements the Hamiltonian only couples corresponding Landau levels in the conduction
and valence bands, reflected in the form of E±n .

At zero temperature the free energy of the system is given by the sum over the energies of
all occupied states, which for an insulator is the completely filled lower band. With a magnetic
field this energy is

ΩR(B) = nΦ

∞
∑

n=0

E−n , (3)

where the subscript R indicates the bands are treated as rigid, with the hybridization unaffected
by changing B. We can separate ΩR(B) into constant ΩR0 and oscillatory Ω̃R(B) parts using the
Poisson summation formula [31], which for a general function f is

∞
∑

n=0

f (n+ γ) =

∫ ∞

0

dx f (x) + 2

∫ ∞

0

dx
∞
∑

p=1

f (x) cos (2πp(x − γ)) . (4)

Though this system lacks a Fermi momentum and Fermi surface, the momentum which mini-
mizes the band gap characterizes the gapped band structure, and the area in momentum space
that it encircles, indicated in Fig. 1, functions in lieu of a Fermi surface for the purposes of QO.
We denote this momentum as k∗, defined through d

�

E+k − E−k
�

/dk
�

�

k=k∗ = 0. From this we de-
fine a corresponding (noninteger) reference value of the LL index n∗ through εc

k∗ = ε
c
n∗ , giving

n∗ = ε0/ω
∗ − γ, where we put ω∗ = (1 + η)ωc . For weak magnetic fields we have n∗ � 1,

which allows us to find an approximate analytic form of Ω̃R(B),

Ω̃R(B)≈
2|g|nΦ
π

∞
∑

p=1

cos(2πpn∗)
p

K1

�

2πp
2|g|
ω∗

�

∼

√

√ |g|ω∗

2
nΦ
π

∞
∑

p=1

cos(2πpn∗)
p3/2

e−2πp 2|g|
ω∗ , (5)

where Ki are the modified Bessel functions of the second kind. The final expression here uses
the asymptotic form Ki(x) ∼

p

π/2x exp(−x) for x � 1, which further refines the weak
field regime to the condition ω∗ � 2|g|, cyclotron energy much smaller than the band gap.
This result is very similar in form to the results in Ref. [32] which examines a system with a
superconducting gap. It can be derived from the T → 0 limit of the expression in Ref. [11] as
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shown in Appendix A. We see that for weak magnetic fields the harmonics of the band insulator
free energy are exponentially suppressed by powers of exp

�

−2π2|g|
ω∗

�

, which we identify as
the Dingle factor in an insulating system. This factor will function as a small parameter when
considering additional oscillatory contributions in the following sections.

3 Excitonic Insulator

We now consider the case of an excitonic insulator [33–36]. This type of system is formed from
the condensation of excitons with binding energy greater than the inherent band gap of the
system, so that the band gap is (predominantly) generated by electron-electron interactions. In
the mean field approximation there is a single parameter controlling the insulating properties
of the system, the exciton condensate amplitude, which allows for a very simple treatment of
QO in the weak field regime.

To describe this type of system we start from a two-band, two-dimensional model Hamil-
tonian for spinless electrons with an interband interaction,

H =
∑

k

Ψ†
k

�

εc
k 0

0 εv
k

�

Ψk − V
∑

k,k′
ψ†

c,kψv,kψ
†
v,k′ψc,k′ , (6)

where V is the strength of the short-range exciton pairing potential. We decouple the interac-
tion via a mean field approximation neglecting fluctuations, defining the exciton condensate
order parameter ∆ = V

∑

k

¬

ψ†
v,kψc,k

¶

, where 〈· · ·〉 denotes the expectation value in the state
with a filled lower band and empty upper band. Though generally complex, we can choose
∆ to be purely real and positive by adjusting the phases of ψc,v . We then obtain the excitonic
insulator Hamiltonian

HX =
∑

k

Ψ†
k

�

εc
k −∆
−∆ εv

k

�

Ψk +
∆2

V
, (7)

with ∆ obeying the BCS-type gap equation

1
V
=
∑

k

1
r

�

εc
k − ε

v
k

�2
+ 4∆2

. (8)

Note that the fermionic part of Eq. (7) is the same as Eq. (1) with g = −∆.
This two-dimensional model and our main results can in principle be extended to three

dimensions by including additional dispersion along kz , the direction of the magnetic field,
as described in e.g. Ref. [31]. Such an extension should not change the fundamental nature
of our results. We also note that the role of fluctuations about the mean field order could be
considered by extending the mean-field theory (7) via standard means [37–39].

We now consider applying a perpendicular magnetic field B, which quantizes the electronic
dispersion into Landau levels as discussed in Section 2. Because we assume ∆ to be spatially
homogeneous, we still have coupling only between corresponding Landau levels in the two
bands. In contrast to the rigid band insulator, however, the value of the gap ∆ acquires mag-
netic field dependence because of its relationship to the electronic energies through Eq. (8).
We put ∆ → ∆(B) = ∆0 + ∆̃(B), where ∆0 is the constant value of the order parameter at
zero field, solving Eq. (8), ∆̃(B) is the part of the order parameter that varies with changing
field, and we assume that

�

�∆̃(B)
�

��∆0.

3.1 Oscillations in the Linearized Theory

The free energy of an excitonic insulator at zero temperature, which we denote ΩX , is the sum
over energies of all states in the lower band, which has the same form as Eq. (3), plus the
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energy of the mean field parameter, the second term in Eq. (7). Unlike for the band insulator,
the full dependence of ΩX on B is partially implicit through ∆̃(B). To find the first corrections
on top of the band insulator result and we expand around∆=∆0, keeping terms up to second
order in oscillatory quantities, assumed to be small:

ΩX (B,∆)≈ ΩXR +
∂ΩXR

∂∆0
∆̃+

1
2
∂ 2ΩXR

∂∆2
0

∆̃2 = ΩXR0 + Ω̃XR +
∂ Ω̃XR

∂∆0
∆̃+

1
2
∂ 2ΩXR0

∂∆2
0

∆̃2 , (9)

where we identify ΩXR = ΩX (B,∆0). The function Ω̃XR(B) is the oscillatory part of ΩXR and
has the same form as Ω̃R(B) given in Eq. (5), but with the replacement g → −∆0. The mean
field gap ∆0 is, by definition, the value for which the action is stationary with respect to
variation in ∆ (Eq. (8) is equivalent to ∂ΩXR0/∂∆0 = 0), so the only term remaining at first
order in oscillatory quantities is the rigid band contribution, Ω̃XR. Therefore, the next largest
contribution comes at second order, given by the final two terms. This is a general implication
of mean field theory, independent of the choice of system or mean field being considered.

We now consider these next largest terms. For both terms we need the form of ∆̃(B), which
can be evaluated by analyzing the gap equation. For B 6= 0 this has the same form as in Eq. (8)
but with the replacements noted above, i.e. εc

k → εc
n = (n+ γ)ωc , ∆→ ∆0 + ∆̃(B), etc. We

begin by expanding to first order in ∆̃(B)

1
V
≈ nΦ

∞
∑

n=0

1
r

�

εc
n − εv

n

�2
+ 4∆2

0

− nΦ

∞
∑

n=0

4∆0
�

�

εc
n − ε

v
n

�2
+ 4∆2

0

�3/2
∆̃(B)≡ α(B) + β(B)∆̃(B) . (10)

In the second equality we define the two sums as the functions α(B) and β(B). We then rewrite
these functions in terms of their constant (α0 and β0) and oscillatory (α̃ and β̃) parts, which
can be evaluated with the Poisson summation formula, and keep terms only to first order in
oscillations, giving

1
V
≈ α0 + α̃(B) + β0∆̃(B) . (11)

Because the left hand side is a constant, we must have

1
V
= α0 , (12)

∆̃(B) = −
α̃(B)
β0

. (13)

Calculating the explicit forms of α0, α̃(B), and β0 (see Appendix B) verifies that Eq. (12) is
exactly Eq. (8), the zero-field gap equation determining ∆0, and gives the explicit form for
∆̃(B) via Eq. (13),

∆̃(B) = 2∆0

∞
∑

p=1

cos (2πpn∗)K0

�

2πp
2∆0

ω∗

�

∼

√

√∆0ω∗

2

∞
∑

p=1

cos (2πpn∗)
p

p
e−2πp

2∆0
ω∗ , (14)

where ω∗ = (1+ η)ωc as before and the second expression is the asymptotic form for weak
fields, ω∗ � 2∆0. As for the oscillatory part of the free energy, we see that the pth harmonic
comes with p powers of the Dingle factor.

With explicit forms for ∆̃(B) and Ω̃XR, the last quantity we need to evaluate is the second
derivative of the B = 0 free energyΩXR0 with respect to∆0. Using the gap equation to simplify,
we find

1
2
∂ 2ΩXR0

∂∆2
0

= 2
nΦ
ω∗

. (15)

6

https://scipost.org
https://scipost.org/SciPostPhys.12.4.123


SciPost Phys. 12, 123 (2022)

Putting all of the terms together we find the dominant contribution to the free energy at
second order in small oscillatory quantities is

∂ Ω̃XR

∂∆0
∆̃+

1
2
∂ 2ΩXR0

∂∆2
0

∆̃2 ∼ −
∆0nΦ

2
cos(4πn∗)e−4π

2∆0
ω∗ , (16)

where we have kept only the oscillatory terms at lowest order in the Dingle factor and discarded
a term that is smaller by a factor of ω∗/2∆0 � 1. We see that this contributes to the second
harmonic of QO of the magnetization. Comparing this to the p = 2 term of the rigid band
contribution, there is a clear difference in the overall field dependence–the prefactor of the
mean field term goes as B, whereas the rigid band term goes as B3/2, so the rigid band term

is smaller by a factor of 1
2π

Ç

ω∗

∆0
� 1 at small fields. Therefore, for weak fields the oscillations

of the mean field order parameter provide the dominant contribution to the second harmonic
of the free energy.

The contribution from the mean field is likely dominant for all higher harmonics as well.
In addition to other terms, such as those acquired by calculating ∆̃ at higher orders than the
linearized framework presented here, we can write down several terms that have a leading B
dependence at a lower power than the corresponding term in Ω̃XR. First, in the term in Eq. (9)
proportional to ∆̃2, cross terms between the q harmonic of one factor and the p− q harmonic
of the other give contributions to the pth harmonic that also have p powers of the Dingle factor.
All such terms have a coefficient that goes as B, making them larger than the corresponding
term of Ω̃XR, going as B3/2. Additionally, there will be a term contributing to the pth harmonic
of the free energy the form

∂ p−1Ω̃XR

∂∆
p−1
0

∆̃p−1 ∼ B2− p
2 e−2πp

2∆0
ω∗ , (17)

with ∆̃ given by Eq. (14). We see that this goes as B2−p/2, which for small B is larger than B3/2

for all p ≥ 2, and is larger than B for p > 2 (it is B1/2 for p = 3), as shown in Fig. 2. There is no
reason why the mean field contributions such as these should exactly cancel for any harmonic
p above the first–we have shown this explicitly for p = 2–so for weak fields these mean field
terms will dominate for all harmonics p ≥ 2.

We pause to emphasize an important feature of the result that we have found: There is only
a single dimensionless parameter, ω∗/∆0, that controls the size of the quantum oscillations
(in both the Dingle damping factor and its multiplicative prefactors) arising from the contribu-
tions of both the rigid band and self-consistent mean-field parts of the free energy. Rewriting
ω∗/∆0 = B/B0 so that B0 = mc∆0/((1+η)e), the value of B0, proportional to the product of
the hybridization gap and the cyclotron mass, can be used to characterize individual materials.
Indeed, fitting measurements of quantum oscillations to the form of the Dingle factor–as done
with metallic systems to extract mean free paths–would here allow for a direct experimental
determination of this quantity for a given material. For B ∼ B0 the rigid band and mean field
contributions to the higher harmonics (p ≥ 2) are of the same size; below this the mean field
part dominates and above this point our approximations begin to break down. Consequently,
we see that the oscillations of the gap that we analyze here cannot be ignored whenever they
are present–a system with an interaction generated gap is never accurately described by just
the corresponding rigid band structure.

We now briefly comment on how our results relate to those in Refs. [29] and [30], which
also analyzes oscillations in an excitonic insulator. There are several key differences between
what is done there and what we present here, but there is no obvious disagreement. First,
Refs. [28] and [29] focus on electronic transport (a response function) via thermally activated
electrons and holes, and not the magnetization (a thermodynamic quantity) which is our main
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α=3/2

α=1

α=1/2

0.00 0.05 0.10 0.15 0.20 0.25 0.30

B/B0

(B
/B
0
)α

Figure 2: Demonstrating the size of the leading dependencies Bα that we find for
various terms, for small B/B0 = ω∗/(2∆0). The rigid band case has α = 3/2 for
all harmonics, while the contributions from the mean field to the second harmonic
are larger, with α = 1. There are contributions to the third harmonic with α = 1/2,
which is even larger still.

focus. Second, the calculations there consider a rigid band structure of hybridized particle and
hole bands as in Section 2–the fixed hybridization set equal to the excitonic condensate order
parameter at B = 0–and define the gap for B 6= 0 as the energy between the highest energy
Landau level in the lower band and the lowest energy Landau level in the upper band. The
resulting oscillations of the gap are then more akin to the framework of Ref. [11] than to what
we find here.

Because we consider the free energy, and can therefore discuss only thermodynamic quan-
tities, our result cannot be directly compared to those of Refs. [29] and [30]. Importantly, our
generic conclusion that there is no interaction contribution to the first harmonic does not apply,
and in general one should indeed expect an additional contribution to the fundamental fre-
quency oscillation of non-thermodynamic quantities. How such contributions would compare
to the results of Refs. [29] and [30] is left as future work.

3.2 Effects of nonzero temperature

All of our calculations so far have been performed for a model at exactly zero temperature. We
show in Appendix C that our results apply for a range of nonzero temperatures provided that
T � ∆0, well below the transition temperature into the excitonic insulator phase. It is clear
that the temperature dependence of quantum oscillations in this model must be quite distinct
from the typical Lifshitz-Kosevich form, given by the factor

RT =
pθ

sinh (pθ )
, (18)

where p labels the harmonic and θ = 2π2kB T/ω∗, with kB Boltzmann’s constant. Even for
the rigid bandstructure the oscillations show a temperature dependence that departs from
the LK form [11]. We expect further corrections beyond this, arising from the effects of self-
consistency of the gap ∆0 as a function of temperature. Computing this dependence would
require considering temperatures of the order of the gap, at which point thermal occupation of
the upper band would become relevant. This is a regime for which we do not have any analytic
results. We note however, that the behaviour is potentially quite rich. The typical expectation
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is for temperature to reduce quantum oscillation amplitudes due to thermal broadening of
occupied states near the relevant energy. However, here the fact that ∆0 diminishes with
increasing temperature has the potential to counteract that, by lessening the damping from
the Dingle factor. We note that a temperature-dependent gap would force one to reconsider
the validity of analyzing just the “weak field regime” that we have used so far. For a fixed
magnetic field strength and increasing temperature, the ratio ω∗/∆0 grows as ∆0 diminishes,
so for any field strength the regime ω∗ ∼ ∆0 becomes relevant at some temperature. This is
certainly a rich avenue for future work, but is beyond the present scope.

4 Kondo Insulator

We now look to the case of Kondo insulators, a class of strongly-correlated, heavy fermion
system [40] with narrow band gaps first identified over 50 years ago [41]. We begin with
an Anderson model in two dimensions [42–45], describing the coupling of a light conduction
band to a heavy valence band, localized by strong interactions. The Hamiltonian is

H =− t
∑

〈i j〉,σ

�

c†
iσc jσ + h.c.

�

− td

∑

〈i j〉,σ

�

d†
iσd jσ + h.c.

�

+
∑

i,σ

Vi

�

c†
iσdiσ + d†

iσciσ

�

+
∑

i

�

εd nd
i + Und

i↑n
d
i↓

�

.
(19)

The first line describes the two species of electrons (conduction c and heavy d bands) hop-
ping on a lattice with amplitudes t and td respectively, with td < 0 and |td/t| = η� 1. The
next term describes interband transitions with amplitude Vi , which opens the gap in the spec-
trum. The final two terms are written in terms of the d-electron densities, nd

i,σ = d†
i,σdi,σ and

nd
i = nd

i,↑ + nd
i,↓. The εd term gives the shift of the heavy electron band relative to the con-

duction band. The U term is a Hubbard interaction between d-electrons, forbidding double
occupancy in the large U limit. For U →∞ this condition can be enforced with the slave-
boson formalism: put d†

iσ = f †
iσbi , where fiσ is a new fermionic degree of freedom, which we

refer to as f -electrons, and bi is the slave boson. Each site contains either a boson or a single
f -electron, and the Hubbard term is replaced by

∑

i λi(
∑

σ f †
iσ fiσ + b†

i bi − 1), where λi is a
Lagrange multiplier field enforcing the constraint.

We assume that the interband interaction is spatially uniform, Vi = V , and now employ the
mean field approximation λi → 〈λi〉 ≡ λ, bi → 〈bi〉 ≡ b, and b†

i → 〈b
†
i 〉 ≡ b. In the continuum

limit, which is a valid approximation when considering weak magnetic fields, we obtain the
mean field Hamiltonian

HK =
∑

k,σ

Ψ†
kσ

�

εc
k bV

bV ε
f
k

�

Ψkσ +λ
�

b2 − 1
�

. (20)

Here the f -band dispersion is ε f
k = εd + λ − ηb2(εc

k − 4t), and the limit of immobile heavy
fermions, i.e. infinite f -band mass, corresponds to η→ 0. We can identify what we called ε0
in the case of the rigid band insulator with εd +λ+ 4ηt b2 and what we called g with bV .

As written here we are considering an even parity coupling between the bands. We could
consider an odd parity coupling instead, V̂ (k) = Vd(k) · σ̂ with d(k) = −d(−k), which results
in nontrivial topological properties [46, 47]. This choice does not affect the nature of the
results we present here, however; the zero-field gap appearing in our final results would have
a different form reflecting its origins from an odd parity coupling, but the overall form of the
expressions in terms of the size of the gap would remain the same. We continue with the
simpler case of even parity coupling considered thus far.
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For the Kondo insulator there are two self-consistent equations allowing us to determine
the two mean field parameters b and λ, contrasting with the excitonic insulator considered
in Section 3 which has only one. The first equation is simply the constraint imposed by the
Hubbard interaction, which in the mean field approximation becomes

∑

k,σ




f †
kσ fkσ

�

≡ n f
0 = 1− b2 , (21)

where we have defined n f
0 , the total f -electron density at B = 0. The second constraint

follows from the equation of motion for the boson field, which in the mean field approximation
becomes a demand that the energy be stationary with respect to variation of b,

∑

k,σ



V
2

�

c†
kσ fkσ + f †

kσckσ

�

−ηb(εk − 4t) f †
kσ fkσ

·

= C0 +ηb
�

K f
0 + 4t n f

0

�

= −λb . (22)

Here we have defined two additional functions,

C0 ≡
V
2

∑

k,σ




c†
kσ fkσ + f †

kσckσ

�

, (23)

K f
0 ≡ −

∑

k,σ

εc
k




f †
kσ fkσ

�

, (24)

C0 the interband correlation energy and ηK f
0 the kinetic energy of the f -electrons.

We now consider applying a perpendicular magnetic field B to the system. As discussed in
Section 2, this can be done by replacing energies with their Landau quantized versions, and
sums over momentum with sums over LL index. We note here specifically that for a generic
anisotropic Kondo system the hybridization gap does not necessarily open at a fixed energy
unless the f -band is completely immobile, η= 0. Therefore, the conclusions we arrive at only
generically apply for η 6= 0 in the case of an isotropic system.

We assume that the effect of a nonzero field on the mean field parameters is to induce an
oscillatory component for each above the value determined at B = 0, as we did for the case of
the excitonic insulator. Explicitly, we put

b→ b(B) = b0 + b̃(B) , λ→ λ(B) = λ0 + λ̃(B) , (25)

with b̃ and λ̃ the components of the order parameters that vary with changing field and vanish
for B = 0. We assume these vanish continuously as the field is switched off, so we can consider
a regime where

�

�b̃
�

� and
�

�λ̃
�

� are small compared to the zero-field parts.

4.1 Oscillations in the Linearized Theory

The free energy of the Kondo system at zero temperature, ΩK , is given by the sum over energies
of the lower band, plus the final term in Eq. (20), giving an additional contribution from
the mean fields. Because we must include spin when discussing a Kondo system, the band
contribution to ΩK is the same as Eq. (3) but with an additional sum over the spin degree
of freedom, amounting to a factor of 2. As in the case of the excitonic insulator, the free
energy has an implicit dependence on B through the mean field functions b̃(B) and λ̃(B), so
we expand around (b,λ) = (b0,λ0) and keep terms up to first order in oscillatory quantities
to find the first corrections on top of the band insulator result,

ΩK(B, b,λ)≈ ΩKR +
∂ΩKR

∂ b0
b̃+

∂ΩKR

∂ λ0
λ̃+

1
2
∂ 2ΩKR

∂ b2
0

b̃2 +
1
2
∂ 2ΩKR

∂ λ2
0

λ̃2 +
1
2
∂ 2ΩKR

∂ b0∂ λ0
b̃λ̃

≈ ΩKR0 + Ω̃KR +
∂ Ω̃KR

∂ b0
b̃+

∂ Ω̃KR

∂ λ0
λ̃+

1
2
∂ 2ΩKR0

∂ b2
0

b̃2 +
1
2
∂ 2ΩKR0

∂ λ2
0

λ̃2 +
1
2
∂ 2ΩKR0

∂ b0∂ λ0
b̃λ̃ . (26)
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We define ΩKR = ΩK(B, b0,λ0) to be the free energy evaluated with rigid bands, which
we then separate into constant ΩKR0 and oscillatory Ω̃KR parts. The form of Ω̃KR is iden-
tical to Eq. (5) up to an overall factor of 2 due to spin, the replacement g → b0V , and
n∗ = (εd + λ0 + 4ηt b2

0)/ω
∗ − γ with ω∗ = (1 + ηb2

0)ωc . The vanishing of the first deriva-
tives of ΩKR0 with respect to b0 and λ0 is synonymous with working at the level of mean field
theory, and as a result we see that the contributions to the free energy from magnetic-field-
induced oscillations of the mean field parameters enter at second order in small oscillations.
We now seek to determine the size of these terms and their dependence on B, we did for the
excitonic insulator.

We begin by examining b̃(B) and λ̃(B). We can evaluate the forms of these functions by
analyzing the constraint equations, which for nonzero field have the same form as Eq. (21)
and Eq. (22) but with the standard replacements we have made throughout,

n f (B) = 1− b(B)2 , (27)

C(B) +ηb(B)
�

K f (B) + 4t n f (B)
�

= −λ(B)b(B) , (28)

now with n f , C , and K f functions of B both explicitly and through their dependence on b(B)
and λ(B). We now expand these functions around the rigid band case up to first order in small
oscillatory quantities. For n f we have

n f (B, b,λ)≈ n f
0 + ñ f

R(B) +
∂ n f

0

∂ b0
b̃(B) +

∂ n f
0

∂ λ0
λ̃(B) , (29)

where n f
0 is the f -electron density for B = 0, equal to the constant part of n f (B, b0,λ0), and

we define ñ f
R(B) to be the oscillatory part of n f (B, b0,λ0). The same expansion can be done

for C(B) and K f (B), letting us similarly define the quantities C̃R(B) and K̃ f
R (B).

We now expand Eqs. (27) and (28) up to first order in small oscillations. The terms at
zeroth order are precisely Eqs. (21) and (22). We are left with the oscillatory components,
obeying

�

ñ f
R(B)

C̃R(B) +ηb0K̃ f
R (B)

�

= −
�

ub uλ
vb vλ

��

b̃(B)
λ̃(B)

�

, (30)

with

ub = 2b0 +
∂ n f

0

∂ b0
, (31)

uλ =
∂ n f

0

∂ λ0
, (32)

vb = λ0 +
∂ C0

∂ b0
+η

�

K f
0 + b0

∂ K f
0

∂ b0
+ 4t(1− 3b2

0)

�

, (33)

vλ = b0 +
∂ C0

∂ λ0
+η b0

∂ K f
0

∂ λ0
. (34)

This system of equations can be inverted in general, and doing so gives b̃ and λ̃ as linear
combinations of ñ f

R and C̃R + ηb0K̃ f
R . The task is then to evaluate these quantities, for which

we have explicit expressions.
Using Eqs. (21), (23) and (24) with the standard replacements for the case of B 6= 0,

and evaluating all quantities at (b,λ) = (b0,λ0), we arrive at expressions for n f (B, b0,λ0),
C(B, b0,λ0), and K f (B, b0,λ0), from which we can extract the function ñ f

R , C̃R, and K̃ f
R using

the Poisson summation formula.
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Using the same methods we employed in Section 3 (see Appendix B), we find

ñ f
R(B)≈ −8b0V

nΦ
ω∗

∞
∑

p=1

sin (2πpn∗)K1

�

2πp
2b0V
ω∗

�

∼ −

√

√8b0V
ω∗

nΦ

∞
∑

p=1

sin (2πpn∗)
p

p
e−2πp

2b0V
ω∗ ,

(35)

for the oscillatory part of the f -electron density,

C̃R(B)≈ −8b0V 2 nΦ
ω∗

∞
∑

p=1

cos (2πpn∗)K0

�

2πp
2b0V
ω∗

�

∼ −V

√

√8b0V
ω∗

nΦ

∞
∑

p=1

cos (2πpn∗)
p

p
e−2πp

2b0V
ω∗ ,

(36)

for the oscillatory part of the interband correlation, and

K̃ f
R (B)≈ −

εd +λ0 + 4ηt b2
0

1−ηb2
0

ñ f
R(B) , (37)

for the oscillatory part of the f -electron kinetic energy. The asymptotic forms in second lines
of Eqs. (35) and (36) apply in the regime where ω∗ � 2b0V . We see that, as has been true
for all oscillatory quantities we have evaluated thus far, ñ f

R , C̃R, and K̃ f
R all have a leading

B1/2 dependence and the pth harmonic is accompanied by p powers of the Dingle factor. From
Eq. (30), b̃ and λ̃ are linear combinations of these functions, so it follows that they share
the same B1/2 dependence and the same Dingle factor structure, which are also true of the
derivative of Ω̃KR appearing in Eq. (26).

Using these insights we can draw important conclusions about the additional oscillatory
contribution of the free energy Eq. (26) without explicitly inverting Eq. (30), calculating the
constants ub, uλ, vb, and vλ, or taking the second derivatives of ΩKR0. All of the oscillatory
quantities comprising these additional terms go as B1/2 and their lowest harmonics (p = 1)
are proportional to a single power of the Dingle factor. The largest terms they contribute to
in Eq. (26) are second order in oscillatory quantities, so they have a coefficient that is linear
in B and contribute at the same order as the p = 2 term of Ω̃KR, which has a coefficient going
as B3/2. Therefore, for weak fields these new terms are the dominant contribution to the
second harmonic of the free energy, and the same sort of argument as at the end of Section 3
suggests that this is true for all higher harmonics as well. We also note that, also as for the
excitonic insulator case, the behavior of these functions is determined by a single dimensionless
parameter ω∗/b0V , so that when these oscillations are present they provide a non-negligible
contribution.

5 Discussion and Conclusion

We have shown that the field-induced oscillatory components of the mean field parameters in
excitonic and Kondo insulator models yield qualitatively similar contributions to the oscilla-
tory part of the free energy, and both systems differ from the band insulator in similar ways.
In both cases oscillations of the mean field order parameters generate the dominant contribu-
tions to the second and higher QO harmonics for weak fields, which should have observable
consequences in measurements of the de Haas-van Alphen effect. In particular, our results
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demonstrate that measuring the field dependence of these higher harmonics allows one to dis-
tinguish between a simple band insulator and an insulating system with bands that are strongly
affected by interactions. Additionally, since both the rigid band insulator and mean field con-
tributions to the free energy, and therefore all thermodynamic quantities, are parametrized by
the same dimensionless parameter, the oscillations of the self-consistent mean field parame-
ters are always relevant when present and produce a distinct functional dependence on the
magnetic field strength to second harmonic and higher oscillations.

Importantly, however, several features of the free energy are entirely insensitive to the
mean field parameters acquiring weak magnetic field dependence. First, the lowest QO har-
monic is unchanged from the behavior predicted by a rigid band model, which is guaranteed
since the mean field state is defined as the saddle point of the free energy. Second, there are
no changes to the nature of the Dingle factor–exponential sensitivity to the size of the B = 0
gap is the same as predicted from the theory of QO in a rigid band insulator. Thus, our results
demonstrate that for interacting insulators the non-rigidity of the band structure with chang-
ing magnetic field strength does not preclude the use of the Dingle damping of QO as a means
to measure properties of the gapped band structure at zero field.

Though we have focused here on the free energy, it is worth also considering other exper-
imentally accessible quantities. First, the vanishing of mean field contributions to the funda-
mental frequency oscillation only applies to the free energy and thermodynamic quantities. In
general, other quantities like the conductivity may have additional contributions at first order
from the effects we study here. Second, there have been a number of works examining the
specific heat and thermal transport measured in certain Kondo insulators, which are more akin
to what would be expected in metals and have been attributed to neutral in-gap states such as
excitons [18] or impurity bands [26], or neutral Fermi surfaces resulting from fractionalized
electronic degrees of freedom [12, 13, 20, 22, 23, 28]. Our work here suggests that replacing
rigid band structures with mean-field bands dependent on B in those models that rely on band
geometry may have qualitatively important effects.

Our results emphasize that QOs of the magnetization provide rich detail on the nature
of the electronic state of band insulators. Measurements of the Dingle damping factor are
particularly valuable. For materials that fall in the category of conventional band-insulators–
including those where the band-gap includes self-consistent mean-field contributions–there
should be agreement between the Dingle damping factor of the first harmonic and the elec-
tronic hybridization gap in the zero field limit. Disagreement would be an indication of the
relevance of physics beyond what is captured by the mean-field models we have considered
here.
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A Comparison with Previous Results

Here we confirm that our T = 0 result for the free energy agrees with the T → 0 limit of
Eq.(8) in Ref. [11]. The system considered therein assumed an infinite valence band mass,
corresponding to η = 0 here. In the notation used here, setting the chemical potential to lie
inside the gap, and correcting for a missing factor of 2 and alternating sign in that equation,
the oscillatory part of the free energy obtained there is

Ω̃R(T ) = 2T nΦ

∞
∑

p=1

(−1)p

p
cos

�

2πp
ε0

ωc

� ∞
∑

n=0

exp

�

−
4π2pT
ωc

�

n+
1
2

�

−
pg2

ωc T
1

n+ 1
2

�

. (38)

Define the dimensionless quantity tn = T (n+1/2)/ω, so that in the T → 0 limit the sum over
n becomes an integral over t,

Ω̃R(T → 0)→ 2ωcnΦ

∞
∑

p=1

(−1)p

p
cos

�

2πp
ε0

ωc

�

∫ ∞

0

dt exp [p f (t)] , (39)

where

f (t) = −4π2 t −
g2

ω2
c t

. (40)

One may recognize the resulting integral as being proportional the modified Bessel function
of the second kind, K1(2πpg/ωc)g/(πωc). Alternatively, the integral can be evaluated by the
method of steepest descent to directly find the form for g �ωc . The saddle point is given by

f ′(t∗) = 0⇒ t∗ =
g

2πωc
, (41)

letting us approximate f (t) as

f (t)≈ f (t∗) +
1
2

f ′′(t∗)(t − t∗)2 (42)

inside the integral, which is then of Gaussian form and can be evaluated to give

Ω̃R(T → 0) =

√

√ |g|ωc

2
nΦ
π

∞
∑

p=1

(−1)p

p3/2
cos

�

2πp
ε0

ωc

�

e−2π 2|g|
ωc . (43)

Recalling that n∗ = ε0/ω
∗−γ and ω∗ = (1+η)ωc , this exactly matches Eq. (5) for η= 0 and

γ= 1/2.

B Evaluation of Oscillatory Functions

Functions written as a sum over Landau level indices can be divided into oscillatory and non-
oscillatory parts using the Poisson summation formula. As a demonstration of the general
procedure, here we provide the explicit calculation of the functions α0, α̃(B), and β0, which
then give ∆̃(B) as in Eq. (13).

Introduce the notation E(n+γ)≡ εc
n−ε

v
n = (n+γ)ω

∗−ε0 = (n−n∗)ω∗, with n∗ = ε0/ω
∗−γ.

Then we have

α(B) = nΦ

∞
∑

n=0

1
q

E(n+ γ)2 + 4∆2
0

= nΦ

∫ ∞

0

dx
1

q

E(x)2 + 4∆2
0

+2nΦ

∫ ∞

0

dx
∞
∑

p=1

cos (2πp(x − γ))
q

E(x)2 + 4∆2
0

. (44)
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The first term in the second equality is what we call α0 and the second term is α̃(B). Putting
ω∗x = k2/2mc in α0 we find

α0 =

∫ ∞

0

dk
2π

k
1

r

�

εc
k − ε

v
k

�2
+ 4∆2

0

, (45)

and we see that setting this equal to 1/V as in Eq. (12) is precisely equivalent to the B = 0
gap equation, Eq. (8), at least for the isotropic, parabolic dispersion implicitly assumed with
this change of variables.

Now for α̃(B), the change of variables z = x − ε0/ω
∗ = x − n∗ − γ gives

α̃(B) =
2nΦ
ω∗

∫ ∞

−n∗−γ
dz
∞
∑

p=1

cos (2πp(z + n∗))
È

z2 +
�

2∆0
ω∗

�2
. (46)

We now assume that many Landau levels are occupied, i.e. ε0�ω∗, implying n∗� 1, which
allows us to extend the lower limit of integration to −∞. Rewriting the cosine as a sum of
exponentials we then have

α̃(B)≈
nΦ
ω∗

∞
∑

p=1

e2πipn∗
∫ ∞

−∞
dz

e2πipz

r

z2 +
�

2∆0
ω∗

�

+ c.c. , (47)

where c.c. means the complex conjugate of the given term, and we see that the integral has
become a Fourier transform which gives a modified Bessel function of the second kind. Com-
bining the two terms we then arrive at

α̃(B)≈
4nΦ
ω∗

∞
∑

p=1

cos(2πpn∗)K0

�

2πp
2∆0

ω∗

�

. (48)

We now need β0, the non-oscillatory part of

β(B) = −nΦ

∞
∑

n=0

4∆0
�

E(n+ γ)2 + 4∆2
0

�3/2

= −nΦ

∫ ∞

0

dx
4∆0

�

E(x)2 + 4∆2
0

�3/2
− 2nΦ

∫ ∞

0

dx
∞
∑

p=1

4∆0 cos (2πp(x − γ))
�

E(x)2 + 4∆2
0

�3/2
,

(49)

which is the first term in the second line. Making the same changes of variables as above, then
similarly extending the lower limit of integration to −∞ we find

β0 = −4∆0nΦ

∫ ∞

−∞
dz

1
�

z2 +
�

2∆0
ω∗

�2�3/2
= −

2nΦ
∆0ω∗

. (50)

Combining Eqs. (48) and (50) as in Eq. (13) we find precisely the form of ∆̃(B) in Eq. (14).
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C Excitonic Insulator Temperature Dependence

Here we find the leading nonzero temperature corrections to the T = 0 results presented in
the main text for the excitonic insulator. At nonzero T the mean field free energy is

ΩX =
∆2

V
− T

∫ ∞

−∞
dε g(ε) ln

�

1+ e−ε/T
�

, (51)

g(ε) =
1
N

∑

k,α

A(ε− Eα(k)) , (52)

where g(ε) is the density of states, written in terms of the spectral density A which is simply a
δ-function in the absence of disorder. Including a nonzero magnetic field via the prescriptions
already discussed and employing the Poisson summation formula we find

g(ε) =
2nΦ
ω∗

√

√ ε2

ε2 −∆2
Θ(ε2 −∆2)

(

1+ 2
∞
∑

p=1

cos

�

2πp

�

2
p
ε2 −∆2 + ε0

ω∗
+ γ

��

)

, (53)

where∆=∆(B, T ) is the full field- and temperature-dependent gap function, and Θ(x) is the
Heaviside theta function, which equals 1 for x > 0 and vanishes otherwise. Here the theta
function gives the gap in the spectrum–there are no states for energies with |ε| < |∆|. Using
this form of the density of states in Eq. (51) and changing to a new integration variable ξ
defined through ε=

p

ξ2 +∆2 we obtain

Ω(B, T ) =
∆2

V
−

2nΦT
ω∗

∫ ∞

0

dξ ln

�

2

�

1+ cosh

�p

ξ2 +∆2

T

���

×

(

1+ 2
∞
∑

p=1

cos
�

2πp
�

2ξ+ ε0

ω∗
+ γ

��

)

.

(54)

As noted above, the gap ∆ is itself a function of temperature, and for B = 0 obeys

1
V
= ν

∫ ∞

0

dξ
tanh

�p
ξ2+∆2

2T

�

2
p

ξ2 +∆2
, (55)

where ν is the density of states for free electrons in two dimensions. We can expand around
T = 0 to give

tanh

�p

ξ2 +∆2

2T

�

≈ 1− 2e−
p
ξ2+∆2/T , (56)

allowing us to separate the gap equation into a temperature independent (T = 0) part, de-
termining the zero-temperature value of the gap, ∆(T = 0), and a nonzero temperature part
providing a correction to ∆ that is exponentially small for temperatures T �∆(T = 0). (The
same can be done for B 6= 0 as well.) This defines what we mean by the low-temperature
regime.

Returning now to the free energy, we can approximate the temperature dependent factor
in the low temperature regime,

T ln

�

2

�

1+ cosh

�p

ξ2 +∆2

T

���

=
Æ

ξ2 +∆2 + 2T ln
�

1+ e−
p
ξ2+∆2/T

�

≈
Æ

ξ2 +∆2 − 2Te−
p
ξ2+∆2/T .

(57)
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With this we then separate Eq. (54) into two terms. It is straightforward to confirm that the T -
independent term reproduces what is found for the T = 0 free energy of the excitonic insulator
after applying the Poisson summation formula. The second term then contains the entirety of
thermally activated contribution to the free energy, which we see is exponentially suppressed–
the largest this term can be is T exp(−∆(T = 0)/T )� 1. Thus, in the low temperature regime
T � ∆(T = 0) the zero-temperature calculations we have provided in the main text are
accurate up to exponentially small corrections.
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