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Abstract

It is known that the classical O(N) model in dimension d > 3 at its bulk critical point
admits three boundary universality classes: the ordinary, the extra-ordinary and the spe-
cial. For the ordinary transition the bulk and the boundary order simultaneously; the
extra-ordinary fixed point corresponds to the bulk transition occurring in the presence
of an ordered boundary, while the special fixed point corresponds to a boundary phase
transition between the ordinary and the extra-ordinary classes. While the ordinary fixed
point survives in d = 3, it is less clear what happens to the extra-ordinary and special
fixed points when d = 3 and N ≥ 2. Here we show that formally treating N as a con-
tinuous parameter, there exists a critical value Nc > 2 separating two distinct regimes.
For 2 ≤ N < Nc the extra-ordinary fixed point survives in d = 3, albeit in a modified
form: the long-range boundary order is lost, instead, the order parameter correlation
function decays as a power of log r . For N > Nc there is no fixed point with order pa-
rameter correlations decaying slower than power law. We discuss several scenarios for
the evolution of the phase diagram past N = Nc. Our findings appear to be consistent
with recent Monte Carlo studies of classical models with N = 2 and N = 3. We also
compare our results to numerical studies of boundary criticality in 2+1D quantum spin
models.
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1 Introduction.

Boundary critical behavior is a subject with a long history [1–3] that has attracted renewed
attention recently, driven in part by connections to the physics of symmetry protected topo-
logical phases. [4–13] In the present paper we will revisit this subject in the context of the
classical O(N) model. Let us recall what is known about this problem.

As a prototypical lattice model consider

βH = −
∑

〈i j〉

Ki j~Si · ~S j . (1)

Here ~Si is a classical O(N) spin. Ki j > 0 is a nearest neighbour coupling that is taken to be
K1 if both i and j belong to the surface layer and K otherwise. For bulk dimension d > 3
the conventionally accepted phase diagram has the schematic shape shown in Fig. 1.1 Let
us define the parameter κ = K1/K . For κ smaller than a critical value κc the bulk and the
boundary order at the same temperature K = Kc . This boundary universality class is known

K�1

K�1
c

 = K1/K

ordinary extra-ordinary

surface

special

c

BO/SO

BD/SD

BD/SO

Figure 1: Conventionally accepted phase diagram of the classical O(N)model with a
boundary in dimension d > 3. BO stands for bulk ordered, SO - surface ordered, BD
- bulk disordered, SD - surface disordered. For d = 3 and N = 1 the phase diagram
is the same. For d = 3 and N = 2 the phase diagram has the same topology, but the
BD/SO region only has quasi-long-range surface order.

1Here and below, we often formally treat variables d and N as continuous.
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as “ordinary". On the other hand, for κ > κc the enhancement of the surface coupling leads
to the boundary ordering at a higher temperature than the bulk. Then for κ > κc the onset
of bulk order at K = Kc in the presence of established boundary order is known as the “extra-
ordinary" boundary universality class. Finally, the multicritical point at κ = κc and K = Kc is
known as the “special" boundary universality class.

We note that the universality classes considered above correspond to no explicit symmetry
breaking on the boundary. We can also consider the situation where one adds an explicit
symmetry breaking field to the boundary δH = −

∑

i∈bound
~h1 · ~Si . The boundary universality

class at K = Kc is then known as “normal." It is believed that for d > 3 the extra-ordinary
universality class essentially coincides with the normal universality class. [14–17] Indeed, the
presence of a finite boundary order parameter at the extra-ordinary transition effectively acts
like a symmetry breaking field. This is most clear for the case of Ising spins (N = 1), but is
also believed to be true for N ≥ 2, where the Goldstone modes of the boundary effectively
decouple from the bulk fluctuations at K = Kc .

Let’s now turn our attention to dimension d = 3. For the case of Ising spins the boundary
phase diagram remains the same as in Fig. 1. However, for N ≥ 2 the situation is less clear - the
present paper aims to shed light on precisely this question. For N = 2, the phase diagram has
the same topology as in Fig. 1, however, now the region labelled as BD/SO has only quasi-long-
range boundary order rather than true long range order. [18–20] Then what happens if we
start in this quasi-long-range ordered boundary phase and let K approach Kc? (For simplicity,
we will still refer to the ensuing transition as “extra-ordinary.") To our knowledge this question
is not settled in the literature either analytically or numerically.2 One possibility that has been
discussed in the numerical study of Ref. [22] is that right at K = Kc the boundary has true long
range order, i.e. the boundary order parameter has a jump from 0 at K < Kc to a finite value
at K > Kc . This possibility cannot be immediately ruled out. Indeed, while for K < Kc the
boundary cannot develop true long range order by the Mermin-Wagner theorem, at K = Kc
the bulk effectively induces long-range interactions on the boundary that can lead to true long
range order. In the present work we will use renormalization group (RG) to show that, in fact,
this scenario is not realized in the O(2) model in d = 3. Instead, we find that at K = Kc for
κ > κc the order parameter correlation function on the boundary falls off as

〈~Sx · ~S0〉 ∼
1

(log |x|)q
, (2)

with q - a universal exponent. Thus, the boundary comes close to ordering at K = Kc , but does
not quite do so.3 Further, as K → K−c the stiffness of the order parameter diverges logarithmi-
cally. Below, we will refer to this type of boundary critical behavior as “extra-ordinary-log".

Next, let’s ask what happens in d = 3 for N > 2? Again, to our knowledge, this question is
not settled in the literature. Now for K < Kc the correlation length on the boundary is finite.
Thus, the topology of the phase diagram does not mandate the existence of a separate “extra-
ordinary" phase transition. Nevertheless, it is not ruled out that at K = Kc there is a critical
κc separating two different boundary universality classes, even though these connect to the
same paramagnetic phase for K < Kc , see Fig. 2, left.4 In fact, if we treat N as a continuous
parameter, continuity would suggest that for N just above 2 the extra-ordinary universality
class survives. Our RG analysis supports this conclusion. On the other hand, for large (but
finite) N one would suspect that only the ordinary universality class remains, Fig. 2, right.
Indeed, at N =∞ one only finds an ordinary fixed point and no special fixed point. [14]

2In section 5, we will discuss the very recent numerical study, Ref. [21], which had appeared after the first
arXiv version of the present paper.

3This is reminiscent of the behavior in the “Goldstone phase" of the 2d O(N) model with N < 2. [23–25]
4In fact, examples of two regions of the phase boundary having different universality classes are also known

for bulk phase transitions. [26,27]
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Figure 2: Proposed phase diagram of the classical O(N) model for d = 3 and N > 2.
Left: N < Nc in scenario I or N < Nc2 in scenario II. Right: N > Nc in scenario I or
N > Nc2 in scenario II.

Further, using the large-N results of Ref. [28] and setting the dimension d = 3+ ε, ε > 0, one
finds that the boundary scaling dimension of the order parameter at the special fixed point is

∆
spec

φ̂
≈ ε

�

1+
3
N

�

+O
�

1
N2

�

. (3)

This suggests that for large but finite N as ε→ 0, ∆spec

φ̂
approaches zero, i.e. the special and

the extra-ordinary fixed points approach each other and annihilate when d = 3. Again, our
RG analysis confirms this.5

Returning to d = 3, taken together, the above findings about the behavior of the system
for N → 2+ and for large but finite N suggest that there exists a critical value of N , Nc > 2,
separating two regimes.6 For 2 ≤ N < Nc , the boundary behavior at K = Kc is qualitatively
the same as at N = 2, with an ordinary region, an extra-ordinary-log region where the surface
order parameter correlation function falls of as (2), and a special fixed point separating them.
For N > Nc there is no extra-ordinary fixed point with logarithmically decaying correlations. In
fact, there are two scenarios for the evolution of the system past Nc . In scenario I, Fig. 3 left, as
N → N−c the the special and extra-ordinary fixed points “approach" each other,∆spec

φ̂
∼ Nc−N ,

 = K1/K

N

Nc

2

ordinary extra-ordinary-log

 = K1/K

N

Nc

2

ordinary extra-ordinary-log

extra-ordinary-power

Nc2

Figure 3: Proposed phase diagram of the classical O(N) model for d = 3 and N ≥ 2
at K = Kc . Left: scenario I. Right: scenario II. The dashed lines are a guide to eye
and do not denote phase transitions. Solid lines are phase transitions. The red curve
marks the special transition.

5The possibility of accessing the special fixed point in d = 3 + ε in a systematic expansion in ε was briefly
speculated upon in Ref. [29].

6Note that Nc is almost certainly not an integer.
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and annihilate when N = Nc , so that for N ≥ Nc only the ordinary boundary universality class
remains. In scenario II, Fig. 3 right, for N just above Nc both the ordinary and the extra-
ordinary regions of the phase diagram and the special fixed point separating them remain,
however, the correlation function of the order parameter in the extra-ordinary region now
falls off as a power of r, ∆ex t

φ̂
∼ N − Nc . We will refer to this universality class as extra-

ordinary-power. Since only the ordinary universality class exists at N = ∞, there should
then be a second critical value Nc2 > Nc , such that the special and extra-ordinary-power fixed
points approach each other and annihilate as N → N−c2. We note in passing that, as explained in
section 4, scenario II also leads to a modification of the conventionally accepted phase diagram
in Fig. 1 for d just above 3.

Unfortunately, at the present time we do not precisely know the exact value of Nc . Our
RG analysis allows Nc to be determined from the knowledge of certain universal amplitudes at
the “normal" fixed point (which exists for all N in d = 3). However, these amplitudes are not
known exactly. From the large-N expansion, we estimate Nc ≈ 4, however, it is not clear how
accurate this estimate is. Further, we currently don’t know which of the two scenarios above
for the evolution of the system for N > Nc is realized. This is ultimately determined by a sign
of a higher order term in a certain β-function in our RG analysis, which at present we are not
able to compute. Numerical simulations can yield answers to these questions. In sections 5,
7, we will discuss the existing Monte Carlo data on the classical O(N) model and on quantum
spin models in 2+1D with SO(3) symmetry. In particular, a recent Monte Carlo study of the
classical O(3) model [30] that has appeared after the first arXiv version of the present paper,
finds a special transition at a critical value κc and behavior at large κ compatible with the
extra-ordinary-log boundary universality class. This implies that Nc > 3.

This paper is organized as follows. In section 2 we develop a field theoretic formalism to
study the boundary critical behavior. Our treatment is essentially an expansion around the
ordered boundary state combined with renormalization group. It is similar in spirit to the RG
treatment of the non-linear σ-model strictly in d = 2; our progress on the boundary problem
is enabled by the fact that some critical exponents for the normal universality class are known
exactly. [14–17] In section 3 we derive the renormalization group equations, and section 4 is
devoted to an analysis of their consequences for the phase diagram. Section 5 compares our
results to existing Monte Carlo data on the classical O(N) model, particularly to the recent
large scale studies that observe behavior consistent with the extra-ordinary-log phase in the
large κ region of the N = 2 [21] and N = 3 [30] models. Section 6 is devoted specifically to
the case N = 2. Here we discuss both classical models in (bulk) d = 3 and quantum models in
D = 2+ 1 (e.g. the Bose-Hubbard model). We comment on the role of vortices at the special
transition. In particular, for the quantum model in the case when the boundary boson density
ρ is incommensurate, such that phase slips on the boundary are prohibited by translational
symmetry, we are able to describe not only the extra-ordinary-log phase, but also the special
fixed point separating it from the ordinary boundary universality class, see Fig. 6. Section 7
is devoted to quantum models with N = 3. Here we review recent numerical results on 2+1D
quantum spin models and discuss their possible theoretical interpretation. Some concluding
remarks are presented in section 8.

2 Set-up.

Consider the classical lattice model (1) in d-dimensions and let the boundary be at xd = 0. We
will be mostly interested in the case d = 3, but will keep 2 < d < 4 general for now. We wish
to study this model at its bulk critical point K = Kc and in the κ� 1 region, when the surface
has a strong tendency to local order. First, imagine turning off the couplings connecting the

5

https://scipost.org
https://scipost.org/SciPostPhys.12.4.131


Select SciPost Phys. 12, 131 (2022)

outermost surface layer to the next layer. The system without the outermost surface layer is
then expected to realize the ordinary boundary universality class. We call the corresponding
continuum fixed-point bulk+boundary action of the d-dimensional O(N) model, Sordinar y .
We denote the bulk order parameter of the O(N) model by ~φ(x, xd). The initially decoupled
outermost surface layer can be described by the d−1 dimensional continuum O(N) non-linear
σ-model for the field ~n,

Sn =

∫

dd−1x
�

1
2g
(∂µ~n)

2 − ~h · ~n
�

, ~n2 = 1 . (4)

Here, ~h is a small symmetry breaking field that will be used as an infra-red regulator. When
κ� 1, we expect g to be small.

Now, let’s restore the coupling of the outermost surface layer to the next layer: in the
continuum description, we expect a coupling

Snφ = −s̃

∫

dd−1x ~n(x) · ~φ(x, xd = 0) (5)

to be generated. Here ~φ(x, xd = 0) should be understood as the lowest dimension O(N) vector
boundary operator of the O(N) model at its ordinary boundary fixed point. Thus, we study
the action

SUV = Sordinar y + Sn + Snφ . (6)

We want to understand what are the effects of the coupling s̃. To do so, we will work around
the fixed point g = 0. When g is strictly zero, the fluctuations of ~n are frozen. Let’s choose ~n to
point along the N -th direction. The coupling Snφ then acts as a boundary symmetry breaking
field for the bulk O(N) model. Such a field is relevant at the ordinary boundary fixed point
and makes the boundary flow to the so-called “normal" fixed point.

A lot is known about the normal fixed point. First of all, this fixed point exists for all N and
d > 2. Second, the bulk order parameter acquires a finite expectation value near the boundary.
Thus, if the symmetry breaking field points along the N -th direction, letting φN = σ, we have
the operator product expansion (OPE):

σ(x, xd)∼
aσ

(2xd)
∆φ
+ bD(2xd)

d−∆φ D̂(x) + . . . , xd → 0 . (7)

Here, aσ and bD are universal constants.7 Note, we normalize the bulk operators so that in
the absence of the boundary 〈Oa(x)Ob(y)〉 = δab

|x−y|2∆O
. Likewise for the boundary operators,

〈Ôa(x)Ôb(y)〉 = δab

|x−y|2∆Ô
. We generally denote boundary operators with a hat. Besides the

identity, the lowest dimension field D̂(x) contributing to the OPE on the RHS of (7) (i.e. the
lowest dimension O(N − 1) scalar) is believed to be the “displacement" operator, which has
scaling dimension of exactly d. [15, 31] Thus, since ∆D̂ > d − 1, the normal fixed point has
no relevant boundary perturbations that don’t break the remnant O(N − 1) symmetry. The
boundary scaling dimension of the lowest O(N − 1) vector on the boundary t̂i , i = 1 . . . N − 1
is also known exactly: ∆t̂ = d − 1. [14,31,32]8 We write:

φi(x, xd)∼ bt (2xd)
d−1−∆φ t̂i(x) + . . . , xd → 0 , (8)

where bt is a universal constant.

7We are using the normalization convention of Ref. [31], which differs from the convention used in the first
arXiv version of this paper.

8The label “t" stands for “tilt", a term coined in Ref. [33]
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While the action (6) provides a conceptually clear O(N) symmetric regularization of the
model we wish to consider, it is inconvenient to work with. Indeed, even at g = 0 we don’t
know the details of the flow from the ordinary to the normal boundary fixed point of the O(N)
model. Thus, we’d like to start with the end-point of this flow. We consider

SIR = Snormal + Sn − s

∫

dd−1xπi(x)̂ti(x) +δS , (9)

where ~n = ( ~π,
p

1− ~π2) and Snormal is the conformal fixed point of the O(N) model with a
normal boundary (and the symmetry-breaking field pointing along the N th direction). t̂i is the
boundary O(N − 1) vector at the normal fixed point, Eq. (8). Note that while the first three
terms in SIR enjoy an O(N −1) symmetry, they don’t have an explicit O(N) symmetry that our
UV action (6) possesses. Indeed, the coupling of the N -th component of bulk and boundary
φ field, δL ∼ nN · D̂ is irrelevant in the RG sense at the g = 0 fixed point and so will not
be included. Thus, the action (9) must somehow have an emergent O(N) symmetry. Another
comment is that the coupling s in (9) is actually not the same as the coupling s̃ in the UV action
(5). Indeed, s is the effective coupling emerging after the RG flow from the ordinary to the
normal fixed point. In fact, we will see momentarily that in order to have O(N) symmetry, s
will be fixed at a particular value. Finally, the term δS consists of counter-terms that we will
adjust order by order in π (equivalently, g) to restore the O(N) invariance.

2.1 Fixing the value of s.

We now use the O(N) symmetry to fix the value of s.9 We continue to work at g = 0, where ~n
is a classical frozen constant field. When this field points along the N -th direction, ~n = (~0, 1)
we know that

〈σ(xd)〉=
aσ

(2xd)
∆φ

, 〈φi〉= 0 . (10)

If we rotate ~n by an infinitesimal angle α towards the direction 1̂, n1 = sinα, nN = cosα, we
should get

〈φ1(xd)〉=
aσ sinα

(2xd)
∆φ

. (11)

But, from (9), to first order in α,

〈φ1(xd)〉= sα

∫

dd−1x 〈φ1(0, xd )̂t1(x)〉norm, (12)

where the subscript norm denotes the expectation value taken with respect to the action
Snormal . The correlation function on the RHS is fixed by conformal symmetry. [34] Indeed,
we have

〈φ i(x, xd)φ
j(x′, x ′d)〉norm =

δi j

(4xd x ′d)
∆φ

g(ξ) , ξ=
|x− x′|2 + (xd − x ′d)

2

4xd x ′d
, (13)

with g(ξ) - a universal function. Our choice of normalization of φ i in the absence of the
boundary implies g(ξ)→ ξ−∆φ , ξ→ 0. Further, using the OPE (8) on both operators in the
correlator (13) requires

g(ξ)→
b2

t

ξd−1
, ξ→∞ . (14)

9In fact, this is the same argument that is used to fix ∆t̂ = d − 1. [14]
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Now, using the OPE (8) on just one of the operators in (13) we obtain,

〈φi(x, xd )̂t j(x
′)〉norm = btδi j

(2xd)
d−1−∆φ

(|x− x′|2 + x2
d)

d−1
. (15)

Substituting this into (12) and taking the integral over x,

s =
Γ (d − 1)

(4π)
d−1

2 Γ ( d−1
2 )

aσ
bt

d=3
=

1
4π

aσ
bt

. (16)

Thus, the coupling s is fixed by the O(N) symmetry in terms of the universal constants aσ
and bt. Crucially, s is dimensionless. We also note that s is not small. Thus, we will not be
performing perturbation theory in s, but rather in g.

We note that so far we’ve only restored the O(N) symmetry to leading order in fluctuations
of ~n (in particular, the above analysis was carried out to linear order in α only). We may need
to add extra terms to the Lagrangian to restore the symmetry at higher orders. One example
of such a term is δL ∼ ~π2πi t̂i . However, these higher order terms will not affect our analysis
below.

The value of s plays an important role in what follows, so we pause to discuss various
results for aσ and bt. Explicit expressions can be obtained for aσ and bt in the limit N →∞.
We have computed the first corrections to these quantities in 1/N (see appendix A) for d = 3.
(In fact, all the steps in the computation were already explained in Ref. [35], however, no
explicit final result was given, so we repeat the calculation here.)

a2
σ = 2(N + 1)

�

1−
η

2

�

+O
�

1
N

�

≈ 2(N + 0.865) +O
�

1
N

�

,

b2
t =

1
4

�

1+
1
N

�

�

1−
η

2

�

+O
�

1
N2

�

≈
1
4

�

1+
0.865

N

�

+O
�

1
N2

�

,

s2 =
N

2π2
+O

�

1
N

�

. (17)

Here η≈ 8
3π2N is the bulk anomalous dimesnion of φ: ∆φ = (d − 2+η)/2.

One can also obtain expressions for a2
σ and b2

t in the 4− ε expansion from the results of
Ref. [36]:

a2
σ =

4(N + 8)
ε

�

1−
N2 + 31N + 154
(N + 8)2

ε

�

, (18)

b2
t =

1
3

�

1−
N + 9

6(N + 8)
ε

�

. (19)

Unfortunately, the utility of Eqs. (18),(19), in d = 3 is not clear. In fact, substituting ε = 1
into (18) gives a negative a2

σ for all N . On the other hand, substituting ε = 1 into (19) gives
b2

t within 15% of the large-N estimate (17) for N ≥ 3.

3 RG.

We now perform RG on the model (9). Since the coupling s has been fixed by symmetry, only
the coupling g is allowed to run. As in the standard O(N) model near 2d we let

g = µ−εZg gr , ~n= Z1/2
n ~nr , (20)

where the bulk dimension d = 3+ε, µ is the RG scale, Λ is the UV cut-off, gr is the renormalized
dimensionless coupling and Zg , Zn are functions of gr and Λ/µ. (We will be mostly interested
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in the behavior in d = 3, however, it will occasionally be useful to consider d = 3 + ε to
compare our results to those known in the literature.) The β-function and the the anomalous
dimension are defined as

β(gr) = µ
∂ gr

∂ µ

�

�

�

�

g,Λ
, ηn(gr) = µ

∂

∂ µ
log Zn

�

�

�

�

g,Λ
. (21)

The renormalized m-point function of the ~n field, Dm
r = Z−m/2

n 〈n(x1)n(x2) . . . n(xm)〉, then
satisfies for ~h= 0,

�

µ
∂

∂ µ
+ β(gr)

∂

∂ gr
+

m
2
ηn(gr)

�

Dm
r (gr ,µ) = 0 . (22)

We can extract Zg and Zn by requiring that the two-point function 〈πi
r(x)π

j
r(y)〉 and the one-

point function 〈nN
r (x)〉 be independent of Λ. In the absence of the coupling to the bulk fields

this gives to leading non-trivial order in gr (and to zeroth order in ε):

Zn = 1−
N − 1

2π
gr log

Λ

µ
, Zg = 1−

N − 2
2π

gr log
Λ

µ
, (23)

so that [37]:

β(gr) = εgr −
N − 2

2π
g2

r , ηn(gr) =
N − 1

2π
gr . (24)

Now, let’s include the effect of the coupling s to the bulk fields. To leading order in g,
〈nN 〉 ≈ 〈1−

1
2π

2〉 is unmodified. Thus, Zn remains unmodified to this order. However, the two
point function 〈πi(x)π j(x)〉 receives an extra contribution:

δs〈πi(x)π j(y)〉= s2

∫

dd−1z dd−1w D0(x, z)〈̂ti(z)̂t j(w)〉normD0(w,y) . (25)

Here,

D0(x, y) =

∫

dd−1p
(2π)d−1

g
p2 + gh

ei~p·(~x−~y) (26)

is the bare π propagator. We will denote the full π propagator by D. Going to momentum
space and using the normalization of t̂ operator:

δsD(p) = s2D2
0 (p)

∫

dd−1z
1

|z|2(d−1)
e−i~p·~z . (27)

Alternatively, letting the self-energy Σπ(p) be defined as D(p)−1 = D0(p)−1 +Σπ(p),

δsΣπ(p) = −s2

∫

dd−1z
1

|z|2(d−1)
e−i~p·~z . (28)

We notice that δsΣπ(p = 0, h = 0) 6= 0. This would lead to the breaking of O(N) rotational
symmetry. Thus, to restore the O(N) symmetry, we add a counterterm δS = C

∫

dd−1x ~π2(x),
with C = −δsΣπ(p = 0). Following this,

δsΣπ(p)→−s2

∫

dd−1z
1

|z|2(d−1)

�

e−i~p·~z − 1
�

. (29)

Setting d = 3 and performing the integral we obtain to logarithmic accuracy,

δsΣπ(p) =
πs2

2
p2 log

Λ

p
. (30)
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Therefore, to eliminate this divergence we choose

Zg = ZO(n)
g

�

1+
πs2

2
gr log

Λ

µ

�

= 1−
�

N − 2
2π

−
πs2

2

�

gr log
Λ

µ
, (31)

with ZO(n)
g given by Eq. (23). Therefore,

β(gr) = εgr −
�

N − 2
2π

−
πs2

2

�

g2
r , ηn(gr) =

N − 1
2π

gr . (32)

4 Phase diagram.

What are the consequences of the RG analysis in section 3? Letting ` be the RG scale, µx ∼ e`,
we have d gr

d` = −β(gr). Writing β(gr) = εgr +αg2
r with

α=
πs2

2
−

N − 2
2π

, (33)

we observe that the physics depends on the sign of α. When α > 0 the g = 0 fixed point is
stable in d = 3, while when α < 0 it is unstable. Crucially, we known that when N = 2,

α(N = 2) =
πs2

2
> 0 , (34)

while for large (but finite N), from Eq. (17)

α(N)≈ −
(N − 4)

4π
+O

�

1
N

�

< 0 , N →∞ . (35)

Thus, there must be a critical Nc at which α switches sign.10 Naive extrapolation of the large-N
result (35) gives Nc ≈ 4.

Let’s begin our analysis in d = 3 with 2 ≤ N < Nc . Here g∗ = 0 is a stable fixed point as g
runs logarithmically to zero:

gr(`) =
gr

1+αgr`
, d = 3 . (36)

Further, integrating the Callan-Symanczyk equation,

〈nN 〉r ∼
�

1+αgr log
µ
p

h

�−q/2

→ 0 , h→ 0 , (37)

where

q =
N − 1
2πα

. (38)

The order parameter expectation value vanishes as a power of logarithm as h→ 0, thus, unlike
for d > 3, there is no true long range order at the g∗ = 0 fixed point in d = 3. Further, the two
point function of ~n for h= 0,

Dr(p)≈
gr

p2
�

1+αgr log µp
�1+q . (39)

10Here and below we assume the minimal scenario where α(N) has only a single zero for N ≥ 2.
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Integrating this, we obtain the propagator in space to leading logarithmic accuracy:

D(x)∝
1

(logµx)q
, x→∞ . (40)

Thus, for 2 ≤ N < Nc , the extra-ordinary fixed point survives in d = 3, but in a modified
form with no true long range order and order parameter correlations that decay only as a
power of logarithm. We refer to such behavior as the extra-ordinary-log universality class.
In particular, this occurs for the case N = 2 where we are confident that α > 0. Here, the
extra-ordinary-log fixed point that we’ve just obtained controls the behavior as we approach
K = Kc out of the surface phase with quasi-long-range order, labelled as BD/SO in Fig. 1.
Calling the bulk correlation length ξbulk ∼ (Kc −K)−νbulk , we will have the flow (36) cut-off at
`∼ log(µξbulk). Thus,

K = π

g(`)
∼
π

gr
+πα log(µξbulk) , (41)

where K is the Luttinger parameter of the surface superfluid. We see that the Luttinger pa-
rameter diverges logarithmically as K → K−c .

While the existence of an extra-ordinary transition in d = 3 for N = 2 was mandated by the
topology of the phase diagram, it is more curious that this transition survives for 2< N < Nc ,
where for K < Kc all surface correlators decay exponentially and no extra-ordinary transition
is required. Of course, current analytic understanding does not tell us whether Nc > 3, i.e.
whether the above range includes any integer values of N (see, however, the discussion of
recent Monte Carlo results in section 5). Still, formally in this range the approach to Kc in the
region κ > κc in Fig. 2, left, is controlled by the extra-ordinary-log fixed point. In this case,
the flow in Eq. (36) is again cut-off at ` ∼ log(µξbulk), after which the flow controlled by the
strictly 2d O(N) β-function (24) resumes. This gives a surface correlation length

ξsur f

ξbulk
∼ (ξbulk)

2πα
N−2 , (42)

i.e. the surface correlation length is parametrically larger than the bulk correlation length as
K → K−c .

We note that in the range 2 ≤ N < Nc since a stable extra-ordinary fixed point g∗ = 0
exists, there must also be a special fixed point separating the extra-ordinary and the ordinary
fixed points. However, for a general N in this range the special fixed point does not occur at
a parametrically weak coupling g. What happens for N close to Nc? The physics here will be
controlled by the sign of the cubic term in the β-function:

β(g)≈ αg2 + bg3 . (43)

For N → Nc , writing α≈ a(Nc −N) with a > 0, we need to know the sign of b(Nc). At present
we do not know this sign,11 so we consider both scenarios.

• Scenario I: b(Nc) < 0. Then for N just below Nc , we have two perturbatively accessible
fixed points: the stable fixed point g∗ = 0 corresponding to the extra-ordinary-log class
and the unstable fixed point gspec

∗ ≈ a(Nc−N)
|b| . We guess that gspec

∗ corresponds to the
special transition and the flow g →∞ for g > gspec

∗ to the flow to the ordinary fixed
point. Then as N → N−c , the special fixed point approaches the extra-ordinary fixed point
and annihilates with it. At the special fixed point the scaling dimension of the surface
order parameter

∆
spec
~n =

ηn(g
spec
∗ )

2
≈
(N − 1)gspec

∗

4π
(44)

11We note that for the pure d = 2 O(N) model b(N)< 0 [38].
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N

Nc

2

ordinary

extra-ord
log

g0 1

special

N

Nc

2

ordinary

extra-ord
log

g0 1

special

extra-ord
power

Nc2

Figure 4: Conjectured RG flows as a function of N in d = 3. Left - scenario I. Right -
scenario II. Blue dashed arrows indicate the direction of RG flow. Black dashed lines
are guide to eye.

will then be small for N just below Nc . For N > Nc any finite g > 0 flows to g =∞
signifying that only the ordinary fixed point is left and we have the phase diagram in
Fig. 2, right. The overall evolution of fixed points as a function of N in this scenario is
sketched in Fig. 4, left.

• Scenario II: b(Nc)> 0. In this scenario, the special fixed point does not approach g = 0 as
N → Nc . Rather, the g = 0 fixed point becomes unstable for N > Nc , but there is a stable,
perturbatively accessible fixed point at g ex t−p

∗ ≈ a(N−Nc)
b . Thus, for N just above Nc the

phase diagram still has the topology in Fig. 2 left, but the extra-ordinary transition is now
controlled by the new fixed point g ex t−p

∗ and the surface order parameter correlations at
it have a power-law behavior. We refer to this universality class as extra-ordinary-power.
As N increases further, we expect that eventually the g ex t−p

∗ fixed point approaches the
special fixed point and annihilates with it at N = Nc2 > Nc . Then for N > Nc2 only the
ordinary universality class remains, as expected from large-N expansion. The overall
evolution of fixed points as a function of N in this scenario is sketched in Fig. 4, right.
While the phase diagram in this scenario is more complicated than in Scenario I, at
present we cannot rule Scenario II out.

Before we conclude this section, we present the conjectured RG flow of the model in

N

2

ordinary

extra-ord

g0 1

special

N

2

ordinary

extra-ord

g0 1

special

extra-ord
power

special

Figure 5: Conjectured RG flows as a function of N in d = 3 + ε. Left - scenario I.
Right - scenario II. Blue dashed arrows indicate the direction of RG flow. In scenario
II, as ε increases the figure on the right will eventually evolve into the figure on the
left.
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d = 3 + ε with ε � 1. Fig. 5, left, shows the RG flow in scenario I and Fig. 5, right - in
scenario II. First of all, the g = 0 fixed point is stable in d > 3 and corresponds to the con-
ventional extra-ordinary transition, where the boundary orders before the bulk. Indeed, 〈~n〉
has a finite expectation value at this fixed point. Further, the fact that g(`) ∼ ge−ε` flows
to 0 at this fixed point implies that the fluctuations of ~n essentially decouple from the bulk
with normal boundary conditions: this is the known equivalence of the extra-ordinary and
normal transitions in d > 3. We further note that fixing N > Nc and letting ε→ 0, we have
an additional perturbatively accessible unstable fixed point at gspec,1

∗ = ε
|α| . For N ¦ Nc in sce-

nario I and N ¦ Nc2 in scenario II gspec,1
∗ separates the extra-ordinary and the ordinary phases

and corresponds to the special transition in the conventional phase diagram of Fig. 1. Note
that in scenario II, we also have a region Nc ® N ® Nc2 where there are three stable phases:
the extra-ordinary, the extra-ordinary-power and the ordinary and two successive transitions
separating them (with gspec,1

∗ being the one at the smaller value of g). Such a region was not
previously foreseen. Since in d = 4−εwe only have the extra-ordinary and the ordinary stable
phases, we conclude that if Scenario II is realized, Fig. 5, right, must evolve into Fig. 5, left,
as d increases from 3 to 4.

A highly non-trivial check of our RG analysis is obtained by comparing the behavior at
the special transition gspec,1

∗ in d = 3 + ε for large N to what is known from direct large-N
treatment of the special transition. From (35), we have

gspec,1
∗ ≈

4πε
N

�

1+
4
N
+O(N−2)

�

, ηspec,1
n ≈ 2ε

�

1+
3
N
+O(N−2)

�

, N →∞ . (45)

Then, at gspec,1
∗ from the Callan-Symanczyk equation (22), 〈ni(x)n j(0)〉 ∼ δi j

xηn , i.e

∆
spec,1
~n =

ηn

2
= ε

�

1+
3
N
+O(N−2)

�

+O(ε2) . (46)

On the other hand, from direct large-N expansion in arbitrary 3< d < 4, the boundary scaling
dimension of φ at the special transition is:12

∆
spec

φ̂
= d − 3+

1
N

2(4− d)
Γ (d − 3)

�

(6− d)Γ (2d − 6)
dΓ (d − 3)

+
1

Γ (5− d)

�

+O
�

1
N2

�

, (47)

which exactly matches Eq. (46) to first order in ε and to O(1/N).
Another observation is that at gspec,1

∗ the boundary correlation length exponent,

νspec,1 =
1

|β ′(g∗)|
=

1
ε

. (48)

This means that the dimension of the relevant O(N) scalar boundary operator Ôspec
rel that drives

one away from the special critical point is ∆Ôspec
rel
= d − 1− 1/νspec = 2+O(ε2). For N =∞,

this agrees with the scaling dimension of the lightest boundary O(N) scalar - see Eq. (5.8) in
Ref. [28]. Note that Eq. (48) is actually correct to leading order in ε for any N , as long as
N > Nc .

4.1 Velocity running.

So far we’ve been thinking of classical models and assuming that there is sufficient rotational
symmetry to guarantee isotropy of (∇~n)2. However, in quantum models there is no reason for

12We are using ∆φ̂ =
d−2+η‖

2 , with η‖ given by Eq. 5.15a of Ref. [28].
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the velocity of the bulk and boundary modes to be the same. In particular, we should modify
our action to

S = Snormal +
1

2g

∫

d xdτ
�

1
vs
(∂τ~n)

2 + vs(∂x ~n)
2
�

− svb

∫

d xdτπi t̂i . (49)

Here we are taking bulk dimension to be d = 2 + 1. vs is the surface velocity and vb - the
bulk velocity. g is dimensionless and s is again given by Eq. (16). We normalize t̂i to have the
correlation function

〈̂ti(x ,τ)̂t j(0,0)〉=
δi j

(x2 + v2
bτ

2)2
. (50)

Note that the bulk velocity vb is not renormalized by the surface. Then repeating the calcula-
tions in section 3 we obtain

d(vs/vb)
d`

= −
πs2 g

4

�

�

vs

vb

�2

− 1

�

,

d g
d`

=

�

N − 2
2π

−
πs2

4

�

vs

vb
+

vb

vs

�

�

g2 . (51)

As expected, the running of vs vanishes when vs = vb. Further, the flow is towards vs = vb
whenever we have a perturbatively accessible fixed point for g. In particular, for the extra-
ordinary-log fixed point, assuming vs/vb is initially close to 1, we may integrate the RG equa-
tion for g(`), obtaining Eq. (36). Then substituting this into the RG equation for vs/vb we
obtain

vs(`)/vb − 1
vs/vb − 1

= (1+αg`)−(1+
N−2
2πα ) . (52)

Thus, the surface velocity flows to the bulk velocity as a power of logarithm of the length-scale.
For the case of fixed points at a finite small value of g, (e.g. the special fixed point for N

slightly below Nc in scenario I, and the extra-ordinary-power fixed point for N slightly above
Nc in scenario II), vs/vb − 1 flows to zero as a power of the length-scale.

5 Comparison with classical Monte Carlo.

In this section, we discuss the current state of Monte Carlo studies of boundary criticality in
the classical O(N) model in d = 3.

For N = 2 the phase diagram in Fig. 1 is well-established numerically and the critical
exponents associated with the ordinary and the special universality classes have been extracted
[19, 20, 22], see table 1. However, the nature of the extra-ordinary transition had remained
unsettled until very recently (see below).

For N = 3 the ordinary boundary universality class is well studied with Monte Carlo [22],
but the region of the phase diagram with κ ¦ 1 has received fairly little attention until very
recently. The early study in Ref. [39] had concluded that while for κ≤ 1.5 the system crosses
over to the ordinary universality class at large length scales, for κ≥ 2 the ordinary universality
class is not reached for system sizes studied. A slightly later study, Ref. [22], had found a
crossing point in the Binder ratio for the surface order parameter at κ ≈ 1.85 that was taken
to suggest the existence of a special fixed point. However, the properties of the putative extra-
ordinary transition in the κ > 1.85 region were not studied in detail. A similar crossing point
in the Binder ratio at κ≈ 2.26 was also observed for the N = 4 case in Ref. [40] and an attempt
to extract critical exponents associated with the putative special transition has been made, see
table 1.
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After the arXiv version of the present paper came out, two further large scale Monte Carlo
studies of the cases with N = 2 and N = 3 have appeared. [21,30] In Ref. [30] the N = 3 case
was studied. The existence of a crossing point in the Binder ratio was confirmed and critical
exponents associated with this special transition were extracted. Further, the behavior of the
model for one value of κ > κc was studied in some detail - the Monte Carlo results appear
consistent with the extra-ordinary-log universality class. For instance, the spin-spin correlation
function on the surface appears to be consistent with Eq. (2) with q ≈ 2.1(2), which translates
to α ≈ 0.15(2) via Eq. (38). Even more striking is the observed behavior of the spin-helicity
modulus Υ defined as

Υ =
1
L
∂ 2F
dθ2

�

�

�

�

θ=0
. (53)

Here the system lives on a L× L‖× L‖ slab of thickness L with surface dimensions L‖× L‖. The
boundary conditions along the surface directions are taken to be periodic-twisted, i.e a gauge
flux θ in the SO(2) subgroup of SO(3) is inserted along one of the periodic surface directions.
F(θ ) = − log Z is the free-energy with these boundary conditions. For a boundary conformal
fixed point we expect LΥ to go to a constant. On the other hand, for our extra-ordinary-log
fixed point, we expect LΥ to be dominated by the contribution from the stiffness of the surface
order parameter ~n,

LΥ ≈
2

g(`)
≈

2
g
+ 2α log L , (54)

where we used the RG flow in Eq. (36). (The factor of 2 appears because the slab has two
surfaces). Ref. [30], indeed, finds that LΥ grows roughly logarithmically at the extra-ordinary
transition with no sign of saturation for system sizes up to L = L‖ = 384 and estimates
α¦ 0.11. This is roughly consistent with the value of α extracted from the two-point function
of the order parameter.

Ref. [21] has very recently revisited the extra-ordinary transition in the N = 2 model. Their
results are consistent with the extra-ordinary-log universality class. The two-point function of
the surface order parameter at separation x = L‖/2 is consistent with Eq. (2) with q ≈ 0.59(2),
translating to α ≈ 0.27(1). The spin-stiffness LΥ grows logarithmically with system size and
gives α ≈ 0.27(2). The value of α extracted appears to be independent of κ for κ > κc ,
confirming the universality of the extra-ordinary-log transition.

Our RG analysis predicts that the value of α in the extra-ordinary-log phase is controlled
by the universal OPE coefficients aσ, bt at the normal fixed point via Eqs. (16), (33). The
normal fixed point in the O(N) model with N = 2, 3 was very recently studied by Monte Carlo
in Ref. [41] and the constants aσ, bt were extracted. We list the corresponding value of α as
αnorm in Table 1. We see that αnorm agrees rather well with the value of α obtained from direct
simulations of the extra-ordinary-log phase, listed in Table 1 as αeo.

Summarizing the results above: there is reasonable evidence for the existence of the extra-
ordinary-log universality class in the N = 2,3 models, suggesting that the critical value Nc > 3.
The value of α decreases from N = 2 to N = 3 as expected. Further, the exponents ∆spec

~n
and ν−1

spec decrease as N increases from 1 to 4 and become very small at N = 4. This fa-
vors Scenario I in section 4 (Fig. 4, left). In fact, the smallness of these two exponents at
N = 4 suggests that Nc is close to 4. We further note that in Scenario I, if N is sufficiently
close to Nc that the special fixed point gspec

∗ is perturbatively accessible, we expect the ratio

rspec =
(N−1)ν−1

spec

4π∆spec
~n

to approach the constant α of the extra-ordinary-log phase. Using the data

in Table 1, rspec(N = 2) = 0.149(1) and rspec(N = 3) = 0.217(7). rspec(N = 2) is far from
α(N = 2), so for N = 2 the special transition lies outside of the perturbative regime. On the
other hand, rspec(N = 3) is reasonably close to the value αnorm(N = 3) in Table 1, suggesting
that for N = 3 gspec

∗ is perturbatively accessible and again favoring Scenario I in section 4.
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Table 1: Monte Carlo results for surface criticality in the classical O(N) model in
d = 3. ∆ord

~n and ∆spec
~n are respectively the scaling dimensions of the surface order

parameter at the ordinary and special fixed points. νspec is the correlation length

exponent at the special transition. Qspec
4 =

〈 ~m2
1〉

2

〈( ~m2
1)

2〉 is the surface Binder ratio at the

special transition ( ~m1 =
∑

i∈bound
~Si is the surface magnetization). For N ≥ 2, αeo is

the universal constant in the extra-ordinary-log phase, extracted from Eqs. (2), (38);
αnorm is the value of α obtained from the constants aσ, bt of the normal fixed point
via Eqs. (16), (33).

N ∆ord
~n ∆

spec
~n ν−1

spec Qspec
4 αeo αnorm

1 [22] 1.2626 (15) 0.364(1) 0.715(1) 0.626(1)
2 [21,22,41] 1.219 (2) 0.325(1) 0.608(4) 0.840(1) 0.27(1) 0.300(5)

3 [30,41] 1.187(2) 0.264(1) 0.36(1) 0.9388(4) 0.15(2) 0.190(4)
4 [40] 0.9798(12) 0.184(2) 0.107(15) 0.9825(8)

6 N = 2. The role of vortices. Quantum models.

In our discussion of the N = 2 case, we have so far ignored the effect of vortices on the surface.
We expect vortices to be irrelevant at the extra-ordinary-log fixed point described in section
4. Indeed, ignoring the coupling to the bulk, the scaling dimension of an m-fold vortex in ~n is
∆V m = πm2

g . The coupling g flows to 0 in the IR, so we expect vortices to be highly irrelevant
at the extra-ordinary-log fixed point. However, as we describe below, we expect that vortices
do play a role at the special fixed point in the classical O(2) model.

First, however, we note that we may also consider quantum models with U(1) symmetry
in 2+1D bulk dimensions. As a prototype consider the transition from a Mott insulator to a
superfluid of bosons (e.g. in a Bose-Hubbard model). If the bulk transition is taking place at
a constant (integer) boson density, it is described by the same 2+1D O(2) model we’ve been
considering up till now. However, the surface boson density at the transition need not match
the bulk density. We may again model the boundary by the action: Sordinar y + Sϕ + Sϕφ with

Sϕ =
1

2g

∫

d xdτ
�

(∂τϕ)
2 + (∂xϕ)

2
�

,

Sϕφ = −
s̃
2

∫

d xdτ
�

eiϕφ̂∗ + e−iϕφ̂
�

. (55)

Here eiϕ ∼ n1 + in2 is the boundary order parameter. The complex scalar φ̂ is the boundary
operator corresponding to the bulk order parameter with the ordinary boundary condition.

Assume that there is a translational symmetry along the boundary with period δ. Let the
average excess boson number near the boundary over length δ be ρ. Just as in a purely 1+1D
system, if ρ is irrational, we expect that vortices in eiϕ will be absent due to translational
symmetry.13 Likewise, if ρ = p

q with p, q - mutually prime integers, we expect only q-fold
vortices V q of eiϕ will be allowed.

Let us first analyze the phase diagram ignoring vortices. The scaling dimension∆φ̂ ≈ 1.219

13Strictly speaking, the quantity controlling the quantum number of vortices under translation is not the excess
density ρ, but ρ − P, where P is the bulk polarization density. [42] However, for the simple Bose-Hubbard model
on the square lattice P = 0. We thank Ashvin Vishwanath and Chong Wang for clarifying this point to us.
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K�1

K�1
c ordinary+LL extra-ordinary-log

1/g
1/gc

LLBD

BO

Figure 6: Conjectured phase diagram for the 2+1D Bose-Hubbard model with in-
teger bulk filling and an incommensurate excess boson density ρ on the boundary.
K is a non-thermal tuning parameter in the bulk and g is the tuning parameter on
the boundary. LL stands for bulk-disordered and boundary being a Luttinger-liquid.
Ordinary+LL stands for a boundary Luttinger liquid essentially decoupled from the
bulk with an ordinary boundary condition. In the case of commensurate excess bo-
son density ρ = p

q with (p, q) = 1 and q ≥ 3, the phase diagram is essentially the
same, except for the presence of an additional charge-density-wave boundary phase
at large g.

for the ordinary universality class. [22] The scaling dimension ∆eiϕ = g
4π . Thus,

ds̃
d`
=
�

2−∆φ̂ −
g

4π

�

s̃ . (56)

If g
4π > g0

c = 2 −∆φ̂ ≈ 0.781, the coupling s̃ is irrelevant. In this regime, we have a bulk
with ordinary boundary conditions with an effectively decoupled Luttinger liquid (LL) on the
surface. We call this universality class LL+ordinary. On the other hand, for g < g0

c , the
coupling s̃ is relevant. One possibility is that the resulting flow is to the extra-ordinary-log
fixed point at g = 0. Then we would have the phase diagram in Fig. 6. (Of course, we
cannot rule out the existence of an additional stable boundary phase at intermediate values
of g). Note that here we have two distinct stable boundary universality classes at K = Kc that
connect to the same phase for K > Kc .

Let us analyze the transition from the LL+ordinary to the extra-ordinary-log fixed point in
more detail. We work perturbatively in s̃ and g − g0

c . (The superscript zero on gc is to remind
that this is the critical coupling when s̃ = 0.) The structure of RG is very similar to that at the
Kosterlitz-Thouless (KT) transition (and also to that discussed in Ref. [12]). We have the OPE:

φ̂(x)φ̂∗(0) ∼
1

x2∆φ
,

eiϕ(x)e−iϕ(0) ∼
1

xg/2π

�

1−
1
4

x2(∂µϕ)
2
�

, (57)

with x = (τ, x). Here we have included only Lorentz scalars in the eiϕ(x) OPE. Recalling that
if

δS = −λi

∫

d2x Oi(x) , (58)
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1/g

s̃

1/g0
c

ordinary	+	LL

Figure 7: RG flow at the boundary of 2+1D Bose-Hubbard model in the absence of
vortices. The solid red line marks a phase transition.

and Oi(x)Oj(0)∼
Ci jk

|x|2 Ok(0) then,

dλk

d`
= πCi jkλiλ j , (59)

we have
d g
d`
= −

πs̃2

4
g2 ≈ −4π3(2−∆φ̂)

2s̃2 . (60)

The RG equations (56), (60) are essentially the same as for a KT transition and result in
the flow diagram in Fig. 7. Letting

u=
g

4π
− (2−∆φ̂) , v = π(2−∆φ̂)s̃ , (61)

we have

dv
d`

= −uv ,

du
d`

= −v2 . (62)

We have the separatrix u = v along which u and v flow to zero as v(`) = v
1+v` , and the at-

tractive fixed line u = −v along which v(`) = v
1−v` . If we start with initial v and u close

to the separatrix v = u with v > u then the RG diverges at ` ≈ πp
v2−u2 . This is the typical

ξ ∼ exp
�

const/
p

gc − g
�

divergence of the correlation length characteristic of the KT transi-
tion. At the transition, u= v flow to zero logarithmically and we have∆eiϕ = 2−∆φ̂ ≈ 0.781.

In the present analysis we have ignored the possible difference between velocities on the
surface and in the bulk. As we show in appendix B, taking the velocity difference into account
does not qualitatively change the nature of the transition (even though the surface velocity
does not flow to the bulk velocity at the transition.)

Another important assumption that we have made is that there are no U(1) neutral relevant
boundary operators at the ordinary fixed point. While we expect that this is so for Lorentz
scalars (as the ordinary fixed point is stable), it is less obvious for Lorentz vectors, e.g. for
the boundary operator corresponding to the bulk U(1) current jµ with µ = τ, x along the
surface. While such a vector is prohibited by e.g. rotational symmetry in the classical model,
ĵτ is generally allowed in the quantum model. For the O(N) model with N →∞, the O(N)
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Figure 8: Possible phase diagrams for the 2+1D Bose-Hubbard model with integer
bulk filling and a density ρ = 1/2 on the boundary. All phase labels refer to boundary
behavior. While the phase diagram on the left is certainly possible, it is not clear if
the one on the right can be realized with a direct continuous transition as a function
of g at K = Kc .

current ĵτ,x
ab has a boundary scaling dimension 3, so it is, indeed, irrelevant. Also, in d = 4, ĵµ

has dimension 5> d − 1 for µ parallel to the surface.
Next, we analyze the effect of vortices on this transition. We have ∆V m = πm2

g0
c
≈ 0.32m2.

Thus, vortices with m = 1 and m = 2 are relevant at the transition described above, while
vortices with m ≥ 3 are irrelevant. This implies that if the surface boson filling ρ is irrational
or if ρ = p

q with (p, q) = 1 and q ≥ 3 then all symmetry allowed vortices are irrelevant at
g = g0

c . On the other hand, if ρ is an integer or a half-integer (e.g. if it is fixed to these
values by a discrete symmetry) then there exist symmetry allowed vortices that are relevant
at g0

c . In the latter case vortices are also relevant for g > g0
c , so not only is the transition

unstable to vortices but also the LL+ordinary phase adjacent to it. For q = 1 one may expect
that single vortices just destroy the Luttinger liquid leaving the ordinary universality class and
also modifying the phase transition between the ordinary and the extra-ordinary-log phases.
This then gives the same phase diagram as in the classical case, Fig. 1 (with K and K1 being
non-thermal tuning parameters in the bulk and on the surface). For q = 2 we expect that
for large g double vortices drive the Luttinger liquid into a charge (or bond) density wave.
There are then two possible scenarios for the evolution of the boundary as g is decreased,
see Fig. 8. In the more mundane scenario (Fig. 8, left), fixing K = Kc , as one decreases g
one first encounters a transition to the extra-ordinary-log universality class with co-existing
charge-density-wave (CDW) order. This transition would be the same as in the classical O(2)
model. As one further decreases g the charge-density-wave order disappears and we are left
with pristine extra-ordinary-log universality class. There are certainly microscopic models
which realize this mundane scenario. In the more interesting scenario (Fig. 8, right), one
encounters just a single continuous transition as g is decreased at which CDW disappears and
the extra-ordinary-log behavior onsets. It is currently not clear if such a direct continuous
transition is possible (a direct first order transition is, of course, not ruled out).

7 Quantum models: N = 3.

We begin this section by reviewing recent Monte Carlo results on quantum spin models in 2+1D
with SO(3) symmetry. [7–9,43,44] A prototypical Hamiltonian considered in Refs. [9,43] is

H =
∑

〈i j〉

Ji j~Si · ~S j . (63)
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Non-ordinary criticality at the edges of planar spin-1 Heisenberg antiferromagnets
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Dangling edge spins of dimerized two-dimensional spin-1 Heisenberg antiferromagnets are shown
to exhibit non-ordinary quantum critical correlations, akin to the scaling behavior observed in
recently explored spin-1/2 systems. Based on large-scale quantum Monte Carlo simulations, we
observe remarkable similarities between these two cases, and also examine the crossover to the
fundamentally distinct behavior in the one-dimensional limit of strongly coupled edge spins. We
complement our numerical analysis by a cluster mean-field theory that encompasses the qualitatively
similar behavior for the spin-1 and the spin-1/2 case, and its dependence on the spatial edge spin
configuration in a generic way.

I. INTRODUCTION

Many aspects of quantum critical magnets can be de-
scribed in terms of an e↵ective classical field theory.
This applies in particular to quantum critical points of
unfrustrated quantum antiferromagnets, for which the
quantum-to-classical mapping provides a description of
the quantum critical properties of a d-dimensional quan-
tum system in terms of a d + 1-dimensional classical �4

field theory1. For an SU(2)-symmetric system, the ef-
fective field theory contains a 3-component � field with
an O(3)-symmetric action, which also describes, e.g., the
thermal criticality of classical Heisenberg ferromagnets.

An interesting twist to this relationship is provided
by considering surface critical phenomena in quantum
magnets. While the field of classical surface criticality
is rather mature, and a systematic theory based on the
renormalization group has been developed early on (see,
e.g., Ref. 2 for an extended review), recent work3–5 un-
covered surprises when it comes to applying these re-
sults to a corresponding low-dimensional quantum mag-
netic system: Most striking in this respect is the obser-
vation that several two-dimensional unfrustrated quan-
tum critical magnets may exhibit values of the algebraic
scaling exponents at appropriately prepared edges that
are not observed at surfaces of the corresponding three-
dimensional classical Heisenberg model. In particular,
for the O(3)-symmetric case, the Mermin-Wagner theo-
rem forbids the presence of a finite-temperature surface
transition above the bulk critical temperature6. In ef-
fect, the classical surface exhibits algebraic correlations
only at the bulk’s critical temperature, defining the bulk-
induced, ordinary surface universality class.

It was indeed observed recently in various unbiased
numerical studies that two-dimensional SU(2)-invariant
Heisenberg antiferromagnets exhibit algebraic correla-
tions at the edges of a quantum critical bulk that are in
accord with the scaling exponents of the ordinary surface
universality class3–5. However, this is not the only possi-
bility: In fact, it was found that such systems exhibit a
remarkably distinct, non-ordinary power-law scaling be-
havior for appropriately constructed edge spin configura-

FIG. 1. Columnar dimer lattice with non-dangling edge
spins (N, top edge) and dangling edge spins (D, bottom edge).
Solid (open) circles show bulk (edge) spins, and thick red (thin
black) lines denote intra- (inter-) dimer couplings, JD (J).

tions, characterized by so-called dangling edge spins3–5.

A simple model that allows us to illustrate this sce-
nario is shown in Fig. 1: Here, we consider spin-S degrees
of freedom located on the sites of a square lattice, with
SU(2)-invariant Heisenberg exchange interactions along
the nearest-neighbor bonds. The exchange constants are
arranged such as to form a columnar system of coupled
spin dimers. Denoting the (stronger) intra-dimer cou-
pling as JD, and the inter-dimer coupling J , this system
for S = 1/2 is well known to exhibit a quantum crit-
ical point at a values of J/JD = 0.52337(3)7,8, which
separates a phase with antiferromagnetic order from the
quantum disordered regime of strong dimer coupling JD.
In addition, Fig. 1 illustrates two di↵erent kinds of edges:
the edge spins at the top edge are each connected to an-
other spin by a strong dimer coupling JD, while for the
configuration shown at the bottom, the edge spins are in
that respect missing their strong-coupling partner. We
denote these two possibilities as non-dangling (N) and
dangling (D) edge spins, respectively.

As detailed in Refs. 3–5 for the spin-1/2 case, the edge
spins exhibit algebraic power-law correlations for both
kinds of edges if the ratio J/JD is tuned to the bulk
critical value. However, the dangling edge spin configu-
ration exhibits non-ordinary values of the corresponding
critical exponents, in contrast to the non-dangling case,
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Figure 9: The quantum spin model considered in Refs. [9, 43] (figure taken from
Ref. [43]). Red bonds have stronger coupling JD and black bonds have weaker cou-
pling J . N and D mark edges with non-dangling and dangling spins respectively.

Here ~Si is a spin-S quantum spin on site i. The sites are arranged on a rectangular lattice,
further, the couplings Ji j are chosen to be dimerized, as shown in Fig. 9, with JD - the coupling
on stronger (red) bonds and J - the coupling on weaker (black) bonds. As one increases the
ratio K = J/JD the bulk of the system goes from a trivial paramagnet to a Neel state. Numerical
investigations confirm that this bulk transition is in the classical 3D O(3) universality class. [45]
However, unusual boundary behavior at this transition was found. In fact, two types of edges
were investigated: the edge with “non-dangling" spins (Fig. 9, top edge) and the edge with
“dangling" spins (Fig. 9, bottom edge). The boundary scaling dimension of the Neel order
parameter ∆~n was extracted: for the non-dangling edge it was found that ∆~n ≈ 1.15 [9, 43],
consistent with the ordinary universality class in the classical O(3) model. However, for the
dangling edge an exponent strikingly different from the ordinary universality class was found
∆~n ≈ 0.25. [9,43]

Initially, only models with S = 1/2 were considered. The unusual boundary behavior at the
dangling edge was then attributed to the fact that when the bulk is in the paramagnetic phase,
one effectively has a spin-1/2 Heisenberg chain on the boundary. Deep in the paramagnetic
phase (K → 0) this chain realizes the SU(2)1 1+1D CFT. If this CFT survives all the way to
the bulk critical point, then it is natural that the boundary universality class at K = Kc must
be distinct from ordinary. However, somewhat surprisingly, a very similar exponent ∆~n at
K = Kc was also found at the dangling edge of a model with S = 1, [43] where no gapless
edge behavior is expected for K < Kc .

14 Further, the exponents found at the dangling edge
of different microscopic models with S = 1/2 (e.g. with different lattice geometries) are
numerically quite close. [7–9,43] (Some drifts of exponents were, however, found in Ref. [43]
when explicit perturbations to the boundary were considered.)

We now discuss theoretical expectations for boundary criticality at the dangling edge in
the quantum model above. We may employ the same treatment as in the classical O(3) model
in sections 2, 3, 4. However, for quantum models we need to supplement the boundary action
(4) with the topological θ -term for the boundary Neel order parameter ~n:

Sθ =
iθ
4π

∫

d xdτ ~n · (∂x ~n× ∂τ~n) . (64)

14In the parameter regime considered, the S = 1 model with K < Kc realizes a trivial paramagnet, not a stack
of Haldane chains. [45]
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We expect that just as for the 1+1D chain, for the dangling edge geometry described above
θ = 2πS, i.e. θ = π for S = 1/2 and θ = 0 (modulo 2π) for S = 1.

Thus, for the S = 1 quantum model θ = 0 and we expect all universal properties to be the
same as for the classical model. As discussed in section 5, very recent Monte Carlo simulations
[30] indicate the presence of stable ordinary and extra-ordinary-log fixed points in the classical
O(3) model and a special transition between them - we will rely on this interpretation of
classical Monte Carlo results from here on. Next, for the S = 1/2 quantum model what is the
effect of the θ = π term (64)? We recall that perturbation theory in g is completely insensitive
to the topological term (64). Indeed, Sθ is only non-zero for skyrmion configurations of ~n,
which are inaccessible in perturbation theory about the ordered state that we’ve employed
in section 3. Thus, the perturbative β-function β(g) is the same in the quantum S = 1/2
model as in the classical O(3) model to all orders in g. Therefore, we expect the existence
of a stable extra-ordinary-log phase in the S = 1/2 quantum model, with exactly the same
universal parameter α as in the classical model governing the low-energy properties (2), (38),
(54). Any differences between the θ = 0 and θ = π cases will only enter through skyrmion
configurations. Ignoring the coupling to the bulk, the classical skyrmion action is

Ssk y rm =
4π|m|

g
, (65)

where m ∈ Z is the skyrmion charge. Since g logarithmically flows to zero in the extra-
ordinary-log phase we expect skyrmion effects to be suppressed there. On the other hand, at
the special fixed point in the classical model gspec

∗ is finite, therefore, we expect some differ-
ences in the critical properties between the θ = 0 and θ = π cases at the special transition.
However, given the relative smallness of the exponent ∆spec

~n ≈ 0.264(1) in the classical O(3)
model, [30] one may suspect that gspec

∗ is small to moderate. We then expect skyrmion effects
to be suppressed at the special transition by e−Ssk y rm = e−4π/gspec

∗ , where we’ve replaced g by

its fixed point value. Using the relation (44), e−Ssk y rm ≈ e
− 2
∆

spec
~n ≈ e−8, where we’ve used the

numerical value of ∆spec
~n from Ref. [30] (of course, we don’t know how large the prefactor of

the exponential is). Thus, the exponents at the special transition might be numerically close
in the S = 1/2 quantum and O(3) classical models.

Finally, at the ordinary fixed point g is large and perturbation theory in g does not apply.
We expect the θ = π term to play an important role here. One possibility is that the large
g phase at θ = π carries VBS (valence-bond-solid) boundary order, spontaneously breaking
the translation symmetry along the edge. The ordinary phase in the S = 1/2 model is then
described by the classical ordinary fixed point with an extra two-fold degeneracy of all states
due to VBS order. Tuning slightly away from the bulk critical point into the paramagnetic
bulk phase then leads to a VBS ordered dangling edge, consistent with the Lieb-Schultz-Mattis
theorem. [46] We, thus, conjecture a boundary phase diagram for the S = 1/2 dangling edge
in Fig. 10. This phase diagram was also put-forward in Ref. [12], which performed an RG study
of the dangling edge starting from the SU(2)1 1+ 1D CFT coupled to the ordinary boundary
fixed point. (Strictly speaking, the nature of the small g phase in Ref. [12] was left open, with
the possibility of truly long-range boundary Neel order considered.)

What are the correlators of the VBS order parameter V (x) at the extra-ordinary-
log and special fixed points? First, V (x) can be obtained from the dimer operator
~Si · ~Si+1 ∼ const + (−1)iV (x), where i is the coordinate along the boundary. Under trans-
lations, Tx : ~n → −~n, V → −V . Based on symmetries, we identify V with the skyrmion
density,

V (x)∼ i ~n · (∂x ~n× ∂τ~n) . (66)

This identification holds for both S = 1/2 and S = 1 models. We expect that perturbatively in
g, V (x) does not receive any anomalous dimensions. Indeed, such an anomalous dimension
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would result in a flow of θ , which would spoil the periodicity of θ . Thus, we expect that up to
non-perturbative skyrmion effects, the boundary scaling dimension ∆V = 2. Since skyrmions
are suppressed in the extra-ordinary-log phase, we expect ∆V = 2 there. If the special fixed
point occurs at weak coupling then skyrmions are also partially suppressed there and∆spec

V ≈ 2.

ordinary+VBS

VBS

VBS

K�1

K�1
c

1/g

BD

BO

SU(2)1

extra-ordinary-log

Figure 10: A possible phase diagram for the 2+1D spin S = 1/2 model with a “dan-
gling" edge.

How does the above theoretical picture compare to Monte Carlo studies of quantum spin
models? We recall that quantum Monte Carlo simulations for both S = 1/2 and S = 1 models
find power-law behavior of the two-point function of the Neel order parameter on the dangling
edge with ∆~n ≈ 0.25. This value is quite close to ∆spec

~n = 0.264(1) found in the classical O(3)
model at the special transition. [30] Thus, perhaps the dangling edge in quantum models of
Refs. [7–9,43] is controlled by the special fixed point. This possibility was first put forward in
Ref. [8], which pointed out that ∆~n at the dangling edge is quite close to the value of ∆spec

~n
obtained using the 4− ε expansion for the boundary special fixed point in the classical O(3)
Wilson-Fisher model. (However, the edge phase diagram of the classical O(3) model in 3d
was not understood at the time). Ref. [12] also suggested that the dangling edge in the Monte
Carlo simulations of S = 1/2 models is controlled by the special fixed point in Fig. 10, i.e.
that the quantum models that have been numerically studied so far are accidentally tuned
close to the special transition. This interpretation is slightly surprising, given that a number of
different quantum models with different geometries and both S = 1/2 and S = 1 have been
studied. [7–9, 43, 44] One point in favor of this interpretation is that the correlation length
exponent ν−1

spec ≈ 0.36(1) found by Monte Carlo in the classical O(3) model is quite small, so
that if a microscopic model is accidentally tuned to the vicinity of the special transition, the
length-scale ξ∼ |g− gc|−ν for the cross-over to the true IR behavior (either the ordinary or the
extra-ordinary-log phase) is enhanced. The slight drift in ∆~n at the dangling edge observed
in Ref. [43] as the edge coupling was varied might also be consistent with this interpretation.
Further, as already pointed out, the observed similarity in ∆~n in the S = 1/2 and S = 1
models [43] might be due to the smallness of gspec

∗ and the consequent partial suppression of
skyrmions at the special fixed point. Another piece of the puzzle is the recent study in Ref. [47]
of the VBS two-point function at the dangling edge. Although a precise scaling dimension ∆V
is difficult to extract, for the S = 1/2 model the authors estimate ∆V ≈ 1.2− 1.4. For S = 1
the two point function of V falls off very quickly making a reliable estimate of ∆V even more
difficult, however, the data appears consistent with ∆V = 2 in this case. As discussed above,
if gspec

∗ is small, up to non-perturbative corrections in gspec
∗ , we expect ∆spec

V = 2 which is at
odds with the Monte Carlo result for the S = 1/2 model. It is not clear why non-perturbative
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skyrmion effects at the special transition would be more pronounced in the VBS correlators
and not in Neel correlators.

An alternative interpretation of the quantum Monte Carlo data initially put forward in the
first arXiv version of the present paper is that in the classical O(N)model scenario II in Fig. 3 is
realized and, further, that Nc < 3< Nc2. The classical O(3)model would then possess an extra-
ordinary-power phase, which could control the dangling edge in the quantum models studied
by Monte Carlo. This would avoid the assumption of accidental fine-tuning to the vicinity of
the special transition in the quantum models. The fact that the values of∆~n seen in the S = 1/2
and S = 1 models are close to each other could again be explained by the smallness of g ex t−p

∗
at the extra-ordinary-power fixed point and the partial suppression of skyrmions. However,
such an interpretation appears at odds with the observation of the extra-ordinary-log phase in
the classical O(3) model for large κ (and, in particular, absence of saturation in the stiffness
LΥ for large system sizes).

Very recently, the phase diagram of the non-dangling edge as a function of the edge spin-
spin coupling was investigated with quantum Monte Carlo. [48] Theoretically, we would ex-
pect this phase diagram to be identical to that in the classical O(3) model. However, Ref. [48]
reports a special transition with exponents distinct from those found by Ref. [30] for the spe-
cial transition in the classical O(3) model. Ref. [48] also finds an extra-ordinary phase which
does not appear to be consistent with extra-ordinary-log behavior; rather, the authors suggest
that the extra-ordinary phase here supports true long range order. We don’t currently have an
interpretation of these results.

8 Discussion.

In this paper we have re-examined the boundary critical behavior of the O(N)model in d = 3.
We have established the phase diagram in the limit of N close to 2 and for large but finite N ,
and have discussed two scenarios for the evolution of the system between these two limits, see
Figs. 3, 4. Some important questions left unanswered by this work are: i) what is the critical
value Nc at which the extra-ordinary-log fixed point disappears; ii) which of the two scenarios
in Figs. 3, 4 is realized. As we have discussed, the value of Nc is determined by the universal
amplitudes aσ(N) and bt(N) at the normal fixed point—we comment below on very recent
numerical and analytical progress in computing these amplitudes. As for the question of which
of the two scenarios in Figs. 3, 4 is realized, as we have discussed, this is determined by the
sign of the coefficient b(Nc) in the β-function (43). We expect that one of the inputs into b
is the boundary four-point function of t̂ at the normal transition. It would be interesting to
compute b(N) for large N and attempt to extrapolate to N = Nc . We leave this study to future
work.

After the first version of this paper came out on arXiv, two large scale Monte Carlo studies
of the classical O(N) model with N = 3 [30] and N = 2 [21] have appeared. The results of
these studies are consistent with our theoretical findings. In particular, behavior compatible
with the extra-ordinary-log phase is found in the large κ region of models with N = 2 [21]
and N = 3 [30]. Further a special transition is observed not only for N = 2, but also for
N = 3. [22, 30] These findings imply Nc > 3. The trend of critical exponents at the special
transition as N is increased for N = 2,3 [21,30] and earlier results for N = 4 [40] tentatively
suggest that the first scenario in Figs. 3, 4 is realized. Further, Ref. [41] studied the normal
universality class with Monte Carlo for N = 2,3 and extracted the values of the universal
coefficients aσ, bt: the results are in good agreement with our predictions for the relation
between the normal and extra-ordinary-log fixed points.

Very recently the normal universality class of the O(N)model with N ≥ 2 was studied using
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numerical conformal bootstrap. [33] Two methods were employed: the truncated bootstrap
and the positive bootstrap. Estimates of aσ and bt were obtained with truncated bootstrap,
which indicate Nc ≈ 5. In addition, using the positive bootstrap, under a certain set of assump-
tions rigorous bounds were placed on aσ and bt, which lead to a bound Nc > 3 (conditions
under which a stronger bound Nc > 4 can be obtained were also discussed.)

The present work was largely motivated by Monte Carlo studies of boundary critical behav-
ior in 2+1D quantum spin models with SO(3) symmetry. [7–9,43,44] As we have discussed in
section 7, boundary behavior distinct from the ordinary class is observed at the dangling edge
in a number of models. We have discussed an interpretation where the dangling edge in models
studied is accidentally tuned close to the special transition. [8,12] To test this interpretation,
one should study larger system sizes, where an eventual cross-over to the extra-ordinary-log
or the ordinary boundary phase is expected. A more extensive study of the stability of the
observed behavior to edge perturbations, which could tune the system away from the special
transition, would also be valuable.

Above all, we hope that the present work will lead to more detailed numerical studies
of boundary critical behavior in both classical and quantum models with SO(N) symmetry.
It might also be possible to numerically study the behavior in these models as a continuous
function of N by reformulating them as loop models. [25]
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A The normal universality class in the large-N expansion.

In this appendix, we derive Eq. (17) for the universal amplitudes characterizing the normal
boundary of the O(N) model in the large-N limit. We follow Ref. [35].

We begin with

L =
1
2

N
∑

a=1

(∂µφa)
2 +

iλ
2

� N
∑

a=1

φ2
a −

1
gbulk

�

. (67)

We will work in d = 3 and place the boundary at z = 0. The coupling gbulk is assumed to be
tuned to the critical point.

At N =∞ we look for the saddle point,

〈φN (z)〉 = σ0(z) =
a0
σ

(2z)1/2
,

〈iλ(z)〉 = iλ0(z) =
3

4z2
. (68)

The coefficient of λ0 is chosen so that σ0 satisfies the saddle-point equation

(−∂ 2 + iλ0(z))σ0(z) = 0 . (69)
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Note that at this point we are using a φ field that is not normalized. We will fix the normal-
ization later.

We define the φ propagator

〈φ i(x)φ j(x ′)〉= δi jG(x , x ′) =
δi j

(4zz′)∆φ
g(v) , v =

z2 + z′2 +ρ2

2zz′
, ρ = |x− x′| , (70)

where here and below i, j = 1 . . . N − 1. We denote G at N =∞ by G0 (similarly for g, g0).
We have

Lx G0(x , x ′) = δ3(x − x ′) , Lx =
�

−∂ 2
x +

3
4z2

�

. (71)

A useful identity is

Lx
1
p

zz′
p(v) = −

1
z2

1
p

zz′
(Dp)(v) , (72)

with v as in Eq. (70), p(v) - an arbitrary function, and

(Dp)(v) = (v2 − 1)p′′(v) + 3vp′(v) . (73)

Thus, Dg0(v) = 0 away from the singularity at v = 1. Solving for g0 then gives
g0(v) = c1

vp
v2−1

+ c2. The constant c1 can be obtained by matching to the singular behavior

of the bulk propagator G0
bulk(x , x ′) = 1

4π|x−x ′| as x → x ′, while c2 is obtained by demanding
that g0(v)→ 0 as v→∞ (clustering). Then

g0(v) =
1

2π

�

v
p

v2 − 1
− 1

�

, (74)

from which g0(v)→ 1
4πv2 as v→∞, i.e.

(b0
t )

2 =
1

16π
. (75)

Again, this is without taking the normalization of φ into account.
Finally, the amplitude a0

σ is obtained from

N
∑

a=1

〈φa(x)φa(x)〉=
1
gc

. (76)

Ignoring the fluctuations of φN (which only contribute an O(1) term to the LHS),

(N − 1)G0(x , x) +σ2
0 =

1
gbulk

. (77)

We can regularize G0(x , x) by taking the coincident limit of G0(x , x ′) as x → x ′,
G0(x , x ′)→ 1

4π

�1
s −

1
z

�

, s = |x − x ′|. Fixing a finite s, we get

(a0
σ)

2 =
N − 1

2π
. (78)

Taking the bulk normalization of φ into account, we have agreement with the values of a2
σ

and b2
t in (17) to leading order in N .

We wish to compute the 1/N correction to G in order to extract the 1/N correction to bt.
We note that Eq. (76) is actually exact by equation of motion for λ. Let’s define the connected
“longitudinal" correlation function

Gσ(x , x ′) = 〈φN (x)φN (x
′)〉 − 〈φN (x)〉〈φN (x

′)〉 (79)
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and the mixed correlation function

Gm(x , x ′) =
1
N
((N − 1)G(x , x ′) + Gσ(x , x ′)) . (80)

Then Eq. (76) becomes

NGm(x , x) + 〈φN (x)〉2 =
1

gbulk
. (81)

Thus, 〈φN 〉 can be extracted from the short-distance behavior of Gm. The same short-distance
behavior determines the bulk normalization of the fieldφa(x), since in the absence of a bound-
ary there is no difference between longitudinal and transverse components of φa. Finally, the
behavior of Gm(x , x ′) forρ→∞ (with fixed z, z′) is dominated by the term involving G(x , x ′).
Indeed, recall∆D̂ = 3, so Gσ(x , x ′) decays faster than G(x , x ′) for ρ→∞. Thus, we can also
extract bt from Gm. So we will focus on computing 1/N corrections to Gm below.

In order to proceed, we need the propagator for λ. Let λ = λ0 + δλ and φN = σ0 + δσ.
The action then becomes:

L =
1
2
(∂µφ

i)2 +
1
2

iλ0(φ
i)2 +

1
2
(∂µδσ)

2 +
1
2

iλ0δσ
2

+ iσ0δλδσ+
1
2

iδλ
�

(φ i)2 −
1
gc

�

+
1
2

iδλδσ2 .
(82)

Integrating φ out, we obtain the following action for δλ, δσ to quadratic order:

S2[δλ,δσ] =
1
2

∫

d3 xd3 x ′
�

δσ(x)
δλ(x)

�T� Lxδ(x − x ′) iσ0(x)δ(x − x ′)
iσ0(x)δ(x − x ′) N−1

2 G0(x , x ′)2

��

δσ(x ′)
δλ(x ′)

�

.

Further integrating out δσ,

S2[δλ] =
1
2

N − 1
2

∫

d3 xd3 x ′δλ(x)Π(x , x ′)δλ(x ′) , (83)

with
Π(x , x ′) = G0(x , x ′)2 +

2
N − 1

σ0(x)G
0(x , x ′)σ0(x

′) . (84)

Thus, the λ propagator defined as

D0
λλ(x , x ′) = 〈δλ(x)δλ(x ′)〉 , N →∞ , (85)

satisfies N−1
2

∫

d3 x ′D0
λλ
(x , x ′)Π(x ′, y) = δ3(x − y). We direct the reader to Ref. [35] for the

details of how to compute D0
λλ

. Here we just cite the result15:

D0
λλ(x , x ′) = −

16
(N − 1)π2z2z′2

v
(v2 − 1)2

=
16

(N − 1)π2

�

1
((z + z′)2 +ρ2)2

− 1
((z − z′)2 +ρ2)2

�

. (86)

Note that D0
λλ

has the correct form dictated by conformal invariance for a scalar of dimension
∆λ = 2. The other propagators can be expressed in terms of D0

λλ
and G0:

G0
σ(x , x ′) = 〈δσ(x)δσ(x ′)〉

= G0(x , x ′)−
∫

d3 yd3 y ′G0(x , y)σ0(y)D
0
λλ(y, y ′)σ0(y

′)G0(y
′, x ′) ,

D0
λσ(x , x ′) = 〈δλ(x)δσ(x ′)〉= −

∫

d3 yD0
λλ(x , y)iσ0(y)G

0(y, x ′) . (87)

15The associated Legendre functions in Eq. 3.22 of Ref. [35] simplify for d = 3.
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We are now ready to compute 1/N corrections to Gm. First, we
let G−1(x , x ′) = G0−1(x , x ′) + Σ(x , x ′) and G−1

m (x , x ′) = G0−1(x , x ′) + Σm(x , x ′). We then
have to leading order in 1/N :

Σ(x , x ′) = Σa(x , x ′) +Σb(x , x ′) +Σc(x , x ′) , (88)

with diagrams for each term shown in Fig. 11. Explicitly,

Σa(x , x ′) = D0
λλ(x , x ′)G0(x , x ′) ,

Σb(x , x ′) = Σb
1(x , x ′) +Σb

2(x , x ′) ,

Σb
1(x , x ′) = −

N − 1
2
δ3(x − x ′)

∫

d3 yd3wd3w′D0
λλ(x , y)G0(y, w)D0

λλ(w, w′)G0(w, w′)G0(w′, y) ,

Σb
2(x , x ′) =

1
2
δ3(x − x ′)

∫

d3 yD0
λλ(x , y)G0

σ(y, y) ,

Σc(x , x ′) = δ3(x − x ′)

∫

d3 yD0
λσ(x , y)D0

λσ(y, y) . (89)

Further, since Gσ appears in Eq. (80) with a factor of 1/N , we may replace it by G0
σ in com-

puting Gm to order 1/N . We then have to O(1/N),

Σm(x , x ′) = Σa
m(x , x ′) +Σb

m(x , x ′) +Σc
m(x , x ′) , (90)

with

Σa
m(x , x ′) =

N − 1
N

�

D0
λλ(x , x ′)G0(x , x ′) +

1
N − 1

σ0(x)D
0
λλ(x , x ′)σ0(x

′)
�

,

Σb
m(x , x ′) =

N − 1
2N

δ3(x − x ′)

∫

d3 yD0
λλ(x , y)G0(y, y)

−
N − 1

2
δ3(x − x ′)

∫

d3 yd3wd3w′D0
λλ(x , y)G0(y, w)Σa

m(w, w′)G0(w′, y) ,

Σc
m(x , x ′) = −δ3(x − x ′)

∫

d3 yd3wd3w′D0
λλ(x , w)σ0(w)G

0(w, y)Σa
m(y, w′)σ0(w

′) (91)

+
1
N
δ3(x − x ′)

∫

d3 yd3wd3w′D0
λλ(x , w)σ0(w)G

0(w, y)σ0(y)D
0
λλ(y, w′)σ2

0(w
′) .

(Strictly speaking, to the accuracy we are working, we should set factors of (N − 1)/N to 1 in
the above equations. However, it is interesting to observe that what seemed like an expansion
in (N − 1)−1, to this order appears to organize itself as an expansion in N−1.)

We now observe that the last term in equation for Σc
m vanishes, as does the first term

in equation for Σb
m (apart for a shift of the critical value of gbulk.) Indeed, going to mixed

position-momentum space, we have

D0
λλ(z, z′, p = 0) =

∫

d2x D0
λλ(x, z; 0, z′) =

16
(N − 1)π

�

1
(z + z′)2

−
1

(z − z′)2

�

.

How to treat the singularity at z = z′ in the last term above? This singularity comes from
Fourier transforming the last term in Eq. (86), which is nothing but the bulk λ propagator.
Indeed, the singular behavior of D0

λλ
(x , x ′) as x → x ′ is the same as in the absence of a

boundary: if we consider the OPE, δλ(x)δλ(0)∼ Nλ
x2∆λ
+Cλλλ

1
x∆λ
δλ(0)+ . . ., with Nλ ≈ −

16
Nπ2

then the subleading term Cλλλ ∼
1

N3 does not contribute at N =∞ [49]. Now, in the absence
of a boundary we know

Dλλ(q) =

∫

d3 x D0
λλ(x , 0)e−iqx =

16
N − 1

q , (92)
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Figure 11: Normal fixed point of the O(N) model. Diagrams contributing to the self-
energy Σ(x , x ′), Eq. (89), at O(1/N). Notation for propagators is introduced in the
bottom of the figure; blue dots mark interaction vertices.

which after Fourier transforming gives

Dλλ(z, z′; p = 0) =
16

(N − 1)π
d
dz

P
z − z′

, (93)

with P denoting principal value. Thus, in the presence of a boundary,

D0
λλ(z, z′, p = 0) =

16
(N − 1)π

d
dz

�

P
z − z′

−
1

z + z′

�

. (94)

Now it is easy to check that
∫ ∞

0

dz′

z′
D0
λλ(z, z′, p = 0) = 0 . (95)

Thus, the integral over w′ in the last term of Σc
m in Eq. (91) vanishes. Likewise, in the first

term in Σb
m, G0(y, y) = 1

4π(
1
ε −

1
yd
), where ε is the UV cut-off. The ε−1 term shifts the location

of gbulk,c , while the contribution of the y−1
d term vanishes upon integrating over y .

Thus, defining Ga
m as the contribution of Σa

m to Gm, i.e.
Ga

m(x , x ′) = −
∫

d3 yd3 y ′G0(x , y)Σa
m(y, y ′)G0(y ′, x ′), we have

Σb
m(x , x ′) =

N − 1
2
δ3(x − x ′)

∫

d3 yD0
λλ(x , y)Ga

m(y, y) ,

Σc
m(x , x ′) = δ3(x − x ′)

∫

d3wd3w′D0
λλ(x , w)σ0(w)

�

Lw′G
a
m(w, w′)

�

σ0(w
′) . (96)

Next, we compute Ga
m. We have

Σa
m(x , x ′) = −

4
Nπ3

1
(zz′)5/2

v2

(v2 − 1)5/2
. (97)

If not for the UV divergence of Σa
m(x , x ′) as x → x ′, Ga

m would transform under conformal
transformations as a two-point function of a scalar of dimension 1/2. Let’s study how the
cut-off dependence modifies this. We regularize,

Ga
m(x , x ′) = −

∫

|y−y ′|>a
d3 yd3 y ′G0(x , y)Σa

m(y, y ′)G0(y ′, x ′) , (98)
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where a is a short-distance cut-off. Consider an infinitesimal conformal transformation
xµ→ ζµ(x)≈ xµ + εµ(x). Then

∂ ζµ

∂ xρ
∂ ζµ

∂ xσ
= Ω2(x)δρσ , (99)

Ω(x)≈ 1+ 1
d ∂ρε

ρ. For a scalar primary O(x) of dimension ∆,

〈O(x)O(y)〉= Ω(x)∆OΩ(y)∆O〈O(ζ(x))O(ζ(y))〉 . (100)

Noting that Σa
m has the form of a two-point function of a conformal scalar of dimension 5/2,

Eq. (13), we have

Ga
m(x , x ′) = −Ω(x)1/2Ω(x ′)1/2

∫

|y−y ′|>a
d3 yd3 y ′ Ω3(y)Ω3(y ′) (101)

× G0(ζ(x),ζ(y))Σa
m(ζ(y),ζ(y

′))G0(ζ(y ′),ζ(x ′)) .

Now changing variables in the integral,

δεG
a
m ≡Ga

m(x , x ′)−Ω(x)1/2Ω(x ′)1/2Ga
m(ζ(x),ζ(x

′))

≈−
∫

d3 yd3 y ′G0(x , y)Σa
m(y, y ′)G0(y ′, x ′) (102)

×
�

θ (|ζ−1(y)− ζ−1(y ′)| − a)− θ (|y − y ′| − a)
�

,

where we have only kept terms to first order in ε. Expanding the difference of θ functions,

δεG
a
m ≈

∫

d3 yd3 y ′δ(|y − y ′| − a)
(y − y ′) · (ε(y)− ε(y ′))

|y − y ′|
G0(x , y)Σa

m(y, y ′)G0(y ′, x ′) . (103)

We now expand the integrand in s = y ′ − y . We have:

Σa
m(y, y ′) = −

4
Nπ3

�

1
s5
+

3

8y2
d

1
s3
+ . . .

�

, (104)

G0(y ′, x) = (1+ sµ∂ y
µ +

1
2 sµsν∂ y

µ ∂
y
ν + . . .)G0(y, x). There are two types of conformal transfor-

mations that we need to consider: scale transformations, εµ(x) = εxµ, and special conformal
transformations, εµ(x) = bµx2 − 2(b · x)xµ, with b - entirely in the boundary plane (bz = 0).
Let’s begin with scale transformations. Performing the integral over sµ (and keeping only finite
terms in a), we have

δεG
a
m(x , x ′) = −

16ε
Nπ2

∫

d3 y G0(x , y)

�

1
6
∂ 2

y +
3
8

1

y2
d

�

G0(y, x ′)

=
8ε

3Nπ2
G0(x , x ′)−

8ε
Nπ2

∫

d3 y G0(x , y)
1

y2
d

G0(y, x ′) . (105)

In the last step we have used Ly G0(y, x ′) = δ3(y − x ′). Note that we have dropped a term
which diverges as a−2. This term will be cancelled by a shift in the expectation value, 〈δλ〉, at
the critical point. Similarly, under special conformal transformations,

δεG
a
m(x , x ′) =

4
Nπ3

∫

d3 yd3s G0(x , y)δ(s− a) s (2b · y + b · s)
�

1
s5
+

3

8y2
d

1
s3

�

×
�

1+ sµ∂ y
µ +

1
2

sµsν∂ y
µ ∂

y
ν

�

G0(y, x ′)

=
32

Nπ2

∫

d3 y G0(x , y)

�

(b · y)
�

1
6
∂ 2

y +
3

8y2
d

�

+
1
6

bµ∂ y
µ

�

G0(y, x ′) . (106)
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Writing bµ∂ y
µ =

1
2[∂

2
y , (b · y)],

δεG
a
m(x , x ′) =

32
Nπ2

∫

d3 y G0(x , y)

�

−
1
12
{Ly , b · y}+

b · y
2y2

d

�

G0(y, x ′)

=−
8

3Nπ2
b · (x + x ′)G0(x , x ′) +

16
Nπ2

∫

d3 y G0(x , y)
b · y
y2

d

G0(y, x ′) . (107)

Let’s define

Ga
m,ncon f (x , x ′) = Ga,1

m,ncon f (x , x ′) + Ga,2
m,ncon f (x , x ′) ,

Ga,1
m,ncon f (x , x ′) = −

η

2
log(4xd x ′dΛ

2)G0(x , x ′) , (108)

Ga,2
m,ncon f (x , x ′) =

8
Nπ2

∫

d3 y G0(x , y)
logΛ′ yd

y2
d

G0(y, x ′) .

Here

η≈
8

3Nπ2
(109)

is the anomalous dimension of φ in the large-N limit: ∆φ =
1
2(d − 2 + η). Λ and Λ′ are

UV cut-offs (for future convenience, we allow them to differ by a constant factor). It is easy
to check that Ga

m,ncon f has the same transformation properties (105), (107) under scale and
special conformal transformations. We, therefore, conclude

Ga
m(x , x ′) = Ga

m,ncon f (x , x ′) + Ga
m,con f (x , x ′) , (110)

where Ga
m,con f (x , x ′) transforms as a two-point function of a conformal scalar with dimension

1/2, i.e.

Ga
m,con f (x , x ′) =

1
(4zz′)1/2

g1(v) , (111)

with g1 - as yet an undetermined function.
We now proceed to determine g1. We have

LxLx ′G
a
m(x , x ′) = −Σa

m(x , x ′) . (112)

It is easy to check that LxLx ′G
a
m,ncon f (x , x ′) = 0 up to contact terms. Recalling Eq. (72), we

then have

(D2 g1)(v) =
8

Nπ3

v2

(v2 − 1)5/2
. (113)

This equation can be integrated to give:

g1(v) =
2

Nπ3

�

1

3
p

v2 − 1

�

1+ v log
v + 1
v − 1

�

+ Li2(1− u) + Li2(−u) + log u · log(u+ 1) +
π2

12

�

+ c1q0(v) + c2 g0(v) , u=

√

√ v + 1
v − 1

, (114)

with

q0(v) =
1

8π

�

1−
v

p
v2 − 1

�

log(v +
p

v2 − 1) , (115)

and Li2 - the dilogorthim function. Note that Eq. (113) is a fourth order differen-
tial equation, so, in principle, there are two more independent homogeneous solutions:
c3

vp
v2−1

log(v +
p

v2 − 1) and a constant c4. However, both of these don’t decay as v →∞
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(ρ→∞), so they have wrong asymptotics for Ga
m (and would violate clustering). We further

note that the c2 term in (114) can be incorporated into a redefinition of the cut-off Λ in (108).
Likewise, the c1 term can be incorporated into the redefinition of the cut-off Λ′ in (108). In-
deed, we have Dq0(v) = g0(v), which means that the c1 term contributes c1

z2δ
3(x − x ′) to

Σa
m(x , x ′). Since Ga,2

m,ncon f (x , x ′) contributes

Σ
a,2
m,ncon f (x , x ′) = −

8
π2N

logΛ′z
z2

δ3(x − x ′) (116)

to Σa
m(x , x ′) we see that the c2 term can, indeed, be eliminated by a redefinition of Λ′. Thus,

we set c1 = c2 = 0 from here on.
We next turn our attention to Σb

m and Σc
m. As already remarked, both of these can be

expressed in terms of Ga
m(x , x ′), Eqs. (96). We note that the contribution to Σb

m and Σc
m

from Ga,2
ncon f cancels with Σa,2

m,ncon f . In fact, as was shown in Refs. [28], this is true for any
contribution to Σa

m that behaves as

δΣa
m(x , x ′) = U(z)δ3(x − x ′) , (117)

with U a function of z and the cut-off only. Indeed, the contribution of such δΣa
m to Σb

m and
Σc

m is

δΣb
m(x , x ′) +δΣc

m(x , x ′) = −
N − 1

2
δ3(x − x ′)

∫

d3 yd3wD0
λλ(x , y)Π(y, w)U(wd)

= −U(z)δ3(x − x ′) , (118)

where Π is given by Eq. (84). Thus, from here on, when computing Gm, we drop Ga,2
m,ncon f and

its contributions to Σb
m and Σc

m (we will place a hat on these quantities to denote this fact). As
we will show below, the remaining contribution to Σb

m+Σ
c
m vanishes. First, however, we note

that to O(1/N), Σb
m(x , x ′) +Σc

m(x , x ′) = 〈iδλ(x)〉δ3(x − x ′), so 〈iδλ(x)〉= 8
π2N

logΛ′z
z2 and

〈iλ(x)〉=
3

4z2

�

1+
32

3π2N
logΛ′z +O(N−2)

�

. (119)

This agrees with 〈iλ(x)〉 ∼ z−∆λ , with ∆λ = 2− 32
3π2N .

With these remarks, let’s show that the remaining contributions to Σ̂b
m + Σ̂

c
m vanish. We

begin with Σ̂b
m. We need Ĝa

m(x , x ′) at coincident points x → x ′. We observe,

g1(v)→
2
π3N

�

1

3
p

2(v − 1)

�

1− log
v − 1

2

�

−
π2

4

�

, v→ 1+ , (120)

and

Ĝa
m(x , x ′)→

1
3π3Ns

(1− 2 log sΛ)−
1

4πNz

�

1−
8

3π2
log 2Λz

�

, s = |x − x ′| → 0 .

The first divergent term in Ĝa
m above contributes to a shift of the critical value of gbulk and so

can be dropped, so

Σ̂b
m(x , x ′) =

(N − 1)η
8π

δ3(x − x ′)

∫

d3 yD0
λλ(x , y)

log 2Λyd

yd
, (121)

where we have used Eq. (95).
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As for Σ̂c
m(x , x ′), we can move Lw′ in Eq. (96) onto σ0(w′) keeping track of the boundary

terms:
∫

d3w′Lw′ Ĝ
a
m(w, w′)σ0(w

′) = −
a0
σ

q

2w′d

�

∂w′d
+

1
2w′d

�

Ĝa
m(wd , w′d , p = 0)

�

�

�

�

∞

w′d=0
. (122)

We have contributions to the right-hand-side from Ga
m,con f and Ga,1

m,ncon f . We will see the con-

tribution for Ga
m,con f vanishes. On the other hand, for Ga,1

m,ncon f the contribution from the lower
bound w′d = 0 is non-zero. We have

G0(z, z′, p = 0) =
1
2

z3/2

z′1/2
, z < z′ , (123)

so
∫

d3w′Lw′ Ĝ
a,1
m,ncon f (w, w′)σ0(w

′) = −
ηa0
σ

4
p

2wd
(2 log(4wd a′Λ2) + 1) , (124)

where we have cut-off the integral over w′d at w′d = a′. On the other hand,

Ĝa
con f (z, z′, p = 0) = 2π

p

zz′
∫ ∞

z2+z′2
2zz′

dv g1(v) . (125)

The lower bound of the integral diverges for z′→ 0 and z′→∞. Now,

g1(v)→
8

9Nπ3v3
, v→∞ . (126)

This means that Ga
con f (z, z′, p = 0) ∝ z′5/2

z3/2 for z′ → 0 and Ga
con f (z, z′, p = 0) ∝ z5/2

z′3/2 for
z′→∞. Hence, there is no contribution from either the upper or lower bound in Eq. (122).
Thus, substituting (124) into Eq. (96),

Σ̂c
m(x , x ′) = −Σ̂b

m(x , x ′) . (127)

Thus, we have our final result,

Gm(x , x ′) =
Λ−η

(4zz′)(1+η)/2
�

g0(v) + g1(v)
�

, (128)

where, again, g1(v) is evaluated with c1 = c2 = 0. We are now ready to extract bt and aσ to
O(1/N). First, let’s look at the short-distance behavior Gm(x , x ′) for x → x ′. From (120),

Gm(x , x ′) =
Λ−η

4π

�

1
s1+η

�

1+
η

2

�

− 2
�

1+
1
N

�

1
(2z)1+η

�

, s = |x − x ′| → 0 . (129)

Thus, to normalize φ(x),

φnorm(x) = Λ
η/2p4π

�

1−
η

4

�

φ(x) , (130)

and from Eq. (81),

a2
σ,norm = 2(N + 1)

�

1−
η

2

�

, (131)

where we have taken the proper normalization of φ into account. As for bt, as already ex-
plained, Gσ(x , x ′) falls off faster than G(x , x ′) for ρ→∞, thus, Gm(x , x ′)→N−1

N G(x , x ′), as
ρ→∞. Further, from (126), g1(v)∼ v−3 as v→∞, while g0(v)∼ v−2 as v→∞. Thus,

G(x , x ′)
ρ→∞
→

�

1+
1
N

�

Λ−η

(4zz′)(1+η)/2
g0(v) , (132)
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b2
t,norm =

1
4

�

1+
1
N

�

�

1−
η

2

�

, (133)

i.e.
a2
σ,norm

b2
t,norm

= 8N +O(N−1) . (134)

It is not clear from our calculation above if there is any deep reason for cancellation of the
first correction to a2

σ/b2
t . For completeness, we present the O(N) trace of the fully normalized

two-point function:

〈φa(x)φa(x ′)〉norm =
N

(4zz′)∆φ

�a2
σ,norm

N
+ 2

�

1−
4

3π2N

��

v
p

v2 − 1
− 1

�

+
8

Nπ2

�

1

3
p

v2 − 1

�

1+ v log
v + 1
v − 1

�

+ Li2(1− u) + Li2(−u)

+ log u · log(u+ 1) +
π2

12

��

, u=

√

√ v + 1
v − 1

. (135)

For completeness, we also compute the correlator Gσ(x , x ′) to leading order in N . We
begin with Eq. (87) and apply LxLx ′ to it:

LxLx ′G
0
σ(x , x ′) = −σ0(x)D

0
λλ(x , x ′)σ0(x

′) , x 6= x ′ . (136)

Writing

G0
σ(x , x ′) =

1
p

4zz′
g0
σ(v) , (137)

we have

D2 g0
σ(v) =

8v
(v2 − 1)2

. (138)

Integrating this equation

g0
σ(v) =

2
π3

�

− log u−
v

p
v2 − 1

�

Li2(−u) + Li2(1− u) + log u · log(u+ 1) +
π2

12

��

. (139)

Here we’ve chosen the four integration constants so that g0
σ(v) decays as v−3 for v→∞ and

g0
σ(v)→

1
2π
p

2(v−1)
for v→ 1. After normalization, we have

〈φN (x)φN (x
′)〉norm =

1

(4zz′)∆φ

�

a2
σ +

8
π2

�

− log u−
v

p
v2 − 1

�

Li2(−u) + Li2(1− u)

+ log u · log(u+ 1) +
π2

12

�

��

, u=

√

√ v + 1
v − 1

. (140)

B N = 2: renormalization of velocity.

Here we analyze the problem in section 6 in the case when there is a mismatch between the
surface and bulk velocities. We have

S = Sordinar y +
1

2g

∫

d xdτ
�

1
vs
(∂τϕ)

2 + vs(∂xϕ)
2
�

−
s̃vb

2

∫

d xdτ
�

eiϕφ̂∗ + e−iϕφ̂
�

. (141)
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When s̃ = 0, we normalize

〈eiϕ(x ,τ)e−iϕ(0)〉 =
1

(x2 + v2
s τ

2)g/2π
,

〈φ̂(x ,τ)φ̂∗(0)〉 =
1

(x2 + v2
bτ

2)∆φ̂
. (142)

If we set vs = 1 we have the OPE:

eiϕ(x ,τ)e−iϕ(0) ∼
1

xg/2π

�

1+ i xµ∂µϕ(0)−
1
4

x2(∂ρϕ(0))
2 −

g
2

xµxνTµν(0) + . . .
�

, (143)

with the energy-momentum tensor,

Tµν =
1
g

�

∂µϕ∂νϕ −
1
2
δµν(∂ρφ)

2
�

. (144)

Here we have omitted derivatives of ∂µϕ on the right-hand-side of (143). Restoring vs,

eiϕ(x ,τ)e−iϕ(0) ∼
1

(x2 + v2
s τ

2)g/2π

�

1+ i(x∂xϕ(0) +τ∂τϕ(0))

−
1
2
(x2(∂xϕ)

2 +τ2(∂τϕ)
2 + 2xτ∂xϕ∂τϕ)

�

. (145)

Thus, in an RG step we generate:

δS =
s̃2v2

b

8

∫

d xdτ

∫

a2<x ′2+v2
bτ
′2<a2(1+2d`)

d x ′dτ′(x ′2(∂xϕ(x))
2 +τ′2(∂τϕ(x))

2)
1

(x ′2 + v2
s τ
′2)

g
4π (x ′2 + v2

bτ
′2)∆φ̂

= d` s̃2

∫

d xdτ
�

vs

2
A(vs/vb)(∂xϕ)

2 +
1

2vs
B(vs/vb)(∂τϕ)

2
�

, (146)

with

A(vs/vb) =
vb

4vs

∫ 2π

0

dθ
cos2 θ

(cos2 θ +
v2

s

v2
b

sin2 θ )
g

4π

,

B(vs/vb) =
vs

4vb

∫ 2π

0

dθ
sin2 θ

(cos2 θ +
v2

s

v2
b

sin2 θ )
g

4π

. (147)

(Here, we have set (2−∆φ̂) =
g

4π .) Thus,

ds̃
d`

= (2−∆φ̂ −
g

4π
)s̃ ,

d g
d`

= −
1
2
(A+ B)s̃2 g2, (148)

d(vs/vb)
d`

=
1
2
(A− B)gs̃2 vs

vb
. (149)

We define:
u=

g
4π
− (2−∆φ̂) , v =

Æ

2π(A+ B)(2−∆φ̂)s̃ . (150)
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Then

dv
d`

= −uv +O(v3) ,

du
d`

= −v2 ,

d(vs/vb)
d`

=
1

2−∆φ̂

A− B
A+ B

v2 vs

vb
. (151)

We see that to the present order, the flow of vs does not affect the flow of u and v. Thus, we
have the same separatrix:

u(`) = v(`) =
v

1+ v`
. (152)

Then, integrating the RG equation for vs/vb,

vs(`)
vb
≈

�

1+
A− B

(A+ B)(2−∆φ̂)
,

v2`

1+ v`

�

vs

vb
. (153)

Thus, we see that at the transition, the surface velocity vs renormalizes slightly, but does not
sync with the bulk velocity.
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