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Abstract

We consider supersymmetric surface defects in compactifications of the 6d minimal
(DN+3, DN+3) conformal matter theories on a punctured Riemann surface. For the case
of N = 1 such defects are introduced into the supersymmetric index computations by
an action of the BC1 (∼ A1 ∼ C1) van Diejen model. We (re)derive this fact using three
different field theoretic descriptions of the four dimensional models. The three field
theoretic descriptions are naturally associated with algebras AN=1, CN=1, and (A1)N=1.
The indices of these 4d theories give rise to three different Kernel functions for the BC1
van Diejen model. We then consider the generalizations with N > 1. The operators
introducing defects into the index computations are certain AN , CN , and (A1)N general-
izations of the van Diejen model. The three different generalizations are directly related
to three different effective gauge theory descriptions one can obtain by compactifying
the minimal (DN+3, DN+3) conformal matter theories on a circle to five dimensions. We
explicitly compute the operators for the AN case, and derive various properties these
operators have to satisfy as a consequence of 4d dualities following from the geomet-
ric setup. In some cases we are able to verify these properties which in turn serve as
checks of said dualities. As a by-product of our constructions we also discuss a simple
Lagrangian description of a theory corresponding to compactification on a sphere with
three maximal punctures of the minimal (D5, D5) conformal matter and as consequence
give explicit Lagrangian constructions of compactifications of this 6d SCFT on arbitrary
Riemann surfaces.
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1 Introduction

Supersymmetric quantum field theories (SQFTs) provide a plethora of interesting interconnec-
tions between various subjects in mathematical physics: or quoting L. Tolstoy, “Happy families
are all alike; every unhappy family is unhappy in its own way.”. The happy family subjects of the
ilk of supersymmetric QFTs include, among others, two dimensional conformal field theories
and integrable quantum mechanical models.

Here we will focus on one such connection: relation between six dimensional (1, 0) super-
conformal field theories (SCFTs) and one dimensional elliptic relativistic quantum integrable
models. This relation takes many guises, with one of the more notorious studied by Nekrasov
and Shatashvili [1] which goes through an intermediate five dimensional step and involvs
eight supercharges. A way to think about the relation is through surface defects in four di-
mensional theories with only four supercharges which are obtained by compactifying a six
dimensional SCFT on a (punctured) surface [2]. In principle for every 6d (1,0) SCFT, such
that upon circle compactification to five dimensions an effective five dimensional gauge theory
exists (upon some proper choice of holonomies around the circle for the 6d global symmetry),
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one can associate a one dimensional integrable quantum mechanical system. This integrable
system is related to introducing surface defects into the supersymmetric index [3] of the four
dimensional theories obtained by compactifying the chosen 6d SCFT on a generic (punctured)
surface preserving four supercharges.1 This correspondence draws an interesting parallel be-
tween the classification program of 6d SCFTs [6, 7] and classification of elliptic relativistic
quantum integrable systems.

There are various instances of this correspondence known by now. For example, in the case
of the (2, 0) theory of type G ∈ ADE the associated integrable model is given in terms of the
Ruijsenaars-Schneider elliptic analytic difference operators (A∆Os) [2,8]. 2 In the case of A2
and D4 minimal 6d SCFTs [19–21] one can derive novel integrable models [22,23] associated
to the A2 and A3 root systems respectively. In the case of the 6d SCFT being the rank one
E-string [24] one obtains [25] the BC1 van Diejen model [26].3

Another interesting question is to compile the dictionary between compactifications of
6d SCFTs and 4d Lagrangian theories. Such a dictionary is completely and explicitly known
starting with a handful of 6d SCFTs. For example: A1 (2, 0) gives rise to 4d quiver theories built
from tri-fundamentals of SU(2)s [33]; minimal A2 6d SCFT gives rise to quivers built from tri-
fundamentals of SU(3)s [21]: rank one E-string theory gives rise to generalized quiver theories
built from SU(3) SQCD with N f = 6 and deformations thereof [34]. In other cases one can
construct the relevant theories in 4d starting with weakly coupled Lagrangians but gauging
symmetries emergent either in the IR or at some loci of the conformal manifolds [24,35–37].
An example of the latter construction which will be relevant for us here is that of minimal
(DN+3, DN+3) conformal matter with N > 1 [34, 38].4 However, starting from a generic 6d
SCFT an explicit Lagrangian construction in 4d, and even whether it in principle exists, is
not not known at the moment. Those models for which a Lagrangian is not known at the
moment are often referred to as “non-Lagrangian”. A major motivation of this program is that
once the dictionary is compiled many interesting strong coupling effects, such as emergence
of symmetry and duality, can be understood in terms of the consistency of the dictionary with
the geometry behind the compactifications.

The purpose of this paper is to study yet another entry in the two dictionaries. On one hand
we will start from the 4d theories obtained by compactifications of the minimal (DN+3, DN+3)
conformal matter theories in 6d (with the E-string being the N = 1 case) recently constructed
in [34,38,46] and will be interested in the consistency of the dictionary relating these models
to the geometry defining the compactifications. In particular we will perform several checks
of the dualities implied by the geometry.

On the other hand we will derive an infinite set of integrable models which are a general-
ization of the correspondence between rank one E-string and BC1 van Diejen model (N = 1
above) corresponding to the minimal (DN+3, DN+3) conformal matter theories in 6d. This can
be viewed as AN generalization of the BC1 ∼ A1 van Diejen model. In fact there are yet two
additional 4d descriptions known in terms of USp(2N) and SU(2)N gauge theories which will
give rise to a CN and an (A1)N generalizations of the van Diejen model. Each one of these

1In principle the five dimensional intermediate step might not be needed and one could be able to derive the
integrable models studying defects in 6d, see [4]. See also for another five dimensional discussion [5].

2In general indices in compactification scenarios can be also associeate to 2d topological field theories [9]. In
turn these are long known to be related to integrable models by themselves [10]. In particular the indices of
the compactifications of A type (2, 0) theory give rise to 2d q-deformed YM theory [11, 12]. See also [13–18] for
relevant discussions.

3Naturally, for rank Q E-string theory one would expect to obtain the BCQ van Diejen model. This was not
shown explicitly yet, but the results of [27–29] should be helpful to establish this relation. Recently the Q = 1
relation was also derived [30] directly in six dimensions by studying the relevant Seiberg-Witten curve [31,32].

4In [38] general compactifications of the 6d SCFT residing on two M5 branes probing a Zk singularity using
such methods was also discussed. Moreover, many more examples of some special compactifications (such as on
tori and/or spheres with special collections of punctures) are known, see e.g. [27,33,39–45].
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would lead to an additional set of integrable systems. The fact that we have three different
quantum mechanical integrable models corresponding to the same 6d SCFT is related to the
fact that these SCFTs have more than one effective quantum field theory description in five
dimensions [47,48]. The different descriptions are usually called dual (in the sense that they
have same UV completion in 6d).

The paper is organized as follows. In Section 2 we review the technology of deriving
integrable models from supersymmetric indices with surface defects and the type of properties
these models have to satisfy following from the physics of the 4d models. In Section 3 we will
apply this technology and discuss in detail three different derivations of the BC1 van Diejen
model starting from three different QFTs corresponding to compactifications of the rank one
E-string theory on three punctured spheres. In Section 4 we discuss in detail a generalization
to compactifications of the minimal (DN+3, DN+3) conformal matter theories and in particular
derive the AN generalization of the BC1 van Diejen model. In Section 5 we discuss our results
as well as possible generalizations and extensions. Several appendices contain technical details
of the computations presented in the bulk of the paper. In particular as an intermediate step
of our constructions we discuss a four-punctured sphere for general (DN+3, DN+3) conformal
matter. For the case of N = 2 this gives us an explicit and simple Lagrangian description
for a sphere with three maximal punctures (one USp(4) and two SU(3)) which we discuss
in Appendix C. This thus makes the compactifications of (D5, D5) minimal conformal matter
theories completely Lagrangian.

2 Integrable models from supersymmetric index and dualities

We begin by discussing a concrete way integrable models can be associated to a 6d SCFT via
supersymmetric index computations in presence of surface defects. We will overview schemat-
ically the general logic and the readers can consult the original papers for the details and
subtleties. A reader familiar with the procedure can skip this section.

Let us start from some 6d (1,0) SCFT and assume it has global symmetry G6d . We place
this theory on a Riemann surface C and turn on background gauge fields, fluxes supported on
C, preserving four supercharges [37, 49], and then flow to four dimensions. We denote the
4d theories thus obtained by T [C, F]. These models might be interacting SCFTs, free chiral
fields, or even contain IR free gauge fields: this will not be essential for our discussion. The
Riemann surface might have punctures. In general there can be various types of punctures
which can be understood and classified using several methods (see e.g. [33, 50, 51]). For 6d
theories that have 5d effective gauge theory description with gauge group G5d once they are
compactified on a circle with a proper choice of holonomies, there is a natural choice of a
puncture, usually called maximal. This choice amounts to specifying certain supersymmetric
boundary conditions for the 5d fields, and in particular setting Dirichlet boundary condition for
the 5d gauge fields at the puncture. This equips the 4d effective theory with additional factors
of flavor symmetry G5d associated to each puncture. Certain 5d fields which are assigned
with Neumann boundary condition give rise to natural 4d chiral operators (which we will
denote by M) charged under G5d : by abuse of notation we will refer to these fields as moment
maps.5 The choice of flux and choices of boundary conditions break G6d to a subgroup, with
a generic choices leaving only the Cartan generators, C[G6d]. Note that given an effective
5d description the maximal puncture might not be unique as it involves choices of boundary

5The motivation for this notation is that in the case of the 6d theory being the (2, 0) SCFT such chiral operators
are indeed the moment maps inside N = 2 conserved current multiplet. However, as our models will be only
N = 1 supersymmetric, the moment map operators we will discuss do not have such a group theoretic meaning.
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conditions. Naively all these choices are equivalent, but for a surface with several punctures
the relative differences are important. Such differences are usually called different colors of
maximal punctures (see e.g. [24, 37]). Moreover, in certain cases there can be different five
dimensional effective gauge theories depending on the choice of holonomies giving rise to
maximal punctures with different symmetry groups. This will be important for us and we will
see explicit examples in this paper.

One can obtain a plethora of other types of punctures by giving vacuum expectation values
(vevs) to the moment map operators, breaking sequentially G5d to sub-groups: this procedure
is called partially closing the puncture (see e.g. [52,53]). Turning on sufficient number of vevs
G5d can be completely broken in which case one says that the puncture is closed. Importantly,
the moment maps receiving the vevs might also be charged under the 6d symmetry G6d . The
theory obtained by completely closing a punctures then can be associated to the Riemann
surface of the same genus but with one puncture less than the theory we started with, and
with the flux F shifted by amount related to the charges of the moment maps (see [24,34,37]
for details). Puncture which can be obtained in this partial closure procedure which only can
be further completely closed is called minimal. Typically, the rank of the symmetry of such a
puncture is one (U(1) or SU(2)). 6

Starting from two theories corresponding to compactifications on two surfaces, which
might be different but each has at least one maximal puncture, one can build the theory corre-
sponding to the surface glued along the maximal punctures. Field theoretically there are two
procedures one can perform. First one is called S-gluing and it amounts to gauging the diago-
nal combination of the two puncture symmetries and turning on a superpotential involving the
moment maps of the two theories, W ∼ M ·M ′. In this case the flux associated to the resulting
surface is the difference of the fluxes of the constituents. Note that the overall sign of flux is
immaterial. Second procedure is called Φ-gluing and it involves first adding chiral superfields
Φ in a representation under G5d×C[G6d] conjugate to the one of M , turning on superpotential
W ∼ M ·Φ−M ′ ·Φ, and gauging the diagonal combination of G5d . In this case the flux of the
resulting surface is the sum of the two fluxes. One can also consider a combination of these
two gluing, S-gluing for some components of the moment maps and Φ-gluing for the rest, as
long as the gauging is non anomalous.

We assume that we have an explicit Lagrangian construction7 of at least one compactifica-
tion corresponding to a sphere with two maximal and one minimal punctures and some value
of flux. Without loss of generality we will assume that the flux is such that there is a preferred
choice of a vev to a moment map (will be denoted M̂−) such that one closes the minimal
puncture and obtains (formally) the theory associated to a two punctured sphere with zero
flux.8 We will denote this surface by T A

z,u,â with z and u being parameters of G5d associated to
the two maximal punctures and â a U(1) parameter associated to the minimal puncture. We
denote by A the flux of this surface.

Given the above, the derivation of the integrable models proceeds by considering the su-
persymmetric index [3,54–56] of the theories obtained in the compactification. The supersym-
metric index in four dimensions is defined as a supersymmetric trace over the Hilbert space of

6See however [22] where the maximal puncture with SU(3) symmetry can be only broken to no-symmetry
puncture. The punctures carrying no symmetry typically either support a discrete twist line or are not obtainable
by closing a maximum puncture (are irregular). The example of [22] has a twist supported by the puncture.

7For the purpose of deriving the integrable models in fact a description which starts from weakly coupled fields
but involves gauging of emergent symmetries is sufficient. See e.g. [25].

8If the flux of a given three punctured sphere does not satisfy this criterion it is easy to build from it a three
punctured sphere which will. For example, one glues two trinions together with S-gluing and closes one of the
minimal punctures. We will utilize this idea later in the paper.
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the N = 1 theory quantized on S3,

I = TrS3(−1)F q j2− j1+
1
2 Rp j2+ j1+

1
2 R

∏

i∈C[G4d]

uqi . (2.1)

Here F is the fermion number, ji are the Cartans of the Spin(4) isometry of S3, R is the R-
symmetry, and qi are charges under the Cartan sub-group of the 4d Symmetry group G4d . This
is the most general Witten index one can define preserving a certain chosen supercharge (and
its superconformal Hermitean conjugate). For more details the reader can consult [57]. Im-
portantly, the index always depends on two parameters q and p, and can depend on additional
fugacities associated to the global symmetry a given theory has. Moreover, being a Witten in-
dex [58], it does not depend on continuous parameters of the theory. In particular, it does
not depend on the RG scale [56] and if a theory has continuous couplings parametrizing a
conformal manifold, the index will not depend on those, and if there is a duality group acting
on this conformal manifold the index will be thus duality invariant. Thus, given a 4d theory
arising in a compactification we can compute the index I [C, F] which will be determined by
the geometry and the fluxes and will depend on q, p and the fugacities for the global sym-
metries. The 4d theories are determined by the geometry and in particular different ways of
constructing the same geometry, such as different pair-of-pants decompositions and different
ways to distribute the flux among the pairs of pants, lead to equivalent dual theories. The
index thus will be invariant of the different ways we construct the geometry. Given the indices of
two theories one can construct the index corresponding to glued surface by integrating over
the fugacities corresponding to the gauged symmetry,

I
�

C ⊕ C′,F ±F ′
�

=

∮ rank G5d
∏

i=1

dzi

2πizi
∆Haar(G5d)∆

S/Φ(z5d ; u6d ; q, p)× (2.2)

I
�

C,F
�

(z5d , u6d , · · · ; q, p) × I
�

C′,F ′
�

(z5d , u6d , · · · ; q, p) .

Here∆S/Φ(z5d ; u6d ; q, p) is the contribution of the gauge fields and in case of the Φ-gluing also
the fields Φ. The fluxes are added/subtracted in case of Φ/S-gluing respectively.

We also need to remind the reader about one more general statement about the supercon-
formal index. If we give a vev to a bosonic operator O, charged under some U(1)u symme-
try with charge −1 (without loss of generality), which contributes to the index with weight
U∗ = q jO2 − jO1 +

1
2 RO

p jO2 + jO1 +
1
2 RO

u−1, then the index of the theory in the IR is given by [2],

IIR ∼ limu→U∗IUV (u) , (2.3)

where the∼ denotes that to achieve equality we need to divide by some overall factors related
to Goldstone degrees of freedom which will not be important for us.

Finally we perform the following computation. We take a general Riemann surface Cg,s[u]
(g is the genus and s is the number of punctures) with at least one maximal puncture

parametrized by fugacity u. Next we compute the index I
�

Cg,s[u] ⊕ T A
z,u,â,F + A

�

of the

theory corresponding to this surface with T A
z,u,â glued to it along puncture u. Then we study

what happens once we close the minimal puncture â with the preferred vev M̂− defined above.
The weight in the index of the operator M̂− we give the vev to is U∗ and this vev breaks the
minimal puncture U(1)â symmetry.9 By our definitions,

limâ→U∗I
�

Cg,s[u]⊕ T A
z,u,â,F +A

�

∼ I
�

Cg,s[z],F
�

, (2.4)

9Without loss of generality we assume that the charge of the operator under U(1)â is −1.
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z

̂a zvev " for ̂a

#g,s[u]

$"
z,u, ̂a

u

#g,s[z]

ℐ&( ̂a, ")
z

Figure 1: Derivation of the A∆O from the index. We denote both the flux of the three
punctured sphere we glue in and the preferred choice of the operator we give the vev
to by A, as the resulting two punctured sphere has zero flux.

as the geometry after adding the trinion and removing the minimal puncture without changing
the flux is the same as the one we started with and we assume that the theories are determined
by the geometric data. More mathematically, this implies that the operation of adding T A

z,u,â
and then computing residue acts as an identity operator on the index of the theory on Cg,s[z].
However, if one gives a vev to certain holomorphic derivatives of M̂−, ∂ r

1 ∂
m

2 M̂− , such that the
weight in the index is prqm U∗, one typically obtains [2],

limâ→pr qmU∗I
�

Cg,s[u]⊕ T A
z,u,â,F +A

�

∼O(â,A;r,m)
z · I

�

Cg,s[z],F
�

. (2.5)

Here O(â,A;r,m)
z is an analytic difference operator acting on the G5d parameters z in the index.

See Figure 1 for an illustration. Physically this flow introduces surface defects into the index
computation. The type of defect is defined by the type of the minimal puncture â and the
flux A as well as the choices of the number of derivatives r and m. The fact that the residue
computation gives a difference operator is a non-trivial statement which does not have a di-
rect derivation using this logic. However, the same result was obtained, at least in particular
examples, by directly computing the index of a theory in presence of a surface defect [59].

Since the index is invariant under marginal deformations and dualities these operators
satisfy various remarkable properties. For example, one can close two minimal punctures in
different ways. The different orders to do so correspond to performing the computations in
different duality frames. The index thus should be independent of this order. This, under the
assumptions that the indices are rather a generic set of functions, leads to the expectation that
all the operators obtained using such arguments should commute,

�

O(â,A;r,m)
z , O(b̂,B;r ′,m′)

z

�

= 0 . (2.6)

as shown on Figure 2. For example, studying the procedure detailed here starting with AN−1
type (2,0) theories the system of commuting operators of the Ruijsenaars-Schneider model
can be obtained [2,17]. This model has 2(N−1) independent commuting operators and these
can be related to the choices (r = 1, . . . , N − 1, m = 0) and (r = 0, m = 1, . . . , N − 1) with
the more general operators expressible in terms of these. We stress that the commutativity
is a consequence of the dualities. Thus once the operators are computed the fact that they
commute can be viewed as a non trivial check of the conjectured dualities.

Another consequence of the dualities is that the indices themselves are Kernel functions for
the difference operators, see Figure 3. Since the difference operators correspond to residues
of the index in fugacity â, and the index is invariant under the dualities, it does not matter on
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z
̂a

S duality

ℐ

ℐ

#( ̂a, $)
z

#(b̂, ℬ)
z

vev $ for ̂a

vev $ for ̂a

b̂

z

̂a
b̂

vev ℬ for b̂

vev ℬ for b̂

#(b̂, ℬ)
z

#( ̂a, $)
z

z

z

[#( ̂a, $)
z , #(b̂, ℬ)

z ] = 0
Figure 2: We start from a theory with a maximal puncture (labeled by z) and two
minimal punctures (labeled by â and b̂). We close both minimal punctures by giving
a space-time dependent vacuum expectation value to operators charged under the
two puncture symmetries, resulting in a theory with surface defects. The choice of
operators is schematically encoded in A and B. We can perform the computation of
the index after giving the vevs in any duality frame and the result should not change.
Here we present two frames which will result in the index being computed by acting
on the index without the defect with two difference operators in different order. As
the result does not depend on the frame the operators have to commute when acting
on the index. Assuming that the index is a generic enough function this implies that
the operators commute.

which maximal puncture fugacity the difference operator acts,

O(â,A;r,m)
z · I

�

Cg,s[z, u],F
�

=O(â,A;r,m)
u · I

�

Cg,s[z, u],F
�

. (2.7)

Note that the operators O(â,A;r,m)
z and O(â,A;r,m)

u in this equality might not be exactly the same
as they depend on the type of maximal puncture, u or z, that they act on. If the types are
the same the operators are the same, but otherwise they in principle can be different. We will
discuss examples of this in what follows.

The discussion here can be generalized to other partition functions. The generalization
is specifically straightforward when one can obtain the partition function of a theory after
gauging a symmetry from the partition function of the theory before gauging that symmetry
directly.10 An example of that is the lens index [64–66]. In the case of lens index for the
compactifications of the (2, 0) theory the computation leads to a rich structure [15,16] involv-
ing Cherednik operators which in certain limits generalizes Macdonald polynomials to non
symmetric functions.

10In some partition functions, such as S2 × T2 or elliptic genus in two dimensions, the connection between
gauged and not gauged symmetries using matrix model techniques is more obscure and involves more sophisticated
methods of computations (JK residues) [60, 61]. See however [62,63] for a way to define the gauging in a guise
possibly better suited for generalizations of our discussion.
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z
u

̂a

S duality

z
u

̂a

z
u

z
u

ℐ

ℐ

#( ̂a, $)
z

#( ̂a, $)
u

vev $ for ̂a

vev $ for ̂a

Figure 3: Here we give vev to an operator labeled by A charged under minimal
puncture symmetry â. We consider two duality frames. In each frame the minimal
puncture is close to a different maximal puncture, labeled by z and u. The fact that the
duality frame does not matter for the computation, as the index is independent of the
value of the continuous couplings, the two computations give the same result. This
implies that the index of the theory without defect generated by the vev, regarded
as the function of maximal puncture parameters z and u, is a Kernel function for the
difference operators introducing the defects.

3 Three roads to the van Diejen model

In this section we derive the relation between the rank one E-string theory and the BC1 van
Diejen model. This relation was already obtained in [25] using the three punctured sphere
T A

z,u,â obtained in [24]. Here we will present three different derivations each of which will then
have a different extension to the minimal (D, D) conformal matter theory and the associated
integrable models being AN , CN and (A1)N generalizations of the van Diejen model. The rank
one E-string theory has G6d = E8 and thus the integrable models in addition to q and p depend
on an octet of variables parametrizing the Cartan sub-group of E8. The 5d effective description
is an SU(2) gauge theory with an octet of hypermultiplets and thus G5d = SU(2) with the
moment maps forming an octet of fundamentals under G5d . The minimal and the maximal
punctures are the same for the rank one E-string. For some relevant details about the E-string
theory see for example [24].

3.1 BC1 van Diejen model

Before we derive operators introducing defects into the index computations of the rank one
E-string theory in the following subsections, let us start by defining the basic BC1 van Diejen
operator. This operator in various guises will make an appearance throughout the paper. The
BCN van Diejen operators were first defined in [26] and the corresponding integrable structure
was discussed in [67]. These models can be viewed as a certain generalization of the elliptic
relativistic Calogero-Moser systems (Ruijsenaars-Schneider models, see Appendix D for some
details) and Koornwinder operators [68].11 We will define the BC1 operator here using the

11See [69] for appearance of the Koornwinder polynomials in the context of class S compactifications with
outer-automorphism twists.
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notations of [70].
The BC1 van Diejen operator AD(h; x) depending on an octet of complex parameters h={hi}8i=1

and acting on a function f (x) (such that f (x) = f (x−1)) is defined as follows,

AD(h; x) f (x)≡ V (h; x) f (qx) + V
�

h; x−1
�

f
�

q−1 x
�

+ Vb(h; x) f (x), (3.1)

where

V (h; x)≡

8
∏

n=1
θp

�

(pq)
1
2 hn x

�

θp(x2)θp

�

qx2
� , Vb(h; x)≡

3
∑

k=0
pk(h)[Ek(ξ; x)− Ek(ξ;ωk)]

2θp(ξ)θp

�

q−1ξ
� , (3.2)

and

ω0 = 1, ω1 = −1, ω2 = p
1
2 , ω3 = −p−

1
2 , θp(x) =

∞
∏

i=0

(1− pi x)(1− pi+1 x−1) . (3.3)

The functions pk(h) are

p0(h)≡
∏

n

θp(p
1
2 hn), p1(h)≡

∏

n

θp

�

−p
1
2 hn

�

,

p2(h)≡ p
∏

n

h
− 1

2
n θp(hn), p3(h)≡ p

∏

n

h
1
2
nθp

�

−h−1
n

�

, (3.4)

and Ek is

Ek(ξ; z)≡
θp

�

q−
1
2ξω−1

k x
�

θp

�

q−
1
2ξωk x−1

�

θp

�

q−
1
2ω−1

k x
�

θp

�

q−
1
2ωk x−1

�
. (3.5)

Constant term Vb(h; x) of van Diejen model has following poles in the fundamental do-
main:

x = ±q±
1
2 , x = ±q±

1
2 p

1
2 . (3.6)

Residues at these poles are given by:

Resx=sq1/2 Vb(h; x) = −s

8
∏

n=1
θp

�

sp
1
2 hn

�

2q−
1
2θp (q−1) (p; p)2∞

,

Resx=sq−1/2 Vb(h; x) = s

8
∏

n=1
θp

�

sp
1
2 hn

�

2q
1
2θp (q−1) (p; p)2∞

,

Resx=sq1/2p1/2 Vb(h; x) = −s

8
∏

n=1
h
− 1

2
n θp (shn)

2q−
1
2 p−

3
2θp (q−1) (p; p)2∞

,

Resx=sq−1/2p1/2 Vb(h; x) = s

8
∏

n=1
h
− 1

2
n θp (shn)

2q
1
2 p−

3
2θp (q−1) (p; p)2∞

, (3.7)

where s = ±1.

In what follows we will see how the operator (3.1) will appear in the context of studying
surface defects in the index computations of the rank one E-string theory.
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F

Figure 4: The 4d theory obtained by compactifying the rank one E-string on a three
punctured sphere with a particular choice of flux (breaking the E8 global symmetry
down to E7 × U(1)) and definition of punctures. We will refer to this theory as the
A1 trinion theory, and it is given by SU(3) SQCD with N f = 6.

3.2 A1 van Diejen model

We start our discussion of the defects in E-string theory compactifications with the definition
of a particular trinion theory, T 3

x ,y,z , derived in [34]. This is the SU(3) SQCD with N f = 6.

Corresponding quiver is specified on the Figure 4. The supersymmetric index of T 3
x ,y,z is given

by,

KA1
3 (x , y, z) =

κ2

6

∮

d t1

2πi t1

d t2

2πi t2

1
∏3

i 6= j Γe(t i/t j)
× (3.8)

3
∏

i=1

Γe((qp)
1
6 u6 t i x

±1)Γe((qp)
1
6 v6 t i y±1)Γe((qp)

1
6 w6 t iz

±1)
6
∏

j=1

Γe((qp)
1
3 (uvw)−2a j t

−1
i ).

The definitions of the various special functions can be found in Appendix A. The parame-
ters t i parametrize the gauged SU(3) (

∏3
i=1 t i = 1), and the parameters u, v, w, a1, . . . , a5

parametrize a choice of Cartans of E8 such that,

6
∏

i=1

ai = 1, E8→ E7 × SU(2)u6v6w6 → SU(6)ai
× SU(3) u8

v4w4 , v8

u4w4
× U(1)u6v6w6 . (3.9)

The three puncture SU(2) symmetries are parametrized by x , y , and z. The octets of the
moment map operators have the following charges,

Mu = 2x ⊗
�

6u4/v2w2 ⊕ 1u6v12 ⊕ 1u6w12

�

,

Mv = 2y ⊗
�

6v4/u2w2 ⊕ 1v6u12 ⊕ 1v6w12

�

, (3.10)

Mw = 2z ⊗
�

6w4/u2v2 ⊕ 1w6u12 ⊕ 1w6v12

�

,

where these are built by a sextet of mesons and two baryons. Everywhere in this paper the
charges of operators (fields) under various symmetries are encoded in the powers of fugaci-
ties for corresponding symmetries. For example the operator with weight 6u4/v2w2 is a sextet
of SU(6) and has charges +4 under U(1)u and −2 under U(1)v and U(1)w. The mesons are
built from a fundamental of SU(3) transforming under the puncture symmetry and the sextet
of antifundamentals. The two baryons are built from one copy of the fundamental of SU(3)

11

https://scipost.org
https://scipost.org/SciPostPhys.12.4.140


SciPost Phys. 12, 140 (2022)

x̃

I(x̃)

y x̃

(z̃;M, q0)

K̄3(x̃, y, z̃)

yx

(z;M, q−1)

K3(x, y, z)

O(z;M ;1,0)
x ·

x

I(x)

Figure 5: Construction of the A∆O. We start here with some theory with the super-
conformal index I(x). Then we S glue it to two trinions and close minimal punctures.
In the figure above we close SU(2)z punctures and denoted closure operation as the
cross on top of the puncture. The notation (z; M , q−1)means that we close z-puncture
by giving vev to the moment map M . The last label, q−1, denotes which kind of vev
it is. In particular q0 corresponds to constant vev, while non-zero negative powers,
like q−1, correspond to the space dependent vev. As the result of gluing operation
we obtain theory with the very same superconformal index I(x) but this time with
some A∆O O(z;M ;1,0)

x acting on it. Particular form of operator depends on the trinion
theories we use in the construction and the way we close minimal punctures.

transforming under the given puncture symmetry and two fundamentals of SU(3) transform-
ing under a different puncture symmetry. Note that the three punctures are of different types
(colors) as the pattern of charges of the moment maps is different for each puncture.

The derivation of the A∆O here will lead to a version of the BC1 van Diejen operator we
will refer to as the A1 operator. The reason is that the three punctured sphere used here has a
direct generalization to the (DN+3, DN+3) conformal matter theories with SU(N+1) punctures:
here we discuss the case of N = 1. Thus the operators will act on the SU(N+1) punctures, and
we will refer to them as AN type of operators. The generalization will be discussed in Section
4. Many of the explicit technical details of the discussion here are presented in Appendix B for
the general N case.

We will apply the algorithm of Section 2 to derive an A∆O introducing defects in the
index using T A

x ,y,z . We start with an arbitrary theory T 0 with an SU(2) global symmetry and

the corresponding index I0. Geometrically this corresponds to the compactification on some
Riemann surface C with at least one maximal (which is the same here as minimal) puncture.
In order to obtain A∆O we want to glue this surface to one or more trinions and close the
punctures of the latter ones in such a way that the total flux through C is not shifted in the
end. The easiest way to do it in our case is to perform S gluing of two trinions T A

x ,y,z and T Ā
x ,y,z

with conjugated fluxes to the original surface C along the SU(2) puncture as shown on the
Figure 5. At the level of the index according to (2.2) this operation is expressed as follows:

I
�

C x̃ ⊕ T Ā
x̃ ,y,z̃ ⊕ T A

x ,y,z

�

= κ2

∮

d y
4πi y

d x̃
4πi x̃

1
Γe (y±2) Γe ( x̃±2)

×

KA1
3 (x , y, z)K̄A1

3 ( x̃ , y, z̃)I [C x̃] . (3.11)

Here as a particular example we started with the theory having SU(2)x minimal puncture and
S glued trinions along SU(2)y punctures. In a completely identical way one can choose gluings
along other combinations of punctures since in rank one E string case all the punctures are
minimal. In case of AN generalization of this model described in Section 4 situation will be
different and only one of three punctures will be of minimal type. The index of the conjugated
theory T Ā

x̃ ,y,z̃ can be obtained from the index (3.8) by simply inverting all the flavor fugacities:

(ai , u, v, w)→ (a−1
i , u−1, v−1, w−1).

12

https://scipost.org
https://scipost.org/SciPostPhys.12.4.140


SciPost Phys. 12, 140 (2022)

4

2x 2 z

2x̃ 2 z̃

1

7

1
2

1
2

1
2

1
2

1
2

1
2

1 1

11

Figure 6: The A1 four-punctured sphere theory with zero flux: SU(4) SQCD with
N f = 8. Fugacities of all of the fields can be identified from the index specified in
(B.4) upon putting N = 1. Red lines correspond to the flips of mesonic operators of
this theory. This theory has superpotentials turned on corresponding to the triangles
in the quiver and baryonic superpotentials preserving the puncture symmetries (and
including quarks charged under orange and green SU(2) symmetries). Here, and
everywhere in the paper, we do not discuss the subtle issues of the relevance of the
superpotentials as this does not play a role in the derivation of the A∆Os.

Now we should close SU(2)z and SU(2)z̃ punctures. There are two ways to do it that lead to
identical results. In the first approach we start with gluing two trinions forming four-punctured
sphere and then close two conjugated punctures giving vev to two operators corresponding
to them. This will result in a certain tube theory which we can in turn S glue to an arbitrary
theory. Another way to do this calculation is first to close corresponding punctures of the two
conjugated trinions obtaining expressions for two tube theories. After that we can glue them
together and to an arbitrary theory. These two approaches just correspond to two different
orders of performing operations of closing puncture and gluing specified in (3.11). The final
result of course does not depend on this order, which we have checked. For presentation pur-
poses here in A1 case we choose the first approach consisting of deriving the four-punctured
sphere theory first. Further in other cases we will also demonstrate details of the other ap-
proach.

Gluing two conjugated trinion theories T A
x ,y,z and T̄ A

x̃ ,y,z̃ along the SU(2)y puncture and
performing a chain of Seiberg dualities we obtain relatively simple SU(4) SQCD with 8 flavors
theory. The quiver of this theory is shown on the Figure 6. Derivation of this theory is sum-
marized in the Appednix B.1 for the AN case and its index KA1

4 (x , x̃ , z, z̃) is specified in (B.4).
Expressions for the A1 case can be directly obtained from this Appendix by putting N = 1.
Gluings along SU(2)x and SU(2)z punctures can be similarly discussed using appropriate per-
mutation of the (u, v, w) fugacities.

As the second step we close SU(2)z and SU(2)z̃ punctures giving vev to one of the moment
maps. At this point for each puncture we have a choice of 8 moment map operators specified in
the last line of (3.10). On top of this we can “flip“ components of the moment map operators
(adding a chiral field linearly coupled to the operator with a superpotential) before closing the
puncture.12 Notice that we aim to have a zero-flux tube in the end. This requires punctures
SU(2)z and SU(2)z̃ to be closed consistently, i.e. both should be either flipped or not and both
should be closed using the same moment map. This leads to 16 possible A∆Os in total.

Let’s start with an example before summarizing general result. First we consider closing

12Such flippings amount to changing the definition of the puncture. In particular in 5d this will amount to the
question which matter fields acquire Dirichlet and which Neumann boundary conditions. See i.e. [24,71].
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SU(2)z and SU(2)z̃ punctures using the baryon 1w6u12 . At the level of the index this amounts
to computing the residue of the pole located at

z = (pq)−
1
2 u−12w−6q−K p−M , z̃ = (pq)−

1
2 u12w6q−K̃ p−M̃ , (3.12)

where K , M , K̃ , M̃ are positive integers. Here for the sake of simplicity we will concentrate
on the case K̃ = 0 and K = 1.13 Physically this corresponds to giving vev to the derivative
of 1w6u12 baryonic moment map of the SU(2)z puncture introducing surface defect into the
theory. The puncture SU(2)z̃ in turn is closed using space-independent vev of the conjugated
baryonic moment map.

Corresponding calculation of the residue is summarized in the Appendix B.2 for the more
general case of AN trinions. Derivation for the A1 case can be simply reproduced from it by
putting N = 1 in all of the equations. This calculation results in the following A∆O,

O(z;u12w6;1,0)
x · I(x) =

∏8
i=1 θp((qp)

1
2 h−1

i x)

θp(qx2)θp(x2)
I(qx) +

∏8
i=1 θp((qp)

1
2 h−1

i x−1)

θp(qx−2)θp(x−2)
I(qx−1)

+W (x; hi)
(z;u12w6;1,0) I(x) . (3.13)

Here we have introduced the following notations. First of all we encoded all required infor-
mation in the indices of the operator. Subscript x means that we act on the SU(2)x puncture
of N = 1 theory. First argument z in the superscript stands for the SU(2)z-type punctures
that we close. Second argument of the superscript is the charge of the moment map we give
space-dependent vev to in order to close the puncture. In our case it is the charge u12w6 of the
corresponding baryon. Finally the last pair of integers (1, 0) stands for the choice of K and M
integers in the pole (3.12). On the r.h.s. hi is the octet of charges of the moment maps of the
puncture we act on. In this case it is Mu with charges hi =

�

6u4/v2w2 ⊕ 1u6v12 ⊕ 1u6w12

�

. The

function W (x; hi)(z;u12w6;1,0) is given by

W (x; hi)
(z;u12w6;1,0) ≡





θp

�

(pq)
1
2 u6w12 x

�

θp

�

(pq)
1
2 v12u6 x

�

θp

�

(pq)
1
2 u18qx

�

θp (q−1 x−2)θp (x2)
θp

�

(pq)
1
2 u18 x−1

�

×

6
∏

j=1

θp

�

(pq)
1
2 u4v−2w−2a j x

�

+ (x → x−1)



+
6
∏

j=1

θp

�

u−14v−2w−2q−1a j

�

×

θp

�

q−1v12u−12
�

θp

�

(pq)
1
2 u6w12 x±1

�

θp (pq2w12u24)θp

�

(pq)−
1
2 u−18q−1 x±1

� . (3.14)

Notice that while the shift part of the operator (3.13) depends only on the charges of the
moment maps of the puncture we act on, the constant part specified above depends also on
the charges of the moment map we use to close the puncture SU(2)z .

The constant part presented in (3.14) is elliptic function in x with periods 1 and p just as
is the constant part Vb(x) of the BC1 van Diejen operator specified in (3.1) and (3.2). Also the
poles of both functions in the fundamental domain are located at

x = sq±
1
2 , x = sq±

1
2 p

1
2 , s = ±1 . (3.15)

13For the E-string, as the puncture symmetry is A1, we expect the higher numbers of derivatives to give rise to
operators which are expressible in terms of the one we will derive below. It is analagous to A1 class S with the
basic pole giving the RS operator and the higher poles giving polynomials of it. For general AN−1 class S the first
N − 1 poles give rise to a commuting set of independent operators while the higher poles are expressible in terms
of the basic ones. For details see [2,17].
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However matching residues of W (x; hi)(z;u12w6;1,0) and Vb(x) functions requires flip of one of
the charges which is implemented by the following conjugation of the operator

Õ(z;u12w6;1,0)
x ≡ Γe

�

(pq)
1
2 u6w12 x±1

�−1
O(z;u12w6;1,0)

x Γe

�

(pq)
1
2 u6w12 x±1

�

. (3.16)

This conjugation affects only the shift part of the operator (3.13) leading to

Õ(z;u12w6;1,0)
x · I(x) =

∏8
i=1 θp((qp)

1
2 h̃−1

i x)

θp(qx2)θp(x2)
I(qx) +

∏8
i=1 θp((qp)

1
2 h̃−1

i x−1)

θp(qx−2)θp(x−2)
I(qx−1)

+W (x; h̃i)
(z;u12w6;1,0) I(x) , (3.17)

where h̃i is the octet of the moment map charges with one of the baryons flipped
h̃i =

�

6u4/v2w2 ⊕ 1u6v12 ⊕ 1u−6w−12

�

. 14

Now in order to compare this operator to the van Diejen operator (3.1) we start with the
shift part. From it we clearly see that octet of the van Diejen model parameters hn is equal to
the octet of the inverse parameters h̃−1

i specified above, i.e. hvD
n = h̃−1

n . Using this simple iden-

tification we can check that all the residues of the constant part W (x; hi)(z;u12w6;1,0) specified in
(3.14) are given by (3.7). Hence since the constant part is elliptic in x and poles with residues
coincide with those of the van Diejen model we conclude that up to a constant independent of
x the operator Õ(z;u12w6;1,0)

x is just the BC1 van Diejen model. Above we have made the choice
of which single component of the moment map to flip. This choice is immaterial and in fact
we can flip any odd number of components and find a map between parameters to match with
the BC1 van Diejen model.

Above we gave an example of the result of a particular computation with a particular
puncture we act on and a particular moment map we give vev to. Similar computations can
be performed for all other possible combinations of punctures and moment maps.

Next, after we have discussed several subtleties using particular example, let us describe
the general operator as a function of the puncture we act on and the moment map we give vev
to. Calculations for other combinations can be done in a similar way. Since most of them are
almost identical to the calculation of the operator above, details of which we present in the
Appendix B.2, we leave these derivations to the interested reader. Without loss of generality
from now on we will only consider the situation when we close SU(2)z puncture. In general
for each of the two remaining puncture types we have an octet h(a)i of U(1) charges where
index a = (u, v) stands for the puncture type. We have to flip one of the charges in each octet
so that the charges of the moment maps become h̃(a)i defined as follows

eMu = 2x ⊗
�

6u4/v2w2 ⊕ 1u6v12 ⊕ 1u−6w−12

�

,

eMv = 2y ⊗
�

6v4/u2w2 ⊕ 1v6u12 ⊕ 1v−6w−12

�

. (3.18)

Mw = 2z ⊗
�

6w4/u2v2 ⊕ 1w6u12 ⊕ 1w6v12

�

,

Notice that the charges of SU(2)z puncture moment maps are the same as in (3.10). Now let’s
write down the operator acting on the puncture of type a obtained by giving vev to one of

14Let us make a comment here. Note that the flip on one hand just redefines the type of the puncture by changing
the charges of one of the components of the moment map. On the other hand this is essential as doing so for odd
number of components changes the global Witten anomaly of the SU(2) puncture symmetry. Note that the three
punctured sphere of Figure 4 has SU(2) punctures with three fundamentals and thus have a Witten anomaly for
the global symmetry. The flipping takes us to a definition without such an anomaly. In particular when Φ gluing
punctures one should always be careful that the Witten anomaly is zero. For example the trinion defined in [24]
(used in [25] to derive the van Diejen model) has no Witten anomaly for punctures. The same is true for the trnion
derived in [38] and used in the next subsection. Thus gluing these trinions to the trinion of Figure 4 one cannot
use S or Φ gluing but a combination of these with odd number of gluings of each type.
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the Mw moment maps. As one can notice from (3.18) Mw moment maps are related to the
moment maps eMu,v as follows

h̃(w)i = h̃(a)i h̃
− 1

4
a , h̃a ≡

8
∏

i=1

h̃(a)i , a = (u, v) , (3.19)

where we have to flip some of the Mw depending on which type a is the puncture we act on.
Since moment maps Mw are related to moment maps eMu,v as specified above further we will

parametrize everything, including the moment map we give v.e.v. to, using charges h(a)i of the
moment maps of the puncture we act on.

Then we can write the general shift operator arising from this construction:

Õ(z;h̃(a)i h̃
− 1

4
a ;1,0)

a · I(xa) =

∏8
i=1 θp((qp)

1
2

�

h̃(a)i

�−1
xa)

θp(qx2
a)θp(x2

a)
I(qxa) +

∏8
i=1 θp((qp)

1
2

�

h̃(a)i

�−1
x−1

a )

θp(qx−2
a )θp(x−2

a )
I(qx−1

a ) +W (xa; h̃(a)i )
(z;h̃(a)i h̃

− 1
4

a ;1,0) I(xa) ,

W (xa; h̃(a)i )
(z;h̃(a)i h̃

− 1
4

a ;1,0) =

8
∏

j 6=i
θp

�

q−1
�

h̃(a)i h̃(a)j

�−1
h̃

1
2
a

�

θp

�

q−2
�

h̃(a)i

�−2
h̃1/2

a

� ×

θp

�

(pq)
1
2 h̃(a)i x±1

a

�

θp

�

(pq)−
1
2

�

h̃(a)i

�−1
h̃1/2

a q−1 x±1
a

� +











8
∏

j 6=i
θp

�

(pq)
1
2

�

h̃(a)j

�−1
x−1

a

�

θp

�

(pq)
1
2 h̃(a)i h̃−1/2

a qx−1
a

� ×

θp

�

(pq)
1
2 h̃(a)i h̃−1/2

a xa

�

θp

�

(pq)
1
2 h̃(a)i x−1

a

�

θp

�

q−1 x−2
a

�

θp

�

x2
a

� +
�

xa→ x−1
a

�



 , (3.20)

where xu = x , xv = y are SU(2) charges of the puncture.
The expression above gives an octet of possible operators originating from 8 moment maps

we can give vev to. Another octet comes when we give space-dependent vev to the opera-

tors with charges
�

h̃(a)i

�−1
h̃

1
4
a . The latter one can be obtained in two ways. First we can flip

corresponding moment map before giving it a vev. This is achieved by introducing the con-

tribution Γe
�

(pq)
1
2

�

h̃(a)i

�−1
h̃

1
4
a z±1

�

Γe

�

(pq)
1
2 h̃(a)i h̃

− 1
4

a z̃±1
�

of the flip multiplet into the index

K4,A1 (x , x̃ , z, z̃) of the four-punctured sphere theory. Second approach is to work with the
original no-flip theory and give z , z̃ fugacities the following weights:

z = (pq)−
1
2

�

h̃(a)i

�−1
h̃

1
4
a , z̃ = (pq)−

1
2 h̃(a)i h̃

− 1
4

a q−1 , (3.21)

which corresponds this time to giving space-dependent vev to the moment map of SU(2)z̃
puncture introducing corresponding surface defect into the theory. Notice that this is opposite
to our previous choice in (3.12). In Appendix B.3 we give a detailed derivation of one example
of this kind. Performing this derivation for various moment maps we arrive to the general
expression of the following form:
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Õ
(z;
�

h̃(a)i

�−1
h̃

1
4
a ;1,0)

a · I(xa) =

∏8
i=1 θp((qp)

1
2

�

h̃(a)i

�−1
xa)

θp(qx2
a)θp(x2

a)
I(qxa) +

∏8
i=1 θp((qp)

1
2

�

h̃(a)i

�−1
x−1

a )

θp(qx−2
a )θp(x−2

a )
I(qx−1

a ) +W (xa; h̃(a)i )
(z;
�

h̃(a)i

�−1
h̃

1
4
a ;1,0) I(xa) ,

W (xa; h̃(a)i )
(z;
�

h̃(a)i

�−1
h̃

1
4
a ;1,0) =

8
∏

j 6=i
θp

�

q−1h̃(a)i h̃(a)j h̃
− 1

2
a

�

θp

�

q−2
�

h̃(a)i

�2
h̃−1/2

a

� ×

θp

�

(pq)
1
2

�

h̃(a)i

�−1
x±1

a

�

θp

�

(pq)−
1
2 h̃(a)i h̃−1/2

a q−1 x±1
a

� +











8
∏

j 6=i
θp

�

(pq)
1
2 h̃(a)j xa

�

θp

�

(pq)
1
2

�

h̃(a)i

�−1
h̃1/2

a qxa

� ×

θp

�

(pq)
1
2

�

h̃(a)i

�−1
h̃1/2

a x−1
a

�

θp

�

(pq)
1
2

�

h̃(a)i

�−1
xa

�

θp

�

q−1 x−2
a

�

θp

�

x2
a

� +
�

xa→ x−1
a

�



 , (3.22)

Notice that the operator (3.13) is exactly of this kind and can be reproduced from the
operator above if we put a = u and h̃(u)i = u−6w−12.

In all of the operators (3.20) and (3.22) constant parts W (xa; h̃(a)i ) are elliptic functions of
xa with periods 1 and p. Poles of all these functions are located at (3.15). Residues are given
by the residues of van Diejen model specified in (3.7) upon the identification of parameters

hvD
i =

�

h̃(a)i

�−1
. Hence all of the 16 operators specified above actually collapse to the one

single operator equal to van Diejen operator up to a constant. We will later see that in the
generalization of this discussion to (DN+3, DN+3) minimal conformal matter, we will obtain an
AN generalization of the system of operators and these 16 different operators will generalize
to 4N + 12 operators. Also of course we have operators Õ(z;...;0,1)

a which are simply obtained
from the operators above by the exchange (p↔ q). In subsection 3.5 we will comment more
on some of the properties of the operators derived here.

3.3 A1
1 van Diejen model

We proceed with yet another trinion of the E-string compactification. The theory T 3
v,z,ε we will

consider in the present section was derived in [38] and corresponds to a compactification on
a three punctured sphere with vanishing flux. The quiver of this theory is presented on the
Figure 7. Just as in the previous section there are three types of punctures possessing SU(2)
global symmetry. Two of the SU(2) puncture symmetries are explicit in the UV theory. The
third puncture symmetry is obtained from U(1)ε of the quiver. It has been argued in [38] using
dualities that the global symmetry enhances to SU(2)ε in the IR. Parameters c1,2,3, c̃1,2,3, t, a
parametrize Cartans of E8 symmetry. There is also superpotential of the following form

W =
�

M1M̃1 +M2M̃2

�

q+ F M
1 M2

1 + F M
2 M2

2 + ε
i jkFiQ jQk + ε

i jk F̃iQ̃ jQ̃k , (3.23)

where F denotes various flip fields and in the last two terms indices run through 1,2, 3. These
are crucial for the IR enhancement of the global symmetry to SU(2)ε.
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Figure 7: Quiver of A1
1 trinion theory. This trinion is obtained by compactifying the E-

string on a sphere with certain choice of three punctures and vanishing flux. Crosses
on lines stand for gauge singlet chiral fields flipping a quadratic gauge invariant built
from the field they cross out. All fields charged under SU(2) gauge symmetries have
R-charge 1

2 while the gauge singlets have R-charge 1. Red lines as usually stand for
the contributions of flip singlets Fi and F̃i . In our notations blue corresponds to the
names of the fields, red to the fugacities of gauge and global symmetries and black to
the U(1) charges of the fields. We also write ε in orange denoting the SU(2)ε global
symmetry of the corresponding type puncture that is not present explicitly and only
arises in the IR. Types of two other punctures are denoted in blue and green. For the
fugacities we also use notation c = (c1c2c3)1/3 and c̃ = (c̃1 c̃2 c̃3)1/3. For convenience
in the text we will instead use fugacities c4 = c−3 and c̃4 = c̃−3.

The trinion used here has a generalization to (DN+3, DN+3) minimal conformal matter
theories such that the maximal punctures have SU(2)N symmetry. We will thus refer to the
version of the BC1 van Diejen model derived here as the (A1)N=1 model. We will not consider
this higher N generalization explicitly in this paper.

The superconformal index of the theory described above is given by the following expres-
sion,

K
A1

1
3 (v, z,ε) = κ2

∮

d y1

4πi y1

∮

d y2

4πi y2

∏4
i=1 Γe

�

(pq)
1
4 ε−

1
2 ci y±1

1

�

Γe

�

(pq)
1
4 ε−

1
2 y±1

2 eci

�

Γe
�

y±2
1

�

Γe
�

y±2
2

�

3
∏

i=1

Γe
�p

pqεcic4

�

Γe
�p

pqεeciec4

�

Γe
�p

pqt2a±2ε−1
�

Γe
�

(pq)1/4 t−1aε1/2 y±1
1 z±1

�

Γe
�

(pq)1/4 t−1a−1ε1/2z±1 y±1
2

�

Γe
�p

pqε−1z±1v±1
�

Γe
�

(pq)1/4 ta−1ε1/2 y±1
1 v±1

�

Γe
�

(pq)1/4 taε1/2v±1 y±1
2

�

, (3.24)

Here y1 and y2 parametrize the two gauged SU(2) nodes and we also introduced fugacities
c4 ≡ (c1c2c3)

−1 and c̃4 ≡ (c̃1 c̃2 c̃3)
−1. For each of three punctures there is an octet of operators

in the fundamental representation of the puncture symmetry (and having R-charge +1) with
the following charges:

ÒMv : {ta−1c1, ta−1c2, ta−1c3, ta−1c4, taec1, taec2, taec3, taec4} ,
ÒMz : {t−1ac1, t−1ac2, t−1ac3, t−1ac4, t−1a−1

ec1, t−1a−1
ec2, t−1a−1

ec3, t−1a−1
ec4} , (3.25)

ÒMε : {c−1
1 c−1

2 , c−1
1 c−1

3 , c−1
2 c−1

3 ,ec−1
1 ec−1

2 ,ec−1
1 ec−1

3 ,ec−1
2 ec−1

3 , t2a−2, t2a2}.

Now we can derive the A∆Os along the lines summarized in the Section 2. As we specified
previously there are two possible sequences of operations in the gluing (3.11). In the A1
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Figure 8: Quiver of the A1
1 tube theory with SU(2)z and SU(2)v minimal punctures.

Note that we assign here various charges to fields. These charges (with the exception
of the flip field associated to the cross) are not fixed by a superpotential of this theory
but rather by superpotentials one will need to turn on gluing this model to another
theory.

case considered in the previous section we first glued two trinions, then closed punctures
introducing defects and finally glued the tube theory obtained in this way to an arbitrary
theory with an SU(2) global symmetry. Here, although the same approach can be used, we
will take another route. Namely we first close punctures obtaining tube theories and then
glue them together and to a theory associated to arbitrary surface with at least one maximal
puncture.

We start with closing a puncture and obtaining a theory corresponding to a tube. This
amounts to giving a vev to one of the moment map operators (3.25) and its derivatives. Unlike
in A1 case the punctures here are not exactly on the same footing since SU(2)ε puncture is not
present explicitly in the gauge theory. Let’s consider particular setting closing ε-puncture and
acting on v puncture.

To close the ε puncture we give a vev to one of ÒMε moment maps. We have an octet of
choices and to be concrete we choose the moment map component with the charges equal to
t2a2. Giving vev to this operator is equivalent to setting ε = (pq)

1
2 t2a2qK pM in the index,

with K and M being integers corresponding to the number of derivatives of the moment map
in the operator we give vev to. As usual at these loci the index (3.24) has a pole and we aim at
computing the residue at this pole. Just as in the A1 case and everywhere else in the paper we
choose M = 0 and K = 0, 1 for simplicity. In case K = 0 we calculate the residue and obtain
the following expression for the index of T 2

v,z ,

K
A1

1
(2;0)(v, z) = κΓ (pqa4)Γe(pqt4)

∮

d y1

4πi y1

∏4
i=1 Γe

�

(pq)
1
2 taeci v

±1
�

Γe

�

(pq)
1
2 taci y±1

1

�

Γe
�

y±2
1

� ×

Γe
�

a−2 y±1
1 v±1

�

Γe
�

t−2 y±1
1 z±1

�

, (3.26)

which is gauge theory with the quiver shown on the Figure 8. Giving vev with K = 1, i.e.
introducing defect into the tube theory we obtain the following index:
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K
A1

1
(2;1)(v, z) = κ

Γe(v2)
Γe(qv2)

∮

d y1

4πi y1

∏4
i=1 Γe

�

q−
1
2 t−1a−1ci y±1

1

�

Γe
�

y±2
1

� Γe

�

(pq)1/2 q
1
2 a2 y±1

1 z±1
�

×

Γe

�

(pq)1/2 q
1
2 t2 y±1

1 v±1
�

Γe
�

t−2a−2vz±1
�

Γe
�

q−1 t−2a−2v−1z±1
�

×

Γe

�

(pq)
1
2 qtaeci v

�

Γe

�

(pq)
1
2 taeci v

−1
�

+ {v↔ v−1} . (3.27)

Finally, we S glue tube (3.27) with a defect to a tube (3.26) with no defect and to a
general theory with for example v-puncture and the index I(v). The computation is detailed
in Appendix B.4. The end result is,

O(ε;t
2a2;1,0)

v · I(v) =

∏4
i=1 θp

�

(pq)
1
2 t−1ac−1

i v
�

θp

�

(pq)
1
2 t−1a−1

ec−1
i v

�

θp(v2)θp(qv2)
I(qv)

+
θp(q−1 t−4)

∏4
i=1 θp

�

(pq)
1
2 ta3ci v

−1
�

θp

�

(pq)
1
2 taeci v

�

θp(v2)θp(a4v−2)θp(q−2 t−4a−4)
I(v)

+
θp(q−1a−4)θp(q−1 t−4a−4v2)

∏4
i=1 θp

�

(pq)
1
2 ta−1ci v

�

θp

�

(pq)
1
2 taeci v

�

θp(q−2 t−4a−4)θp(a−4v2)θp(v2)θp(q−1v−2)
I(v)

+ {v↔ v−1} . (3.28)

This operator once again has the form of the van Diejen operator (3.1) with shift and
constant parts. Looking on shift part only we can fix the dictionary between parameters of our
gauge theory and octet of parameters hi of the van Diejen model as follows:

hi = t−1ac−1
i , hi+4 = t−1a−1

ec−1
i , i = 1, . . . , 4 . (3.29)

As for the constant part of the operator above we can notice that it is an elliptic function in
v with periods 1 and p. Mapping the parameters one can show that position of its poles and
corresponding residues coincide with the poles (3.6) and residues (3.7) of the constant part
of van Diejen model. Hence we can conclude that up to an irrelevant constant term operator
(3.28) is just van Diejen operator (3.1).

In a similar manner we can derive A∆Os acting on any of the three punctures and obtained
after closing one of the two remaining punctures giving vev to one of its moment maps. Results
for some of these cases are summarized in the Appendix B.4. Studying various combinations of
punctures and moment maps we conclude, just as in A1 case, that A∆Os we obtain are always
equal to the van Diejen model (3.1) up to an irrelevant constant (independent of v , z ,ε)
shift. Parameters hi of these van Diejen Hamiltonians are given by the inverse U(1) charges
of the moment maps of the puncture A∆O operator acts on. This can be seen in the example
considered above where the map is given in (3.29). The parameters are indeed given by the
octet of charges of eMv moment maps (3.25).

3.4 C1 van Diejen model

Finally we consider one additional E-string trinion theory. This model can be in fact derived
from the A1 trinion and we give some details of this in Appendix B.5. As in the previous two
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Figure 9: Quiver of the C1 trinion theory. It is obtained taking N = 1 in the theory
presented on the Figure 21 and corresponds to a three punctured sphere compacti-
fication of the E-string theory such that all the punctures are of the same type and
the flux breaks E8 to SU(8)×U(1). The line starting and ending on the SU(3) node
denotes a field in antisymmetric two index representation which is the same here
as fundamental representation. The SU(2) symmetry rotating the two fields in the
symmetric representation is broken by a superpotential.

cases the trinion we discuss here has a natural higher rank generalization such that two of
the punctures become maximal ones with USp(2N) global symmetry while the third one is
minimal SU(2) puncture. Hence we will refer to this trinion theory as CN=1, see Appendix B.5.
The quiver of the theory is shown on the Figure 9. It has SU(2)3 global symmetry, where each
SU(2) stands for the puncture. Unlike A1 theory here all SU(2) punctures are of the same type.

The index of the C1 trinion theory is given by,

KC1
3 (x , y, z) = κ2

∮

d t1

2πi t1

d t2

2πi t2

1
∏3

i 6= j Γe
�

t i/t j

�

3
∏

j=1

�

Γe

�

(pq)
1
6 w6 t j x

±1
�

×

Γe

�

(pq)
1
6 w6 t j y±1

�

Γe

�

(pq)
1
6 w6 t jz

±1
�

8
∏

i=1

Γe

�

(pq)
1
3 w−

3
2 ai t

−1
j

�

�

×

∏

1≤ j<k≤3

Γe

�

(pq)
2
3 w−12 t−1

j t−1
k

�2
, (3.30)

where x , y, z label the three punctures symmetries and w, ai parametrize U(1)× SU(8) sub-
group of the 6d global E8 symmetry. Each puncture has an octet of mesonic moment map
operators with the following charges:

Ma = 2a ⊗ 8
w

9
2

, a = x , y, z . (3.31)

Since all punctures are of the same type the moment maps also have the same charges for each
of them. As usual, we can close one of the punctures giving vev to one of the mesonic moment
maps (3.31). Without loss of generality let us close z-puncture by setting z = (pq)−

1
2 w−

9
2 a−1

1 in

the index (3.30). When z takes this value the poles of Γe
�

(pq)−
1
3 w

3
2 t ja

−1
1

�

and

Γe

�

(pq)
1
3 w−

3
2 a1 t−1

j

�

collide leading to pinching of the integration contours. Computing the
residue of this pole results in SU(3) gauge theory being higgsed down to SU(2) and the result-
ing index of the tube with no defect is given by:
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KC1
(2;0)(x , y) = κΓe
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pqw−
27
2 a1

�2
∮

d t2

2πi t2

1

Γe
�

t±2
2

�Γe

�

(pq)
1
2 w

9
2 a1 x±1

�

×

Γe

�

(pq)
1
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9
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�

Γe

�
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27
4 a
− 1

2
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2 x±1
�

Γe

�

w
27
4 a
− 1

2
1 t±1

2 y±1
�

×

Γe

�

(pq)
1
2 w−

45
4 a
− 1

2
1 t±1

2

�
8
∏

i=2

Γe

�

(pq)
1
2 w−

9
4 aia

1
2
1 t±1

2

�

. (3.32)

At this point we can in principle take the same route as we did in the case of A1
1

trinion. Namely we can also consider closing z puncture introducing the defect by computing
the residue of the pole of the trinion index (3.30) at z = (pq)−

1
2 w−

9
2 a−1

i q−1. Then we should
consider the gluing similar to (3.11). We take however an alternative route. We start with
gluing the tube (3.32) to the trinion (3.30) and perform chain of Seiberg dualities. As a result
of applying these dualities mesonic moment map we give vev to turns into baryonic one. So
giving vev to it higgses gauge theory completely leading to the Wess-Zumino tube theory. S
gluing this tube to the arbitrary theory with for example SU(2)x puncture we get the following
A∆O,

O(z;w
9
2 a1;1,0)

x · I(x) =

∏8
i=1 θp

�

(pq)
1
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9
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i x
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�
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�
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�
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�
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�
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�
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�
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45
2 a−1
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�
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�

(pq)−
1
2 q−1w−

9
2 a−1

i x±1
� I(x) +

∏8
j 6=i θp

�

w
27
2 a−1
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�

θp

�

(pq)
1
2 w

9
2 ai x

±1
�

θp

�

qw
45
2 ai

�

θp

�

(pq)−
1
2 w18 x±1

� I(x). (3.33)

Details of this calculation can be found in the Appendix B.6. Just as before we can look at
the shift part and see that it coincides with the shift part of the van Diejen model (3.1) and
see that they are the same after the following identification:

hi = (pq)
1
2 w−

9
2 a−1

i . (3.34)

As in previous cases this identifications maps van Diejen parameters hi to the inverse U(1)
charges of the moment maps (3.31) of the puncture we act on. The constant part of the
operator (3.33) is an elliptic function with periods 1 and p, and poles with residues coinciding
with those of the BC1 van Diejen model upon identification (3.34). Hence once again we
obtain van Diejen operator acting on the puncture. Since all punctures and all moment maps
are on the same footing we can of course act with operators of exactly the same form on y
and z punctures.

3.5 Duality properties

In this section we have discussed the derivation of a collection of A∆O operators specified in
(3.20), (3.22), (3.28) and (3.33). It was also shown that all of these operators are actually
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Figure 10: Quiver of the tube theories. In Figure (a) we show tube with the con-
jugation with the index given (3.40). In Figure (b) we show tube theory with no
conjugation and index given by (3.39). The theories differ only by singlets which are
important once we start gluing these tubes to other surfaces.

BC1 van Diejen operators (3.1) with octet of parameters given by the inverse charges of the
moment maps of the puncture the operators act on.

As we have discussed in Section 2 operators we derived should posses a number of inter-
esting and important properties that follow directly from their construction. In this section
we will discuss checks and proofs of some of these properties using explicit expressions of the
operators we have obtained.

Let us first discuss the commutation of the operators specified in (2.6). In terms of our
derivations this means that all of the operators acting on the same type of the puncture should
be commuting with each other. Namely we should have:
�

Õ(b;ξ(b)i ;1,0)
a , Õ

(c;ξ(c)j ;1,0)
a

�

=

�

Õ(b;ξ(b)i ;0,1)
a , Õ

(c;ξ(c)j ;0,1)
a

�

=

�

Õ(b;ξ(b)i ;1,0)
a , Õ

(c;ξ(c)j ;0,1)
a

�

= 0, (3.35)

where a is the label denoting the type of the puncture we act on, b and c are types of the
punctures we close, ξ(b)i and ξ(c)j are U(1) charges of the moment maps we give vev to. Fi-
nally labels (1,0) and (0,1) stand on the kind of the moment map derivative we give map
to (corresponding to factors of either q or p). Operators with these two choices are identi-
cal up to permutation of p and q parameters. We would like to check this identity for all of
the operators we have derived. However since all of these operators are actually BC1 van
Diejen operators (3.1) (up to a constant shift) with parameters depending only on the type of
puncture operators act on, these operators do trivially commute.

The more complicated property to check is the kernel property (2.7). As explained in
Section 2 superconformal index of any 4d model obtained in compactifications of the E-string
theory with several maximal punctures is the kernel function of our difference operators. One
interesting conclusion of our paper is that the indices of all the trinions as well as indices of the
tubes we derive from them can be used as the kernel functions of van Diejen model. Despite
main kernel function property (2.7) directly follows from our geometrical construction shown
on the Figure 3 we would like to present here some checks of it in particular cases.

Good examples of kernel functions of van Diejen model are superconformal indices of all
trinions (3.8), (3.24) and (3.30) and tubes (3.32), (3.26). For example if we take index of A1
trinion theory it should satisfy the following property:

Õ(z;u12w6;1,0)
x · KA1

3 (x , y, z) = Õ(z;u12w6;1,0)
y · KA1

3 (x , y, z) . (3.36)
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Instead of this particular choice of the operator we can choose any other A1 operator from
(3.20) and (3.22). This relation is very hard to proof due to technical reasons. However we can
study explicitly the tubes of A1 theory which are on one hand much simpler and on the other
hand are of course also expected to be Kernel functions. Index for this tube theory can be ob-
tained by computing the residue of the trinion index (3.8) at for example z = (pq)−

1
2 u−12w−6.

This corresponds to closing z-puncture by giving vev to a baryon 1u12w6 . At this value of z
pinching of the integration contours of (3.8) happens. In particular integrand of this trinion
index has poles at

(pq)
1
6 w6 t1z = q−k1 p−m1 , (pq)

1
6 u6 t2 x = q−k2 p−m2 , (pq)

1
6 u6 t3 x−1 = q−k3 p−m3 . (3.37)

Using SU(3) constraint
∏3

i=1 t i we can rewrite these sets of poles as two sets of poles in for
example t1

t1 = t−1
2 t−1

3 = (pq)
1
3 u12qk2+k3 pm2+m3 , t1 = (pq)−

1
6 w−6z−1q−k1 p−m1 , (3.38)

where the first set of poles is inside the integration contour while the second one is outside.
Whenever z = (pq)−

1
2 u−12w−6q−k1−k2−k3 p−m1−m2−m3 two lines of poles collide and pinch the

contour. Choosing ki = mi = 0 ,∀i we obtain the following expression for the index of the
tube Wess-Zumino theory without defect:

KA1
(2;0)(x , y) = Γe

�

pqw12u24
�

Γe

�

(pq)
1
2 u12v6 y±1

�

Γe
�

u−6v6 x±1 y±1
�

×

Γe

�

(pq)
1
2 u6w12 x±1

�





6
∏

j=1

Γe
�

u−14v−2w−2a j

�

Γe

�

(pq)
1
2 u4v−2w−2 x±1a j

�



 . (3.39)

However this index is expected to be the kernel function of the operator of (3.13) rather
than the BC1 van Diejen operator. In order to write down the kernel of the latter one we
should take into account the flips of the moment maps Mu and Mv as in (3.16). It leads to the
following proposal for the kernel function:

K̃A1
(2;0)(x , y)≡ Γe

�

(pq)
1
2 u−6w−12 x±1

�

Γe

�

(pq)
1
2 v−6w−12 y±1

�

KA1
(2;0)(x , y) =

Γe
�

pqw12u24
�

Γe

�

(pq)
1
2 u12v6 y±1

�

Γe
�

u−6v6 x±1 y±1
�

Γe

�

(pq)
1
2 v−6w−12 y±1

�

×




6
∏

j=1

Γe
�

u−14v−2w−2a j

�

Γe

�

(pq)
1
2 u4v−2w−2 x±1a j

�



 . (3.40)

The quivers of the corresponding theories are shown on the Figure 10. Now since we have
no integrals in this expression it is straightforward to check kernel property

Õ(z;u12w6;1,0)
x · K̃A1

(2;0)(x , y) = Õ(z;u12w6;1,0)
y · K̃A1

(2,0)(x , y) , (3.41)

where particular expressions for the operators can be read from (3.20) and (3.22). This iden-
tity was discussed in [70] (for completeness we prove it also in Appendix E.1). It would be
interesting to directly check whether the indices of all of the trinions are indeed kernel func-
tions of the BC1 van Diejen model.
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Figure 11: Quiver of the AN trinion theory and its Seiberg dual. This trinion is ob-
tained by compactifying the (DN+3, DN+3) minimal conformal matter theory on a
sphere with two maximal SU(N + 1) punctures and a minimal SU(2) puncture with
flux breaking the SO(12+ 4N) symmetry to SO(8+ 4N)× SU(2)×U(1).

4 AN generalizations

In this section we will generalize considerations of the previous section to the compactifica-
tions of the minimal (DN+3, DN+3) minimal conformal matter with N ≥ 1. We discussed three
versions of E-string compactifications that upon generalization to the higher rank should lead
to three different trinion theories and hence three different finite difference integrable Hamil-
tonians.We will concentrate only on one of these three possible generalizations. Namely we
will consider AN case which is a direct generalization of the A1 van Diejen model considered
in the Section 3.2. We will obtain a system of (4N+12) A∆Os depending on p, q and (2N+6)
extra parameters each.

The (DN+3, DN+3)minimal conformal matter theory is a 6d (1,0) SCFT. The six dimensional
symmetry group is G6d = SO(12+4N). For the case of N = 1 the SO(16) symmetry enhances
to E8. Upon compactification to 5d there are three different possible effective gauge theory
descriptions (depending on holonomies turned on the compactification circle): with either
SU(2)N , USp(2N), or SU(N + 1) gauge groups. The descriptions relevant to us are the latter
one. We will consider maximal punctures with G5d = SU(N+1) and a minimal SU(2) puncture
which can be obtained by partially closing the USp(2N) puncture. Note that for N = 1 the
three descriptions in 5d coincide.

The trinion theory T A
x ,y,z we will use was obtained in [34]. It is SU(N + 2) N = 1 SQCD

with (2N + 4) flavors. The quiver of the theory is shown on the Figure 11. While in A1 case
all of our punctures were minimal now in higher rank case we have two maximal punctures
with SU(N + 1) global symmetry and one minimal puncture with SU(2) symmetry.
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The index of the theory is given by

KAN
3 (x , y, z) = κN+1

∮ N+1
∏

i=1

d t i

2πi t i

N+2
∏

i 6= j

1

Γe

�

t i
t j

�

N+2
∏

i=1

N+1
∏

j=1

Γe

�

(pq)
1

2(N+2)u2N+4 t i x j

�

×

Γe

�

(pq)
1

2(N+2) v2N+4 t i y j

�

Γe

�

(pq)
1

2(N+2)w2N+4 t iz
±1
�

×
2N+4
∏

l=1

Γe

�

(pq)
N+1

2(N+2) (uv)−N−1 w−2 t−1
i al

�

, (4.1)

where

κN =
(p; p)N−1

∞ (q; q)N−1
∞

N !
. (4.2)

SU(N + 2) gauge symmetry is parametrized by t i ’s with the relation

N+2
∏

i=1

t i = 1 . (4.3)

Global SU(N+1) symmetries of the maximal punctures are parametrized by x i and yi satisfying

N+1
∏

j=1

x j =
N+1
∏

j=1

y j = 1 . (4.4)

Each puncture has (2N + 6) moment map operators with the following charges:

Mu = N+ 1x ⊗
�

2N+ 4uN+3v−N−1w−2 ⊕ 1(uvN+1)2N+4

�

⊕N+ 1
x
⊗ 1(uN w2)2N+4 ,

Mv = N+ 1y ⊗
�

2N+ 4vN+3u−N−1w−2 ⊕ 1(vuN+1)2N+4

�

⊕N+ 1
y
⊗ 1(vN w2)2N+4 ,

Mw = 2z ⊗
�

2N+ 4(uvw−2)−N−1 ⊕ 1(wvN+1)2N+4 ⊕ 1(wuN+1)2N+4

�

, (4.5)

so that each moment map has 2 baryonic and 2N + 4 mesonic components. Notice also that
one of the baryons in Mu and Mv transforms in the antifundamental representation of the
puncture global symmetry.

We will proceed along similar lines as in the A1 case considered in Section 3. We will start
by considering particular example of the finite difference operator A∆O. Then we will proceed
with giving general expressions covering all possible combinations of puncture we act on and
moment map we give vev to in order to introduce defects. Finally we will discuss the duality
properties (2.6) and (2.7).

4.1 Closing with 1(wuN+1)2N+4 vev.

The AN trinion we consider here has one minimal puncture with symmetry SU(2)z and we
close it by giving vev to one of the Mw moment maps.

We follow the usual algorithm summarized in the Section 2. We start with some arbitrary
theory T F

a with SU(N + 1)a maximal puncture and index I(a), where a = x or a = y . For
concreteness we consider the theory with an SU(N + 1)x puncture. Then we also glue two
trinions T A

x ,y,z and conjugated one T̄ A
x̃ ,y,z̃ along SU(N + 1)y puncture resulting in the four-

punctured sphere theory Tx , x̃ ,z,z̃ shown on the Figure 12. This theory is just SU(N + 3) SQCD
with (2N + 6) multiplets and some extra flip singlets. The index KAN

4 (x , x̃ , z, z̃) of this theory
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Figure 12: Quiver of the AN four-punctured sphere theory obtained by S gluing two
three punctured spheres. Note that there are superpotentials corresponding to the
triangles as well as certain baryonic superpotentials preserving the puncture symme-
tries.

is specified in (B.4). Finally we can S glue this four-punctured sphere to our theory with
SU(N + 1) x̃ maximal puncture by gauging this symmetry.

Now we can close z and z̃ minimal punctures which will result in obtaining expression
for the index of the tube theory with the defect introduced. For now let us choose to close
these punctures by giving vev to the baryon 1(wuN+1)2N+4 . This amounts to giving the following
weights to z and z̃ variables:

z = (pq)−
1
2
�

wu(N+1)
�−(2N+4)

q−K p−M , z̃ = (pq)−
1
2
�

wu(N+1)
�(2N+4)

q−K̃ p−M̃ , (4.6)

where K , M , K̃ , M̃ are positive integers. In order to introduce simplest single defect we should
choose M = M̃ = 0 and either K = 1 , K̃ = 0 or K = 0 , K̃ = 1. Let’s start with the first case
corresponding to the SU(2)z puncture closed with the defect introduced while SU(2)z̃ puncture
is closed without a defect. This choice of z and z̃ as usually corresponds to the pole of the index
originating from the contour pinchings. Computing the residue of this pole and higgsing all of
the gauge symmetries we finally obtain the following finite difference operator A∆O:

O(ξ;1,0)
x · I(x)≡

 

N+1
∑

l 6=m

A(ξ;1,0)
lm (x)∆(1,0)

lm +W (ξ;1,0)(x)

!

I(x) , ξ≡
�

wuN+1
�2N+4

,

(4.7)

where we have introduced the operator ∆lm shifting two of the x variables in opposite direc-
tions as follows:

∆
(1,0)
lm (x) f (x)≡ f

�

x l → q−1 x l , xm→ qxm

�

. (4.8)
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The shift part of the operator is given by

A(ξ;1,0)
lm (x)≡

θp

�

(pq)
1
2 u−2N−4v−(N+1)(2N+4)x−1

l

�

θp

�

(pq)
1
2 w−4N−8u−N(2N+4)xm

�

θp

�

q xm
x l

�

θp

�

xm
x l

� ×

2N+4
∏

j=1

θp

�

(pq)
1
2 u−N−3vN+1w2 x−1

l a−1
j

�

×

N+1
∏

i 6=m 6=l

θp

�

(pq)
1
2 w4N+8uN(2N+4)x−1

i

�

θp

�

(pq)
1
2 u(N+2)(2N+4)x i

�

θp

�

x i
x l

�

θp

�

xm
x i

� . (4.9)

Notice that there is sharp difference with the A1 case in (3.13). The latter one depended only
on the charges of the moment maps of the puncture we act on. On the other hand it is obvious
that while the terms in the first two lines of the expression above also depend on the charges
of the moment maps Mu the terms in the last line depend on the charge of the moment map
we gave vev to. When N = 1 this last product is absent and we return to the expression in
(3.13)

Finally the constant part of the operator is given by

W (ξ;1,0)(x)≡
2N+4
∏

j=1

θp

�

u−(N+1)(2N+5)v−N−1w−2q−1a j

�

θp

�

q−1
�

vu−1
�(N+1)(2N+4)�

θp

�

pq2w4N+8u2(N+1)(2N+4)
� ×

N+1
∏

i=1

θp

�

(pq)
1
2 w4N+8uN(2N+4)x−1

i

�

θp

�

(pq)−
1
2 u−(N+2)(2N+4)q−1 x−1

i

� +
N+1
∑

m=1

θp

�

(pq)
1
2 u2N+4v(N+1)(2N+4)xm

�

θp

�

(pq)
1
2 u(N+2)(2N+4)qxm

� ×

∏

i 6=m

θp

�

(pq)
1
2 w4N+8uN(2N+4)x−1

i

�

θp

�

(pq)
1
2 u(N+2)(2N+4)x i

�

θp

�

q−1 x i
xm

�

θp

�

xm
x i

� ×

2N+4
∏

j=1

θp

�

(pq)
1
2 uN+3v−N−1w−2 xma j

�

. (4.10)

This constant term is a direct generalization of the one appearing the A1 discussion and de-
pends on all of the moment map charges Mu as well as on the choice of the operator we give
vev to. Details of the derivation of this operator can be found in the Appendix B.2.

In N = 1 case the operator derived above reproduces operator O(z;u12w6;1,0)
x given in (3.13).

In Section 3.2 we have also introduced operator Õ(z;u12w6;1,0)
x obtained by conjugation (3.16)

of the operator O(z;u12w6;1,0)
x . The resulting A∆O was identical to the BC1 van Diejen A∆O.

Now in AN case we also can perform conjugation which takes the following form,

Õ(ξ;1,0) =
N+1
∏

i=1

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x i

�

O(ξ;1,0)
N+1
∏

i=1

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x i

�−1
,

(4.11)

Only the shift part (4.9) of the operator is affected by this conjugation. It changes to the
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following expression:

Ã(ξ;1,0)
lm (x)≡

N+1
∏

i=1

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x i

�

Ã(ξ;1,0)
lm (x)

N+1
∏

i=1

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x i

�−1
=

2N+6
∏

j=1
θp

�

(pq)
1
2 h−1

j x−1
l

�

θp

�

q xm
x l

�

θp

�

xm
x l

�

N+1
∏

i 6=m6=l

θp

�

(pq)
1
2 w4N+8uN(2N+4)x−1

i

�

θp

�

(pq)
1
2 u(N+2)(2N+4)x i

�

θp

�

x i
x l

�

θp

�

xm
x i

� ,

(4.12)

where h j are the U(1) charges of the moment map operators of SU(N + 1)x with one of the
baryonic operators flipped:

eMu = N+ 1x ⊗
�

2N+ 4uN+3v−N−1w−2 ⊕ 1(uvN+1)2N+4 ⊕ 1(uN w2)−2N−4

�

,

eMv = N+ 1y ⊗
�

2N+ 4vN+3u−N−1w−2 ⊕ 1(vuN+1)2N+4 ⊕ 1(vN w2)−2N−4

�

, (4.13)

while the moment maps Mw remain the same. Notice that when N = 1 these moment maps
are exactly the same as the ones in (3.18) we have obtained flipping one of the baryons in
A1 model. However in A1 case the flip did not have any good motivation except that the
operators (3.20) and (3.22) are exactly equal to the van Diejen operator (3.1). In the higher
rank case it is obvious that the choice of the moment map to be flipped is determined by the
form of the moment maps (4.5) itself. In particular we can see that one of the baryons in
Mu and Mv moment maps transforms in the antifundamental representation of the SU(N +1)
global symmetry of the corresponding maximal puncture. Flipping this baryon we arrive at
the moment maps (4.13) all of which transform in the fundamental representation. Hence the
choice of the particular operator and the flip itself is clear and natural. Since this flip affects
only the shift part and keeps constant part (4.10) the same we arrive at the following operator,

Õ(ξ;1,0)
x · I(x)≡

 

N+1
∑

l 6=m

Ã(ξ;1,0)
lm (x)∆(1,0)

lm +W (ξ;1,0)(x)

!

I(x) , ξ≡
�

wuN+1
�2N+4

,

(4.14)

where Ã(ξ;1,0)
lm (x) is given in (4.12) and ∆(1,0)

lm is the same shift operator given in (4.8).
One more thing to be discussed here is an alternative way to close the punctures. In

particular we can make an alternative choice of integers K , K̃ , M , M̃ in (4.6). Previously
we introduced defect closing SU(2)z puncture by choosing K = 1 and K̃ = 0. But we
can make an opposite choice K = 0 , K̃ = 1 corresponding to the defect introduced clos-
ing conjugated SU(2)z̃ puncture. Alternatively the same goal can be achieved by introduc-
ing defect in SU(2)z puncture but also flipping baryons of both z and z̃ that we give vev
to. At the level of index this reduces to including the flip singlets contribution of the form
Γe

�

(pq)
1
2
�

uN+1w
�−2N−4

z±1
�

Γe

�

(pq)
1
2
�

uN+1w
�2N+4

z̃±1
�

. One way or another we give space

dependent vev to the baryon with the U(1) charge ξ−1 =
�

wuN+1
�−2N−4

. Both calculations
lead to the same finite difference operator. After performing conjugation (4.11) this operator
takes the following form:

Õ(ξ
−1;1,0)

x · I(x)≡

 

N+1
∑

l 6=m

Ã(ξ
−1;1,0)

lm (x)∆(1,0)
lm +W (ξ−1;1,0)(x)

!

I(x) , ξ≡
�

wuN+1
�2N+4

,

(4.15)
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where the shift part is given by

Ã(ξ
−1;1,0)

lm (x)≡

2N+6
∏

j=1
θp

�

(pq)
1
2 h−1

j x−1
l

�

θp

�

q xm
x l

�

θp

�

xm
x l

� ×

N+1
∏

i 6=m6=l

θp

�

(pq)
1
2 w−4N−8u−N(2N+4)x i

�

θp

�

(pq)
1
2 u−(N+2)(2N+4)x−1

i

�

θp

�

x i
x l

�

θp

�

xm
x i

� , (4.16)

and the constant part is

W (ξ−1;1,0)
x (x)≡

2N+4
∏

j=1

θp

�

u(N+1)(2N+5)vN+1w2q−1a−1
j

� θp

�

q−1
�

uv−1
�(N+1)(2N+4)�

θp

�

q−2w4N+8u2(N+1)(2N+4)
� ×

N+1
∏

i=1

θp

�

(pq)
1
2 w−4N−8u−N(2N+4)x i

�

θp

�

(pq)−
1
2 u(N+2)(2N+4)q−1 x i

� +
N+1
∑

m=1

θp

�

(pq)
1
2 u−2N−4v−(N+1)(2N+4)x−1

m

�

θp

�

(pq)
1
2 u−(N+2)(2N+4)qx−1

m

� ×

2N+4
∏

j=1

θp

�

(pq)
1
2 u−N−3vN+1w2 x−1

m a−1
j

�

×

∏

i 6=m

θp

�

(pq)
1
2 w−4N−8u−N(2N+4)x i

�

θp

�

(pq)
1
2 u−(N+2)(2N+4)x−1

i

�

θp

�

q−1 xm
x i

�

θp

�

x i
xm

� . (4.17)

Details of the calculations of this operator can be found in the Appendix B.3. One interest-
ing feature of the operators derived above is dependence of the shift parts (4.12) and (4.16)
on the fugacities of the moment maps we give vev to. In N = 1 case considered in the previous
section these shift parts in turn depend only on the fugacities of the puncture operator acts on.

4.2 General expression

We can proceed with general expression covering all possible combinations of punctures we
act on and operators we give a vev to. We will always be closing SU(2)z minimal puncture
giving vev to various components of the Mw moment maps operators in (4.5). As an input in
each case we have (2N + 6) parameters hi of the moment map operators we act on. We will
always consider A∆Os with conjugations similar to (4.11) already included. Hence instead of
hi charges it is convenient to consider charges of the moment maps (4.13) with the required
flip already included. We will denote corresponding (2N + 6)-plet of charges as h̃i .

Let us assume that we act on SU(N+1)x (a) maximal puncture with the conjugations (4.11)
already in place. The index a can be u or v with x (u) ≡ x and x (v) ≡ y . Charges of the
corresponding moment maps eMa with the flip included are h̃(a)i . Now assume we give a
space dependent vev to one of the minimal puncture moment map operators the U(1) charge
ξ= h̃(a)i (h̃

(a))−
1
4 where h̃(a) ≡

∏2N+6
i=1 h̃(a)i . Notice that a component of the moment map opera-

tor with weight ĥ is not necessarily present among the Mw operators. However, if the operator
with this weight is not there then necessarily an operator with the conjugated weight, ξ−1, is
and thus we can introduce a flip field to change the weight of the moment map component to
ξ. Without loss of generality for notational convenience we will assume then that he operator
with weight ξ is present. The flip of the moment maps depends on the puncture we act on.

For example if we act on the SU(N +1)x h̃(u) =
�

uw−1
�8(N+2)

and the weights after the flip can
be read from:

eM (u)w ≡ 2z ⊗
�

2N+ 4(uvw−2)−N−1 ⊕ 1(wvN+1)2N+4 ⊕ 1(wuN+1)−2N−4

�

, (4.18)
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x̃

h̃i

I(x̃)
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(z; ξ, q−1)

h̃i h̃i
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x (h̃i, xi, )·

I(x)

x
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Flipping all of the punctures
with operator U(h) =

x̃−1

h̃−1
i

I(x̃)
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i h̃−1

i

Õ(ξ−1;1,0;n.f.)
x (h̃−1

i , x−1
i )·

I(x)

x−1

h̃−1
i

Õ(ξ−1;1,0;n.f.)
x (h̃−1

i , x−1
i )U(h)·

I(x)

x

h̃i

=

U(h)Õ(ξ−1;1,0;f.)
x (h̃i, xi)·

I(x)

x
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Õ(ξ;1,0;f.)
x (h̃i, xi) ≡ U(h)−1Õ(ξ;1,0;n.f.)

x (h̃−1
i , x−1

i )U(h)

Figure 13: Geometric proof of the relation between flip eO(ξ;1,0; f .) and no flip
eO(ξ;1,0;n. f .) operators. In the first line we present the construction of no-flip oper-
ator. Then we proceed with flipping all moment maps of all punctures. Finally in the
last line the relation between flip and no flip operators is explained.

In case we act on the SU(N +1)y puncture we have h̃(v) =
�

vw−1
�8(N+2)

and the weights after
the flip are given by

eM (v)w ≡ 2z ⊗
�

2N+ 4(uvw−2)−N−1 ⊕ 1(wvN+1)−2N−4 ⊕ 1(wuN+1)2N+4

�

. (4.19)

Thus we have a choice of (2N+6) operators to give vev to. Additionally there are (2N+6)
more operators coming from closing punctures with the flipped moment maps vevs h̃−1

i h̃
1
4 . In

our example summarized in the previous subsection closing with no flip corresponded to the
space-dependent vev of 1(wuN+1)−2N−4 according to eMw moment maps in (4.18). This results in
the operator (4.15). If we consider closing with the flip it would correspond to giving space-
dependent vev to the 1(wuN+1)2N+4 leading to the operator specified in (4.14).

Each of the (4N + 12) total choices leads to a distinct though sometimes related A∆O.
Performing calculations in various cases we can empirically find the expressions covering all
possible choices of operators obtained closing punctures with no flips:
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Õ(ξ
(a)
i ;1,0;n. f .)

x (a)
· I(x (a))≡
 

N+1
∑

l 6=m

Ã
(ξ(a)i ;1,0)
lm (x (a))∆(1,0)

lm +W (ξ(a)i ;1,0)
�

x (a), h̃(a)
�

!

I(x (a)) , (4.20)

where ξ(a)i is the charge of the moment map we give space dependent vev to in order to
close the minimal puncture. This moment map should be chosen from (4.18) and (4.19) and,
according to what is written above, equals h̃(a)i (h̃

(a))−
1
4 . The shift part of the operator above is

given by

Ã
(ξ(a)i ;1,0)
lm (x (a)) =

2N+6
∏

j=1
θp

�

(pq)
1
2

�

h̃(a)j x (a)l

�−1�

θp

�

x (a)m

x (a)l

�

θp

�

q x (a)m

x (a)l

� ×

N+1
∏

k 6=m 6=l

θp

�

(pq)
1
2ξ
(a)
i

�

h̃(a)
�1/4

x (a)k

�

θp

�

(pq)
1
2ξ
(a)
i

�

h̃(a)
�−1/4 �

x (a)k

�−1�

θp

�

x (a)k

x (a)l

�

θp

�

x (a)m

x (a)k

� , (4.21)

and the constant part is given by:

W (ξ(a)i ;1,0)(x (a), h̃(a)) =

2N+6
∏

j 6=i
θp

�

q−1
�

ξ
(a)
i h̃(a)j

�−1 �
h̃(a)

�
1
4

�

θp

�

q−2
�

ξ
(a)
i

�−2� ×

N+1
∏

k=1

θp

�

(pq)
1
2ξ
(a)
i

�

h̃(a)
�1/4

x (a)k

�

θp

�

(pq)−
1
2

�

ξ
(a)
i

�−1 �
h̃(a)

�1/4
q−1 x (a)k

� +

N+1
∑

m=1

2N+6
∏

j 6=i
θp

�

(pq)
1
2

�

h̃(a)j x (a)m

�−1�
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�

(pq)
1
2ξ
(a)
i

�

h̃(a)
�−1/4

q
�

x (a)m

�−1� ×

N+1
∏

k 6=m

θp

�

(pq)
1
2ξ
(a)
i

�

h̃(a)
�−1/4 �

x (a)k

�−1�

θp

�

(pq)
1
2ξ
(a)
i

�

h̃(a)
�1/4

x (a)k

�

θp

�

q−1 x (a)m

x (a)k

�

θp

�

x (a)k

x (a)m

� . (4.22)

If we put a = u , x (a) = x and h̃(u) =
�

uN w2
�−2N−4

and ξi ≡
�

h̃(u)i

�−1 �
h̃(u)

�
1
4 =

�

uN+1w
�2N+4

using expressions above we reproduce previously obtained operator (4.14), (4.12) and (4.10).
If we close minimal punctures with the flip we obtain similar expressions for (2N + 6)

operators which appear to be simply related to the no-flip operators summarized above. In
particular using simple argument based on gluing constructions (see Figure 13)we can expect
these operators to be related by the following conjugation

Õ(ξ
(a)
i ;1,0; f .)

x (a)

�

x (a), h̃(a)
�

= U−1
a Õ(ξ

(a)
i ;1,0;n. f .)

x (a)

�

(x (a))−1, (h̃(a))−1
�

Ua , (4.23)

where U is the conjugation operator given by

Ua ≡
2N+6
∏

j=1

N+1
∏

i=1

Γe

�

(pq)
1
2 h j x i

�−1
. (4.24)
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Let us discuss the argument of Figure 13. We start with gluing trinion with two maximal punc-
tures of the same type and one minimal puncture. This trinion can be obtained from the four-
punctured sphere after closing one of the minimal punctures without introducing defect. Then
we flip all of the moment maps in all of the punctures and close minimal puncture with defect
introduced. This also corresponds to the substitution ξ(a)i → (ξ(a)i )

−1 and h̃(a)i → (h̃(a)i )
−1

inside operator and all indices. Finally we can interpret resulting construction as flipped
operator ÒO, i.e. one closed using vev of the flipped moment map with the charge ξ−1, on the
usual puncture with h̃(a)i moment maps charges. As the result we obtain conjugation (4.23).

Applying this conjugation to shift (4.21) and (4.22)

Õ(ξ
(a)
i ;1,0; f .)

x (a)
· I(x (a))≡

 

N+1
∑

l 6=m

Ã
(ξ(a)i ;1,0)
lm (x (a))∆(1,0)

lm +W (ξ(a)i ;1,0)
�

(x (a))−1, (h̃(a))−1
�

!

I(x (a)) . (4.25)

When we put N = 1 in the expressions above reduce to the previously obtained results
(3.20) and (3.22). Notice that in the A1 case we were getting 16 operators all of which were
equal to the BC1 van Diejen model up to a constant shift. However here the 4N +12 operators
differ more significantly, e.g. also the shift part is different.

4.3 Duality relations

We can check some the duality identities introduced in Section 2. We start with the
commutation of the operators (2.6). In our case we require all of the (4N + 12) operators
(4.20) we derived to commute:

�

Õ(ξ
(a)
i ;1,0;α)

x (a)
, Õ
(ξ(a)j ;1,0;β)

x (a)

�

=

�

Õ(ξ
(a)
i ;0,1;α)

x (a)
, Õ
(ξ(a)j ;0,1;β)

x (a)

�

=
�

Õ(ξ
(a)
i ;1,0;α)

x (a)
, Õ
(ξ(a)j ;0,1;β)

x (a)

�

= 0 , ∀ i, j, a and α,β = f . or n. f . . (4.26)

In A1 case all of the operators acting on certain puncture were actually the same van Diejen
operator up to a constant shift and their commutativity trivially followed from this fact. This
is not the case here since now we have (4N + 12) distinct operators and the proof of their
commutation relations is involved. Though we don’t have strict proof of it in the Appendix
E.2 we give strong evidence in its favor. In particular we break the full commutators (4.26)
into parts according to how these parts shift the trial functions. Then we show that each part
is zero. However to in our arguments we rely on q and p expansions instead of a strict proof.

Finally we can obtain kernel functions of the operators (4.20). By our construction we
know that superconformal index of any N = 1 theory obtained in the compactification is a
kernel function of this finite-difference operators. Simplest examples are trinion index (4.1)
and index of the tube theory we will specify below.

For the AN trinion index (4.1) kernel function property (2.7) reads

Õ(ξ
(u)
i ;1,0;α)

x · K̃AN
3 (x , y, z) = Õ(ξ

(v)
i ;1,0;β)

y · K̃AN
3 (x , y, z) , ∀ i, (4.27)

where

K̃AN
3 (x , y, z)≡

N+1
∏

i=1

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x i

�

Γe

�

(pq)
1
2
�

vN w2
�−2N−4

yi

�

KAN
3 (x , y, z)

(4.28)
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is the conjugation of the kernel functions required to accompany corresponding conjugation
(4.11) of O operators. Notice that the moment map we give vev to should be equal on both
sides of the kernel equality. But on different sides of equality it can correspond to different
types of flips and hence we should use different indices α and β which can be equal or not.
Just like in A1 case the proof of this kernel identity is technically complicated.

However instead we can follow the lines of Section 3 and study the kernel function prop-
erties of tube theories. If we close the minimal puncture of the trinion theory giving vev to
one of the baryonic maps in (4.5) we obtain Wess-Zumino tube theory T AN

(2;0). For a particular
example we will consider here the case of giving constant vev to the 1(wuN+1)2N+4 baryon. In this
case we do not introduce any defect into the theory. As usually this corresponds to capturing

the residue of the index (4.1) at z = (pq)−
1
2
�

wu(N+1)
�−(2N+4)

that emerges due to the contour
pinching. It can be easily seen from the positions of the poles in the integrand of (4.1). One
of the possible combinations of the poles giving identical contributions is:

t i = (pq)−
1

2(N+2)u−2N−4 x−1
i q−ki p−mi , i = 1, . . . , N + 1 ,

tN+2 = (pq)−
1

2(N+2)w−2N−4z−1q−kN+2 p−mN+2 . (4.29)

Using SU(N + 2) constraint we can rewrite poles of the first line in the expression above as
poles in tN+2:

tN+2 =
N+1
∏

i=1

t−1
i = (pq)

N+1
2(N+2)u2(N+1)(N+2)q

N+1
∑

i=1
ki

p

N+1
∑

i=1
mi

. (4.30)

The line of poles in (4.29) are outside the integration contour while (4.30) are inside. When

z = (pq)−
1
2
�

wu(N+1)
�−(2N+4)

q−
∑N+2

i=1 ki p−
∑N+2

i=1 mi these two lines of poles collide and contour
gets pinched. Choosing ki = mi = 0 ∀ i we get the required pinching. Substituting these
values into the integrand (4.1) we obtain the index of the tube theory,

K̃AN
(2,0)(x , y) = Γe

�

pqw4N+8u2(N+1)(2N+4)
�

2N+4
∏

l=1

Γe
�

u−(N+1)(2N+5)v−N−1w−2al

�

×

N+1
∏

i, j=1

Γe

�

�

u−1v
�2N+4

y j x
−1
i

�

N+1
∏

i=1

Γe

�

(pq)
1
2 w−4N−8v−N(2N+4) yi

�

×

Γe

�

(pq)
1
2 v2N+4u(N+1)(2N+4) yi

�

2N+4
∏

l=1

Γe

�

(pq)
1
2 uN+3v−N−1w−2 x ial

�

, (4.31)

where we have already performed the conjugation of (4.28). Theory described by this index
is shown on the Figure 14. The kernel property (2.7) in this case reads

Õ(ξi ;1,0;α)
x · K̃AN

(2,0)(x , y) = Õ(ξi ;1,0;β)
y · K̃AN

(2,0)(x , y) , ∀ i , α,β = f . or n. f . . (4.32)

Here on both sides of the equation shift operators are obtained giving vev to the same moment
map in Mw. Notice that it can happen that the operator should be considered as flipped on one
side and not flipped on the other side of the equation. For example let’s assume we give vev
to 1(wuN+1)2N+4 baryon. When we act on SU(N +1)x puncture this baryon should be considered
as flipped according to the moment maps summarized in (4.18). So on the lhs of (4.32) we
should use expressions (4.23) for the operator. At the same time when we act on SU(N + 1)y
puncture this baryon is not considered as flipped according to (4.19) and hence we should use
expressions (4.20), (4.21) and (4.22) for the corresponding operator.
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Figure 14: Quiver description of the AN tube theory.

In A1 case we provided the proof of the kernel property (4.32). However for N > 1 we do
not attempt to do so analytically. Instead we can rely on q and p expansions for the lower rank
cases. We summarize this analysis of kernel identity for one particular choice of operators and
tubes in Appendix E.3.

5 Discussion

Let us briefly summarize and discuss our results. In this paper we have first utilized a variety
of explicit 4d descriptions of compactifications of the rank one E-string theory on surfaces to
derive an integrable model corresponding to the E-string theory. As was previously derived
using yet another description in [25], this model turns out to be the BC1 van Diejen system.15

In all the different derivation we obtain the same model (up to constant shifts). This is a
non trivial check of the dictionary between 4d theories and 6d compactifications as one can
think of the integrable models as being associated locally on the surface to punctures, while
the difference in derivation has to do with how we define the compactification globally on the
complete surface. The indices of various compactifications are expected to be Kernel functions
of the BC1 van Diejen model providing a number of mathematically precise conjectures. It will
be very interesting to study these conjectures.

Our second main result is the explicit derivation of a generalization of one of the routes
to the BC1 van Diejen model. We have considered the rank one E-string as a first item in a
sequence of 6d SCFTs, the minimal (DN+3, DN+3) conformal matter theories (N ≥ 1). Upon
compactification to 5d these models have (at least) three different effective gauge theory de-
scriptions. This leads to three different types of maximal punctures one can define on a Rie-
mann surface when compactifying to 4d. We have utilized one of these descriptions, the one
with SU(N + 1) gauge group, and the associated compactifications to 4d derived in [34], to
obtain an AN generalization of the BC1 ∼ A1 van Diejen model. The derivation leads to a
set of commuting analytic difference operators and the indices of the compactifications of the
minimal (DN+3, DN+3) conformal matter theories are expected to be Kernel functions for these
operators.

There are several ways in which our results can be extended. First, one can utilize the other
two 5d descriptions of the minimal (DN+3, DN+3) conformal matter theories to derive analytic
difference operators associated to CN and (A1)N root systems. The relevant three punctured
sphere for the former is defined in Appendix B.5 Figure 21, while for the latter it was obtained

15See also [30] for a higher dimensional derivation using SW curves.
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Figure 15: Upon a circle compactification of the non minimal (D, D) conformal mat-
ter, k M5 branes probing DN+3 singularity, with proper holonomies turned on one ob-
tains a 5d effective quiver description shaped as the affine Dynkin diagram of DN+3
with SU(k) and SU(2k) gauge groups as depicted here. Upon compactification to
four dimensions this five dimensional description gives a puncture with symmetry
SU(k)2×SU(2k)N ×SU(k)2 with a pattern of moment map operators corresponding
to the Dynkin diagram.

in [38] (see Figure 9 there). Using the general procedure presented in [2] and discussed
here in Section 2 given these 4d theories the relevant operators are thus implicitly defined.
However, it would be very interesting to derive them explicitly and study their properties.
For example, the index of the WZ model of Figure 17 should be a Kernel function of the AN
operators derived here and the putative CN operatos. Also gluing together N three punctured
spheres (with two (A1)N maximal punctures and one SU(2) minimal puncture) of [38] one
obtains a three punctured sphere with two (A1)N maximal punctures and one CN maximal
puncture: the index of this model thus is expected to be a Kernel function for the putative
(A1)N and CN operators. Thus these generalizations and the mathematical properties they are
expected to satisfy can give us interesting checks of the various relations between physics in
6d, 5d, and 4d.

One can also consider the non-minimal (DN+3, DN+3) conformal matter theories: these
are 6d models obtained on a collection of k M5 branes probing DN+3 singularity [72]. A
generalization of the effective 5d description with (A1)N gauge group is known and it takes
form of (Ak−1)2×(A2k−1)N×(Ak−1)2 quiver gauge theory. This quiver gauge theory has a shape
of the affine Dynkin diagram of DN+3, see Figure 15. The relevant 4d three punctured spheres
with two maximal punctures of this type and one minimal U(1) puncture are also known [45].
Thus one can apply the procedure of [2] directly in this case also. The models will depend
again on 2N +6 parameters, however for k > 1 these should be thought to be associated with
DN+3 × DN+3 instead of D2N+6 of k = 1.

It is also interesting to understand whether the various models associated to a given se-
quence of 6d theories have any interesting relations to each other. For example in the case
of k M5 branes probing an AN−1 singularity, the (AN−1, AN−1) conformal matter theories, the
various integrable models [39,73,74] associated to different values of N were related to same
set of transfer matrices [73,75]. It would be interesting to understand whether any relations
of this sort exist also for the D series. Moreover, although three punctured spheres are not
know at the moment for the E series of conformal matter models, it would be interesting to
try and find a uniform definition of the integrable models which would be applicable to the
full ADE series of the conformal matter theories.16

As it was already mentioned in our discussion in certain cases there are more than one
effective 5d gauge theory descriptions which eventually lead through the procedure applied
in this paper, to a number of tightly related integrable models which however might act on

16The two punctured spheres are known for all the ADE series and these do take a rather unified form [71].
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different types of parameters. These models will have for example joint Kernel functions. The
AN , CN , and (A1)N models are examples of this. Such effects go beyond the D-type conformal
matter theories. For example in the case of A-type conformal theories in addition to a puncture
with (Ak−1)N group17 there are 5d descriptions discussed in [76]. For k = 2 the associated
maximal punctures and three punctured spheres were discussed in [38]. It will be very inter-
esting to derive integrable models associated to these theories and study their relations to the
ones of [39,73,74].

The rank one E-string theory has yet another natural generalization to a rank Q E-string
SCFT: Q M5 branes probing the end of the world brane. A corresponding effective 5d de-
scription is given in terms of a USp(2Q) gauge theory. A natural generalization of the relation
between the BC1 van Diejen model and the rank one case is the BCQ model associated with the
rank Q case. For Q > 1 such models have nine parameters which fits the number of the Cartan
generators of the E8 × SU(2) symmetry group of the corresponding 6d SCFTs. Although here
the three punctured spheres are not known, and thus the procedure of [2] cannot be directly
applied, the two punctured spheres are known [27]. The indices of these thus are expected
to be Kernel functions for the BCQ van Diejen model. The relevant indices are directly related
to the interpolation kernels derived by Rains in [28, 29]. The issue of having more than one
5d description is also applicable here. There is at least one additional effective 5d description
for the rank Q E-string theory [77]: SU(Q + 1) with level ±Q−1

2 CS term, eight fundamental
and one antisymmetric hypermultiplet. It would be interesting to understand whether thus
there is an AQ relative of the BCQ van Diejen model in the sense discussed above (e.g. joint
Kernel functions). Finally, the BCQ van Diejen models are related to the D type RS models by
specialization of parameters (see Appendix D for a brief review of one facet of this relation.).
Thus there is a natural question whether the indices (and not only) of the corersponding 4d
theories, compactifications of rank Q E-string and class S (D-type class S or A-type class S
with twisted punctures, see for example [8,78,79]) have any interesting relations.

Another venue for a search for a systematic understanding of the relation between the
integrable models and 6d SCFTs is to consider the non-higgsable cluster theories [72]. These
are in a sense minimal theories in 6d. For some of them we know what the integrable models
are: A1 RS for the A1 (2,0) SCFT, BC1 van Diejen for the E-string, the models derived in
[22] (and further disucssed in [23]) for the minimal SU(3) and SO(8) SCFTs. However, we
lack any understanding for other models in the sequence (the minimal F4, E6, E7, E7 1

2
, and

E8 SCFTs [19, 20]). It would be very interesting to understand the full sequence in detail.
In more generality, there is a vigorous effort in recent years to classify and systematize our
understanding of 6d and 5d SCFTs in recent years (see for a snapshot of examples [6, 7, 48,
72, 80, 81]), and it will be very interesting to understand whether association of integrable
systems to these models can on one hand help with this classification and on the other hand
whether novel interesting integrable systems can be found by utilizing this classification.

Finally it would also be interesting to better understand the relation between our results
and various manifestations of BPS/CFT correspondence [82]. One of such manifestations are
q- and elliptic Virasoro constraints [83–87] for various partition functions of supersymmetric
gauge theories. Particular example interesting for us are elliptic Virasoro constraints for N = 1
superconformal indices [88]with Wilson loop insertions. Usual Virasoro constrains are known
to be related to the Calogero-Sutherland integrable model. It would be interesting to reveal
connections between our A∆Os and these elliptic Virasoro constraints.

17This is to be associated to a circular quiver of N Ak−1 groups, the affine quiver of AN−1.
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A Special functions

We summarize here some definitions and properties of special functions used in the paper.
Elliptic Gamma function is defined through the following infinite product:

Γe (z)≡
∞
∏

k,m=0

1− pk+1qm+1/z
1− pkqmz

. (A.1)

It can be easily seen that the poles of this function are located at the following values of the
argument:

z = p−kq−m , k, m ∈ Z≥0 . (A.2)

The following relation will be useful in our calculations:

Γe

� pq
z

�

Γe (z) = 1 . (A.3)

Also we will often deal with the elliptic beta integral formula

κ

∮

dz
4πiz

1
Γe (z±2)

6
∏

j=1

Γe
�

t iz
±1
�

=
∏

i< j

Γe
�

t i t j

�

. (A.4)

Here κ is defined to be

κ= (q; q)(p; p) =
∞
∏

`=0

(1− q1+`)(1− p1+`). (A.5)

AN generalization of this formula is

κN

N !

∮ N
∏

i=1

dzi

2πizi

N+1
∏

i 6= j

Γe

�

zi

z j

�−1 N+2
∏

i=1

N+1
∏

j=1

Γe
�

siz j

�

Γe

�

t iz
−1
j

�

=

N+2
∏

i=1

Γe
�

Ss−1
i

�

Γe
�

T t−1
i

�

N+2
∏

i, j=1

Γe
�

si t j

�

,

�

T =
N+2
∏

i=1

t i , S =
N+2
∏

i=1

si

�

. (A.6)

The Theta function is defined as follows:

θp (x)≡ (x; p)∞
�

x−1p; p
�

∞ , (A.7)

where (z; p)∞ is the usual q-Pochhammer symbol defined as follows:

(x; p)∞ =
∞
∏

k=0

�

1− x pk
�

. (A.8)
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Following properties of theta function will be useful to us

θp (x) =
Γe (qx)
Γe (x)

, θp

�

x−1
�

= −x−1θp (x) , θp (x pm) = (−1)m x−mp−
1
2 m(m−1)θp (x) . (A.9)

We will also use the following duality identity from [89]:

V (t) =
8
∏

1≤ j<k≤4

Γe
�

t j tk

�

Γe
�

t j+4 tk+4

�

V (s) , (A.10)

where

V (t)≡ κ
∮

dz
2πiz

8
∏

j=1
Γe
�

t jz
±1
�

Γe (z±2)
,

8
∏

j=1

t i = pq , |t j|, |s j|< 1 .

s j = ρ
−1 t j , j = 1, 2,3, 4; s j = ρt j , j = 5, 6,7, 8; ρ ≡

√

√ t1 t2 t3 t4

pq
. (A.11)

B Derivations of operators

In this Appendix we will present derivations of A∆Os mentioned in this paper. In Appendix B.1
we derive the theory corresponding to the compactification of minimal (D,D) conformal matter
theory on the four punctured sphere. In Appendices B.2 and B.3 we derive two examples of AN
generalizations of van Diejen operator. Finally in Appendices B.4 and B.6 we discuss derivation
of the A1

1 and C1 A∆Os both of which turn out to be van Diejen operators.

B.1 Derivation of AN four-punctured sphere.

In this appendix we derive the index of the 4d theory corresponding to the compactification of
the D-type conformal matter theory on the four-punctured sphere. For this purpose we start
with the trinion index (4.1) and S glue it to a conjugated trinion. This leads to

KAN
4 (x , x̃ , z, z̃) = κ2

N+1κN

∮ N+1
∏

i=1

d t i

2πi t i

d t̃ i

2πi t̃ i
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∏

j=1

d y j

2πi y j

N+2
∏

i 6= j

1

Γe

�

t i
t j

�

Γe

�

t̃ i
t̃ j

� ×

N+1
∏

i 6= j

1

Γe

�
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y j

�

N+2
∏

i=1

N+1
∏

j=1

2N+4
∏

l=1

Γe

�

(pq)
1

2N+4 u−2N−4 t̃−1
i x̃−1

j

�

Γe

�

(pq)
1

2N+4 w2N+4 t iz
±1
�

×

Γe

�

(pq)
1

2(N+2)u2N+4 t i x j

�

Γe

�

(pq)
1

2N+4 v2N+4 t i y j

�

×

Γe

�

(pq)
1

2N+4 v−2N−4 t̃−1
i y−1

j

�

Γe

�

(pq)
1

2N+4 w−2N−4 t̃−1
i z̃±1

�

×

Γe

�

(pq)
N+1

2N+4 (uv)−N−1w−2 t−1
i al

�

Γe

�

(pq)
N+1

2N+4 (uv)N+1w2 t̃ ia
−1
l

�

. (B.1)
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Figure 16: Chain of duality transformations of the four-punctured sphere theory.
As a starting point we use two S glued AN trinions. Red lines correspond to the
conttributions of theflip singlets.

Now starting from this expression we perform a chain of Seiberg dualities which is shown
in the Figure 16. As the first step to simplify this expression we can notice that SU(N + 1)y
node of this theory is S-confining so we can integrate y out using AN elliptic β-integral formula
(A.6).
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. (B.2)

Now we can perform Seiberg duality on the SU(N + 2)t node which leads to the following
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index:
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In this index t̃-integration corresponds to the SU(N + 2) gauge theory with (N + 3) flavors
which is S-confining so we can integrate it out using AN elliptic β-integral formula (A.6). This
will lead to the following integral,
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. (B.4)

This expression stands for the index of SU(N + 3) gauge theory with (2N + 6) flavors (and a
superpotential which can be determined from the charges of the various fields), and will be
used as a starting point for closing punctures in our derivations.

B.2 Closing minimal puncture with 1w2N+4u(2N+4)(N+1) vev.

We will derive next A∆O obtained by closing SU(2)z minimal puncture of the AN trinion (3.8)
giving space-dependent vev to the baryonic moment map 1w2N+4u(2N+4)(N+1) .

We start with the index of the four-punctured sphere (B.4) having two punctures, SU(2)z
and SU(2)z̃ , that we want to close. First let’s compute the residue of the index at
z̃ = (pq)−

1
2
�

uN+1w
�2N+4

corresponding to closure of SU(2)z̃ without the defect. This residue
is simple to calculate because the pole is present in the index explicitly due to the term

Γe

�

(pq)
1
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.
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Hence we just need to substitute corresponding value of z̃ into expression. As the result we
get SU(N + 3) gauge theory with (2N + 5) flavors. As the second step in the computation
we should compute the residue of the resulting expression at z = (pq)−

1
2
�

uN+1w
�−2N−4

q−1

corresponding to space dependent vev of the baryonic moment map 1w2N+4u(2N+4)(N+1) . This pole
corresponds to certain pinching of the integration contour. Before performing this step it is
useful to apply a Seiberg duality transformation resulting in the SU(N +2) gauge theory with
(2N + 5) flavors and the following superconformal index:
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(B.5)

where we omit all overall irrelevant constants. Now the pinching leading to the desired pole
in the expression happens at the following points:

t i = (pq)−
1

2(N+2)u−2(N+2)x−1
i q−ki , tN+2 = (pq)

N+1
2(N+2)u2(N+1)(N+2)q1−kN+2 ,

or

t i = (pq)−
1

2(N+2)u−2(N+2) x̃−1
i q−ki , tN+2 = (pq)

N+1
2(N+2)u2(N+1)(N+2)q1−kN+2 , (B.6)

where ki are partitions of 1, i.e.
∑

i ki = 1. This is only one particular choice of pinching point.
Of course there are (N+1)! such choices coming from the total number of roots permutations.
However contribution of each of them is the same due to the symmetry of the Weyl group.
Hence calculation can be done just for the point (B.6) and the result should be multiplied
with (N + 1)!. Since overall constants are irrelevant for our calculations we ommit the letter
coefficient. Let’s start with the pinching specified in the first line of (B.6). Computing this
contribution we get the following expression for the index of the tube theory depending on
the partition k = (k1, k2, · · · , kN+2)

KAN
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∏
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∏
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�
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�
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�
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�

×
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�
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�
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�

×
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�
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�
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�
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�
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�
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�Γe

�

x̃ j

x i
q−ki

�

×
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�
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. (B.7)
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To get the full expression for the tube theory index we should sum expressions above over
different partitions such that

∑N+1
i=1 ki = 1. The final expression for the index should be S

glued to the index I( x̃) of an arbitrary theory with SU(N + 1) x̃ maximal puncture:

I~k1 (x) = κN

∮ N
∏

i=1

d x̃ i

2πi x̃ i

N+1
∏

i 6= j

1

Γe

�

x̃ i
x̃ j

�KAN

(4;~k)
( x̃ , x)I0( x̃) . (B.8)

There are two kinds of partitions ~k to consider here.
I. First class corresponds to the following partition ~ki

ki = 1 ,1≤ i ≤ N + 1 , k j = 0 ∀ j 6= i . (B.9)

In this case the tube becomes

KAN

(4;~k)
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∏
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�
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�
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1
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�
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�
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,

(B.10)

where Ci is the following constant:

Ci = Γe
�

q−1
�

u−1v
�2(N+1)(N+2)�

Γe

�

pq3
�

uN+1w
�4N+8�×

2N+4
∏

l=1

Γe
�

q−1u−(N+1)(2N+5)v−N−1w−2al

�

. (B.11)

Notice that as usually the tube theory has prefactor Γe
�

pq2
�

which is equal to 0. Once we
perform S gluing (B.8) this zero is canceled by a pole which comes from the x̃ integration
contour pinchings.18 These pinchings happen at

x̃ i = xσ(i)q
1−ki , x̃ j = xσ( j)q

−k j ,
N+1
∑

i=1

ki = 1 , (B.12)

where σ(i) are permutations. Due to the symmetry of all expressions w.r.t. x̃ i permutations
we can fix to the choice σ(i) = i. All other permutations will give equivalent contributions

18Although we perform the computations in steps, the procedure really is to be understood as first gluing all
the parts together and then closing the punctures. In this way we will generate various vanishing and divergent
contributions, some of which will cancel out. In the end we will have only poles which correspond to closing the
punctures.
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resulting in overall irrelevant factor of (N + 1)! which we will omit in any case. Once again
we have two classes of partitions ki of 1.

I.a. First possible partition is ki = 1 , k j = 0 ∀ j 6= i corresponds to the pinching at x̃ j = x j
∀ j. In this case we obtain

I(
~ki ;x)

1 (x) = Ci

θp

�

(pq)
1
2
�

uvN+1
�2N+4

x i

�

θp

�
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�
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∏
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�
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×
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∏
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j

�

θp

�
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1
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�
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�

x i
x j

�

θp

�

q−1 x j
x i

� I0(x) , (B.13)

I.b. Second possible type of partitions is when km = 1 for some m 6= i and all other k j = 0
including j = i. This choice of the partition corresponds to the following pinching:

x̃ i = qx i , x̃m = q−1 xm , x̃ j = x j , ∀ j 6= i 6= m . (B.14)

Substituting these values into the integrand of (B.8) we obtain the following contribution

I(
~ki ;qx)

1 (x) = Ci
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�
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�
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�
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(1,0)
mi I0(x) , (B.15)

where we have summed over all possible m and ∆mi is the shift operator defined in (4.8).
II. Finally we should consider the second type of partitions in (B.6) corresponding to

kN+2 = 1 , ki = 0 . (B.16)

This partition leads to the following index of the tube theory:

KAN
(4;kN+2)
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×
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�
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�
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�
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�
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�

×
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�
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�
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1
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�
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,

(B.17)

where

CN+2 = Γe
�

�

vu−1
�2(N+1)(N+2)�

Γe

�

pq2
�

uN+1w
�4N+8�×

2N+4
∏

l=1

Γe
�

u−(N+1)(2N+5)v−N−1w−2al

�

. (B.18)
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Once we glue it to an arbitrary theory as in (B.8) we obtain the pinching at x̃ i = x i ∀ i
compensating the zero coming from Γe (pq) prefactor in the tube index. The calculation of the
residue results in

IkN+2(x) = CN+2

N+1
∏

j=1

θp

�

(pq)
1
2
�

uN w2
�2N+4

x−1
j

�

θp

�

(pq)−
1
2 u−2(N+2)2 x−1

j q−1
�I0(x) . (B.19)

One should also perform similar computation for the pinching specified in the second line
of (B.6). This calculation is identical to the one presented above and leads to exactly the same
results. We leave this calculation to the interested reader. Summing terms (B.13), (B.15) and
(B.19) we finally obtain the finite difference operator (4.7) with the shift part given in (4.9)
and the constant part given in (4.10).

B.3 Closing minimal puncture with the flipped 1w2N+4u(2N+4)(N+1) vev.

Let us derive the A∆O corresponding to the closure of a minimal punctures by flipping the
baryon 1(wuN+1)2(N+2) and giving vev to its derivatives.19 The calculation here is very similar to
the calculation with no flip presented in the previous Appendix B.2. However some details of
these two calculations differ so we summarize the calculation with the flip below.

We once again start with the index of the four-punctured sphere theory given in (B.4).
This time we add contributions of the flip multiplets:

KAN , f l ip
4 (x , x̃ , z, z̃)≡ Γe

�

(pq)
1
2
�

uN+1w
�−2N−4

z±1
�

×

Γe

�

(pq)
1
2
�

uN+1w
�2N+4

z̃±1
�

KAN
4 (x , x̃ , z, z̃) . (B.20)

Now in order to close two minimal punctures we should compute the residues of the index
located at

z = (pq)−
1
2
�

uN+1w
�2N+4

q−1 , z̃ = (pq)−
1
2
�

uN+1w
�−2N−4

. (B.21)

Like in a previous section we give required weights to z and z̃ one by one. We start with putting
z̃ = (pq)−

1
2
�

uN+1w
�−2N−4

. As we have seen in the previous section without the flip the pole
at this value of z̃ is explicit. However now with the flip the pole is not explicit anymore and
originates from the pinching of one of the integration contours at

t j = (pq)
N+1

2(N+3)u2 (N+1)(N+2)2
N+3 w4 (N+2)2

N+3 , (B.22)

for any choice of j. Without loss of generality let us discuss the case of j = N + 3. All other
choices should give the same result so they contribute with an overall factor of (N + 3) which
is not relevant for our conclusions and will be omitted. Also in order to preserve SU(N + 2)
constraint we should rescale

t i → t i(pq)−
N+1

2(N+2)(N+3)u−2 (N+1)(N+2)
N+3 w−4 N+2

N+3 , (B.23)

After this we obtain the following expression for the four-punctured sphere with one puncture

19Usually flipping minimal punctures is not a simple geometric procedure, e.g. it is not in class S. However, as
the minimal puncture here is obtained by partially closing an USp(2N) maximal puncture [38], the flipping of the
minimal puncture can be thought of as partially flipping the maximal puncture and closing it to the minimal one.
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closed:
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. (B.24)

Now notice that the pole at z = (pq)−
1
2
�

uN+1w
�2N+4

q−1 which was explicit before closing
SU(2)z̃ puncture is not explicit anymore and originates from the contour pinchings at two
points:20

t i = (pq)−
1

2N+4 u2N+4q−ki x i , tN+2 = (pq)
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(B.25)

and all possible permutations that result in an irrelevant overall constant factor. Like in the
previous section let’s consider pinching specified in the first line. Substituting these expressions
into the integrand and computing the residue of the pole we obtain the following expression
for the index of the tube theory
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, (B.26)

20Calculation can be done in another way. Namely we could have first closed SU(2)z puncture by computing
residue of the explicit pole. This calculation would have lead to different but equivalent expression for A∆O. In
particular the constant part W (x) of the operator (4.15) would take different form. For this reason here we choose
another approach leading to the result qualitatively similar to the non-flipped result of the previous apppendix.
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where ~k labels a partitions of 1, i.e. it is the vector with only one of the entries equal to one
and all others are zero. Now we S glue this tube to an arbitrary theory with SU(N +1) x̃ global
symmetry in a usual way

I~k1 (x) = κN

∮ N
∏

i=1

d x̃ i

2πi x̃ i
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∏

i 6= j

1

Γe

�

x̃ i
x̃ j

�KAN

(4;~k)
( x̃ , x)I0( x̃) . (B.27)

As usually there are contour pinchings that depend on a particular choice of the partition ~k
in the tube (B.26). These pinchings cancel the zero in the index of the tube coming from the
term Γe

�

pq2−kN+2
�

. Just like in the previous section there are two distinct classes of partitions
contributing.

I. First class corresponds to the following partition ~ki

ki = 1 ,1≤ i ≤ N + 1 , k j = 0 ∀ j 6= i . (B.28)

For this partition tube index (B.26) reduces to
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(B.29)

where

Ci = Γe
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. (B.30)

Once we glue this tube to an arbitrary theory we obtain contour pinching at

x̃ j = qk j xσ( j) , x̃ i = qki−1 xσ(i) ,
N+1
∑

i=1

ki = 1 , (B.31)

where σ(i) are permutations. We fix these permutations to σ(i) = i. All other permutations
give the same result so we can just multiply the answer with the irrelevant constant factor of
(N + 1)!. Once again we have two distinct classes of partitions of 1.

I.a. First partition is ki = 1 , k j = 0 ∀ j 6= i which corresponds to the pinching at x̃ j = x j
∀ j. In this case we obtain

I(
~ki ;x)

1 (x) =
N+1
∏

j 6=i

θp

�

(pq)
1
2
�

uN w2
�−2N−4

x j

�

θp

�

(pq)
1
2 u−2(N+2)2 x−1

j

�

θp

� x j
x i

�

θp

�

q−1 x i
x j

� ×

θp

�

(pq)
1
2
�

uvN+1
�−2N−4

x−1
i

�

θp

�

(pq)
1
2 u−2(N+2)2qx−1

i

�

2N+4
∏

l=1

θp

�

(pq)
1
2 u−N−3vN+1w2a−1

l x−1
i

�

CiI0(x) , (B.32)
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I.b. Second class of possible partitions is km = 1 for some m 6= i and all other k j = 0
including j = i. This choice of the partition corresponds to the following pinching:

x̃ i = q−1 x i , x̃m = qxm , x̃ j = x j , ∀ j 6= i 6= m . (B.33)

In this case we obtain:

I(
~ki ;qx)

1 (x) =
∑

m 6=i

θp

�

(pq)
1
2
�

uN w2
�−2N−4

xm

�

θp

�

(pq)
1
2
�

uvN+1
�−2N−4

x−1
i

�

θp

�

xm
x i

�

θp

�

q xm
x i

� ×

2N+4
∏

l=1

θp

�

(pq)
1
2 u−N−3vN+1w2a−1

l x−1
i

�

×

N+1
∏

j 6=m 6=i

θp

�

(pq)
1
2 u−2(N+2)2 x−1

j

�

θp

�

(pq)
1
2
�

uN w2
�−2N−4

x j

�

θp

� x j
x i

�

θp

�

xm
x j

� ∆
(1,0)
im CiI0(x) . (B.34)

II. Second class of pinchings in the gluing (B.27) corresponds to the partition:

kN+2 = 1 , ki = 0 . (B.35)

This partition leads to the following index of the tube theory:

KAN
(4;kN+2)

(x , x̃) = Γe (pq)CN+2

N+1
∏

j=1

2N+4
∏

l=1

Γe

�

(pq)
1
2
�

uN w2
�2N+4

x−1
j

�

×

Γe

�

(pq)
1
2 u−2(N+2)2 x̃−1

j

�

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x jq
�

Γe

�

(pq)
1
2 u2(N+2)2 x j

�

×

θp

�

(pq)−
1
2 u2(N+2)2 x jq

−1
�−1

N+1
∏

i=1

Γe

�

x i x̃
−1
j

�

, (B.36)

where

CN+2 = Γe
�

�

uv−1
�2(N+1)(N+2)�

Γe
�

u(N+1)(2N+5)vN+1w2a−1
l

�

×

Γe

�

pq2
�

uN+1w
�−4N−8�

. (B.37)

Once we glue it to the index of the arbitrary theory we obtain the pinching at x̃ i = x i resulting
in

IkN+2(x) = CN+2

N+1
∏

j=1

θp

�

(pq)
1
2
�

uN w2
�−2N−4

x j

�

θp

�

(pq)−
1
2 u2(N+2)2 x jq−1

� I0(x) . (B.38)

Finally one should perform similar computation for the pinching specified in the second
line of (B.25). This calculation is basically identical and leads to exactly the same results. We
leave the calculation to the reader. Summing terms (B.32), (B.34) and (B.38) and performing
conjugation (4.11) we finally obtain the A∆O (4.15) with the shift term given in (4.16) and
constant term of (4.17).

B.4 Difference operator from A1
1 trinion.

In the present appendix we give details of the derivation of the A∆O (3.28) otained using A1
1

trinion theory. We start with computing indices of the tube theories (3.27),(3.26) with and
without the defects. For this we start with the trinon index (3.24) and set ε = (pq)

1
2 t2a2q or
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ε = (pq)
1
2 t2a2. Let’s consider the case of closing without the defect. In this case substituting

the value above we obtain

K
A1

1
(2;0)(v, z) = κ2

∮

d y1

4πi y1

∮

d y2

4πi y2

∏4
i=1 Γe

�

t−1a−1ci y±1
1

�

Γe
�

t−1a−1
eci y±1

2

�

Γe
�

y±2
1

�

Γe
�

y±2
2

�

3
∏

i=1

Γe
�

pqt2a2cic4

�

Γe
�

pqt2a2
eciec4

�

Γe(a
−4)

Γe
�

(pq)1/2 a2 y±1
1 z±1

�

Γe
�

(pq)1/2 z±1 y±1
2

�

Γe
�

t−2a−2z±1v±1
�

Γe
�

(pq)1/2 t2 y±1
1 v±1

�

Γe
�

(pq)1/2 t2a2v±1 y±1
2

�

. (B.39)

Now we can use the duality identity (A.10). We split variables so that t−1a−1
eci is in the first

group of four and (pq)
1
2 z±1 with (pq)

1
2 t2a2v±1 in the second group of four. We then obtain:

K
A1

1
(2;0)(v, z) = κ2Γe (pq)

∮

d y1

4πi y1

∮

d y2

4πi y2

∏4
i=1 Γe

�

t−1a−1ci y±1
1

�

Γe

�

(pq)
1
2 taeci y±1

2

�

Γe
�

y±2
1

�

Γe
�

y±2
2

�

3
∏

i=1

Γe
�

pqt2a2cic4

�

Γe
�

t−2a−2
eciec4

�

Γe(a
−4)Γe(pqt4a4)Γe

�

v±1 y±1
2

�

Γe
�

(pq)1/2 a2 y±1
1 z±1

�

Γe
�

t−2a−2z±1 y±1
2

�

Γe
�

(pq)1/2 t2 y±1
1 v±1

�

. (B.40)

Notice that there is Γe (pq) factor which equals zero. However, as usual, at the same time
there is pinching of the integration contour taking place at y1 = v±1 which cancels this zero.
Computing contribution of this pinching we finally obtain an expression (3.26). In an identical

way we can obtain the tube (3.27) with the defect denoted as K
A1

1
(2;1)(v, z).

Now having expressions for both tubes we can conjugate one of them and perform S gluings
of the following form:

O · I(v) = κ2

∮

dz
4πiz

dw
4πiw

1
Γe (z±2) Γe (w±2)

K
A1

1
(2;1)(v, z)K̄

A1
1
(2;0)(w, z)I(w) , (B.41)

where K̄
A1

1
(2,0) is the conjugated tube, i.e. the one with all of the charges flipped. Substituting

(3.26) and (3.27) into expression above we obtain the following result:

OI(v) = κ4

∮

dw
4πiw

1
Γe(w±2)

∮

dz
4πiz

1
Γe(z±2)

∮

d y1

4πi y1

∏4
i=1 Γe

�

q−
1
2 t−1a−1ci y±1

1

�

Γe
�

y±2
1

�

Γe

�

(pq)1/2 q
1
2 a2 y±1

1 z±1
�

Γe

�

(pq)1/2 q
1
2 t2 y±1

1 v±1
�

�

Γe(v2)
Γe(qv2)

Γe
�

t−2a−2vz±1
�

×

Γe
�

q−1 t−2a−2v−1z±1
�

Γe

�

(pq)
1
2 qtaeci v

�

Γe

�

(pq)
1
2 taeci v

−1
�

+ {v↔ v−1}
�

∮

d x1

4πi x1

∏4
i=1 Γe

�

(pq)
1
2 t−1a−1c−1

i x±1
1

�

Γe
�

x±2
1

� Γe
�

t2 x±1
1 z±1

�

Γe
�

a2 x±1
1 w±1

�

×

Γe

�

(pq)
1
2 t−1a−1

ec−1
i w±1

�

I(w) . (B.42)

Next we perform two duality transformations of (A.10) type. First one is on x1 node. The
split of the fields is chosen so that those charged under z or w are grouped together and so
the gauge singlets of the dual theory contain a bifundamental of SU(2)z and SU(2)w gauge
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groups. Second duality is performed on the z node. Similarly to the first duality the fields
charged under w or v are grouped together. We then get,

κ4 Γe(v
2)

Γe(qv2)

∮

dw
4πiw

1
Γe(w±2)

∮

dz
4πiz

1
Γe(z±2)

∮

d y1

4πi y1

∏4
i=1 Γe

�

q−
1
2 t−1a−1ci y±1

1

�

Γe
�

y±2
1

� ×

Γe
�

a2 y±1
1 z±1

�

Γe

�

(pq)1/2 q
1
2 t2 y±1

1 v±1
�

Γe

�

(pq)
1
2 q

1
2 t−2a−2vz±1

�

Γe

�

(pq)
1
2 qtaeci v

�

×

Γe

�

(pq)
1
2 q−

1
2 t−2a−2v−1z±1

�

Γe

�

(pq)
1
2 taeci v

−1
�

∮

d x1

4πi x1

∏4
i=1 Γe

�

tac−1
i x±1

1

�

Γe
�

x±2
1

� ×

Γe

�

q−
1
2 a−2 x±1

1 z±1
�

Γe

�

(pq)
1
2 t−2 x±1

1 w±1
�

Γe((pq)
1
2 q

1
2 t2a2z±1w±1)Γe(vw±1)×

Γe(q
−1v−1w±1)Γe(pqq

1
2 x±1

1 y±1
1 )Γe

�

(pq)
1
2 t−1a−1

ec−1
i w±1

�

T (w) + {v↔ v−1} . (B.43)

The poles of Γe
�

q−1v−1w±1
�

and Γe
�

vw±1
�

collide when w= v±1 or w= (qv)±1 which results
in the integration contour pinching. We should sum over contributions of all these pinchings.
Terms with opposite powers contribute equivalently since w is a fugacity for the Cartan gener-
ator of SU(2). Substituting values of w at the pinching points we can integrate out first z and
then x1 integrals using A1 elliptic beta integral (A.4). The result of these integrations is

κΓe(a
4)Γe(q

−1a−4)

∮

d y1

4πi y1

∏4
i=1 Γe

�

q−
1
2 t−1a−1ci y±1

1

�

Γe
�

y±2
1

� Γe

�

(pq)
1
2 q

1
2 t−2v y±1

1

�

×

Γe

�

(pq)
1
2 q

1
2 t2a4v−1 y±1

1

�

Γe

�

(pq)1/2 q
1
2 t2 y±1

1 v±1
� Γe(v2)Γe(q−1v−2)
Γe(qv2)Γe(v−2)

×

4
∏

i=1

Γe

�

(pq)
1
2 qtaeci v

�

Γe

�

(pq)
1
2 t−1a−1

ec−1
i v−1

�

Γe(pqt−4a−4)
4
∏

i=1

Γe

�

(pq)
1
2 t−1a−3c−1

i v
�

×

Γe

�

(pq)
1
2 t−1ac−1

i v−1
�∏

j<k

Γe(t
2a2c−1

j c−1
k )I(v) + {v↔ v−1}

+

κΓe(pqt−4a−4)Γe(a
4)Γe(q

−1a−4)

∮

d y1

4πi y1

∏4
i=1 Γe

�

q−
1
2 t−1a−1ci y±1

1

�

Γe
�

y±2
1

� ×

Γe

�

(pq)
1
2 q−

1
2 t−2v−1 y±1

1

�

Γe

�

(pq)
1
2 q

3
2 t2a4v y±1

1

�

Γe

�

(pq)1/2 q
1
2 t2 y±1

1 v±1
� Γe(v2)
Γe(q2v2)

×

4
∏

i=1

Γe

�

(pq)
1
2 qtaeci v

�

Γe

�

(pq)
1
2 taeci v

−1
�∏

j<k

Γe(t
2a2c−1

j c−1
k )

4
∏

i=1

Γe

�

(pq)
1
2 q−1 t−1a−3c−1

i v−1
�

×

Γe

�

(pq)
1
2 qt−1ac−1

i v
�

Γe

�

(pq)
1
2 t−1a−1

ec−1
i (qv)±1

�

I(qv) + {v↔ v−1} , (B.44)

where the first term comes from the pinching at w = v±1 and the second from the pinching
at w = (qv)±1. In both of the terms above we get an SU(2) theory with 4 flavors. In order
to proceed we perform (A.10) duality for these two theories. For this in each of the cases
we group together fields transforming in the fundamental representation of SU(4)c global
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symmetry. Dual expressions are then given by

κΓe(a
4)Γe(q

−1a−4)Γe(pq2)Γe(pq2a4)Γe(pq2 t4a4)Γe(pq2 t4)Γe(pq2v2)Γe(pq2 t4a4v−2)×
∏

j<k

Γe(q
−1 t−2a−2c jck)

∮

d y1

4πi y1

1

Γe(y±2
1 )

4
∏

i=1

Γe

�

(pq)
1
2 q

1
2 taci y±1

1

�

Γe

�

q−
1
2 t−4a−2v y±1

1

�

×

Γe

�

q−
1
2 a2v−1 y±1

1

�

Γe

�

q−
1
2 a−2v±1 y±1

1

� Γe(v2)Γe(q−1v−2)
Γe(qv2)Γe(v−2)

4
∏

i=1

Γe

�

(pq)
1
2 qtaeci v

�

×

Γe

�

(pq)
1
2 t−1a−1

ec−1
i v−1

�

Γe(pqt−4a−4)
4
∏

i=1

Γe

�

(pq)
1
2 t−1a−3c−1

i v
�

Γe

�

(pq)
1
2 t−1ac−1

i v−1
�

×
∏

j<k

Γe(t
2a2c−1

j c−1
k )I(v) + {v↔ v−1}

+

κΓe(pq)Γe(pqv−2)Γe(pq2a4)Γe(pq3 t4a4)Γe(pq3 t4a4v2)Γe(pq2 t4)Γe(pqt−4a−4)Γe(a
4)Γe(q

−1a−4)×
∮

d y1

4πi y1

∏4
i=1 Γe

�

(pq)
1
2 q

1
2 taci y±1

1

�

Γe
�

y±2
1

� Γe

�

q−
3
2 t−4a−2v−1 y±1

1

�

Γe

�

q
1
2 a2v y±1

1

� Γe(v2)
Γe(q2v2)

×

Γe

�

q−
1
2 a−2v±1 y±1

1

�

4
∏

i=1

Γe

�

(pq)
1
2 qtaeci v

�

Γe

�

(pq)
1
2 taeci v

−1
�∏

j<k

Γe(t
2a2c−1

j c−1
k )×

Γe(q
−1 t−2a−2c jck)

4
∏

i=1

Γe

�

(pq)
1
2 q−1 t−1a−3c−1

i v−1
�

Γe

�

(pq)
1
2 qt−1ac−1

i v
�

×

Γe

�

(pq)
1
2 t−1a−1

ec−1
i (qv)±1

�

I(qv) + {v↔ v−1} . (B.45)

As usually we obtain zeroes in these expressions. In particular first term contains Γe
�

pq2
�

and
second Γe (pq) prefactors. These zeroes are cancelled by pinchings of integration contours. In
the first term pinching takes place at y1 = (q

1
2 a2v−1)±1 and y1 = (q−

1
2 a2v−1)±1. Pinching in

the second term is located at y1 = (q
1
2 a2v)±1. Substituting these values into expressions above

we precisely get the operator O(ε;t2a2;1,0)
v given by (3.28) and equal to the van Diejen operator

(3.1) upon the identification (3.29) of its parameters.
In a completely similar way we can derive A∆Os for any pair of punctures we close and

we act on. For example the operator acting on SU(2)z puncture that is obtained by giving vev
to the moment map of U(1)ε puncture with the charge t2a2 is given by,

O(ε;t
2a2;1,0)

z · I(z) =

∏4
i=1 θp

�

(pq)
1
2 ta−1c−1

i z
�

θp

�

(pq)
1
2 taec−1

i z
�

θp (z2)θp (qz2)
I(qz) +

+
θp

�

q−1 t−4
�∏4

i=1 θp

�

(pq)
1
2 ta3c−1

i z−1
�

θp

�

(pq)
1
2 taec−1

i z
�

θp (q−2 t−4a−4)θp (z2)θp (a4z−2)
I(z) +

+

∏4
i=1 θp

�

(pq)
1
2 ta−1c−1

i z
�

θp

�

(pq)
1
2 taec−1

i z
�

θp (q−2 t−4a−4)θp (z2)θp (q−1z−2)θp (a−4z2)
×

θp

�

q−1a−4
�

θp

�

q−1 t−4a−4z2
�

I(z) + {z↔ z−1} . (B.46)

51

https://scipost.org
https://scipost.org/SciPostPhys.12.4.140


SciPost Phys. 12, 140 (2022)

Another example is an operator acting on the U(1)ε puncture obtained by closing the
SU(2)v puncture giving vev to the moment map with the cahrge taec4. The result is given by,

O(v;taec4;1,0)
ε · I(ε) =

θp

�

(pq)
1
2 t−2a±2ε

�

∏3
j=1 θp

�

(pq)
1
2
ec−1

4 ec−1
j ε

�

θp

�

(pq)
1
2 c−1

4 c−1
j ε

�

θp (ε2)θp (qε2)
I(qε) +

θp

�

(pq)
1
2 t2a2ε

�

θp

�

(pq)
1
2 t2
ec4c−1

4 ε
−1
�

∏3
j=1 θp

�

(pq)
1
2
ec4ec jε

�

θp

�

(pq)
1
2 a2

ec4c jε
−1
�

θp

�

q−2 t−2a−2
ec−2

4

�

θp (ε2)θp

�

a2
ec4c−1

4 ε
−2
� ×

θp

�

q−1 t−2
ec−1

4 c−1
4

�

I(ε) +
θp

�

q−1a−2
ec−1

4 c4

�

θp

�

q−1 t−2a−2
ec−2

4 ε
2
�

θp

�

(pq)
1
2 t2a±2ε

�

θp

�

q−2 t−2a−2
ec−2

4

�

θp (ε2)θp (q−1ε−2)θp

�

a−2
ec−1

4 c4ε2
� ×

3
∏

j=1

θp

�

(pq)
1
2
ec4ec jε

�

θp

�

(pq)
1
2 c4c jε

�

I(ε) + {ε↔ ε−1}. (B.47)

Both of these operators above can be mapped onto the van Diejen model. Correspodning
dictionaries can be read from the difference parts of operators. In particular for operator
(B.46) the map is given by:

hi = ta−1c−1
i , hi+4 = taec−1

i , i = 1, . . . , 4 , (B.48)

while for the operator (B.47) we obtain:

hi = c−1
4 c−1

i , hi+3 = ec
−1
4 ec−1

i , i = 1, 2,3 , h7,8 = t−2a±2 . (B.49)

Just like in (3.29) van Diejen parameters map to the inverse U(1) charges of the moment
maps of the puncture we act on as can be seen from (3.25). Constant parts of both operators
(B.46) and (B.47) are elliptic functions with periods 1 and p. It can be checked that poles
and corresponding residues of these constant parts coincide with those of van Diejen model
summarized in (3.6) and (3.7). Hence we conclude that both of these operators can differ
from the van Diejen model at most by an irrelevant constant part.

B.5 Derivation of the USp(2N) trinion

In this appendix we construct a three punctured sphere, with two maximal USp(2N) punctures
and one minimal SU(2) puncture, of the minimal (DN+3, DN+3) conformal matter. In the bulk
of the paper we use only the degenerate case of N = 1 (SU(2) ∼ USp(2)) but here we will
outline the more general construction. The construction starts from the trinion [34] with two
maximal SU(N+1) punctures discussed in Section 3, and gluing to the two maximal SU(N+1)
punctures two tubes with one SU(N+1) puncture and one USp(2N) puncture discussed in [46]
(see Figure 17). The dynamics of these gluings turns out to be S-confining. The relevant S-
confining gauge theory is depicted in Figure 18. This duality was discussed by Spiridonov and
Vartanov in [90] following mathematical results of Spiridonov and Warnaar [91] and we will
thus refer to it as Spiridonov-Warnaar-Vartanov (SWV) duality. For N = 1, 2 these dualities are
special cases of the standard Seiberg duality.

Let us briefly discuss the SWV duality. We start with asymptotically free SU(N + 1) SQCD
with one chiral field in the antisymmetric representation, 2N fields in the anti-fundamental
representation, and N + 3 fields in the fundamental representation. This is a non-anomalous
vector like matter content. We have two non-anomalous abelian symmetries: one depicted as
U(1)t in Figure 18 under which the anti-fundamentals have charge +1 and the antisymmetric
field has charge −2, while under another one, denoted by U(1)b, the antifundamentals have
charge + 1

2N , the antisymmetric charge 0 and the fundamentals charge − 1
N+3 . Anomaly free
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2N

2N+6

N+1

1

2

1

0

Figure 17: A tube theory with one USp(2N) puncture and one SU(N + 1) punc-
ture. The flux corresponding to this tube breaks the 6d SO(4N + 12) symmetry to
U(1) × SU(2N + 6) for general N (breaks E8 to U(1) × E7 for N = 1). The line
starting and ending on the same gauge node is in two index antisymmetric represen-
tation. We have a superpotential terms corresponding to the triangle and coupling
the two index antisymmetric to the antisymmetric square of the bifundamental be-
tween USp(2N) and SU(N +1). The R charges depicted here are the six dimensional
ones.

choice of R charges, which we denote by R6d , is depicted in Figure 18. One can perform a-
maximization [92] on the two abelian symmetries and discover that the theory flows to an
SCFT with all the operators above the unitarity bound. For example for the case N = 2 the
superconformal R-symmetry is,

R= R6d +
4
5

qt −
8
5

qb . (B.50)

Next we consider deforming the theory by a superpotential of the form W = q2A. This is a
relevant deformation for any N . E.g. for N = 2 the R-charge of this deformation is 6

5 < 2. This
deformation breaks the U(1)b symmetry. The claim of the SWV [90, 91] is that this theory
flows to a WZ model in the IR, as depicted in Figure 18. In particular it was shown that the
supersymmetric indices of the two dual sides are exactly the same. For our computations this
equality is an essential input.

Let us now use the SWV duality to derive a three punctured sphere with two USp(2N)
maximal punctures. For N > 1 the three punctured sphere we will derive will be an IR free
gauge theory while for the N = 1 case it will be an interacting SCFT in the IR. We first give a
derivation for general N and then give more details for N = 1. We start with the SU(N + 1)
trinion and glue it to one of its SU(N + 1) maximal punctures the tube. Note that we need to
choose whether to Φ glue, to S-glue, or a combination of the two. Because of gauge anomalies
we cannot use only Φ gluing or S-gluing here. In fact the difference between the number of
components of the moment maps we use to glue in either way needs to be odd. We choose to
Φ-glue all the components of the moment maps but one: the one we S-glue flips the baryonic
moment map component which is built from N of the quarks charged under the SU(N + 1) of
the puncture we glue and the 2 quarks charged under the minimal puncture SU(2). See Figure
19.

In order to analyze the dynamics we turn on deformations one by one. We consider the
three punctured sphere with two SU(N + 1) punctures at the CFT point where all the chiral
fields have superconformal R-charge +1

2 . First we turn on the gauge coupling. The anomaly
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2N N+3N+1

0q

t

2
N+3Q

t−
2

N+3

A

W ∼ q2A

2N N+3

M = qQ

B = QN+1
W ∼ M2B

Figure 18: Spiridonov-Warnaar-Vartanov (SWV) S-confining duality. The line starting
and ending on the same gauge node is in two index antisymmetric representation.
The theory on the left has a superpotential in the UV and the theory on the right
has a dynamically generated superpotential. The duality can be reduced to Seiberg
duality [93] for low values of N . Note that for N = 1 the duality reduces to the
S-confinement of SU(2) with six fundamentals. For N = 2 we have SU(3) SQCD with
five flavors and a baryonic superpotential breaking SU(5) to USp(4). The Seiberg
dual theory is SU(2) SQCD with five flavors, gauge singlets, and the effect of the
baryonic superpotential is a mass term for four fundamentals. This leaves us again
with S-confining SU(2) with six fundamentals and a bunch of gauge singlet fields.

N+ 22N N+ 1N+ 1

2N+ 4

2

1
N+2

1
N+2

11

0

2

1
N+2

N+1
N+2

N+ 22N N+ 1

2N+ 5

2

1
N+2

1
N+2

1
N+2

N+1
N+2

2N+1
N+2

Figure 19: We glue a tube to one of the maximal SU(N + 1) punctures. The dotted
line represents the moment map field coming from the tube flipping the baryonic
moment map of the trinion. We then use the SWV duality to reduce the dynamics of
the SU(N + 1) gauge node to a WZ model and obtain the theory on the right.

TrRSU(N + 1)2 = N+2
4 is positive and thus the gauging is UV free. We flow to the IR and turn

on the superpotentials one by one. First, the superpotential flipping the baryonic moment map
is irrelevant at this stage while the two superpotential terms involving the bifundamental of
SU(N + 1) and USp(2N) are relevant. We first turn on the one also involving the antisym-
metric field. In the IR we perform a-maximization again and now obtain that both remaining
superpotentials are relevant. We then turn on the superpotential flipping the baryonic moment
map. The remaining superpotential is still relevant so we turn it on and flow to the IR.

Then we use the SWV duality in the version of Figure 20 to obtain a simpler theory with
only one SU(N + 2) gauge group. We thus obtain a trinion with one maximal SU(N + 1)
puncture, one maximal USp(2N) puncture and one minimal SU(2) puncture. The procedure
is depicted in Figure 19. The theory on the right side of the Figure has two superpotential
terms coupling the antisymmetric field to the antisymmetrics of SU(N+2) built from quadratic
combinations of the fields transforming under the puncture symmetries SU(2) and USp(2N).
After performing the duality we have a UV free gauge theory with TrR f reeSU(N + 1)2 = 2

3 ,
which is independent of N .
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1
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N+2
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Figure 20: A version of SWV duality with an additional field and a superpotential.
We split N + 3 to (N + 2) + 1 and add chiral field in fundamental of USp(2N) which
couples to the rest through a cubic superpotential corresponding to a triangle in the
figure.

Next we can perform the same procedure on the remaining SU(N + 1) maximal puncture
and we obtain a trinion with two maximal USp(2N) punctures of Figure 21. The same analysis
of the dynamics however gives different result. The gauging is UV free as before and then the
two superpotentials involving the bifundamental of USp(2N) and SU(N+1) are relevant while
the one involving the baryonic map is irrelevant. We can turn on the two relevant deformations
one by one. However, in the end for N > 1 the flipping of the baryonic moment map is still
irrelevant deformation. We can perform the SWV duality to see another vantage point of the
issue. The theory after the duality is depicted in Figure 21 and for N > 1 this is an IR free
gauge theory. Thus we obtain the trinion with two USp(2N)maximal punctures and one SU(2)
puncture which is an IR free gauge theory. We can still use the index of this model to deduce
various properties of indices of general theories built from such theories: in particular more
complicated theories built from this might flow to interacting SCFTs in the IR. In this paper
we explicitly discuss only the interacting case of N = 1 and thus we will comment on it a bit
more further in the text.

Let us now analyze the case of N = 1. The S-confinement of Figure 18 is the Seiberg
duality between SU(2) with six fundamentals and a WZ model of fifteen chiral fields. The an-
tisymmetric field becomes a gauge singlet field coupled to one of the quadratic invariants with
a cubic superpotential and thus giving it a mass in the IR. The trinion of Figure 21 for N = 1 is
SU(3) SQCD with eight flavors and a baryonic superpotential. Note that the superconformal
R-symmetry of all the chiral fields here is 5

8 . Thus the baryonic superpotentials have R-charge
15
8 and are relevant. Turning these on one by one we arrive at an SCFT. One can wonder what

is the flux to be associated to this three punctured sphere. The theory manifestly preserves
SU(8)×U(1)w and thus the flux should at least preserve this symmetry. There are two possible
choices which do that, an E7 × U(1) or SU(8)× U(1) preserving fluxes [24]. By Φ gluing two
three punctured spheres into a genus two surface we can show that actually the latter one is
the right answer. Let us first glue two three punctured spheres into a four punctured sphere.
To glue we need to add an octet of SU(2) fundamental fields, turn on cubic superpotentials
and gauge the SU(2) symmetry. The gauging is IR free before we turn on the superpotentials.
Thus we first take one trinion, add the octet of fields and turn on the cubic superpotential,
which is relevant. After turning on the superpotentials the gauging becomes exactly marginal.
Note that Tr RSU(2)2 = 0 and there are no anomalous symmetries. We can now glue all the
other punctures following the same sequence of steps and arrive at an SCFT. We can compute
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N+3
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w−4N−8
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w−4N−8
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Figure 21: A trinion with two maximal USp(2N) punctures and a minimal SU(2)
puncture. Note that the two maximal punctures are of the same type (color). More-
over, following the logic of [38] gluing together N such trinions, the N minimal
punctures will recombine into an USp(2N) maximal puncture somewhere on the
conformal manifold. Such a theory then will have tree maximal USp(2N) punctures
all of which are of the same color. For N = 1 this theory is asymptotically free.
For N = 2 the gauge and superpotential interactions are marginally irrelevant. The
theory has a U(1) symmetry, such that the fundamentals have charge +1 and the
antisymmetrics charge −5, so that all the marginal couplings have the same charge
and thus there is no interacting conformal manifold [95,96]. For higher values of N
the gauge interactions are IR free.

the index of the resulting theory and read the flux from it. In fact let us quote the index of the
theory obtained by following this procedure to construct a theory corresponding to a generic
genus g surface,

I = 1+
�

3g − 3+ (63+ 1)(g − 1) + (g − 1+ 3F)8w−
27
2 + (g − 1− 3F)8w

27
2 + (g − 1− 2F)28w9+

(g − 1+ 2F)28w−9 + (g − 1+ F)56w−
9
2 + (g − 1− F)56w

9
2

�

p q+ · · · , (B.51)

with F = g − 1. As the decomposition of the adjoint of E8 into irreps of SU(8)× U(1)w is,

248→ 1+ 63+ 83 + 8−3 + 28−2 + 282 + 561 + 56−1 , (B.52)

the above follows the expected pattern of [94] (see also Appendix E of [24]). We can thus
deduce that to build a genus g surface we glue together 2g − 2 three punctured spheres with
each such sphere having half a unit of SU(8)×U(1) preserving flux associated to it. Yet another
check is to compare the anomalies computed using this trinion versus the ones predicted from
six dimensions. For example the a anomaly for genus two surface obtained using the trin-
ion here is 1

16

�

17
p

17+ 50
�

which can be matched to the 6d value extracted e.g. from [27]
(g = 2, ξG = 4 for SU(8) flux, and z = 1 in equation (2.1) there).

B.6 Difference operator from C1 trinion.

In this Appendix we present some details of the derivations of van Diejen operator from C1
trinion summarized in the Section 3. We start by S gluing the trinion (3.30) to a tube with no
defect (3.32) along y puncture by gauging corresponding SU(2)y global symmetry. This gluing
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Figure 22: On this figure we show the chain of Seiberg dualities used in the derivation
of the C1 trinion given in (B.53). On the Figure (a) we start with the S gluing of the C1
trinion (3.30) with the tube (3.32) obtained by closing SU(2)z minimal puncture with
no defect. Then we use Seiberg duality on the S-confining SU(2)y node. Resulting
gauge theory is shown on the Figure (b). After this we perform two Seiberg dualities
on one and another gauge nodes one after another. In the end we arrive to the SU(4)
gauge theory with 7 flavors, one antisymmetric and some singlets. Corresponding
quiver is shown on the Figure (d).

is S-confining, i.e. the resulting SU(2)y gauge node can be eliminated using A1 elliptic beta
integral (A.4). We end up with SU(3)×SU(2) gauge theory. Then we perform Seiberg duality
on the SU(3) node which has 7 flavors, so the duality results in SU(4) gauge node with the
same number of flavors. Once we do that the SU(2) node becomes S-confining. Integrating
it out we are left with SU(4) gauge theory with 7 flavors, one antisymmetric and some flip
singlets. This chain of dualities is shown on the Figure 22. Calculation results in the following
index of a trinion theory:

KC1
(3;0)(x , x1, z) =

κ3
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. (B.53)
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Now we glue this to a general theory with SU(2)
ex global symmetry by gauging it and

close z-puncture with the defect introduced. It can be seen from the expression above that
the mesonic vev, which corresponded to setting z = (pq)−

1
2 w−

9
2 a−1

1 q−1, is now a baryonic one.
At this value of z the trinion written above has a pole. So we have to calculate the following
residue:

O(z;w
9
2 a1;1,0)

x · I(x)∝ Res
z→(pq)−

1
2 w−

9
2 a−1

1 q−1
κ

∮

dex
4πiex

1
Γe (ex±2)

KC1
(3;0)(x , ex , z)I(ex) . (B.54)

As always this pole is coming from the contour pinching. Without loss of generality let’s con-
sider t1 integration in (B.53). The integrand has a sequence of poles outside the contour at,

tout
1 = (pq)−

1
4 w−

27
8 z−1q−l1 = (pq)

1
4 qw

63
8 a

3
4
1 q−l1 . (B.55)

On the other hand remaining integrations have poles at the following positions,

t2 = (pq)−
1
4 w

27
8 a
− 1

4
1 xq−l2 , t3 = (pq)−

1
4 w

27
8 a
− 1

4
1 x−1q−l3 , t4 = (pq)

1
4 w−

117
8 a
− 1

4
1 q−l4 ;

and (B.56)

t2 = (pq)−
1
4 w

27
8 a
− 1

4
1 x̃q−l2 , t3 = (pq)−

1
4 w

27
8 a
− 1

4
1 x̃−1q−l3 , t4 = (pq)

1
4 w−

117
8 a
− 1

4
1 q−l4 .

Using the SU(4) condition
∏4

i=1 t i = 1 both of these sets of poles can be rewritten as poles of
t1 but this time inside integration contour:

t in
1 = t−1

2 t−1
3 t−1

4 = (pq)
1
4 w

63
8 a

3
4
1 ql2+l3+l4 . (B.57)

Poles inside and outside the contour collide whenever l1 + l2 + l3 + l4 = 1. Thus, we have 4
contributions (l1, l2, l3, l4) = (1,0, 0,0) or (0, 1,0, 0) or (0, 0,1, 0) or (0, 0,0, 1). We have 4!
such contributions due to the permutations of the t ’s. There is also a factor of 2 due to the
sum over equal contributions of poles in the two lines of (B.56)21. However this overall factor
is not relevant for the form of operator, and as elsewhere in the text of the paper we disregard
it. Finally once we evaluate the residue at the pole in z we are left only with x̃ integration
and an overall factor of zero. This zero is cancelled noticing that x̃ integration contour is
pinched either at x̃ = x±1 or x̃ = (q±1 x)±1. Once we compute residues corresponding to these
pinchings we obtain the A∆O (3.33).

C Derivation of the (D5, D5) trinion

Let us discuss here the description for the sphere with two minimal and two maximal punctures
that we have obtained in the previous section Figure 16. The description is SU(N + 3) SQCD
in the middle of the conformal window with flip fields. The superpotentials correspond to
triangles in the quiver and to certain baryonic operators: these are all the operators of R-
charge two with vanishing charges for global symmetries. Note that although the triangle
superpotentials are relevant the baryonic superpotentials are irrelevant for N > 1.

First the form of the theory after the sequence of dualities in Figure 16 (depicted also in
Figure 12 in a more collapsed way) implies that conjugating one pair of minimal/maximal
punctures moment maps (by introducing flip fields) to make them of the same type, the two
minimal punctures and the two maximal ones appear exactly on the same footing. We expect

21The fact that poles with x and with x̃ contribute equally has to be shown in the detailed calculation which we
leave to the interested reader
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Figure 23: On the left we have the three punctured sphere, two maximal SU(3)
punctures and one maximal USp(4) puncture, with zero flux of the (D5, D5) minimal
conformal matter theory. The theory has baryonic superpotentials consistent with
the assigned charges. The superpotential is built by taking a triplet of fundamen-
tals transforming under one of the SU(3)s, computing third antisymmetric power to
build a singlet of the SU(3), and then taking the fields transforming under USp(4)
to the second antisymmetric power to build a singlet under it. This superpotential is
irrelevant for the trinion. On the right hand side we glue four trinions into a genus
three surface. This theory has the baryonic superpotentials as well as the ones cor-
responding to closed loops in the quiver which are consistent with the charges. The
symmetry of the theory is SU(10)×U(1)h ⊂ SO(20) where SO(20) is the symmetry
of the 6d SCFT.

that same type of punctures should be exchangeable by duality arguments [34], and here they
are manifestly so. The model flows to a point on the conformal manifold which is invariant
under the exchange of the punctures. Moreover since the superpotential distinguishing all
the punctures is the irrelevant baryonic one there is no actually a direction on the conformal
manifold preserving all the symmetries we want. However when we will glue these theories
together in principle a conformal manifold can arise.22 The issue is that for low enough number
of punctures/“small” enough punctures/ low genus/low flux some general expectations (such
as existence of exactly marginal deformations corresponding to complex structure moduli)
from the 4d theory might fail.

Moreover there is another way to view this theory. As was argued in [34,38] in general we
expect that the SU(2) punctures might combine into a bigger puncture of USp type. The SU(2)
punctures are obtained by partial closing of the USp(2N) puncture. These partial closings are
obtained by giving vevs to some components of the moment map (with addition of certain
flip fields) and the symmetry can be broken to USp(2k) with k < N . The claim of [34, 38]
is that if we have k ≤ N minimal SU(2) punctures somewhere on the conformal manifold of
the theory they might recombine into an USp(2k) puncture. Thus for N > 1 we can view the
theories of Figure 12 alternatively as a three punctured sphere with two maximal SU(N + 1)
punctures and a non maximal/minimal USp(4) puncture. Note again that this symmetry is
trivially manifest in the Lagrangian and is preserved by the irrelevant baryonic deformation.

For the special case of N = 2 the USp(4) puncture is a maximal one. Thus this new
description discussed here gives us a completely Lagrangian formulation of a sphere with three
maximal punctures in this case. Since we obtain this theory by S-gluing two copies of identical
theories the flux associated to it is zero. Starting from this sphere we can explicitly build
theories corresponding to arbitrary surfaces. For example, in Figure 23 a genus three surface

22The situation is very similar to what happens in the discussion of the compactification of the minimal SU(3)
SCFT [21].
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with zero flux is depicted. Doing so all the deformations (including the baryonic ones) become
relevant/exactly marginal. In particular we can compute say the index of the genus g theory
and obtain,

I = 1+ q p
�

3g − 3+ (g − 1) (1+ 99SU(10) + 45SU(10) h
6 + 45SU(10) h

−6)
�

+ · · · , (C.1)

which is exactly as expected [94]. Note that,

1+ 99SU(10) + 45SU(10) h
6 + 45SU(10) h

−6 → 190SO(20) , (C.2)

using the decomposition of SO(20) into irreps of SU(10) × U(1). The symmetry of the 6d
theory is SO(20) and as the flux is zero we expect to see it appear somewhere on the conformal
manifold.

D RS A∆O as square root of van Diejen A∆O

The van Diejen model has a simple relation to the more well know elliptic Ruijsenaars-Schneider
(RS) system. Let us review here the relation. In a sense one can think of the BC1 van Diejen
Hamiltonian as a refined square of the A1 RS Hamiltonian. The basic observation is a simple
identity satisfied by the theta function: the theta functions θp(z) satisfy a simple “square root”
identity,

θp(z
2) = θp(z)θp(−z)θp(p

1
2 z)θp(−p

1
2 z) . (D.1)

Using this identity let us consider the shift part of the BC1 van Diejen operator,

∏8
i=1 θp((qp)

1
2 hi x)

θp(qx2)θp(x2)
f (qx) , (D.2)

and make the specialization of the octet of parameters,

{hi} →
§

±
s

pq
t

, ±
s

q
t

, ±
s

p
t

, ±
1
p

t

ª

. (D.3)

Then (D.2) becomes

θp(
qp
t x2)θp(

qp
t qx2)

θp(x2)θp(qx2)
f (q x) . (D.4)

Now let us consider the A1 Ruijsenaars-Schneider operator,

ORS · f (x) =
θp(

qp
t x2)

θp(x2)
f (q

1
2 x) +

θp(
qp
t x−2)

θp(x−2)
f (q−

1
2 x) , (D.5)

and compute

(ORS)
2 · f (x) =

θp(
qp
t x2)θp(

qp
t qx2)

θp(qx2)θp(x2)
f (qx) +

θp(
qp
t x−2)θp(

qp
t qx−2)

θp(qx−2)θp(x−2)
f (q−1 x)

�

θp(
qp
t x−2)

θp(x−2)

θp(
qp
t q−1 x2)

θp(q−1 x2)
+
θp(

qp
t x2)

θp(x2)

θp(
qp
t q−1 x−2)

θp(q−1 x−2)

�

f (x) . (D.6)
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This is the BC1 van Diejen operator with the parameters specialization (D.3). To see that the
constant part agrees let us compute the residues at the poles of the constant piece of (D.6).
We find,

Resx=sq1/2 (ORS)
2
const = −s

θp (t)θp

�

q−1 t
�

2q−
1
2θp (q−1) (p; p)2∞

,

Resx=sq−1/2 (ORS)
2
const = s

θp (t)θp

�

q−1 t
�

2q
1
2θp (q−1) (p; p)2∞

,

Resx=sq1/2p1/2 (ORS)
2
const = −s

θp (t)θp

�

q−1 t
�

2q−
1
2 p−

1
2θp (q−1) (p; p)2∞

,

Resx=sq−1/2p1/2 (ORS)
2
const = s

θp (t)θp

�

q−1 t
�

2q
1
2 p−

1
2θp (q−1) (p; p)2∞

, (D.7)

where s = ±1. There are also poles at x = ±p
1
2 but computation yields zero residues. Using

(D.1), it is easy to check that the above residues match exactly the ones in (3.7) with the spe-
cialization (D.3). Since both operators are elliptic with the same period, this means that they
can differ only by x-independent function (which they do as can be checked in p expansion).
So we conclude that,

(ORS)
2 · f (x) =OV D · f (x) (D.8)

up to x-independent function and OV D is the van Diejen operator with the specialization (D.3).
Moreover, also the elliptic Gamma function satisfies the following “square root” identity,

Γe(x
2) = Γe(±x)Γe(±

p
qx)Γe(±

p
px)Γe(±

p
qpx) . (D.9)

Using this identity and specialization (D.3) on the Φ-gluing integration measure in the rank
one E-string case we obtain,

∏

i=1 Γe((qp)
1
2 hi x

±1)
Γe(x±2)

→
Γe(

qp
t x±2)

Γe(x±2)
, (D.10)

which is the relevant Φ-gluing measure for the Ruijsenaars-Schneider model. For example it
is simply the contribution of the SU(2) N = 2 vector multiplet [2] (without the term coming
from the Cartan of the adjoint chiral field).23

E Duality properties

In this Appendix we will provide supporting evidences for various duality properties the oper-
ators are expected to satisfy following duality arguments. Namely in Appendix E.1 we test the
kernel property (3.41) claiming that the tube index (3.40) is the kernel function of the van
Diejen model. In Appendix E.2 we check the commutavity of the AN operators (4.20). Finally
in the Appendix E.3 we discuss the kernel property (4.32) of the tube index (4.31) and our
AN operator.

23Similar considerations can be used to relate USp(2Q) Ruijsenaars-Schneider model to the BCQ van Diejen
model. There for example the adjoint of USp(2Q) can be obtained from the antisymmetric representation and the
octets of fundamentals with a similar specification (again without the contribution of the Cartans in the adjoint
representation).
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E.1 Proving kernel property for the A1 tube.

In this appendix we give a proof of the kernel identity (3.41).24 We will first write down
explicit expressions for right and left sides of the relation and then prove that they are actually
equal. To start we compute lhs of the equation

Õ(z;u12w6;1,0)
x · K̃A1

(2;0)(x , y) = CK̃A1
(2;1)(x , y) , (E.1)

where K̃A1
(2;1)(x , y) is the tube theory that we obtain closing z puncture of A1 trinion (3.8)

with the defect introduced and performing conjugation similar to (3.40). It is just obtained
by computing the residue of the trinion at the pole z = (pq)−

1
2 u−12w−6q−1. At this point the

integration contour is pinched as can be seen from (3.38) with the choice mi = 0 , ∀i and
(k1, k2, k3) = (1,0, 0) or (0, 1,0) or (0, 0,1), where we should sum over all possible partitions.
This calculation leads to the following expression for the tube theory:

KA1
(2;1)(x , y) =

Γe
�

pq2w12u24
�

2θp

�

(pq)−
1
2 u−18q−1 x±1

�Γe

�

(pq)
1
2 v6u12 y±1

�

Γe
�

v6u−6 x±1 y±1
�

×

Γe

�

(pq)
1
2 u6w12qx±1

�

6
∏

j=1

Γe

�

(pq)
1
2 u4v−2w−2a j x

±1
�

Γe
�

u−14v−2w−2a j

�

+

Γe
�

pq3w12u24
�

θp

�

(pq)
1
2 u18qx

�

θp (x2)
Γe

�

(pq)
1
2 v6u12q y±1

�

Γe
�

v6u−6 x y±1
�

Γe
�

v6u−6q−1 x−1 y±1
�

×

Γe

�

(pq)
1
2 u6w12 x−1

�

Γe

�

(pq)
1
2 u6w12qx

�

6
∏

j=1

Γe
�

u−14v−2w−2a jq
−1
�

×

Γe

�

(pq)
1
2 u4v−2w−2a jqx

�

Γe

�

(pq)
1
2 u4v−2w−2a j x

−1
�

+
�

x → x−1
�

,

K̃A1
(2;1)(x , y)≡ Γe

�

(pq)
1
2 u−6w−12 x±1

�

Γe

�

(pq)
1
2 v−6w−12 y±1

�

KA1
(2;1)(x , y) . (E.2)

Calculation of the lhs of (E.1) leads to KA1
(2;1)(x , y) with the extra constant C given by

C =
θp

�

q−1v12u−12
�

θp (pqw12u24)θp (pq2w12u24)

6
∏

j=1

θp

�

u−14v−2w−2a jq
−1
�

. (E.3)

This constant appears since in our derivations of the tubes we were often omitting overall
factors independent of x and y . If one keeps track of all constants this coefficient should be
just equal to one. In order to show relation (E.1) one needs to use the following θ -function
identity,

θp

�

(pq)
1
2 u−6v−12 x

�

θp

�

v6u−6 x y±1
�

θp

�

(pq)
1
2 u18qx

�

θp (q−1v12u−12)θp

�

(pq)
1
2 u12v6 y±1

�

θp (qx2)
+

θp

�

(pq)
1
2 u6v12 x

�

θp

�

v6u−6q−1 x−1 y±1
�

θp

�

(pq)
1
2 u18 x−1

�

θp (q−1v12u−12)θp

�

(pq)
1
2 u12v6 y±1

�

θp (q−1 x−2)
= 1 . (E.4)

Let us provide the following proof of the identity. First of all we notice that both terms on the
lhs of this expression are elliptic functions with periods 1 and p. In the fundamental domains

24This is already considered in [70] and we include the discussion here for completeness.
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these functions have poles at x = ±q−1/2 and x = ±q−1/2p1/2 as well as at y =
�

(pq)
1
2 u18

�±1
.

It can be checked that the residues of two terms at these poles are exactly the same but of the
opposite signs. Hence sum of these terms is just constant that does not depend neither on x
nor on y . In order to prove that this constant is actually 1 we have to choose simple values
for x and y . For example if we choose y = qv−6u6 x we can see that the second term on the
lhs vanishes and the first term is exactly 1 proving the identity (E.4).

Similar calculation can be performed for the rhs of the kernel property identity (3.41). In
this case by construction we should obtain:

Õ(z;u12w6;1,0)
y · K̃A1

(2;0)(x , y) = CK̃A1,dual
(2;1) (x , y) , (E.5)

where K̃A1,dual
(2;1) (x , y, z) is the tube with the defect that can be obtained starting from the Seiberg

dual of A1 trinion (3.8). This Seiberg dual is basically the same as the original theory with
extra flip singlets. The quiver of the Seiberg dual theory for general rank is shown on the
Figure 11 for the higher rank case and A1 expression can be obtained simply putting N = 1.
Corresponding index is given by:

KA1,dual
3 (x , y, z) =

κ2

2

6
∏

j=1

Γe

�

(pq)
1
2 u4v−2w−2a j x

±1
�

Γe

�

(pq)
1
2 v4u−2w−2a j y±1

�

×

Γe

�

(pq)
1
2 w4v−2u−2a jz

±1
�

∮

d t1

2πi t1

d t2

2πi t2

1
3
∏

i 6= j
Γe

�

t i
t j

�

3
∏

i=1

Γe
�

(pq)1/6u−2v4w4 t i x
±1
�

×

Γe
�

(pq)1/6u4v−2w4 t i y±1
�

Γe
�

(pq)1/6w−2u4v4 t iz
±1
�

Γe

�

(pq)1/3u−2v−2w−2 t−1
i a−1

j

�

. (E.6)

As function of x , y and z fugacities this function is of course exactly the same as the index
(3.8) of the original trinion theory. To obtain the index K̃A1,dual

(2;1) (x , y) of this trinion we should

once again capture the residue of the pole at z = (pq)−
1
2 u−12w−6q−1 and add flip multiplets.

K̃A1,dual
(2;1) (x , y)≡ Γe

�

(pq)
1
2 u−6w−12 x±1

�

Γe

�

(pq)
1
2 v−6w−12 y±1

�

KA1,dual
(2;1) (x , y) ;

KA1,dual
(2;1) (x , y)≡

∑

k1+k2+k3=1

KA1,dual
(2;{k1,k2,k3})

(x , y) ,
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(2;{k1,k2,k3})

(x , y) = Γe
�

u−14w−2v−2a jq
−K
�

Γe
�

pqw10u10v−2a jq
K
� Γe

�

y2q−k3
�

Γe
�

y2qk2−k3
� ×

Γe
�

y−2q−k2
�

Γe
�

y−2qk3−k2
�

Γe

�

(pq)
1
2 u12w12v−6qk2+k3 y±1

�

Γe

�

(pq)−
1
2 w−12u−12v6 y−1q−k2−K

�

Γe

�
�

(pq)−
1
2 u12w12v−6 yq2k2+k3

�±1�

Γe

�
�

(pq)
1
2 u12w12v−6 y−1q2k3+k2

�±1� ×

Γe

�

(pq)−
1
2 u−12w−12v6 yq−k3−K

�

Γe

�

(pq)
1
2 u6w12 x±1qk2+k3

�

Γe
�

u−6v6 y x±1q−k3
�

×

Γe
�

u−6v6 y−1 x±1q−k2
�

Γe

�

(pq)
1
2 u12v6 y−1qK−k2

�

Γe

�

(pq)
1
2 u12v6 yqK−k3

�

×

Γe
�

pqu24w12qK+k2+k3
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6
∏
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Γe
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1
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j qk2 y
�

Γe

�

(pq)
1
2 u2w2v−4a−1

j qk3 y−1
�

×

Γe

�

u−10w−10v2a−1
j q−k2−k3

�

Γe

�
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�
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�

(pq)
1
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. (E.7)
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Computing lhs of (E.5) we can check that indeed we get the tube K̃A1,dual
(2;1) (x , y) with extra

constant C given by (E.3).
Now in order to check the kernel property (3.41) we just need to show that the

two expressions (E.2) and (E.7) for the tube theories indices are actually equal i.e.
K̃A1
(2;1)(x , y) = K̃A1,dual

(2;1) (x , y). In principle their equality follows directly from the fact that
they are derived closing punctures of Seiberg-dual theories in exactly the same way. However
we can provide an independent proof for it. Using explicit expressions (E.2) and (E.7) equality
of the tube expressions reduces to the following θ -function identity:

F1(x , y) = F2(x , y) ,

F1(x , y)≡
θp

�

(pq)
1
2 u6w12 x±1

�

θp

�

(pq)−
1
2 u−18q−1 x±1

�

6
∏

j=1

θp

�

u−14v−2w−2a jq
−1
�

+ θp

�

pq2w12u24
�

×

θp

�

(pq)
1
2 v6u12 y±1

�











θp

�

(pq)
1
2 u6w12 x

� 6
∏

j=1
θp

�

(pq)
1
2 u4v−2w−2a j x

�

θp (v6u−6q−1 x−1 y±1)θp

�

(pq)
1
2 u18qx

�

θp (x2)
+
�

x→ x−1
�











,

(E.8)

F2(x , y)≡
θp

�

(pq)
1
2 u12v6 y±1

�

θp

�

(pq)−
1
2 u−12w−12v6q−1 y±1

�

6
∏

j=1

θp

�

pqw10u10v−2a j

�

+ θp

�

pq2w12u24
�

×

θp

�

(pq)
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�

(pq)
1
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� 6
∏

j=1
θp

�

(pq)
1
2 u2w2v−4a−1

j y
�

θp (y2)θp (v6u−6q−1 y−1 x±1)θp

�

(pq)
1
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�+
�

y→ y−1
�











.

(E.9)

Let us provide a proof of this identity. For this we notice that both F1(x , y) and F2(x , y) are
elliptic functions in both x and y with periods 1 and p. In the fundamental domain both these
functions have poles at x =

�

v6u−6q−1 y±1
�±1

. The residues of the functions at these poles are
equal to:

Resx=v6u−6q−1 y s F1(x , y) = Resx=v6u−6q−1 y s F2(x , y) =

θp

�

pq2w12u24
�

θp

�

(pq)
1
2 v6w12q−1 y s

�

θp

�

(pq)
1
2 u12v6 y−s

�

u6v−6q y−s (p; p)2∞ θp (y−2s)θp (v12u−12q−2 y2s)
×

6
∏

j=1

θp

�

(pq)
1
2 v4u−2w−2a jq

−1 y s
�

,

Resx=v−6u6q y s F1(x , y) = Resx=v−6u6q y s F2(x , y) =

−
θp

�

pq2w12u24
�

θp

�

(pq)
1
2 v6w12q−1 y−s

�

θp

�

(pq)
1
2 u12v6 y s

�

u−6v6q−1 y−s (p; p)2∞ θp (y2s)θp (v12u−12q−2 y−2s)
×

6
∏

j=1
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�

(pq)
1
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−1 y−s
�

,

(E.10)
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where s = ±1. It also looks like there are poles at x =
�

(pq)
1
2 u18q

�±1
, x = ±1, x = ±p1/2,

y =
�

(pq)
1
2 u12w12v−6q

�±1
, y = ±1 and y = ±p1/2. However accurate analysis shows that the

residues of both F1(x , y) and F2(x , y) at these putative poles are actually zero so that there
are actually no poles at these points.

As we see both F1(x , y) and F2(x , y) are elliptic functions in x and y with identical sets
of poles and residues. This means that they differ at most by a constant independent of x
and y . Now we need to check some values of x and y to find this constant. The easiest way
to do it is to find zeroes of functions. For example both F1(x , y) and F2(x , y) have zeroes
at x = (pq)−

1
2 u−6w−12 and y = (pq)−

1
2 v−6u−12. Since their zeroes coincide we can finally

conclude that indeed F1(x , y) = F2(x , y) leading to the equality between the tube indices
K̃A1
(2;1)(x , y) and K̃A1,dual

(2;1) (x , y). Hence right hand sides of both (E.1) and (E.5) are equal leading
to the proof of the desired kernel property (3.41). Here we provided proof of a particular kernel
property with the fixed choice of the operator and the tube theories. The latter ones are also
defined by the way we close puncture of the trinion. However any other tube theory can be
used as the kernel function of any A∆O derived in the Section (3.2). The proof in each of
these cases is identical to the one we presented in the this appendix.

E.2 Discussion of commutation relations of the AN operators

Now let’s move to the duality properties of the AN operator (4.20). In this Appendix in partic-
ular we will give evidence of the commutativity relations (4.26) of all of these operators. For
this purpose it would be useful to know how the shifts of variables of the form

xm→ qxm , x l → q−1 x l , and xm→ pxm , x l → p−1 x l (E.11)

act on various parts of operators (4.20). These shifts are precisely the ones realized by the
shift operators ∆(1,0)

lm and ∆(0,1)
lm defined in (4.8).

First of all let’s notice that all constant parts (4.22) are invariant under these shifts:

∆
(0,1)
lm (x)W (ξi ;1,0;α)(x , h) =W (ξi ;1,0;α)(x , h) ,

∆
(1,0)
lm (x)W (ξi ;0,1;α)(x , h) =W (ξi ;0,1;α)(x , h) , ∀ i , (E.12)

where α index can take values ” f .” and ”n. f .” distinguishing between flipped and non-flipped
operators. For convenience we have also introduced corresponding index for the constant
parts W (x , h). While in non-flipped case constant part is given by (4.22) in case of flip we just
postulated according to (4.25)

W (ξi ;1,0; f .)(x , h)≡W (ξi ;1,0;n. f .)
�

x−1, h−1
�

. (E.13)

Also here and everywhere further in this section we omit the (a) index of x variables for brevity.
Functions Ã(ξi ;1,0)

lm (x) defined in (4.21) are not invariant under the shifts but rather acquire
extra prefactor as follows:

∆(0,1)
nr Ã(ξi ;1,0)

lm (x) = α(1,0)
nrlm(x)Ã

(ξi ;1,0)
lm (x) , ∆(1,0)

nr Ã(ξi ;0,1)
lm (x) = α(0,1)

nrlm(x)Ã
(ξi ;0,1)
lm (x) , (E.14)

where

α
(1,0)
nrlm(x) =







































(−1)N+1p−1qN+2h̃−1/2 x−N−3
l , n 6= m , r = l ;

(−1)N+1q−1pN+2h̃−1/2 x−N−3
m , n= m , r 6= l ;

1 , n, r 6= m, l ;
(−1)N+1 (pq)−N−2 h̃1/2 xN+3

l , r 6= m , n= l ;
(−1)N+1pqh̃1/2 xN+3

m , n 6= l , r = m ;
(pq)N+1h̃−1(xm x l)−N−3 , l = r , n= m ;
(pq)−N−1h̃(xm x l)N+3 , l = n , r = m ;

(E.15)
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and α(0,1)
nrlm can be obtained from the expressions above by simple exchange of p and q param-

eters. Here we use the same notations of the Section 4. Namely h̃i are U(1) charges of the
moment maps of the puncture operator acts on and h̃ =

∏

j h̃ j . Notice that the prefactor α is
independent of the i index of the operator, i.e. of the choice of moment map we give vev to in
order to introduce the defect.

Now using expressions above we can find the following commutators:

h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;0,1;β)

x

i

=
N+1
∑

l 6=m

N+1
∑

n6=r

h

Ã(ξi ;1,0)
lm ∆

(1,0)
lm Ã

(ξ j ;0,1)
nr ∆(0,1)

nr −

Ã
(ξ j ;0,1)
lm ∆

(0,1)
lm Ã(ξi ;1,0)

nr ∆(1,0)
nr

i

+
N+1
∑

l 6=m

�

Ã(ξi ;1,0)
lm ∆

(1,0)
lm W (ξ j ;0,1;β)−

W (ξ j ;0,1;β)Ã(ξi ;1,0)
lm ∆

(1,0)
lm +W (ξi ;1,0;α)Ã

(ξ j ;0,1)
lm ∆

(0,1)
lm − Ã

(ξ j ;0,1)
lm ∆lmW (ξi ;1,0;α)

i

, (E.16)

where as usually α and β indices can take values ” f .” and ”n. f .” distinguishing between flipped
and non-flipped operators. Since all constant parts W (ξi ;... ) are invariant under corresponding
shifts as specified in (E.12) we can immediately see that the second term in the expression
above is zero. The remaining term in the first line can be rewritten using (E.14) in the following
form

h

Õ(ξi ;0,1;α)
x , Õ(ξ j ;1,0;β)

x

i

=
N+1
∑

l 6=m

N+1
∑

n6=r

�

α
(0,1)
lmnr −α

(1,0)
nrlm

�

Ã(ξi ;1,0)
lm Ã

(ξ j ;0,1)
nr ∆

(1,0)
lm ∆(0,1)

nr . (E.17)

Finally using explicit expressions for α coefficients from (E.15) we can see that the difference
in the brackets above is zero for each term in the sum. Hence we conclude

h

Õ(ξi ;0,1;α)
x , Õ(ξ j ;1,0;β)

x

i

= 0 , ∀ i, j . (E.18)

This result is expected from duality arguments and says that two shift operators constructed
by closing two punctures in various ways (i.e. exchange in p and q shifts as well as baryon
vevs used to close puncture) commute with each other.

Finally we should prove that the commutators
h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

and
h

Õ(ξi ;0,1;α)
x , Õ(ξ j ;0,1;β)

x

i

are also zero. It is enough to show that one of them vanishes and

the other one will follow automatically since they differ only by the exchange of parameters
p ↔ q. Proving this kind of commutation identities is more complicated since in this case
we can not use periodicity of theta functions. Let’s directly study the following expression
h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;0,1;β)

x

i

I(x), where I(x) is some arbitrary function and both ξi and ξ j can

be either flipped or not flipped moment maps. In order to approach this calculation we will
consider separately prefactors of various possible shifts of I(x) function. Each such prefactor
has to be independently equal to zero in order for the whole commutation to work.

1. Term I(q−1 x l , qxm, q−1 xn, qxr) with l 6= m 6= n 6= r. Such contribution originates from
the action of the product of two Ãlm∆lm terms with different indices in the shift oper-
ators. Also since in shift parts of operators (4.20) we sum over all possible indices we
should consider four different possible combinations of this indices:

h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

I(x)∼
�

Ã(ξi ;1,0)
lm (x)Ã

(ξ j ;1,0)
nr (q−1 x l , qxm, . . . )+

Ã(ξi ;1,0)
nr (x)Ã

(ξ j ;1,0)
lm (q−1 xn, qxr , . . . ) + Ã(ξi ;1,0)

nm (x)Ã
(ξ j ;1,0)
l r (q−1 xn, qxm, . . . )+

Ã(ξi ;1,0)
l r (x)Ã

(ξ j ;1,0)
nm (q−1 x l , qxr , . . . )−

�

ξi ↔ ξ j

�

�

I(q−1 x l , qxm, q−1 xn, qxr) . (E.19)

66

https://scipost.org
https://scipost.org/SciPostPhys.12.4.140


SciPost Phys. 12, 140 (2022)

Substituting expressions for the Ãlm functions from (4.21) we can see that this part of
the commutator is zero when the following theta function identity is valid:

Fξi
lmnr(x)F

ξ j

nrlm(q
−1 x l , qxm) + Fξi

nmlr(x)F
ξ j

l rnm(q
−1 xn, qxm) +

Fξi
l rnm(x)F

ξ j

nmlr(q
−1 x l , qxr) + Fξi

lmnr(x)F
ξ j

nrlm(q
−1 x l , qxm)−

F
ξ j

l rnm(x)F
ξi
nmlr(q

−1 x l , qxr)− F
ξ j

lmnr(x)F
ξi
nrlm(q

−1 x l , qxm)−

F
ξ j

lmnr(x)F
ξi
nrlm(q

−1 x l , qxm)− F
ξ j

nmlr(x)F
ξi
l rnm(q

−1 xn, qxm) = 0 , (E.20)

where the functions Fξi
lmnr are defined as follows

Fξi
lmnr(x)≡

θp

�

(pq)
1
2ξi h̃

1
4 xn

�

θp

�

(pq)
1
2ξi h̃

− 1
4 x−1

n

�

θp

�

(pq)
1
2ξi h̃

1
4 xr

�

θp

�

(pq)
1
2ξi h̃

− 1
4 x−1

r

�

θp

�

q xm
x l

�

θp

�

xm
x l

�

θp

�

xn
x l

�

θp

�

xm
xn

�

θp

�

xr
x l

�

θp

�

xm
xr

� ,

(E.21)

We do not provide a proof of the condition for the F -functions specified above. However
we do check it in the series expansion in q and p instead for each pair of i and j indices.
Indeed the check up to the order O(p3q3) strongly suggests that the relation is true and
hence this contribution to the commutator is just zero.

2. Term I(q2 xm, q−1 x l , q−1 xn) with l 6= m 6= n. This kind of terms come from the action of

the operators Ã(ξi ;1,0)
lm (x)∆(1,0)

lm Ã
(ξ j ;1,0)
nm (x)∆(1,0)

nm with n 6= l 6= m. Summing over various
possible combinations of indices we obtain the following contributions:

h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

I(x)∼
�

Ã(ξi ;1,0)
lm (x)Ã

(ξ j ;1,0)
nm (q−1 x l , qxm, . . . )+

Ã(ξi ;1,0)
nm (x)Ã

(ξ j ;1,0)
lm (q−1 xn, qxm, . . . )−

�

ξi ↔ ξ j

�

�

I(q2 xm, q−1 x l , q−1 xn) . (E.22)

In order for this combination to be zero the following identity has to be satisfied

Gξi
lmn(x)G

ξ j

nml

�

q−1 x l , qxm, . . .
�

+ Gξi
nml(x)G

ξ j

lmn

�

q−1 xn, qxm, . . .
�

−

G
ξ j

lmn(x)G
ξi
nml

�

q−1 x l , qxm, . . .
�

− G
ξ j

nml(x)G
ξi
lmn

�

q−1 xn, qxm, . . .
�

= 0 , (E.23)

where

Gξi
lmn(x)≡

θp

�

(pq)
1
2ξi h̃

− 1
4 x−1

n

�

θp

�

(pq)
1
2ξi h̃

1
4 xn

�

θp

�

q xm
x l

�

θp

�

xm
x l

�

θp

�

xn
x l

�

θp

�

xm
xn

� . (E.24)

Using expansion in p and q series we can check that the identity above is indeed valid
and hence considered terms do not contribute to the commutator.

3. Term I(q−2 x l , qxm, qxr) with l 6= m 6= r. This term is similar to the previous term. It
comes from the following terms in the commutator

h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

I(x)∼
�

Ã(ξi ;1,0)
lm (x)Ã

(ξ j ;1,0)
l r (q−1 x l , qxm, . . . )+

Ã(ξi ;1,0)
l r (x)Ã

(ξ j ;1,0)
lm (q−1 x l , qxr , . . . )−

�

ξi ↔ ξ j

�

�

I(q−2 x l , qxm, qxr) . (E.25)

In order for this combination to be zero the following identity has to be satisfied

Gξi
lmr(x)G

ξ j

l rm

�

q−1 x l , qxm, . . .
�

+ Gξi
l rm(x)G

ξ j

lmr

�

q−1 x l , qxr , . . .
�

−

G
ξ j

lmr(x)G
ξi
l rm

�

q−1 x l , qxm, . . .
�

− G
ξ j

l rm(x)G
ξ j

lmr

�

q−1 x l , qxr , . . .
�

= 0 , (E.26)
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where Gξi
lmn(x) are the previously defined functions. Once again we checked the validity

of the relations written above using p and q expansion.

4. Term I(q−2 x l , q2 xm). This term comes from the contributions of the form
h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

I(x)∼
�

Ã(ξi ;1,0)
lm (x)Ã

(ξ j ;1,0)
lm (q−1 x l , qxm, . . . )−

Ã
(ξ j ;1,0)
lm (x)Ã(ξi ;1,0)

lm (q−1 x l , qxm, . . . )
�

I(q−2 x l , q2 xm) . (E.27)

This term is obviously zero since shifts act only on x l and xm in Ã(ξi ;1,0)
lm (x). The parts that

depend on x l and xm in these expressions do not depend on the choice of the moment
map ξi we give vev to. Hence it is obvious that this term does not contribute to the
commutator.

5. Constant term I(x). This term in its nature is similar to the previous one and comes
from

h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

I(x)∼
�

Ã(ξi ;1,0)
lm (x)Ã

(ξ j ;1,0)
ml (q−1 x l , qxm, . . . )−

Ã
(ξ j ;1,0)
lm (x)Ã(ξi ;1,0)

ml (q−1 x l , qxm, . . . )
�

I(x) . (E.28)

Just as in the previous term an expression above is zero since shifts act only on x l and
xm in Ã(ξi ;1,0)

lm (x) and hence there is no dependence on the moment map ξi we give vev
to.

6. I(q−1 x l , qxm). This term is the most complicated one. Unlike previous terms it comes
not only from the commutation of shift parts but also from the commutation between
constant terms W (ξi ;1,0;α)(x) and shift parts Ã(ξi ;1,0)(x). In particular we have the fol-
lowing terms,

h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

I(x)∼

 

N+1
∑

n 6=m 6=l

h

Ã(ξi ;1,0)
ln (x)Ã

(ξ j ;1,0)
nm

�

q−1 x l , qxn

�

+

Ã(ξi ;1,0)
nl (x)Ã

(ξ j ;1,0)
mn

�

q−1 xn, qx l

�

− Ã
(ξ j ;1,0)
ln (x)Ã(ξi ;1,0)

nm

�

q−1 x l , qxn

�

−

Ã
(ξ j ;1,0)
nl (x)Ã(ξi ;1,0)

mn

�

q−1 xn, qx l

�

i

+ Ã(ξi ;1,0)
lm (x)W (ξ j ;1,0;β)

�

q−1 x l , qxm

�

+

W (ξi ;1,0;α)(x)Ã
(ξ j ;1,0)
lm (x)− Ã

(ξ j ;1,0)
lm (x)W (ξi ;1,0;α)

�

q−1 x l , qxm

�

−

W (ξ j ;1,0;β)(x)Ã(ξi ;1,0)
lm (x)

�

I(q−1 x l , qxm) . (E.29)

Although we do not provide a proof, we once again have checked (p, q) series expansion
of the expression above for the ranks N up to N = 6 and up to the order p2q2. As a
result we find that contribution of these terms are also zero concluding our proof of all
commutation relations (4.26). On top of this there is another check of all the relations
for functions Fnlmr(x), Gnlm(x) and also the relation above. Instead of expansion in both
p and q we can set p→ 0 keeping q finite. This will simplify all theta functions down to
the simple rational functions using the limit of the theta function limp→0 θp (x)→ (1−x).
Then we can check that all the relations above hold to any order in q. For the expression
above we have checked it for the ranks N up to N = 6.

As a result we find that all of the contributions to the commutator
h

Õ(ξi ;1,0;α)
x , Õ(ξ j ;1,0;β)

x

i

are

zero. This concludes our evidence for all commutation relations (4.26).
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E.3 Discussion of the AN kernel property

Now let us discuss the kernel property (4.32) involving AN operators (4.20) we derived and the
tube index (4.31). The line of arguments here will be exactly the same as in A1 case presented
in Appendix E.1. We will start with writing left and right sides of equation (4.32) precisely
and then show that the result we get in the two cases is actually the same.

Here we will show how the procedure works for the operator obtained by closing SU(2)z
punctures with the vev of 1(wuN+1)2N+4 baryon. In this case the left hand side of the kernel
identity (4.32) we obtain

Õ(ξ;1,0; f .)
x · K̃AN

(2;0)(x , y) = CK̃AN
(2;1)(x , y) , ξ≡

�

wuN+1
�2N+4

, (E.30)

where the operator Õ(ξ;1,0; f .)
x is given by (4.11) and (4.7). The tube K̃AN

(2;0)(x , y) is given by
(4.31). It is observed from the AN trinion (4.28) after closing SU(2)z puncture with the same
1(wuN+1)2N+4 baryonic vev. Finally K̃AN

(2;1)(x , y) is the tube also obtained from the same AN trinion
closing SU(2)z minimal puncture with the defect introduced. It corresponds to capturing the

residue of the pole of the trinion theory index located at z = (pq)−
1
2
�

wu(N+1)
�−(2N+4)

q−1. This
pole comes from the pinching of the contour at the points specified in (4.29) and (4.30) with
the choice

mi = 0 ∀ i , ki = 1 , k j = 0 ∀ j 6= i . (E.31)

Substituting these values t i from (4.29) and (4.30) Summing over all possible partitions spec-
ified above we arrive to the following expression for the tube:

KAN
(2;1)(x , y)(x , y) = K~kN+2

(x , y) +
N+1
∑

m=1

K~km
(x , y) , (E.32)

K̃A1
(2;1)(x , y)≡

N+1
∏

i=1

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x i

�

Γe

�

(pq)
1
2
�

vN w2
�−2N−4

yi

�

KAN
(2;1)(x , y) ,

where the first and the second term in the first line of the equation above correspond to the
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partitions with kN+2 = 1 and km = 1 correspondingly. Expressions are given by:

T~km(x , y) =
2N+4
∏

l=1

Γe
�

u−(N+1)(2N+5)v−N−1w−2alq
−1
�

××

Γe

�

(pq)
1
2 w4N+8uN(2N+4)x−1

m

�

θp

�

(pq)
1
2 u(N+2)(2N+4)xmq

�

N+1
∏

i 6=m

1

θp

�

xm
x i

�

N+1
∏

i, j=1;i 6=m

Γe

�

�

vu−1
�2N+4

y j x
−1
i

�

×





N+1
∏

i 6=m

Γe

�

(pq)
1
2 w4N+8uN(2N+4)x−1

i q
�

2N+4
∏

l=1

Γe

�

(pq)
1
2 uN+3v−N−1w−2 x ial

�



×

�N+1
∏

i=1

Γe

�

�

vu−1
�2N+4

yi x
−1
m q−1

�

Γe

�

(pq)
1
2 v2N+4u(N+1)(2N+4) yiq

�

�

×

Γe
�

pq3w4N+8u2(N+1)(2N+4)
�

2N+4
∏

l=1

Γe

�

(pq)
1
2 uN+3v−N−1w−2 xmqal

�

,

T~kN+2(x , y) = Γe
�

pq2w4N+8u2(N+1)(2N+4)
�

2N+4
∏

l=1

Γe
�

u−(N+1)(2N+5)v−N−1w−2al

�

×

N+1
∏

i, j=1

Γe

�

�

vu−1
�2N+4

y j x
−1
i

�

N+1
∏

i=1

Γe

�

(pq)
1
2 w4N+8uN(2N+4)x−1

i q
�

×

Γe

�

(pq)
1
2 v2N+4u(N+1)(2N+4) yi

�

θp

�

(pq)−
1
2 u−(N+2)(2N+4)x−1

i q−1
�

2N+4
∏

l=1

Γe

�

(pq)
1
2 uN+3v−N−1w−2 x ial

�

. (E.33)

Finally the constant factor C in (E.30) is given by

C =

θp

�

q−1(u−1v)(N+1)(2N+4)
�

2N+4
∏

j=1
θp

�

q−1u−(N+1)(2N+5)v−N−1w−2a j

�

θp

�

pqu(N+1)(4N+8)w4N+8
�

θp

�

pq2u(N+1)(4N+8)w4N+8
� , (E.34)

In order to get (E.30) one needs to use the following intricate relation

αm +
N+1
∑

l 6=m

βlm = 1, ∀m , (E.35)

where

αm ≡

N+1
∏

j=1
θp

�

(u−1v)2N+4 y j x
−1
m q−1

�

θp

�

q−1(u−1v)(N+1)(2N+4)
� ×

θp

�

(pq)
1
2 u2N+4v(N+1)(2N+4)xm

�

∏

i 6=m
θp

�

(pq)
1
2 u(N+2)(2N+4)x i

�

N+1
∏

j=1
θp

�

(pq)
1
2 u(N+1)(2N+4)v2N+4 y j

�

∏

i 6=m
θp

�

q−1 x i x−1
m

�

, (E.36)
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βlm ≡
θp

�

(pq)
1
2 u(N+2)(2N+4)qxm

�

θp

�

(pq)
1
2 u−2N−4v−(N+1)(2N+4)x−1

l

�

θp

�

q−1(u−1v)(N+1)(2N+4)
�

N+1
∏

j=1
θp

�

(pq)
1
2 u(N+1)(2N+4)v2N+4 y j

�

×

∏

i 6=m 6=l
θp

�

(pq)
1
2 u(N+2)(2N+4)x i

� N+1
∏

j=1
θp

�

(u−1v)2N+4 x−1
l y j

�

θp

�

qxm x−1
l

� ∏

i 6=m 6=l
θp

�

x i x
−1
l

� . (E.37)

We do not provide a proof for relation (E.35). Instead, as usual, we have checked it term by
term in p expansion for several low ranks N . These checks strongly suggest the validity of the
required relation.

Now we should perform similar computation for the right hand side of the kernel property
(4.32). In this case we obtain

Õ(ξ;1,0;n. f .)
y · K̃AN

(2;0)(x , y) = CK̃AN ,dual
(2;1) (x , y) , ξ≡

�

wuN+1
�2N+4

, (E.38)

where expression for the operator can be extracted from (4.20) putting a = v and x (v)i ≡ yi .
Notice that while on the r.h.s. (E.30) of the kernel equality we were required to close with the
flip, on the l.h.s. specified above closure is performed with no flips. Finally K̃AN ,dual

(2;1) (x , y) is
the tube obtained closing the minimal puncture of Seiberg-dual trinion theory with the defect
introduced. This Seiberg-dual theory has the following index:

KAN ,dual
3 = κN+1

N+1
∏

i=1

2N+4
∏

l=1

Γe

�

(pq)
1
2 uN+3v−N−1w−2al x i

�

×

Γe

�

(pq)
1
2 vN+3u−N−1w−2al yi

�

Γe

�

(pq)
1
2 (uv)−N−1w2N+2alz

±1
�

∮ N+1
∏

i=1

d t i

2πi t i

N+2
∏

i 6= j

1

Γe

�

t i
t j

� ×

N+2
∏

i=1

N+1
∏

j=1

2N+4
∏

l=1

Γe

�

(pq)
1

2(N+2)u−2w4v2(N+1)x−1
j t i

�

Γe

�

(pq)
1

2(N+2) v−2w4u2(N+1) y−1
j t i

�

×

Γe

�

(pq)
1

2(N+2)w−2N (uv)2(N+1) t iz
±1
�

Γe

�

(pq)
N+1

2(N+2) (uv)−N−1w−2a−1
l t−1

i

�

. (E.39)

The quiver of this theory is shown on the Figure 11. It is also SU(N +1) gauge theory with
(2N + 4) flavors and some extra flip singlets.

Starting from the index (E.39) we can close SU(2)z minimal puncture using the very same
baryonic vev 1(wuN+1)2N+4 . This once again corresponds to capturing the residue of the pole of

(E.39) located at z = (pq)−
1
2
�

wu(N+1)
�−(2N+4)

q−1. Performing usual calculation we obtain the
following index of the tube theory:
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K̃AN ,dual
(2;1) (x , y)≡

N+1
∏

i=1

Γe

�

(pq)
1
2
�

uN w2
�−2N−4

x i

�

Γe

�

(pq)
1
2
�
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yi

�

×
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�
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(E.40)

Finally the constant C in (E.38) is the same constant defined in (E.34). Deriving (E.38)
requires identity similar to (E.35) which we once again check in expansion for low ranks.

Comparing left (E.30) and right (E.38) sides of the kernel function property (4.32) we
can finally see that its validity reduces to the equality K̃AN

(2;1)(x , y) = K̃AN ,dual
(2;1) (x , y) between

indices of the tubes obtained from Seiberg dual theories. Since indices of the Seiberg
dual theories are equal [28], and we compute the residue of the same pole located at

z = (pq)−
1
2
�

wu(N+1)
�−(2N+4)

q−1 expressions we obtain should be the same functions of x
and y . So the required equality should work by construction. Relying on this argument we
conclude that the tube index K̃AN

(2;0)(x , y) is indeed a kernel function of our AN operator (4.20).
Just as in A1 case the same proof can be used for A∆Os and tube theories obtained by closing
punctures in all other possible ways.
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