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Abstract

We consider R-matrix realization of the quantum deformations of the loop algebras g̃ cor-
responding to non-exceptional affine Lie algebras of type bg = A(1)N−1, B(1)n , C (1)n , D(1)n , A(2)N−1.
For each Uq(g̃) we investigate the commutation relations between Gauss coordinates of
the fundamental L-operators using embedding of the smaller algebra into bigger one.
The new realization of these algebras in terms of the currents is given. The relations
between all off-diagonal Gauss coordinates and certain projections from the ordered
products of the currents are presented. These relations are important in applications to
the quantum integrable models.
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1 Introduction

Classification of the solutions to the quantum Yang-Baxter equation for the case of non-
exceptional quantum affine Lie algebras was found in the pioneering paper [1].

Let g be one of the Lie algebras slN , o2n+1, sp2n or o2n corresponding to the series of the
classical Lie algebras AN−1, Bn, Cn and Dn respectively. Let bg be one of non-exceptional affine
Lie algebras A(1)N−1, B(1)n , C (1)n , D(1)n and A(2)N−1. By g̃ we denote the loop algebra which is the
affine algebra bg with zero central charge. To save notations we will use the same names for
the different loop algebras g̃ as for the affine algebras bg.

Let q ∈ C be an arbitrary complex number not equal to zero or root of unity. In this paper
we consider quantum deformation Uq(g̃) [2] of the universal enveloping algebra U(g̃) which
we call the quantum loop algebra. One may think about Uq(g̃) as the corresponding quantum
affine algebra Uq(bg) with zero central charge.

Algebra Uq(g̃) has several descriptions. It can be formulated in terms of the finite number
of Chevalley generators or countable set of Cartan-Weyl generators. Latter generators can be
gathered into finite number of the generating series and the commutation relations between
whole set of the Cartan-Weyl generators can be realized as finite number of the formal series
relations between these generating series.

For the applications to the quantum integrable models, the second description of Uq(g̃)
is more suitable since generating series of the Cartan-Weyl generators can be identified with
Gauss coordinates of the fundamental L-operators, which satisfy the same RLL-type commuta-
tion relations as quantum monodromies of the integrable systems do. It opens a possibility to
construct off-shell Bethe vectors for these integrable models in terms of Cartan-Weyl generators
of the algebra Uq(g̃) [3].

Realization of the algebra Uq(g̃) in terms of Cartan-Weyl generators has in turn two faces.
One is given by the quadratic RLL-type commutation relations for the fundamental L-operators
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defined by the solution of the quantum Yang-Baxter equation [1]. This construction was first
proposed in the paper [4]. On the other hand the algebra Uq(g̃) can be realized in terms
of so called currents [5]. For the case Uq(ÒglN ) an isomorphism between these two descrip-
tions was found in [6] . Recent papers [7, 8] prove similar isomorphisms for the algebras
Uq(B(1)n ), Uq(C (1)n ) and Uq(D(1)n ). In our investigation we extend these results to the case of

Uq(A
(2)
N−1). Key observation is the fact that R-matrix associated with the algebras Uq(B(1)n ),

Uq(C (1)n ), Uq(D(1)n ), Uq(A
(2)
N−1) has the same structure for all these algebras. The differences are

accumulated in one parameter ξ (see (2.1)).
In [1] one more solution to the quantum Yang-Baxter equation was found. It corresponds

to the affine algebra D(2)n . This solution has more complicated structure than R-matrices for
above mentioned algebras. We will describe the corresponding quantum loop algebra Uq(D(2)n )
in our future publications.

The paper is composed as follows. In section 2 quantum R-matrix for the algebra Uq(g̃) is
defined together with its properties. Section 3 is devoted to definition of the algebra Uq(g̃) and
description of its central elements and automorphism. Gauss coordinates of the fundamental
L-operators are introduced in section 4. Here we discuss normal ordering of subalgebras in
Uq(g̃) induced by the cyclic ordering of the Cartan-Weyl generators in the quantum affine alge-
bras. Section 5 contains the theorem which describes embedding of the smaller rank algebra
Uq(g̃) into the bigger one. This embedding is described on the level of matrix entries of the
fundamental L-operators and in terms of the Gauss coordinates. Section 6 describes new real-
ization of the algebra Uq(g̃) in terms of the currents. In section 7 so called composed currents
are introduced which belong to certain completion of Uq(g̃) and related to off-diagonal Gauss
coordinates of the fundamental L-operators. It was shown in [9,10] that analytical properties
of the composed currents and the commutation relations between them are equivalent to the
Serre relations between simple root currents. Proofs of auxiliary Propositions and Lemmas are
gathered in four Appendices.

2 R-matrix for Uq(g̃)

Let N be dimension of the fundamental vector representation of the algebra g̃ in CN . Let ei j
be an N × N matrix unit (ei j)k,l = δikδ jl for 1≤ i, j, k, l ≤ N and

i′ = N + 1− i , 1≤ i ≤ N .

To describe quantum R-matrix associated with the algebra Uq(g̃) [1,7,8] we define param-
eter ξ and dimension N of the fundamental vector representation of the algebra g̃ given in the
table

g̃ A(1)N−1 B(1)n C (1)n D(1)n A(2)2n A(2)2n−1

N N 2n+ 1 2n 2n 2n+ 1 2n

ξ q−N q1−2n q−2−2n q2−2n −q−1−2n −q−2n

(2.1)

Define also the sign function

sign(`) =

¨

+1 , `≥ 0

−1 , ` < 0

and a set of integers εi , i = 1, . . . , N

εi =

¨

sign(n− i) , for g̃= C (1)n ,

1 , for all other cases .
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For g̃= A(1)N−1, B(1)n , C (1)n , D(1)n and A(2)N−1 we need the map ı̄ for i = 1, . . . , N

ı̄ =



















�N
2 −

1
2 , N

2 −
3
2 , . . . ,−N

2 +
3
2 ,−N

2 +
1
2

�

, for g̃= A(1)N−1 ,
�

n− 1
2 , . . . , 3

2 , 1
2 , 0,−1

2 ,−3
2 , . . . ,−n+ 1

2

�

, for g̃= B(1)n , A(2)2n ,

(n, n− 1, . . . , 1,−1, . . . ,−n) , for g̃= C (1)n ,

(n− 1, . . . , 1, 0, 0,−1, . . . ,−n+ 1) , for g̃= D(1)n , A(2)2n−1 .

(2.2)

Note that for any g̃ we have
ı̄+ ı̄′ = 0 , i = 1, . . . , N . (2.3)

We introduce functions

f (u, v) =
qu− q−1v

u− v
, g(u, v) =

(q− q−1)u
u− v

, g̃(u, v) =
(q− q−1)v

u− v

of the arbitrary complex numbers u and v, which we call the spectral parameters.
Define matrices P(u, v) and Q(u, v) acting in the tensor product CN ⊗CN

P(u, v) =
∑

1≤i, j≤N

pi j(u, v) ei j ⊗ e ji , (2.4)

Q(u, v) =
∑

1≤i, j≤N

qi j(u, v) ei′ j′ ⊗ ei j , (2.5)

where rational functions pi j(u, v) and qi j(u, v) are defined as follows

pi j(u, v) =











f (u, v)− 1 , i = j ,

g(u, v) , i < j ,

g̃(u, v) , i > j ,

qi j(u, v) = εiε j q ı̄− ̄



















f (vξ, u)− 1 , i = j , i 6= i′ ,

f (vξ, u)− 1−αq , i = j , i = i′ ,

g(vξ, u) , i < j ,

g̃(vξ, u) , i > j ,

(2.6)

and
αq = (q

1/2 − q−1/2)2 .

One can check that functions (2.6) have a property

qi j(u, v) = q j′ i′(u, v) . (2.7)

Let

I=
N
∑

i=1

eii

be identity matrix in CN .

Definition 2.1. Quantum trigonometric R-matrix acting in the tensor product of two fundamental
vector representations of g̃ [1] for the algebra g̃= A(1)N−1 is

R(u, v) = I⊗ I+ P(u, v) (2.8)

and for the algebras g̃= B(1)n , C (1)n , D(1)n and A(2)N−1 is

R(u, v) = R(u, v) +Q(u, v) = I⊗ I+ P(u, v) +Q(u, v) . (2.9)
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For any X ∈ End(CN ) transposed matrix X t is

(X t)i, j = εi ε j X j′,i′ . (2.10)

Let D be a diagonal matrix
D= diag(q1̄, q2̄, . . . , qN̄ ) ,

where ı̄ for i = 1, . . . , N are given by (2.2).
Let P be permutation operator (P2 = I) in CN ⊗CN and Q be projector (Q2 = NQ) onto a

one-dimensional subspace in CN ⊗CN

P=
∑

1≤i, j≤N

ei j ⊗ e ji , Q=
∑

1≤i, j≤N

εiε jei′ j′ ⊗ ei j = Pt1 = Pt2 .

Trigonometric g̃-invariant R-matrix given by (2.8) and (2.9) possesses following properties.

• Scaling invariance
R(βu,β v) = R(u, v) , (2.11)

for any complex parameter β which is not equal to zero.

• Transposition symmetry
R12(u, v)t1t2 = R12(u, v) . (2.12)

• Twist symmetry
K1 K2 R12(u, v) = R12(u, v) K1 K2 , (2.13)

where K is N × N C-valued matrix such that KK t = I, K1 = K ⊗ I and K2 = I⊗ K . The
equality (2.13) is valid for K =D since Dt =D−1 due to (2.3).

• Yang-Baxter equation

R12(u, v) ·R13(u, w) ·R23(v, w) = R23(v, w) ·R13(u, w) ·R12(u, v) , (2.14)

where subscripts of R-matrices mean the indices of the spaces CN where it acts nontriv-
ially.

• Unitarity
R12(u, v) ·R21(v, u) = f (u, v) f (v, u) I⊗ I , (2.15)

where R21(u, v) = P12 R12(u, v)P12.

• Crossing type symmetries

D2
1 R12(vξ

2, u)t1 D−2
1 R21(u, v)t1 = I⊗ I , (2.16)

for g̃= A(1)N−1 with ξ= q−N and

D1 R12(vξ, u)t1 D−1
1 R12(v, u) ,= f (u, v) f (v, u) I⊗ I (2.17)

for g̃ = B(1)n , C (1)n , D(1)n , A(2)N−1. Crossing relation (2.17) follows from the presentation of
the matrix Q(u, v) given by (2.5) in the form

Q(u, v) =D2 P12 P12(vξ, u)t1 P12 D−1
2 −αqδN ,odd en+1,n+1 ⊗ en+1,n+1 ,

where δN ,odd = 1 for N = 2n+ 1 and 0 for N = 2n. This relation implies

R12(u, v) =D2 P12 R12(vξ, u)t1 P12 D−1
2

which is equivalent to (2.17) due to (2.15). Crossing symmetry (2.17) for R-matrix (2.9)
yields the relation similar to (2.16)

D2
1 R12(vξ

2, u)t1 D−2
1 R21(u, v)t1 = f (u, vξ) f (vξ, u) I⊗ I (2.18)
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• Pole structure
R-matrix (2.8) for g̃= A(1)N−1 has a simple pole at u= v

(u− v)
u(q− q−1)

R12(u, v)

�

�

�

�

u=v
= P12 , (2.19)

while R-matrix (2.9) for g̃ = B(1)n , C (1)n , D(1)n , A(2)N−1 has two simple poles at u = v and
u= vξ with residues

(u− v)
u(q− q−1)

R12(u, v)

�

�

�

�

u=v
= P12 ,

(vξ− u)
u(q− q−1)

R12(u, v)

�

�

�

�

u=vξ
=D−1

1 P
t1
12 D1 . (2.20)

This pole structure and crossing relations (2.16) and (2.18) allow to get for both R-
matrices (2.8) and (2.9)

x(u, vξ2)−1 vξ2 − u
u(q− q−1)

�

R12(u, v)t1
�−1

�

�

�

�

u=vξ2

=D−2
1 P

t1
12 D2

1 , (2.21)

where rational function x(u, v) is

x(u, v) =

¨

1 , for g̃= A(1)N−1 ,

f (uξ, v)−1 f (v, uξ)−1 for all other g̃ .
(2.22)

• Scaling limit
In the scaling limit ε → 0 and u → eεu, v → eεv , q → eεc/2, ξ → e−εcκ trigonometric
R-matrix (2.9) goes into rational g-invariant R-matrix

R(u, v) = I⊗ I+
c

u− v
P −

c
u− v + cκ

Q , (2.23)

for the algebras g̃= B(1)n , C (1)n , D(1)n and into rational glN -invariant the R-matrix

R(u, v) = I⊗ I+
c

u− v
P ,

for the algebras g̃= A(1)N−1, A(2)N−1.

Quantum R-matrix (2.23) appeared in investigation of the classical series Yangians and their
doubles in [11–13].

3 R-matrix formulation of the algebra Uq(g̃)

The algebra Uq(g̃) over C(q) (over C(q1/2) for g̃= B(1)n and A(2)2n ) is generated by the elements
L±i, j[±m], 1≤ i, j ≤ N , m ∈ Z+ such that

L+j,i[0] = L−i, j[0] = 0, i < j , L+i,i[0]L
−
i,i[0] = L−i,i[0]L

+
i,i[0] = 1 . (3.24)

There are also additional relations for the operators L±i, j[±m] which are due to existence of
the central elements in Uq(g̃) described in section 3.1.

The generators of the algebra Uq(g̃) can be gathered into formal series

L±i, j(u) =
∞
∑

m=0

L±i, j[±m]u∓m (3.25)
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and combined in the matrices

L±(u) =
N
∑

i, j=1

ei j ⊗ L±i, j(u) ∈ End(CN )⊗ Uq(g̃)[[u, u−1]] , (3.26)

which we call L-operators1. The commutation relations in the algebra Uq(g̃) are given by the
standard RLL commutation relations in (CN )⊗2 ⊗ Uq(g̃)[[u, u−1]]

R(u, v) · (Lµ(u)⊗ I) · (I⊗ Lρ(v)) = (I⊗ Lρ(v)) · (Lµ(u)⊗ I) ·R(u, v) , (3.27)

where µ,ρ = ± and rational functions entering R-matrices (2.8) and (2.9) should be under-
stood as series over v/u for µ= +, ρ = − and as series over u/v for µ= −, ρ = +. For µ= ρ
these rational functions can be either series over the ratio v/u or the ratio u/v.

The commutation relations in the algebra Uq(g̃) may be written in terms of matrix entries
(3.25). Using explicit expression (2.4) and (2.5) one gets

[Lµi, j(u), L
ρ

k,l(v)] = pl j(u, v) Lρk, j(v)L
µ

i,l(u)− pik(u, v) Lµk, j(u)L
ρ

i,l(v)

+
N
∑

p=1

�

δl, j′ qpl(u, v) Lρk,p(v)L
µ
i,p′(u)−δi,k′ qkp(u, v) Lµp′, j(u)L

ρ

p,l(v)
�

.
(3.28)

The sum in the last line of the commutation relations (3.28) is absent for the algebra g̃= A(1)N−1.
It follows from the commutation relations (3.27) or (3.28) that modes L+i, j[m] and L−i, j[−m],
m≥ 0 form Borel subalgebras U±q (g̃) ⊂ Uq(g̃).

Remark 3.1. One can check that the restrictions to the zero mode generators (3.24) are con-
sistent with the commutation relations (3.28). Indeed, taking the limit u→∞ in (3.28) with
µ= + and using the expansion (3.25), one gets

qδik L+i, j[0]L
ρ

k,l(v)− qδ jl Lρk,l(v)L
+
i, j[0]

= (q− q−1)
�

δl< j Lρk, j(v)L
+
i,l[0]−δi<k L+k, j[0]L

ρ

i,l(v)
�

+
N
∑

p=1

�

δl, j′qplL
ρ

k,p(v)L
+
i,p′[0]−δi,k′qkpL+p′, j[0]L

ρ

p,l(v)
�

,

(3.29)

where δi< j = 1 if i < j and 0 otherwise and

qi j = εiε j q ı̄− ̄



















q−1 − 1 , i = j , i 6= i′,

1− q , i = j , i = i′ ,

0 , i < j ,

−q ı̄− ̄(q− q−1) , i > j .

Now, if one supposes that i > j and applying (3.24) for the zero mode operators L+i, j[0],
the l.h.s. of (3.29) vanishes identically. Due to the coefficients δl< j and δi<k in the second
line of (3.29) and the combinations qp j′L

+
i,p′[0], qi′pL+p′, j[0] in the third line of this equality,

the r.h.s. also vanishes for the same reason.
Analogously, one can check that the restriction that zero mode operators L−i, j[0] vanishes

for i < j is consistent with the series expansion (3.25) in u of the L-operator L−(u). In that
case, the zero modes occur in the limit u → 0, which changes the exchange relations (3.29)
and makes everything consistent again. Finally, one can also verify that the limit v →∞ in
(3.28) for L+k,l(v) and the limit v→ 0 for L−k,l(v) leads to the same conclusions.

1Further on we will skip the sign ⊗ of the tensor product in (3.26) and write simply L±(u) =
∑

i, j ei jL
±
i, j(u).
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3.1 Central elements in Uq(g̃)

Due to the commutation relations (3.27) algebra Uq(g̃) has central elements which are given
by the following

Proposition 3.1. For any g̃= A(1)N−1, A(2)N−1, B(1)n , C (1)n and D(1)n the algebra Uq(g̃) has the central
elements Z±(v) ∈ U±q (g̃)

Z±(v) I=D2 L±(vξ2)t D−2
�

L±(v)−1
�t
=
�

L±(v)−1
�t
D2 L±(vξ2)t D−2 , (3.30)

where parameter ξ is given by the table (2.1). Equation (3.30) means that products of the ma-
trices

D2 L±(vξ2)t D−2
�

L±(v)−1
�t

and
�

L±(v)−1
�t
D2 L±(vξ2)t D−2

are equal and proportional to the unit matrix I. The proportionality coefficients are the central
elements.

Proof. To find central elements (3.30) one can transform the commutation relations for the
fundamental L-operators (3.27) to the form2

�

R12(u, v)t1
�−1

L(2)(v)−1 L(1)(u)t1 = L(1)(u)t1 L(2)(v)−1
�

R12(u, v)t1
�−1

,

where standard notations

L(1)(u) = L(u)⊗ I , L(2)(u) = I⊗ L(u)

are used. Taking the residue at the point u= vξ2 in this equation and using (2.21) one gets

D−2
1 P

t1
12 D2

1 L(2)(v)−1 L(1)(vξ2)t1 = L(1)(vξ2)t1 L(2)(v)−1 D−2
1 P

t1
12 D2

1

or
�

L(1)(v)−1
�t1

D2
1 L(1)(vξ2)t1 D−2

1 =D2
2 L(2)(vξ2)t2 D−2

2

�

L(2)(v)−1
�t2

,

which proves equality in (3.30). To prove centrality of the elements Z±(v) we consider the
chain of equalities

Z(u)I1 L(2)(v) =D2
1 L(1)(uξ2)t1 D−2

1

�

L(1)(u)−1
�t1

L(2)(v)

=D2
1 L(1)(uξ2)t1 D−2

1

�

R21(v, u)t1
�−1

L(2)(v)
�

L(1)(u)−1
�t1

R21(v, u)t1

= x(u, v)D2
1 L(1)(uξ2)t1R12(uξ

2, v)t1L(2)(v) D−2
1

�

L(1)(u)−1
�t1

R21(v, u)t1

= x(u, v)L(2)(v) D2
1 R12(uξ

2, v)t1L(1)(uξ2)t1D−2
1

�

L(1)(u)−1
�t1

R21(v, u)t1

= L(2)(v)
�

R21(v, u)t1
�−1

Z(u)I1 R21(v, u)t1 = L(2)(v) Z(u)I1 ,

where x(u, v) is defined by (2.22). For these calculations one has to use RLL commutation
relations and equalities (2.16) and (2.18) for R-matrices (2.8) and (2.9). �

2In what follows we will sometimes skip superscripts of L-operators. If these superscripts is not explicitly
mentioned it means that the corresponding relation is valid for both values ±.
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Remark 3.2. Existence of the central element Z(u) for the Yangian Y (glN ) was mentioned
in [14]. In this paper a quantum Liouville formula for the Yangian was considered. Analogous
relation in the case of the algebra Uq(A

(1)
N−1) takes the form

Z±(v) =
N
∏

s=1

k±s (vq−2s)

k±s (vq−2(s−1))
=

q-det
�

L±(vq−2)
�

q-det
�

L±(v)
� (3.31)

and can be proved in the same way as in the Yangian case [15]. In (3.31) k±
`
(v) are diagonal

Gauss coordinates introduced by (4.37).

We set the central elements Z±(u) equal to 1 in the algebra Uq(g̃). We denote by Ũq(A
(1)
N−1)

the algebra defined by Uq(glN )-invariant R-matrix (2.8) without any restrictions to these cen-
tral elements.

The pole structure of R-matrix for g̃ = B(1)n , C (1)n , D(1)n , A(2)N−1 given by (2.20) yields other
central elements in the corresponding algebras Uq(g̃). We have following

Proposition 3.2. There are central elements z±(v) ∈ U±q (g̃) for g̃ = B(1)n , C (1)n , D(1)n and A(2)N−1
given by the equalities

z±(v) I=D L±(vξ)t D−1 L±(v) = L±(v) D L±(vξ)t D−1 . (3.32)

Again, (3.32) means that products of the matrices

D L±(vξ)t D−1 L±(v) and L±(v) D L±(vξ)t D−1

are proportional to the unity operator I and the proportionality coefficients are central elements.
They are related to Z±(v) by the relations

Z±(v) = z±(vξ) z±(v)−1 . (3.33)

Proof. Calculating residue at u= vξ in the commutation relation (3.27) one gets

D−1
1 P

t1
12 D1 L(1)(vξ) L(2)(v) = L(2)(v) L(1)(vξ) D−1

1 P
t1
12 D1 ,

which is equivalent to

D1 L(1)(vξ)t1 D−1
1 L(1)(v) = L(2)(v) D2 L(2)(vξ)t2 D−1

2 .

This proves (3.32).
To prove that the elements z±(u) are central elements in the algebra Uq(g̃) we consider the

product z(u)I1 L(2)(v) and a chain of equalities

z(u)I1 L(2)(v) =D1 L(1)(uξ)t1 D−1
1 L(1)(u)L(2)(v)

=D1 L(1)(uξ)t1 D−1
1 R12(u, v)−1 L(2)(v) L(1)(u) R12(u, v)

= x(u, vξ) D1 L(1)(ξu)t1 R12(uξ, v)t1 L(2)(v) D−1
1 L(1)(u) R12(u, v)

= x(u, vξ) D1 L(2)(v) R12(uξ, v)t1 L(1)(uξ)t1 D−1
1 L(1)(u) R12(u, v)

= L(2)(v) R12(u, v)−1 D1 L(1)(ξu)t1 D−1
1 L(1)(u) R12(u, v)

= L(2)(v) R12(u, v)−1 z(u)I1 R12(u, v) = L(2)(v) z(u)I1 .

Equality (3.33) can be proved by expressing
�

L±(v)−1
�t

from (3.32) and substituting it into
(3.30). �
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For the algebras Uq(g̃) with g̃ = B(1)n , C (1)n , D(1)n , A(2)N−1 we set central elements z±(v) = 1.
Then equalities (3.32) take the form

D L±(vξ)t D−1 = L±(v)−1 ,

or
D L̂±(vξ) D−1 = L±(v) , (3.34)

where transposed-inversed L-operators L̂±(u) are defined as

L̂±(u) =
�

L±(u)t
�−1

. (3.35)

Due to (3.33) the central elements Z±(v) also equal to 1 when z±(v) = 1. Then equality (3.30)
can be written in the form

L̂±(v) =
�

L±(u)t
�−1
=D−2

�

L±(vξ−2)−1
�t
D2 (3.36)

and describes the relations between order of transposition and taking inverse of the funda-
mental L-operators in the algebra Uq(g̃).

One can check that L-operators L̂±(u) given by (3.35) satisfy the same commutation rela-
tions (3.27). Let us apply to (3.27) the transposition (2.10) in both auxiliary spaces and use
(2.12) to get

L(1)(u)t1 L(2)(v)t2 R12(u, v) = R12(u, v) L(2)(v)t2 L(1)(u)t1 .

Multiplying from both sides of this equality first by L̂(1)(u) and then by L̂(2)(v) one gets

R12(u, v) L̂(1)(u) L̂(2)(v) = L̂(2)(v) L̂(1)(u) R12(u, v) .

Summarizing we conclude that the map

L±(u)→ L̂±(u)

moves the algebra Uq(g̃) into the algebra given by the same commutation relation (3.27) but
for the transposed-inversed L-operators L̂±(u). One can also check that central elements Ẑ±(v)
and ẑ±(v) defined by (3.30) and (3.32) with L±(v) replaced by L̂±(v) are related to the central
elements Z±(v) and z±(v) as follows

Ẑ±(v) = Z±(v)−1 , ẑ±(v) = z±(v)−1 .

4 Gauss coordinates

It is known [16] that Gauss coordinates of L-operators introduced below by the equality (4.37)
are related to the Cartan-Weyl generators of the algebra Uq(g̃). The Cartan-Weyl generators
satisfy certain ordering properties described in details in [3] and shortly presented in the sec-
tion 4.1. In this paper we consider Gauss decomposition of the fundamental L-operators of
the algebra Uq(g̃)

L±i, j(u) =
∑

`≤min(i, j)

F±j,`(u) k±` (u) E±`,i(u) , (4.37)

where one assumes that F±i,i(u) = E±i,i(u) = 1 for 1≤ i ≤ N .
Gauss decompositions formula for the matrix entries of L-operators is associated with the

products of lower triangular, diagonal and upper triangular matrices

L±(u)t =
∑

1≤i, j≤N

L±i, j(u) e
t
i j =

 

∑

1≤i< j≤N

et
i j F±j,i(u)

!

·
�

∑

1≤i≤N

et
ii k±i (u)

�

·

 

∑

1≤i< j≤N

et
ji E±i, j(u)

!

. (4.38)
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Equality (4.38) allows to obtain Gauss decomposition of L-operators L̂±(u). Indeed, using
multiplication rule for et

i j = εiε j e j′ i′

et
i j · e

t
kl = δil e

t
k j

and taking inverse of both sides of the equality (4.38)

L̂±(u) =
�

�

L±(u)
�t�−1

=
∑

1≤i, j≤N

ei j L̂±i, j(u)

=

 

∑

1≤i≤ j≤N

et
ji Ẽ±i, j(u)

!

·

�

∑

1≤i≤N

et
ii k±i (u)

−1

�

·

 

∑

1≤i≤ j≤N

et
i j F̃±j,i(u)

! (4.39)

one obtains
L̂±i, j(u) = εiε j

∑

`≤min(i, j)

Ẽ±i′,`′(u) k±`′(u)
−1 F̃±`′, j′(u) , (4.40)

where equality εiε j = εi′ε j′ was used. Gauss coordinates F̃±j,i(u) and Ẽ±i, j(u) in (4.39) and
(4.40) satisfy recurrence relations

∑

i≤`≤ j

F±j,`(u)F̃
±
`,i(u) = δi j and

∑

i≤`≤ j

E±i,`(u)Ẽ
±
`, j(u) = δi j ,

which can be resolved in the form

F̃±j,i(u) = −F±j,i(u) +
j−i−1
∑

`=1

(−)`+1
∑

j>i`>···>i1>i

F±j,i`(u)F
±
i`,i`−1

(u) · · ·F±i2,i1
(u)F±i1,i(u)

and

Ẽ±i, j(u) = −E±i, j(u) +
j−i−1
∑

`=1

(−)`+1
∑

j>i`>···>i1>i

E±i,i1(u)E
±
i1,i2
(u) · · ·E±i`−1,i`

(u)E±i`, j(u) .

4.1 Normal ordering of the Gauss coordinates

In order to obtain commutation relations for Gauss coordinates from (3.28) one can use the
normal ordering of the Cartan-Weyl generators [3].

Let U±f , U±e and U±k be subalgebras of Uq(g̃) formed by the modes of the Gauss coordinates
F±j,i(u), E±i, j(u) and k±j (u), respectively. The fact that these unions of generators are subalgebras
follows from the identification of modes of Gauss coordinates with Cartan-Weyl generators
[16]. It is known that Cartan-Weyl generators have two natural circular orderings which imply
the normal ordering of the subalgebras formed by the Gauss coordinates. These orderings are

· · · ≺ U−k ≺ U−f ≺ U+f ≺ U+k ≺ U+e ≺ U−e ≺ U−k ≺ · · · (4.41)

or
· · · ≺ U+k ≺ U+f ≺ U−f ≺ U−k ≺ U−e ≺ U+e ≺ U+k ≺ · · · . (4.42)

If one places subalgebras U±f , U±e and U±k onto circles

U−e U+e

U−k � U+k

U−f U+f

and

U−e U+e

U−k � U+k

U−f U+f

(4.43)
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then ordering (4.41) is counterclockwise in the left circle and the ordering (4.42) is clockwise
in the right circle of (4.43). The general theory of the Cartan-Weyl basis allows to prove that in
both types of ordering the unions of subalgebras U±f , U±e and U±k along smallest arcs between
starting and ending points are subalgebras in Uq(g̃). For example, the union of subalgebras
U+f ∪ U+k or U−f ∪ U+f ∪ U+k or U+q (g̃) = U+f ∪ U+k ∪ U+e and so on are subalgebras in Uq(g̃).

The notion of the normal ordering yields a powerful practical tool to get relations for the
Gauss coordinates of the specific type. In any relation which contains Gauss coordinates of the
different types one first has to order all monomials according to (4.41) or (4.42) and then sin-
gle out all the terms which belong to the one of subalgebras which is composed from the Gauss
coordinates of the necessary type. We call this procedure a restriction to subalgebras in Uq(g̃)
and will use this method to get relations between Gauss coordinates from RLL-commutation
relations (3.28).

Subalgebras U±q (g̃) = U±f ∪U±k ∪U±e were already introduced above as Borel subalgebras in
Uq(g̃). To descride so called ’new realization’ of these algebras in terms of the currents [5] one
has to consider different types of Borel subalgebras U f = U−f ∪U+f ∪U+k and Ue = U+e ∪U−e ∪U−k .
In [18] certain projections P±f and P±e onto intersections of the Borel subalgebras of the dif-
ferent types were introduced. These projections were further investigated in [3] for the or-
dering (4.41) and was used for the first time in [19] to describe the off-shell Bethe vectors or
weight functions in terms of the Cartan-Weyl generators. One can check that the action of the
projections P±f and P±e onto Borel subalgebras U f and Ue introduced in [18] coincides with
restrictions onto subalgebras U±f and U±e defined for the ordering (4.41).

5 Embedding theorem

Each algebra g̃ of the type B(1)n , C (1)n , D(1)n and A(2)N−1 has rank n as rank of the underlying finite
dimensional algebra. To stress this fact we will use notation Un

q (g̃) to denote explicitly rank for
any of the quantum loop algebras considered in this paper. Following ideas of the paper [7]
we consider in this section embedding of smaller algebras Un−1

q (g̃) ,→ Un
q (g̃). To note that

R-matrix corresponds to the algebra Un
q (g̃) we will use superscript Rn(u, v), Rn(u, v), Qn(u, v),

etc.
In this paper we use Gauss decomposition of the L-operators for the algebra Un

q (g̃) given
by (4.37)

L±i, j(u) =
∑

1≤`≤min(i, j)

F±j,`(u) k±` (u) E±`,i(u)

=M±i, j(u) + F±j,1(u)k
±
1 (u)E

±
1,i(u) =M±i, j(u) + L±1, j(u)L

±
1,1(u)

−1L±i,1(u) .
(5.44)

Let us consider matrix entries M±i, j(u) defined by (5.44) for 1 < i, j < N . These are matrix
entries of the (N − 2)× (N − 2) matrix M±(u) of the fundamental L-operators for the algebra
Un−1

q (g̃). For 1< i, j < N matrix entries M±i, j(u) have Gauss decomposition

M±i, j(u) =
∑

2≤`≤min(i, j)

F±j,`(u) k±` (u) E±`,i(u) . (5.45)

For g̃= B(1)n , C (1)n , D(1)n and A(2)N−1 we have following

Theorem 5.1. The commutation relations for the Un−1
q (g̃)matrix entries M±i, j(u) follow from the

Yang-Baxter equation (2.14) and the commutation relations (3.27) in Un
q (g̃) and take the form

(µ,ρ = ±)

Rn−1
12 (u, v) (Mµ(u)⊗ I) (I⊗Mρ(v)) = (I⊗Mρ(v)) (Mµ(u)⊗ I) Rn−1

12 (u, v) . (5.46)
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To prove this theorem we formulate auxiliarly Lemmas 5.2 and 5.3. Let L(1,2)(u) be fused
L-operator defined as (we again skip superscripts of L-operators to avoid bulky notations)

L(1,2)(u) = R(1, q2) L(1)(u) L(2)(q2u) = L(2)(q2u) L(1)(u) R(1, q2) .

One can calculate its (i, j; 1, 1) matrix element

Li, j;1,1(u) = 〈i, 1|L(1,2)(u)| j, 1〉=
N
∑

k,l=1

Ri,k;1,l(1, q2)Lk, j(u)Ll,1(q
2u)

= Li, j(u)L1,1(q
2u)− qL1, j(u)Li,1(q

2u) ,

(5.47)

where |i, j〉= |i〉 ⊗ | j〉 and 〈i, j|= 〈i| ⊗ 〈 j| are vectors in
�

CN
�⊗2

such that 〈i| j〉= δi j .
The commutation relations for 1< i < N

L1,1(u)
−1Li,1(u) = q Li,1(q

2u)L1,1(q
2u)−1

and (5.47) imply that L-operators M(u) for the algebra Un−1
q (g̃) can be presented as

Mi, j(u) = Li, j;1,1(u) L1,1(q
2u)−1 , (5.48)

where 1< i, j < N .

Lemma 5.2. There is a commutativity of the matrix entries in Un
q (g̃)

L1,1(u) Mi, j(v) =Mi, j(v) L1,1(u) , 1< i, j < N .

According to (5.48) matrix entries Mi, j(u) are proportional to the matrix entries Li, j;1,1(u)
up to commuting with Li, j;1,1(u) invertible operator L1,1(v) (see Appendix A). It yields that
the commutation relations for Mi, j(u) should coincide with the commutation relations of
Li, j;1,1(u). To find the commutation relations for the matrix entries Li, j;1,1(u) we need fol-
lowing

Lemma 5.3. There are equalities for 1< i, j < N

Rn
12(1, q2)Rn

34(1, q2)Rn
14(u, q2v)Rn

13(u, v)|i, 1, j, 1〉= Rn
12(1, q2)Rn

34(1, q2)Rn−1
13 (u, v)|i, 1, j, 1〉 (5.49)

and

〈i, 1, j, 1|Rn
13(u, v)Rn

14(u, q2v)Rn
34(1, q2)Rn

12(1, q2) = 〈i, 1, j, 1|Rn−1
13 (u, v)Rn

34(1, q2)Rn
12(1, q2) , (5.50)

where |i, k, j, l〉= |i〉 ⊗ |k〉 ⊗ | j〉 ⊗ |l〉 and 〈i, k, j, l|= 〈i| ⊗ 〈k| ⊗ 〈 j| ⊗ 〈l| are vectors in
�

CN
�⊗4

.

Proofs of the Lemmas 5.2 and 5.3 can be found in Appendix A.
To prove theorem 5.1 we consider RLL-commutation relations for L-operators L(u) and

L(v) (A.80) and for 1< i1, j1, i2, j2 < N take the matrix element of this commutation relation

〈i1, 1, j1, 1|Rn
23(q

2u, v)Rn
13(u, v)Rn

24(u, v)Rn
14(u, q2v)Rn

12(1, q2)Rn
34(1, q2)

× L(1)(u)L(2)(q2u)L(3)(v)L(4)(q2v)|i2, 1, j2, 1〉

= 〈i1, 1, j1, 1|L(3)(v)L(4)(q2v)L(1)(u)L(2)(q2u)

×Rn
34(1, q2)Rn

12(1, q2)Rn
14(u, q2v)Rn

24(u, v)Rn
13(u, v)Rn

23(q
2u, v)|i2, 1, j2, 1〉 .

(5.51)
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Let us transform last line in (5.51) using Lemma 5.3, equality (A.81) and Yang-Baxter equation
(2.14). We have

Rn
34(1, q2)Rn

12(1, q2)Rn
14(u, q2v)Rn

24(u, v)Rn
13(u, v)Rn

23(q
2u, v)|i2, 1, j2, 1〉

= Rn
12(1, q2)Rn

13(u, v)Rn
14(u, q2v)Rn

34(1, q2)Rn
24(u, v)Rn

23(q
2u, v)|i2, 1, j2, 1〉

= f (q2u, v)Rn
12(1, q2)Rn

34(1, q2)Rn
14(u, q2v)Rn

13(u, v)|i2, 1, j2, 1〉

= f (q2u, v)Rn
12(1, q2)Rn

34(1, q2)Rn−1
13 (u, v)|i2, 1, j2, 1〉 .

(5.52)

At the second step of this calculation we used equality (A.81) taken at u → q2u and scaling
invariance of R-matrix (2.11).

Analogously first line in (5.51) can be transformed to

〈i1, 1, j1, 1|Rn
23(q

2u, v)Rn
13(u, v)Rn

24(u, v)Rn
14(u, q2v)Rn

12(1, q2)Rn
34(1, q2)

= f (q2u, v)〈i1, 1, j1, 1|Rn−1
13 (u, v)Rn

12(1, q2)Rn
34(1, q2) ,

(5.53)

where we used (A.82) at v→ q−2v.
Equalities (5.52) and (5.53) allow to rewrite (5.51) in the form

〈i1, 1, j1, 1|Rn−1
13 (u, v) L(1,2)(u)L(3,4)(v)|i2, 1, j2, 1〉

= 〈i1, 1, j1, 1|L(3,4)(v)L(1,2)(u) Rn−1
13 (u, v)|i2, 1, j2, 1〉 ,

which proves the statement of theorem (5.46) due to Lemma 5.2 and relation (5.48). �

Theorem 5.1 implies that in order to find the commutation relations between Gauss co-
ordinates in the algebra Un

q (g̃) it is sufficient to obtain these commutation relations for the
smallest rank nontrivial algebras. We will find such commutation relations in the algebras
Uq(g̃) for g̃ of the types B(1)n , C (1)n , D(1)n , A(2)N−1 in Appendix C.

We can formulate analogous statement for the algebra Uq(A
(1)
N−1). Let Mi, j(u) for 1< i, j ≤ N

be matrix entries of the L-operators for the algebra Uq(A
(1)
N−2) defined by (5.45). Denote by

RN (u, v) R-matrix (2.8) for the algebra Uq(A
(1)
N−1). Using similar arguments as above we can

prove following

Proposition 5.4. The commutation relations of the matrix entries Mi, j(u) and their Gauss coor-

dinates of the fundamental L-operators of the algebra Uq(A
(1)
N−2) for 1 < i, j ≤ N follow from the

commutation relations (3.27) for the algebra Uq(A
(1)
N−1) and take the same form with R-matrix

RN−1(u, v).

We are not going to provide a proof of this Proposition since it can be performed in a
similar way as the proof of theorem 5.1. Practical meaning of this Proposition is that in order
to obtain the commutation relations between Gauss coordinates for the algebra Uq(A

(1)
N−1) it is

sufficient to consider the commutation relations for the algebras at small values of N .

5.1 Embedding in terms of the Gauss coordinates

Let us introduce ’alternative’ to (4.37) Gauss decomposition of the fundamental L-operators

L(u) =

 

∑

1≤i≤ j≤N

e ji Ēi, j(q
−2(i−1)u)

!

×

�

∑

1≤i≤N

eii k̄i(q
−2(i−1)u)

�

·

 

∑

1≤i≤ j≤N

ei j F̄j,i(q
−2(i−1)u)

!

,
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where shifts by q−2(i−1) in the arguments of ’alternative’ Gauss coordinates F̄j,i(u), Ēi, j(u) and
k̄i(u) are introduced for the further convenience. In terms of these Gauss coordinates matrix
entries of L-operators have the form

Li, j(u) =
∑

1≤`≤min(i, j)

Ē`,i(q
−2(`−1)u) k̄`(q

−2(`−1)u) F̄j,`(q
−2(`−1)u) . (5.54)

In (5.54) we assume that F̄±i,i(u) = Ē±i,i(u) = 1 for 1≤ i ≤ N .
Our goal is to find relations between Gauss coordinates Fj,i(u), Ei, j(u), k j(u) and F̄j,i(u),

Ēi, j(u), k̄ j(u). This is given by

Proposition 5.5. For g̃ = B(1)n , C (1)n , D(1)n , A(2)N−1 Gauss coordinates F̄±j,i(u), Ē±i, j(u) and k̄±j (u) are
related to the initial Gauss coordinates F±j,i(u), E±i, j(u) and k±j (u):

F̄±j,i(u) = qF±j,i(q
−2u) , (5.55)

Ē±i, j(u) = q−1E±i, j(q
−2u) , (5.56)

k̄±` (u) = k±` (u)
`−1
∏

s=1

k±s (q
2(`−s)u)

k±s (q2(`−s−1)u)
, (5.57)

where i < j < i′, 1 ≤ i ≤ n, 1 ≤ ` ≤ n+ 1 for odd N = 2n+ 1 and 1 ≤ i ≤ n− 1, 1 ≤ ` ≤ n for
N = 2n even. Moreover, for 1≤ i < j ≤ N and 1≤ `≤ N

F̄±j,i(u) = εiε j q ı̄− ̄F̃±i′, j′(q
2(i−1)ξu) , (5.58)

Ē±i, j(u) = εiε j q ̄−ı̄Ẽ±j′,i′(q
2(i−1)ξu) , (5.59)

k̄±` (u) = k±`′(q
2(`−1)ξu)−1 . (5.60)

The proof of this Proposition is given in Appendix B.
Note that equality (5.57) can be written in the form

k̄±` (u) = k±` (u)
k̄±
`−1(q

2u)

k±
`−1(u)

,

which is a consequence of the embedding relation (B.91) at each step of the embedding. More-
over, we can exclude k̄±

`
(u) from (5.57) and (5.60) to obtain

k±`′(u) = k±` (q
−2(`−1)ξ−1u)−1

`−1
∏

s=1

k±s (q
−2sξ−1u)

k±s (q2(1−s)ξ−1u)
, (5.61)

where 1≤ `≤ n+ 1 for odd N = 2n+ 1 and 1≤ `≤ n for N = 2n even.
Proposition 5.5 has an obvious

Corollary 5.6. There are relations between Gauss coordinates of the fundamental L-operators in
the algebra Uq(g̃) corresponding to the simple roots of the underlying algebra g

F±N+1−i,N−i(u) = −F±i+1,i(q
−2iξ−1u) ,

E±N−i,N+1−i(u) = −E±i,i+1(q
−2iξ−1u) ,

(5.62)

for ∀N and 1≤ i ≤ n− 1 and

F±n+2,n+1(u) = −q1/2 F±n+1,n(q
−2nξ−1u) ,

E±n+1,n+2(u) = −q−1/2 E±n,n+1(q
−2nξ−1u) ,

(5.63)

for N = 2n+ 1.

This corollary together with equalities (5.61) defines the algebraically independent sets of
the generators in each of the algebras Uq(g̃) of the type g̃= B(1)n , C (1)n , D(1)n and A(2)N−1.
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6 New realization of the algebra Uq(g̃)

A new realization of the quantum affine algebras Uq(bg) was given in [5] in terms of the formal
series called currents labeled by the simple roots of the underlying finite-dimensional algebra
g. Relations between currents and Gauss coordinates for the algebra Ũq(A

(1)
N−1)was given in [6]

Fi(u) = F+i+1,i(u)− F−i+1,i(u) =
∑

`∈Z

sign(`)Fi+1,i[`]u
−`,

Ei(u) = E+i,i+1(u)− E−i,i+1(u) = −
∑

`∈Z

sign(−`)Ei,i+1[`]u
−`,

(6.64)

where 1≤ i ≤ N − 1.
For the algebras Uq(B(1)n ), Uq(C (1)n ) and Uq(A

(2)
N−1) the currents are introduced by the for-

mulas (6.64) for 1 ≤ i ≤ n. For the algebra Uq(D(1)n ) first (n− 1) currents are also introduced
by (6.64) with 1≤ i ≤ n− 1 and the currents Fn(u) and En(u) by the equalities [8]

Fn(u) = F+n+1,n−1(u)− F−n+1,n−1(u) = F−n+2,n(u)− F+n+2,n(u) ,

En(u) = E+n−1,n+1(u)− E−n−1,n+1(u) = E−n,n+2(u)− E+n,n+2(u) .
(6.65)

It is obvious from the commutation relations in the algebra Uq(g̃) (3.28) that term Q(u, v)
of the R-matrix (2.9) do not contribute into commutation relations of the matrix entries L±i, j(u)
and L±k,l(v) for 1 ≤ i, j, k, l ≤ n. Commutation relations between these matrix entries and
between corresponding Gauss coordinates are defined by Uq(gln)-invariant R-matrix (2.8).
These commutation relations can be translated into commutation relations between currents
Fi(u), Ei(u), 1 ≤ i ≤ n− 1 and Gauss coordinates k±

`
(u), 1 ≤ ` ≤ n according to the standard

approach developed in [6]. We formulate all nontrivial commutation relations between these
currents without proofs

k±i (u)Fi(v)k
±
i (u)

−1 =
q−1u− qv

u− v
Fi(v) ,

k±i+1(u)Fi(v)k
±
i+1(u)

−1 =
qu− q−1v

u− v
Fi(v) ,

k±i (u)
−1Ei(v)k

±
i (u) =

q−1u− qv
u− v

Ei(v) ,

k±i+1(u)
−1Ei(v)k

±
i+1(u) =

qu− q−1v
u− v

Ei(v) ,

(q−1u− qv) Fi(u)Fi(v) = (qu− q−1v) Fi(v)Fi(u) ,

(qu− q−1v) Ei(u)Ei(v) = (q
−1u− qv) Ei(v)Ei(u) ,

(u− v) Fi(u)Fi+1(v) = (q
−1u− qv) Fi+1(v)Fi(u) ,

(q−1u− qv) Ei(u)Ei+1(v) = (u− v) Ei+1(v)Ei(u) ,

[Ei(u), F j(v)] = δi, j (q− q−1)δ(u, v)
�

k−i+1(v) k
−
i (v)

−1 − k+i+1(u) k
+
i (u)

−1
�

.

(6.66)

There are also Serre relations for the currents Ei(u) and Fi(u) [5,6]

Sym
v1,v2

�

Fi(v1), [Fi(v2), Fi±1(u)]q−1

�

q
= 0 ,

Sym
v1,v2

�

Ei(v1), [Ei(v2), Ei±1(u)]q
�

q−1
= 0 ,

(6.67)
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where [A, B]q means q-commutator

[A, B]q = AB − q B A

and Symv1,v2
G(v1, v2)≡ G(v1, v2) + G(v2, v1).

The multiplicative delta function in (6.66) is defined by the formal series

δ(u, v) =
∑

`∈Z

u`

v`
,

which satisfy the property
δ(u, v)G(u) = δ(u, v)G(v) ,

for any formal series G(u).

Remark 6.1. The equalities (6.66) should be understood in a sense of equalities between
formal series. It means that these commutation relations should be understood as infinite set
of equalities between modes of the currents which appear after equating the coefficients at all
powers u`v`

′
for `,`′ ∈ Z. The rational functions in the commutation relations (6.66) should

be understood as series over powers of v/u in the relations containing the current k+j (u) and
over powers of u/v in the relations with the current k−j (u).

The commutation relations of the currents Fn(u), En(u) and diagonal Gauss coordinates
will be specific for each of the algebras Uq(B(1)n ), Uq(C (1)n ), Uq(D(1)n ) and Uq(A

(2)
N−1). According

to the theorem 5.1 these commutation relations can be obtained by considering algebras of
the small rank presented in the Appendix C.

6.1 New realization of the algebra Uq(B(1)n )

The full set of the nontrivial commutation relation for the algebra Uq(B(1)n ) is given by the
relations (6.66) and [8]

k±n (u)Fn(v)k
±
n (u)

−1 =
q−1u− qv

u− v
Fn(v) ,

k±n+1(u)Fn(v)k
±
n+1(u)

−1 =
q−1u− qv

u− v
qu− v
u− qv

Fn(v) ,

k±n (u)
−1En(v)k

±
n (u) =

q−1u− qv
u− v

En(v) ,

k±n+1(u)
−1En(v)k

±
n+1(u) =

q−1u− qv
u− v

qu− v
u− qv

En(v) ,

(u− qv) Fn(u)Fn(v) = (qu− v) Fn(v)Fn(u) ,

(qu− v) En(u)En(v) = (u− qv) En(v)En(u) ,

(u− v) Fn−1(u)Fn(v) = (q
−1u− qv) Fn(v)Fn−1(u) ,

(q−1u− qv) En−1(u)En(v) = (u− v) En(v)En−1(u) ,

[En(u), Fn(v)] = (q− q−1)δ(u, v)
�

k−n+1(v) k
−
n (v)

−1 − k+n+1(u) k
+
n (u)

−1
�

,

where modes of the dependent currents k±n+1(u) are defined by the relation

n
∏

`=1

k±` (q
2(n−`)u) = k±n+1(qu) k±n+1(u)

n
∏

`=1

k±` (q
2(n−`+1)u)
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following from (5.57) and (5.60) for ` = n+ 1 and ξ = q1−2n. Serre relations which include
currents En(u) and Fn(u) are

Sym
v1,v2

�

Fn−1(v1), [Fn−1(v2), Fn(u)]q−1

�

q
= 0 ,

Sym
v1,v2

�

En−1(v1), [En−1(v2), En(u)]q
�

q−1
= 0 ,

Sym
v1,v2,v3

�

Fn(v1),
�

Fn(v2), [Fn(v3), Fn−1(u)]q−1

�

q

�

= 0 ,

Sym
v1,v2,v3

�

En(v1),
�

En(v2), [En(v3), En−1(u)]q
�

q−1

�

= 0 .

(6.68)

Here Symv1,v2,v3
G(v1, v2, v2)≡

∑

σ∈S3
G(vσ(1), vσ(2), vσ(3)).

6.2 New realization of the algebra Uq(C (1)n )

The nontrivial commutation relations for the set of the currents in the algebra Uq(C (1)n ) are
given by the commutation relations (6.66) and the commutation relations involving the cur-
rents Fn(u) and En(u) [7]

k±n (u)Fn(v)k
±
n (u)

−1 =
q−2u− q2v

u− v
Fn(v) ,

k±n (u)
−1En(v)k

±
n (u) =

q−2u− q2v
u− v

En(v) ,

(q−2u− q2v) Fn(u)Fn(v) = (q
2u− q−2v) Fn(v)Fn(u) ,

(q2u− q−2v) En(u)En(v) = (q
−2u− q2v) En(v)En(u) ,

(u− v) Fn−1(u)Fn(v) = (q
−2u− q2v) Fn(v)Fn−1(u) ,

(q−2u− q2v) En−1(u)En(v) = (u− v) En(v)En−1(u) ,

[En(u), Fn(v)] = (q
2 − q−2)δ(u, v)

�

k−n+1(u) · k
−
n (u)

−1 − k+n+1(v) · k
+
n (v)

−1
�

,

where

k±n+1(u) = k±n (q
4u)−1

n−1
∏

`=1

k±
`
(q2n+2−2`u)

k±
`
(q2n+4−2`u)

.

Serre relations which include the currents Fn(u) and En(u) are

Sym
v1,v2

�

Fn(v1), [Fn(v2), Fn−1(u)]q−2

�

q2
= 0 ,

Sym
v1,v2

�

En(v1), [En(v2), En−1(u)]q2

�

q−2
= 0 ,

Sym
v1,v2,v3

�

Fn−1(v1),
�

Fn−1(v2), [Fn−1(v3), Fn(u)]q−2

�

q2

�

= 0 ,

Sym
v1,v2,v3

�

En−1(v1),
�

En−1(v2), [En−1(v3), En(u)]q2

�

q−2

�

= 0 .

(6.69)

6.3 New realization of the algebra Uq(D(1)n )

Using results presented in Appendix C.3 one can obtain that the current realization of the
algebra Uq(D(1)n ) is given by the commutation relations (6.66) and all nontrivial commutation
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relations which include the currents Fn(u) and En(u) are [8]

k±n−1(u)Fn(v)k
±
n−1(u)

−1 =
q−1u− qv

u− v
Fn(v) ,

k±n (u)Fn(v)k
±
n (u)

−1 =
q−1u− qv

u− v
Fn(v) ,

k±n−1(u)
−1En(v)k

±
n−1(u) =

q−1u− qv
u− v

En(v) ,

k±n (u)
−1En(v)k

±
n (u) =

q−1u− qv
u− v

En(v) ,

(q−1u− qv) Fn(u)Fn(v) = (qu− q−1v) Fn(v)Fn(u) ,

(qu− q−1v) En(u)En(v) = (q
−1u− qv) En(v)En(u) ,

(u− v) Fn−2(u)Fn(v) = (q
−1u− qv) Fn(v)Fn−2(u) ,

(q−1u− qv) En−2(u)En(v) = (u− v) En(v)En−2(u) ,

[En(u), Fn(v)] = (q− q−1)δ(u, v)
�

k−n+1(u) · k
−
n−1(u)

−1 − k+n+1(v) · k
+
n−1(v)

−1
�

.

(6.70)

In (6.70) the Gauss coordinates k±n+1(u) are given by (5.61) for ` = n and ξ = q2−2n. The
Serre relations which include currents Fn(u) and En(u) can be written in the form [8]

Sym
v1,v2

�

Fi(v1), [Fi(v2), Fn(u)]q−1

�

q
= 0 , Sym

v1,v2

�

Fn(v1), [Fn(v2), Fi(u)]q−1

�

q
= 0 ,

Sym
v1,v2

�

Ei(v1), [Ei(v2), En(u)]q
�

q−1
= 0 , Sym

v1,v2

�

En(v1), [En(v2), Ei(u)]q
�

q−1
= 0 ,

for i = n− 2, n− 1.

6.4 New realization of the algebra Uq(A
(2)
2n )

Nontrivial commutation relations for the new realization of the algebra Uq(A
(2)
2n ) is given by the

relations (6.66) and additional relations which include currents Fn(u) and En(u) listed below

k±n (u)Fn(v)k
±
n (u)

−1 =
q−1u− qv

u− v
Fn(v) ,

k±n+1(u)Fn(v)k
±
n+1(u)

−1 =
qu− q−1v

u− v
qv + u
v + qu

Fn(v) ,

k±n (u)
−1En(v)k

±
n (u) =

q−1u− qv
u− v

En(v) ,

k±n+1(u)
−1En(v)k

±
n+1(u) =

qu− q−1v
u− v

qv + u
v + qu

En(v) ,

(q−1u− qv)(qu+ v) Fn(u)Fn(v) = (qu− q−1v)(u+ qv) Fn(v)Fn(u) ,

(qu− q−1v)(u+ qv) En(u)En(v) = (q
−1u− qv)(qu+ v) En(v)En(u) ,

(u− v) Fn−1(u)Fn(v) = (q
−1u− qv) Fn(v)Fn−1(u) ,

(q−1u− qv) En−1(u)En(v) = (u− v) En(v)En−1(u) ,

[En(u), Fn(v)] = (q− q−1)δ(u, v)
�

k−n+1(v) k
−
n (v)

−1 − k+n+1(u) k
+
n (u)

−1
�

,

where k±n+1(u) are defined by the relation

k±n+1(u)k
±
n+1(−qu) =

n
∏

s=1

k±
`
(−q2n−2s+1u)

k±
`
(−q2n−2s+3u)

19

https://scipost.org
https://scipost.org/SciPostPhys.12.5.146


SciPost Phys. 12, 146 (2022)

following from (5.61) at ` = n+ 1 and ξ = −q−1−2n. Serre relations which include currents
En(u) and Fn(u) are the same as in the case of Uq(B(1)n ) (6.68)

Sym
v1,v2

�

Fn−1(v1), [Fn−1(v2), Fn(u)]q−1

�

q
= 0 ,

Sym
v1,v2

�

En−1(v1), [En−1(v2), En(u)]q
�

q−1
= 0 ,

Sym
v1,v2,v3

�

Fn(v1),
�

Fn(v2), [Fn(v3), Fn−1(u)]q−1

�

q

�

= 0 ,

Sym
v1,v2,v3

�

En(v1),
�

En(v2), [En(v3), En−1(u)]q
�

q−1

�

= 0 ,

and there are additional Serre relations for the currents En(u) and Fn(u) which can be pre-
sented in the form [5]

Sym
u,v,w

�

u− (q+ q2)v + q3w
�

Fn(u)Fn(v)Fn(w) = 0 ,

Sym
u,v,w

�

q3vw− (q+ q2)uw+ uv
�

Fn(u)Fn(v)Fn(w) = 0 ,

Sym
u,v,w

�

q3u− (q+ q2)v +w
�

En(u)En(v)En(w) = 0 ,

Sym
u,v,w

�

vw− (q+ q2)uw+ q3uv
�

En(u)En(v)En(w) = 0 .

6.5 New realization of the algebra Uq(A
(2)
2n−1)

Finally using results presented in Appendix C.5 one can describe the new realization of the
algebra Uq(A

(2)
2n−1) as collection of the commutation relations (6.66) and additional relations

which include currents Fn(u) and En(u)

k±n (u)Fn(v)k
±
n (u)

−1 =
q2v2 − q−2u2

v2 − u2
Fn(v) ,

k±n (u)
−1En(v)k

±
n (u) =

q2v2 − q−2u2

v2 − u2
En(v) ,

(q−2u2 − q2v2) Fn(u)Fn(v) = (q
2u2 − q−2v2) Fn(v)Fn(u) ,

(q2u2 − q−2v2) En(u)En(v) = (q
−2u2 − q2v2) En(v)En(u) ,

(u2 − v2) Fn−1(u)Fn(v) = (q
−2u2 − q2v2) Fn(v)Fn−1(u) ,

(q−2u2 − q2v2) En−1(u)En(v) = (u
2 − v2) En(v)En−1(u) ,

[En(u), Fn(v)] = (q
2 − q−2)δ̄(u, v)

�

k−n+1(v)k
−
n (v)

−1 − k+n+1(u)k
+
n (u)

−1
�

,

where δ-function δ̄(u, v) is given by the series

δ̄(u, v) =
∑

`∈Z

u2`+1

v2`+1
.

The currents Fn(u) and En(u) are series with respect to the odd powers of the spectral param-
eters and the ratio of the Gauss coordinates k±n+1(u)k

±
n (u)

−1 are series with respect to even
powers of the spectral parameters. Serre relations which include the currents Fn(u) and En(u)
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are the same as in the case of Uq(C (1)n ) (6.69),

Sym
v1,v2

�

Fn(v1), [Fn(v2), Fn−1(u)]q−2

�

q2
= 0 ,

Sym
v1,v2

�

En(v1), [En(v2), En−1(u)]q2

�

q−2
= 0 ,

Sym
v1,v2,v3

�

Fn−1(v1),
�

Fn−1(v2), [Fn−1(v3), Fn(u)]q−2

�

q2

�

= 0 ,

Sym
v1,v2,v3

�

En−1(v1),
�

En−1(v2), [En−1(v3), En(u)]q2

�

q−2

�

= 0 .

7 Currents and the projections

Currents and the Gauss coordinates can be related through projections P±f and P±e onto sub-
algebras U±f and U±e acting on the ordered products of the currents. Rigorous definitions of
these projections depend on the type of the cycling ordering of the Cartan-Weyl generators
(see [3] for detailed exposition of the properties of the projections for the ordering (4.41)).

Denote by U f [20] an extension of the algebra U f = U−f ∪U+f ∪U+k formed by linear com-
binations of series, given as infinite sums of monomials ai1[n1] · · · aik[nk] with n1 ≤ · · · ≤ nk,
and n1 + ...+ nk fixed, where ail [nl] is either Fil [nl] or k+il [nl]. Analogously, denote by U e an
extension of the algebra Ue = U−e ∪U+e ∪U−k formed by linear combinations of series, given as
infinite sums of monomials ai1[n1] · · · aik[nk] with n1 ≥ · · · ≥ nk, and n1+ ...+nk fixed, where
ail [nl] is either Eil [nl] or k−il [nl].

It was proved in [3, 9, 20] that the ordered products of the simple roots currents
F j−1(u) · · · Fi(u) and Ei(u) · · · E j−1(u) in the algebra Ũq(A

(1)
N−1) are well defined and belong

to U f and U e respectively. Moreover, the actions of the projections P±f and P±e onto these
elements are well defined.

The action of the projections P±f onto product of the currents can be defined as follows.
In order to calculate projections from such product one has to substitute each current by the
difference of the corresponding Gauss coordinates (6.64) and using the commutation relations
between them order the product of the currents Fi(u) in a way that all negative Gauss coor-
dinates F−j,i(u) will be on the left of all positive Gauss coordinates F+k,l(v). Then application
of the projection P+f to this product of the currents is removing all the terms which have at
least one negative Gauss coordinate on the left. Analogously, application of the projection P−f
is removing all the terms which have at least one positive Gauss coordinate on the right. The
action of the projections P±e onto product of the currents Ei(u) is defined analogously, but the
ordering of the Gauss coordinates is inverse: all positive Gauss coordinates E+i, j(u) should be
placed on the left of all negative coordinates E−l,k(v) using the commutation relations between
them and according to the ordering (4.41).

For Uq(B(1)n ), Uq(C (1)n ), Uq(D(1)n ) and Uq(A
(2)
N−1) we introduced currents Fi(u) and Ei(u),

1 ≤ i ≤ n by the formulas (6.64) and (6.65). Using relations (5.62) we define dependent
currents Fi(u) and Ei(u), n′ ≤ i ≤ N − 1

Fi(u) = −FN−i(q
2(i−N)ξ−1u) , Ei(u) = −EN−i(q

2(i−N)ξ−1u) . (7.71)

For the algebras Uq(B(1)n ) and Uq(A
(2)
2n ) and according to (5.63) we introduce additional

dependent currents

Fn+1(u) = −q1/2 Fn(q
−2nξ−1u) , En+1(u) = −q−1/2 En(q

−2nξ−1u) . (7.72)

21

https://scipost.org
https://scipost.org/SciPostPhys.12.5.146


SciPost Phys. 12, 146 (2022)

For 1 ≤ i < j ≤ N one can define the elements F j,i(u) and Ei, j(u) from the completed
subalgebras U f and U e

F j,i(u) = F j−1(u)F j−2(u) · · · Fi+1(u)Fi(u) ,

Ei, j(u) = Ei(u)Ei+1(u) · · · E j−2(u)E j−1(u) ,
(7.73)

for Uq(B(1)n ), Uq(C (1)n ), Uq(A
(2)
N−1) and

F j,i(u) =



























F j−1(u)F j−2(u) · · · Fi+1(u)Fi(u), i < j ≤ n or n+ 1≤ i < j ,

0, i = n, j = n+ 1 ,

Fn(u)Fn−2(u) · · · Fi(u), i ≤ n− 1, j = n+ 1 ,

−F j−1(u) · · · Fn+2(u)Fn(u), i = n, j ≥ n+ 2 ,

F j−1(u) · · · Fn+2(u)Fn+1(u)Fn(u)Fn−2(u) · · · Fi(u), i < n< j − 1 ,

Ei, j(u) =



























Ei(u)Ei+1(u) · · · E j−2(u)E j−1(u), i < j ≤ n or n+ 1≤ i < j ,

0, i = n, j = n+ 1 ,

Ei(u) · · · En−2(u)En(u), i ≤ n− 1, j = n+ 1 ,

−En(u)En+2(u) · · · E j−1(u), i = n, j ≥ n+ 2 ,

Ei(u) · · · En−2(u)En(u)En+1(u)En+2(u) · · · E j−1(u) , i < n< j − 1 ,

for Uq(D(1)n ). To define composed currents for Uq(D(1)n ) one can use commutativity
[Fn−1(u), Fn(v)] = 0, [En−1(u), En(v)] = 0 and Fn+1(u) = −Fn−1(u), En+1(u) = −En−1(u) (see
(7.71)).

We call elements F j,i(u) and Ei, j(u) the composed currents. For the algebra Uq(A
(1)
N−1) these

currents were investigated in [3, 9]. It was shown there that the analytical properties of the
products of the composed currents considered in the category of the highest weight represen-
tations are equivalent to the Serre relations for the simple root currents.

Using result of [3] that action of the projections P±f and P±e can be prolonged to the exten-

sions U f and U e respectively we formulate following

Proposition 7.1. There are relations between Gauss coordinates of the fundamental L-operators
and projections of the composed currents in the algebra Uq(g̃)

P+f
�

F j,i(u)
�

= F+j,i(u) , P−f
�

F j,i(u)
�

= F̃−j,i(u),

P+e
�

Ei, j(u)
�

= E+i, j(u) , P−e
�

Ei, j(u)
�

= Ẽ−i, j(u) .
(7.74)

Proof of this Proposition will be given in Appendix D simultaneously for all algebras Uq(g̃)
and is based on induction over rank n of these algebras. The base of induction is a verifi-
cation of (7.74) for all algebras Uq(g̃) of small ranks performed in the Appendices C.1, C.2,
C.3, C.4 and C.5. In particular, formulas (C.110) and (C.111) are base of induction to prove
Proposition 7.1 in case of the algebra Uq(D(1)n ).

8 Conclusion

In this paper we investigate quantum loop algebras for all classical series (except Uq(D(2)n ))
associated to the quantum R-matrices found in [1]. Results obtained in this paper can be used
for investigation of the space of states of the quantum integrable models with the different
symmetries of the high rank. This investigation can be performed in the framework of the
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approach to integrable models proposed and developed in [3,9,21]. In this method the states
of integrable models are expressed through current generators of the quantum loop algebras.
To investigate different physical quantities in such models such as scalar products of the states
and form-factors of the local operators it is not necessary to have explicit form of the states in
terms of the current generators. Usually, it is sufficient to get the action of monodromy matrix
entries onto these states. This approach was called zero modes method and was already used
in [22–24] to investigate the space of states in quantum integrable models related to Yangian
doubles and rational g-invariant R-matrices. Using results of the present paper we plan to
develop this method for the integrable models associated with Uq(g)-invariant R-matrices.

Funding information. The study has been funded within the framework of the HSE Univer-
sity Basic Research Program.

A Proofs of the Lemmas 5.2 and 5.3

Recall that we denote by |i〉 and 〈 j|, 1≤ i, j ≤ N sets of orthonormal vectors inCN with pairing
CN ⊗CN → C: 〈i| j〉= δi j . Consider R-matrix (2.9) for v = q2u: R(1, q2) = R(1, q2)+Q(1, q2),
where

R(1, q2) =
N
∑

i 6= j

eii ⊗ e j j − q−1
N
∑

i< j

ei j ⊗ e ji − q
N
∑

i< j

e ji ⊗ ei j

and calculate

R(1, q2)|`,`〉= 0 〈`,`|R(1, q2) = 0 for 1≤ `≤ N and ` 6= `′ , (A.75)

and

R(1, q2)|1,`〉= |1,`〉 − q|`, 1〉 , R(1, q2)|`, 1〉= |`, 1〉 − q−1|1,`〉,

〈`, 1|R(1, q2) = 〈`, 1| − q〈1,`| , 〈1,`|R(1, q2) = 〈1,`| − q−1〈`, 1| ,
(A.76)

for 1< ` < N . Equation (A.76) implies

R(1, q2)
�

|1,`〉+ q|`, 1〉
�

= 0 for 1< ` < N . (A.77)

Here |i, j〉= |i〉 ⊗ | j〉 and 〈i, j|= 〈i| ⊗ 〈 j| are vectors from (CN )⊗2.
Consider commutation relation (3.27) at v = q2u

R12(1, q2) L(1)(u)L(2)(q2u) = L(2)(q2u)L(1)(u) R12(1, q2) . (A.78)

Using (3.27) one can obtain the commutation relations between L-operators L(u) and L(v)

R12(u, v)R13(u, q2v) L(1)(u) L(2,3)(v) = L(2,3)(v) L(1)(u) R13(u, q2v)R12(u, v) , (A.79)

where Yang-Baxter equation (2.14)

R12(u, v) ·R13(u, q2v) ·R23(1, q2) = R23(1, q2) ·R13(u, q2v) ·R12(u, v)

is used.
Analogously, one can obtain the commutation relations between L-operators L(u) and L(v)

R23(q
2u, v)R13(u, v)R24(u, v)R14(u, q2v) L(1,2)(u) L(3,4)(v)

= L(3,4)(v) L(1,2)(u) R14(u, q2v)R24(u, v)R13(u, v)R23(q
2u, v) .

(A.80)
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To prove Lemma 5.2 one has to obtain two equalities for 1< ` < N

R23(1, q2)R13(u, q2v)R12(u, v)|1,`, 1〉= f (u, v)R23(1, q2)|1,`, 1〉 (A.81)

and
〈1,`, 1|R12(u, v)R13(u, q2v)R23(1, q2) = f (u, v)〈1,`, 1|R23(1, q2) . (A.82)

One can verify equality (A.81)

R23(1, q2)R13(u, q2v)R12(u, v)|1,`, 1〉

= R23(1, q2)R13(u, q2v)
�

|1,`, 1〉+ p`1(u, v)|`, 1, 1〉)
�

= R23(1, q2)
�

(1+ p11(u, q2v))|1,`, 1〉+ p1`(u, q2v)p`1(u, v)|1,1,`〉)
�

=
�

1+ p11(u, q2v)− qp1`(u, q2v)p`1(u, v)
�

R23(1, q2)|1,`, 1〉

= f (u, v)R23(1, q2)|1,`, 1〉 ,

where identity
f (u, q2v)− q g(u, q2v) g̃(u, v) = f (u, v)

and equation (A.77) were used. Equality (A.82) can be checked analogously.
Multiplying equality (A.79) from the left by the vector 〈1, i, 1| and from the right by the

vector |1, j, 1〉 for 1< i, j < N and using (A.81) and (A.82) one obtains

〈1, i, 1|L(1)(u)L(2,3)(v)|1, j, 1〉= 〈1, i, 1|L(2,3)(v)L(1)(u)|1, j, 1〉 ,

which implies the statement of the Lemma (5.2). �

To prove equality (5.49) of the Lemma 5.3 one can present its left hand side

Rn
12(1, q2)Rn

34(1, q2)Rn
14(u, q2v)Rn

13(u, v)|i, 1, j, 1〉 ,

as sum of two terms using (2.9): Rn
13(u, v) = Rn

13(u, v) +Qn
13(u, v). First term is equal to

Rn
12(1, q2)Rn

34(1, q2)Rn
14(u, q2v)Rn

13(u, v)|i, 1, j, 1〉

= Rn
12(1, q2)Rn

34(1, q2)Rn
13(u, v)|i, 1, j, 1〉

= Rn
12(1, q2)Rn

34(1, q2)Rn−1
13 (u, v)|i, 1, j, 1〉 ,

(A.83)

since 1< i, j < N . Indeed, the action of Rn
14(u, q2v)Rn

13(u, v) onto vector |i, 1, j, 1〉 is

|i, 1, j, 1〉+ p ji(u, v)| j, 1, i, 1〉+ p1i(u, q2v)|1, 1, j, i〉+ p ji(u, v)p1 j(u, q2v)|1,1, i, j〉

and last two terms are annihilated by the actions of R12(1, q2) due to (A.75).
Now consider the second term

Rn
12(1, q2)Rn

34(1, q2)Rn
14(u, q2v)Qn

13(u, v)|i, 1, j, 1〉 ,

where by definition (2.5)

Qn
13(u, v)|i, 1, j, 1〉= δi j′

N
∑

`=1

q` j(u, v)|`′, 1,`, 1〉 .

Calculating the action

Rn
14(u, q2v)|`′, 1,`, 1〉= |`′, 1,`, 1〉+ p1`′(u, q2v)|1,1,`,`′〉+δ1`

N
∑

m=1

qm1(u, q2v)|m′, 1, 1, m〉

24

https://scipost.org
https://scipost.org/SciPostPhys.12.5.146


SciPost Phys. 12, 146 (2022)

one can observe that second term in the right hand side drops out due to the action Rn
12(1, q2)

and (A.75) and by the same reasons the sum over m reduces to the sum for 1< m< N . Finally,
one gets

Rn
12(1, q2)Rn

34(1, q2)Rn
14(u, q2v)Qn

13(u, v)|i, 1, j, 1〉

= δi j′R
n
12(1, q2)Rn

34(1, q2)
N−1
∑

`=2

�

q` j(u, v)|`′, 1,`, 1〉+ q1 j(u, v)q`1(u, q2v)|`′, 1, 1,`〉
�

= δi j′R
n
12(1, q2)Rn

34(1, q2)
N−1
∑

`=2

�

q` j(u, v|ξ)− q q1 j(u, v|ξ)q`1(u, q2v|ξ)
�

|`′, 1,`, 1〉 ,

(A.84)

where in the last line of (A.84) we used (A.77) for Rn
34(1, q2) and write explicitly dependence

of the functions qi j(u, v|ξ) given by (2.6) on parameter ξ.

One can check that for all algebras g̃ = B(1)n , C (1)n , D(1)n and A(2)N−1 and corresponding pa-
rameters ξ given by the table (2.1) following identity is valid

q` j(u, v|ξ)− q q1 j(u, v|ξ)q`1(u, q2v|ξ) = q` j(u, v|q2ξ) .

Since multiplication of the parameter ξ by q2 means the change of the rank n→ n− 1 for all
algebras Uq(g̃) (see table (2.1)) one concludes that

Rn
12(1, q2)Rn

34(1, q2)Rn
14(u, q2v)Qn

13(u, v)|i, 1, j, 1〉

= Rn
12(1, q2)Rn

34(1, q2)Qn−1
13 (u, v)|i, 1, j, 1〉 .

(A.85)

Summing (A.83) and (A.85) we obtain (5.49). Equality (5.50) can be proved analogously.
This concludes the proof of the Lemma 5.3. �

B Proof of Proposition 5.5

Equalities (3.34) and (4.40) imply that

Li, j(u) = εiε j q ı̄− ̄
∑

`≤min(i, j)

Ẽi′,`′(ξu) k`′(ξu)−1 F̃̀ ′, j′(ξu) . (B.86)

Comparing these expressions for the matrix entries of the fundamental L-operator with (5.54)
proves equations (5.58), (5.59) and (5.60) for 1≤ i < j ≤ N and 1≤ `≤ N . Introduce matrix
entries M̄i, j(u) for the algebra Un−1

q (g̃) by the equality

Li, j(u) = M̄i, j(u) + Ē1,i(u)k̄1(u)F̄j,1(u) = M̄i, j(u) + Li,1(u)L1,1(u)
−1L1, j(u) . (B.87)

Entries M̄i, j(u) for 1< i, j < N has Gauss decomposition

M̄i, j(u) =
∑

2≤`≤min(i, j)

Ē`,i(q
−2(`−1)u) k̄`(q

−2(`−1)u) F̄j,`(q
−2(`−1)u)

= Li, j(u)− Li,1(u)L1,1(u)
−1L1, j(u) .

(B.88)

Calculating matrix elements of the equality (A.78) between vectors 〈1,1| and |1, j〉 using
(A.75) and (A.76) one obtains

L1, j(q
2u)L1,1(u) = q L1,1(q

2u)L1, j(u) (B.89)
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and matrix entries (B.88) can be written in the form

M̄i, j(u) =
�

Li, j(u)L1,1(q
−2u)− q Li,1(u)L1, j(q

−2u)
�

L1,1(q
−2u)−1 . (B.90)

One can prove commutativity

M̄i, j(u) L1,1(v) = L1,1(v) M̄i, j(u) , 1< i, j < N ,

in the same way as Lemma 5.2 was proved.
Multiplying (A.78) from the left and from the right by the vectors 〈1, i| and | j, 1〉 for

1< i, j < N and using (A.76) one gets

Li, j(u)L1,1(q
2u)− q L1, j(u)Li,1(q

2u) = Li, j(q
2u)L1,1(u)− q Li,1(q

2u)L1, j(u)

or due to (5.48) and (B.90)

M̄i, j(q
2u)L1,1(q

2u)−1 =Mi, j(u)L1,1(u)
−1 for 1< i, j < N . (B.91)

We prove only (5.55) and (5.57). Equality (5.56) can be proved analogously. Comparing
(4.37), (5.54) and (B.86) for the matrix entry L1,1(u) one concludes that

k̄1(u) = k1(u) = kN (ξu)−1 . (B.92)

Using L1, j(u) = Fj,1(u)k1(u) = k̄1(u)F̄j,1(u) equality (B.89) can be rewritten in the form

F̄j,1(u) = qFj,1(q
−2u) = k1(u)

−1Fj,1(u)k1(u) . (B.93)

This yields
F̄j,1(u) = qFj,1(q

−2u) = q1̄− ̄ε1ε j F̃N , j′(ξu) for 1< j < N (B.94)

and (5.58) yields
F̄N ,1(u) = q1̄−N̄ε1εN F̃N ,1(ξu) . (B.95)

Consider (B.91) for i = j = 2. It yields

k̄2(u) = k2(u) k1(q
2u)k1(u)

−1 = kN−1(q
2ξu)−1 , (B.96)

where the second equality follows from (5.60). Then consider (B.91) for i = 2 and 2< j < N−1
to obtain

M̄2, j(u) = k̄2(q
−2u)F̄j,2(q

−2u) = k1(u)k1(q
−2u)−1 Fj,2(q

−2u)k2(q
−2u) ,

which can be presented as
F̄j,2(u) = k2(u)

−1Fj,2(u)k2(u) .

Recall now that according to the theorem 5.1 L-operator M(u) satisfy commutation rela-
tions (5.46) for the algebra Un−1

q (g̃) and we can apply analysis as above to have

k2(u)−1Fj,2(u)k2(u) = q Fj,2(q−2u) (compare with (B.93)) and

F̄j,2(u) = q Fj,2(q
−2u) = q2̄− ̄ε2ε j F̃N−1, j′(q

2ξu) for 2< j < N − 1 . (B.97)

The second equality in (B.97) follows from (B.86) as well as

F̄j,2(u) = q2̄− ̄ε2ε j F̃N−1, j′(q
2ξu) , j = N − 1, N . (B.98)

Note that equalities (B.97), (B.98) and second equality in (B.96) for the Gauss coordinates of
the embedded algebra Un−1

q (g̃) repeated the equalities (B.94), (B.95) and (B.92) respectively

with the only difference that parameter ξ is replaced by the parameter q2ξ. According to
dependence of ξ on the rank n of the algebra g̃ this replacement is equivalent to change of the
rank n→ n− 1.

Continuing embedding process and repeating these arguments for the Gauss coordinates
Ēi, j(u) one proves Proposition 5.5. �

26

https://scipost.org
https://scipost.org/SciPostPhys.12.5.146


SciPost Phys. 12, 146 (2022)

C Algebra Uq(g̃) for small ranks

In this Appendix we obtain the commutation relations for the currents Fn(u) and En(u) for
each of the algebra Uq(g̃) of the small rank. Here we will introduce different rational functions
denoting them by the same notations valid inside of each subsection. Hope that this will not
lead to misunderstanding.

C.1 Algebras Uq(B
(1)
1 ) and Uq(B

(1)
2 )

In order to find commutation relations of the special currents in case of the algebra Uq(B(1)n )
we first perform investigation of the simplest nontrivial example of the algebra Uq(B

(1)
1 ) as it

was done in the paper [23]. In this algebra the algebraically independent series of generators
are k±1 (u), F±2,1(u) and E±1,2(u) and algebraically dependent generating series are k±

`
(u), `= 2, 3

and

F±3,2(u) = −q1/2F±2,1(q
−1u) , E±2,3(u) = −q−1/2E±1,2(q

−1u) ,

F±3,1(v) = −
p

q
1+ q

F±2,1(v)
2 , E±1,3(v) = −

p
q

1+ q
E±1,2(v)

2 .

The modes of k±
`
(u), `= 2,3 are defined by the relations

k±3 (u) = k±1 (qu)−1 , k±1 (u) = k±2 (qu) k±2 (u) k±1 (q
2u) .

The commutation relations between Gauss coordinates for the algebra U(B(1)1 ) are

k1(u)F2,1(v)k1(u)
−1 = f (v, u)F2,1(v)− g(v, u)F2,1(u) ,

k1(u)
−1E1,2(v)k1(u) = f (v, u)E1,2(v)− g̃(v, u)E1,2(u) ,

[E1,2(v), F2,1(u)] = g(u, v)
�

k2(u)k1(u)
−1 − k2(v)k1(v)

−1
�

,

(C.99)

k2(u)F2,1(v)k2(u)
−1 = f (v, u) f (q−1u, v)F2,1(v) + g(v, u)F2,1(u) + g̃(q−1u, v)F2,1(q

−1u) ,

k2(u)
−1E1,2(v)k2(u) = f (v, u) f (q−1u, v)E1,2(v) + g̃(v, u)E1,2(u) + g(q−1u, v)E1,2(q

−1u) ,
(C.100)

F2,1(u)F2,1(v) = f (u, qv)F2,1(v)F2,1(u) +
g(qv, u)
1+ q

F2,1(u)
2 +

qg̃(qv, u)
1+ q

F2,1(v)
2 ,

E1,2(u)E1,2(v) = f (v, qu)E1,2(v)E1,2(u) +
g(qu, v)

1+ q
E1,2(u)

2 +
qg̃(qu, v)

1+ q
E1,2(v)

2 .
(C.101)

Restoring upper indices ± in (C.101) at u= q−1v

F+2,1(q
−1v)F±2,1(v) =

1
1+ q−1

F+2,1(q
−1v)2 +

1
1+ q

F±2,1(v)
2

and subtracting one equality from another one gets

F+2,1(q
−1v)F1(v) =

1
1+ q

F+2,1(v)
2 −

1
1+ q

F−2,1(v)
2 . (C.102)

Using (C.102) one can calculate the projection P+f (F2(u)F1(u)) onto subalgebra U+f assuming
that Gauss coordinates in the product of the currents F2(u)F1(u) are ordered according to the
order (4.41). We obtain

P+f (F2(u)F1(u)) = −
p

q P+f
�

F+2,1(q
−1u)F1(u)

�

= −
p

q
1+ q

F+2,1(v)
2 = F+3,1(u) .
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This relation together with analogous formulas for the projections P−f (F2(u)F1(u)) and
P±e (E1(u)E2(u)) are base of the induction proof of the Proposition 7.1 which explains the
relation between Gauss coordinates and projection of the currents for the algebra Uq(B(1)n ).

Considering similar commutation relations for the algebra Uq(B
(1)
2 ) and using embedding

theorem 5.1 one obtains besides commutation relations (C.99)–(C.101) for the Gauss coordi-
nates k±

`
(u), `= 1,2, 3 with F±3,2(u) and E±2,3(u) also the commutation relations of these Gauss

coordinates with F±2,1(u) and E±1,2(u)

F2,1(v)F3,2(u) = f (u, v)F3,2(u)F2,1(v) + g̃(u, v)
�

F3,1(u)− F3,2(u)F2,1(u)
�

− g(u, v)F3,1(v) ,

E2,3(u)E1,2(v) = f (u, v)E1,2(v)E2,3(u) + g(u, v)
�

E1,3(u)− E1,2(u)E2,3(u)
�

− g̃(u, v)E1,3(v) .

This information is sufficient to obtain for the algebra Uq(B(1)n ) the commutation relations
of the currents Fn(u), En(u), Gauss coordinates k±

`
(u), 1 ≤ ` ≤ n+ 1 and the currents Fi(u),

Ei(u), 1≤ i ≤ n− 1 given in section 6.1.

C.2 Algebra Uq(C
(1)
2 )

Since algebra Uq(C
(1)
1 ) is not representative we start to consider first algebra Uq(C

(1)
2 ). In

this algebra the algebraically independent generating series are F±
`+1,`(u), E±

`,`+1(u) and k±
`

for

` = 1,2. Gauss coordinates F±2,1(u), E±1,2(u), k±1 (u) and k±2 (u) form the subalgebra in Uq(C
(1)
2 )

isomorphic to the algebra Ũq(A
(1)
1 ) and we do not write explicitly commutation relations be-

tween them.
Introduce the rational functions relevant to the considered case

f(u, v) =
q2u− q−2v

u− v
, g(u, v) =

(q2 − q−2)u
u− v

, g̃(u, v) =
(q2 − q−2)v

u− v
.

The rest commutation relations in Uq(C
(1)
2 ) can be written in the form

k2(v)F3,2(u)k2(v)
−1 = f(u, v)F3,2(u)− g(u, v)F3,2(v) ,

k2(v)
−1E2,3(u)k2(v) = f(u, v)E2,3(u)− g̃(u, v)E2,3(v) ,

f(v, u)F3,2(u)F3,2(v) = f(u, v)F3,2(v)F3,2(u) + g(v, u)F3,2(u)
2 − g(u, v)F3,2(v)

2 ,

f(u, v)E2,3(u)E2,3(v) = f(v, u)E2,3(v)E2,3(u) + g̃(u, v)E2,3(v)
2 − g̃(v, u)E2,3(u)

2 , (C.103)

F2,1(v)F3,2(u) = f(u, v)F3,2(u)F2,1(v) + g̃(u, v)
�

F3,1(u)− F3,2(u)F2,1(u)
�

− g(u, v)F3,1(v) ,

E2,3(u)E1,2(v) = f(u, v)E1,2(v)E2,3(u) + g(u, v)
�

E1,3(u)− E1,2(u)E2,3(u)
�

− g̃(u, v)E1,3(v) ,

[E2,3(v), F3,2(u)] = g(u, v)
�

k3(u)k2(u)
−1 − k3(v)k2(v)

−1
�

,

where diagonal Gauss coordinate k3(u) due to (5.57) and (5.60) is equal to

k3(u) = k2(q
4u)−1k±1 (q

4u)k±1 (q
6u)−1 .

These commutation relations allows to restore the full set of the commutation relations in
terms of the currents for the algebra Uq(C (1)n ) given in section 6.2.

To obtain the commutation relation (C.103) one has to use (3.28) for the values of the
indices {i, j, k, l} → {2, 3,1, 2} and {i, j, k, l} → {2, 4,1, 1} which results to

f (u, v)F3,2(u)F2,1(v) =
f (u, v)
f(u, v)

F2,1(v)F3,2(u) +
f (u, v)g(u, v)

f(u, v)
F3,1(v)

+ g(v, u)
�

F3,1(u)− F3,2(u)F2,1(u)
�

+
q−2 g(v, u)
f(u, v)

F4,2(u) .
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Considering the latter relation at v = q2u we obtain

F4,2(u) = q2
�

F3,1(u)− F3,2(u)F2,1(u)
�

(C.104)

and (C.103). Now one can calculate the projection P+f (F3(u)F2(u)), where dependent current

F3(u) = −F1(q4u) is defined by (7.71) for N = 4 and ξ= q−6. Restoring in (C.103) superscripts
of the matrix entries and setting v = q4u we obtain

F+2,1(q
4u)F±3,2(u) = q2

�

F±3,2(u)F
±
2,1(u)− F±3,1(u)

�

+ q−2F+3,1(q
4u) .

Calculating projection P+f (F3(u)F2(u)) onto U+f according to the ordering (4.41) one gets

P+f (F3(u)F2(u)) = −P+f
�

F1(q
4u)F2(u)

�

= −P+f
�

F+2,1(q
4u)F2(u)

�

= q2
�

F+3,1(u)− F+3,2(u)F
+
2,1(u)

�

= F+4,2(u) .

Analogously, one can prove that

P+f (F2(u)F1(u)) = F+3,1(u) and P+f (F3(u)F2(u)F1(u)) = F+4,1(u) .

These relations together with analogous relations for the currents Ei(u) are base of the induc-
tion for the proof of the Proposition 7.1 in case of the algebra Uq(C (1)n ).

C.3 Algebra Uq(D
(1)
2 )

As above we start to consider algebra Uq(D(1)n ) for small n. The case n= 1 is not representative
and we begin with the case n= 2 to prove that F±3,2(u) = E±2,3(u) = 0.

Excluding term L21(v)L24(u) from the commutation relation (3.28) with set of indices
{i, j, k, l} → {2, 3,2, 2} and {i, j, k, l} → {2, 4,2, 1} we have

f (u, v)L2,3(u)L2,2(v)− f (v, u)L2,2(v)L2,3(u)

= f (v, u) g̃(v, u)L2,4(v)L2,1(u)− f (u, v) g̃(u, v)L2,4(u)L2,1(v) .
(C.105)

This relation after setting v = q−2u and projecting onto subalgebras U±f ∪ U±k in the algebra

Uq(D
(1)
2 ) yields the equality

F±3,2(u)k
±
2 (u)k

±
2 (q

−2u) = 0 .

Since Gauss coordinates k±2 (u) are invertible it results that

F±3,2(u) = 0 . (C.106)

Analogously one can prove
E±2,3(u) = 0 . (C.107)

In order to find relations between Gauss coordinates Fj,1(u), j = 2,3, 4 one can consider
the commutation relation (3.28) for the values of the indices {i, j, k, l} → {1, 3,1, 2} and
{i, j, k, l} → {1, 4,1, 1}. Excluding term L11(v)L14(u) we have

f (u, v)L1,3(u)L1,2(v) = f (v, u)L1,2(v)L1,3(u)

+ f (v, u) g̃(v, u)L1,4(v)L1,1(u)− f (u, v) g̃(u, v)L1,4(u)L1,1(v) .
(C.108)

Using explicit expressions for the matrix entries L1, j(u) through Gauss coordinates (4.37), mul-
tiplying both equalities by the product of k1(u)−1k1(v)−1 and using the commutation relations

k1(u)Fj,1(v)k1(u)
−1 = f (v, u)Fj,1(v)− g(v, u)Fj,1(u) , j = 2, 3 (C.109)
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one can get from (C.108)

f (u, v) f (v, u)
�

F2,1(v)F3,1(u)− F3,1(u)F2,1(v)
�

=g(u, v) f (v, u)
�

F4,1(v) + F2,1(v)F3,1(v)
�

+ g(v, u) f (u, v)
�

F4,1(u) + F3,1(u)F2,1(u)
�

.

Taking in this equality u= q2v and u= q−2v one can find the relations

F4,1(u) = −F2,1(u)F3,1(u) = −F3,1(u)F2,1(u) ,

F2,1(v)F3,1(u) = F3,1(u)F2,1(v) .
(C.110)

In the same way one can prove that

E1,4(u) = −E1,2(u)E1,3(u) = −E1,3(u)E1,2(u) ,

E1,2(v)E1,3(u) = E1,3(u)E1,2(v) .
(C.111)

Equalities (5.55), (5.56), (5.58) and (5.59) yields in this case

F4,5− j(u) = −Fj,1(u) , E5− j,4(u) = −E1, j(u) , j = 2,3 . (C.112)

Using (3.28) for {i, j, k, l} → {2, 2,1, 3} we can calculate

k2(u)F3,1(v)k2(u)
−1 = f (vξ, u)F3,1(v)− q g̃(u, vξ)k1(v)F3,1(u)k1(v)

−1 ,

where we have used (C.106) and (C.112). Using now (C.109) and identities

f (vξ, u)− q g̃(u, vξ)g(u, v) = f (v, u) , q g̃(u, vξ) f (u, v) = −g(v, u)

one can find that

k2(u)F3,1(v)k2(v)
−1 = f (v, u)F3,1(v)− g(v, u)F3,1(u) .

Analogously one can obtain

k2(u)
−1E1,3(v)k2(v) = f (v, u)E1,3(v)− g̃(v, u)E1,3(u) .

Using (C.109) and analogous commutation relations for E1, j(u) one can calculate from the
commutation relation (3.28) at {i, j, k, l} → {1,3, 3,1} that

[E1,3(v), F3,1(u)] = g(u, v)
�

k3(u)k1(u)
−1 − k3(v)k1(v)

−1
�

.

The embedding theorem 5.1 and commutation relations between Gauss coordinates obtained
for the algebra Uq(D

(1)
2 ) are sufficient to get full set of the commutation relations for the algebra

Uq(D(1)n ) in terms of the currents presented in the section 6.3.

C.4 Algebra Uq(A
(2)
2 )

RLL realization of this algebra is given by the R-matrix (2.9) with ξ= −q−1−2n and N = 2n+1.
In the same way as we investigated the algebra Uq(B

(1)
1 ) we study first the algebra Uq(A

(2)
2n ) in

the simplest case n= 1.
Introduce the functions

f(u, v) =
q1/2u+ q−1/2v

u+ v
, g(u, v) =

(q1/2 + q−1/2)u
u+ v

.
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The commutation relations for the Gauss coordinates in the algebra Uq(A
(2)
2 ) between F2,1(u),

k1(u) and E1,2(u) are the same as for Uq(B
(1)
1 ) (see (C.99)). The rest relations are

k2(u)F2,1(v)k2(u)
−1 = f (u, v)

f(v, u)
f(u, v)

F2,1(v) + g(v, u)F2,1(u) + (1− q)
g(v, u)
f(u, v)

F2,1(−qu) ,

k2(u)
−1E1,2(v)k2(u) = f (u, v)

f(v, u)
f(u, v)

E1,2(v) + g̃(v, u)E1,2(u) + (q− 1)
g(u, v)
f(u, v)

E1,2(−qu)

and

f(u, v) f (v, u)F2,1(u)F2,1(v) = f(v, u) f (u, v)F2,1(v)F2,1(u)

+ g(u, v)g(v, u)
�

F2,1(u)
2 + F2,1(v)

2
�

+
1

q+ 1
[F2,1[0],g(u, v)F2,1(v)− g(v, u)F2,1(u)]q ,

(C.113)

f(v, u) f (u, v)E1,2(u)E1,2(v) = f(u, v) f (v, u)E1,2(v)E1,2(u)

+ g(v, u)g(u, v)
�

E1,2(u)
2 + E1,2(v)

2
�

+
1

q−1 + 1
[E1,2[0],g(v, u)E1,2(v)− g(u, v)E1,2(u)]q−1 .

(C.114)

To prove (C.113) one can use the commutation relation

f (v, u)F+2,1(u)F
±
2,1(v) = f (v,−qu) f (u, v)F±2,1(v)F

+
2,1(u)

+ g(v, u)F+2,1(u)
2 + f (v,−qu) g̃(v, u)F±2,1(v)

2

+ q−1/2 g(v,−qu)F+3,1(u) + q−3/2 g̃(v,−qu)F±3,1(v) .

(C.115)

Putting v→∞ in (C.115) one obtains

F+3,1(u) = −
p

q F+2,1(u)
2 −

p
q

q− q−1
[F2,1[0], F+2,1(u)]q . (C.116)

Setting u= −qv in (C.115) one finds

F+2,1(−qv)F±2,1(v) = (1− q−1)F+2,1(−qv)2 − q−3/2F+3,1(−qv)− q−1/2F±3,1(v) .

Using this equality one can calculate

P+f (F2(v)F1(v)) = −
p

qP+f (F
+
2,1(−qv)F1(v)) = F+3,1(v) , (C.117)

where dependent current F2(v) = −
p

qF1(−qv) is defined by (7.72) for n = 1 and ξ = −q−3.
Relation (C.117) as well as analogous relation for the projections P±e (E1(u)E2(u)) are base of

induction to prove Proposition 7.1 in case of the algebra Uq(A
(2)
2n ).

C.5 Algebras Uq(A
(2)
1 ) and Uq(A

(2)
3 )

Algebra Uq(A
(2)
2n−1) is defined by the R-matrix (2.9) with ξ = −q−2n and N = 2n. In this

Appendix we investigate algebra Uq(A
(2)
2n−1) in two simplest cases n= 1 and n= 2.

For n= 1 R-matrix (2.9) has the form

R(u, v) =
u+ v

qu+ q−1v







f(u, v) 0 0 0
0 1 g(u, v) 0
0 g(u, v) 1 0
0 0 0 f(u, v)






,
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where rational functions f(u, v) and g(u, v) are defined as follows

f(u, v) =
q2u2 − q−2v2

u2 − v2
, g(u, v) =

(q2 − q−2)uv
u2 − v2

.

Up to overall factor this matrix coincides with the symmetric form of the R-matrix for the
algebra Uq2(A(1)1 ). This results that the commutation relation for the Gauss coordinates F2,1(u),
E1,2(u), k1(u) and k2(u) of the algebra Uq(A

(2)
1 ) can be written in the form

k1(u)F2,1(v)k1(u)
−1 = f(v, u)F2,1(v)− g(v, u)F2,1(u) , (C.118)

k1(u)
−1E1,2(v)k1(u) = f(v, u)E1,2(v)− g(v, u)E1,2(u) , (C.119)

[E1,2(u), F2,1(v)] = g(v, u)
�

k2(v)k1(v)
−1 − k2(u)k1(u)

−1
�

, (C.120)

k2(u)F2,1(v)k2(u)
−1 = f(u, v)F2,1(v)− g(u, v)F2,1(u) , (C.121)

k2(u)
−1E1,2(v)k2(u) = f(u, v)E1,2(v)− g(u, v)E1,2(u) , (C.122)

and

f(v, u)F2,1(u)F2,1(v)− g(v, u)F2,1(u)
2 = f(u, v)F2,1(v)F2,1(u)− g(u, v)F2,1(v)

2 , (C.123)

f(u, v)E1,2(u)E1,2(v)− g(u, v)E1,2(v)
2 = f(v, u)E1,2(v)E1,2(u)− g(v, u)E1,2(u)

2 . (C.124)

The commutation relations (C.118)–(C.120) imply certain analytical properties of the Gauss
coordinates F2,1(u), E1,2(u) and k2(u)k±1 (u)

−1. Indeed, setting in (C.118) and (C.119)
v = ±q−2u we obtain

k1(u)
−1F2,1(u)k1(u) = ± F2,1(±q−2u) ,

k1(u)E1,2(u)k1(u)
−1 = ± E1,2(±q−2u)

(C.125)

which imply
F2,1(−u) = −F2,1(u) and E1,2(−u) = −E1,2(u) . (C.126)

These equalities signify that Gauss coordinates F±2,1(u) and E±1,2(u) are series with respect of
odd powers of the spectral parameters and equalities (C.125) are simplified to

k1(u)
−1F2,1(u)k1(u) = F2,1(q

−2u) ,

k1(u)E1,2(u)k1(u)
−1 = E1,2(q

−2u) .
(C.127)

On the other hand, replacing u by −u in (C.120), using (C.126) and the fact that
g(−u, v) = −g(u, v) one obtains that

k2(u)k1(u)
−1 = k2(−u)k1(−u)−1 (C.128)

which signifies that the ration k±2 (u)k
±
1 (u)

−1 are series with respect to even powers of the
spectral parameter. Moreover, equality (3.34) together with (C.127) yield in this case that
k±2 (u) = k±1 (−q2u)−1. Together with (C.128) it proves that in the algebra Uq(A

(2)
1 ) both diago-

nal Gauss coordinates k±1 (u) and k±2 (u) are series with respect to even powers of the spectral
parameters.
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In the case n = 2 and according to the embedding theorem 5.1 the Gauss coordinates
F2,1(u), E1,2(u), k1(u) and k2(u) satisfy the commutation relations in the algebra Ũq(A

(1)
1 )while

Gauss coordinates F3,2(u), E2,3(u), k2(u) and k3(u) satisfy the commutation relations (C.118)–
(C.124). Commutation relations between these algebraically independent sets of the Gauss
coordinates take the form

F2,1(v)F3,2(u) = f(u, v)F3,2(u)F2,1(v)− g(u, v)F3,1(v)

+ g(u, v)
�

F3,1(u)− F3,2(u)F2,1(u)
�

+
1
[2]q

g(u, v)
g̃(u, v)

[F2,1[0], F3,2(u)]q−2 ,
(C.129)

E2,3(u)E1,2(v) = f(u, v)E1,2(v)E2,3(u)− g(u, v)E1,3(v)

+ g(u, v)
�

E1,3(u)− E1,2(u)E2,3(u)
�

+
1
[2]q

g(u, v)
g(u, v)

[E2,3(u), E1,2[0]]q2 ,

where

[2]q = q+ q−1 =
q2 − q−2

q− q−1
.

To prove equality (C.129) one can use an equality

F+2,1(v)F
±
3,2(u) = f(u, v)F±3,2(u)F

+
2,1(v)− g(u, v)F+3,1(v)

+ g(u, v)
qu+ q−1v
(q+ q−1)u

�

F±3,1(u)− F±3,2(u)F
±
2,1(u)

�

−
(1− q−2)v

u+ v
F±4,2(u)

(C.130)

which helps to calculate P+f (F3(u)F2(u)), where F3(u) = −F1(−q2u) is a dependent current

defined by (7.71) for N = 4 and ξ= −q−4. Putting v→∞ in (C.130) one obtains

F+4,2(u) = F+3,2(u)F
+
2,1(u)− F+3,1(u)−

q
q− q−1

[F2,1[0], F
+
3,2(u)]q−2 . (C.131)

Setting in (C.130) v = −q2u one gets

F+4,3(u)F
±
3,2(u) = F+3,1(−q2u) + F±4,2(u)

which implies

P+f (F3(u)F2(u)) = P+f
�

F+4,3(u)(F
+
3,2(u)− F−3,2(u))

�

= F+4,2(u) . (C.132)

Analogously, considering equality (C.130) at v = u one can prove that

P+f (F2(u)F1(u)) = P+f
�

F+3,2(u)(F
+
2,1(u)− F−2,1(u))

�

= F+3,1(u) . (C.133)

Let us consider commutation relation (3.28) for the values of the indices
{i, j, k, l} → {2, 4,1, 2} and {i, j, k, l} → {2,4, 1,1} to obtain commutation of the Gauss co-
ordinates

f (u, v)F+4,2(u)F
±
2,1(v) =

1
f (vξ, u)

F±2,1(v)F
+
4,2(u)

+
g(u, vξ)

q f (vξ, u)

�

F±2,1(v)F
±
3,1(v) + F±2,1(v)

2F+3,2(u)
�

+ g(u, v)F±4,1(v)− g̃(u, v)
�

F+4,1(u)− F+4,2(u)F
+
2,1(u)

�

.

(C.134)
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Taking difference of two equalities in (C.134) and applying the projection P+f to this difference
one obtains

f (u, v)P+f
�

F+4,2(u)F1(v)
�

= g(u, v)F+4,1(v) +
1

f (vξ, u)
F+2,1(v)F

+
4,2(u)

+
g(u, vξ)

q f (vξ, u)

�

F+2,1(v)F
+
3,1(v) + F+2,1(v)

2F+3,2(u)
�

,

which after setting u= v implies

P+f
�

F+4,2(u)F1(u)
�

= F+4,1(u) .

Using latter equality and (C.132) one gets

P+f (F3(u)F2(u)F1(u)) = P+f (F
+
4,2(u)F1(u)) = F+4,1(u) . (C.135)

Equalities (C.132), (C.133) and (C.135) together with analogous relations for the currents
Ei(u) are base of the induction to prove Proposition 7.1.

D Proof of Proposition 7.1

We start with the proof of the first equality in (7.74). Assume that it is valid in the algebra
Un−1

q (g̃). It means that in order to prove first equality in (7.74) one has to prove it for the
Gauss coordinates F+N ,i(u), 1 ≤ i ≤ N − 1 and F+j,1(u), 2 ≤ j ≤ N using induction assumption
that it is valid for all F+j,i(u), 2≤ i < j ≤ N − 1.

To do this we consider RLL commutation relations (3.27) written in the form

f (u, v) f (v, u) (I⊗ L+(v)) · (L−(u)⊗ I)
= R12(u, v) · (L−(u)⊗ I) · (I⊗ L+(v)) ·R21(v, u) .

(D.136)

Consider (i, i + 1) matrix element in the first space and (i + 1, N) matrix element in the
second space of the equality (D.136). After substitution in the resulting equality Gauss de-
composition (4.37) one can multiply it from the right by k+i+1(v)

−1 and k−i (u)
−1 and normal

order products of Gauss coordinates according to the ordering (4.41). Then one has to restrict
resulting equality to subalgebra U+f as it was described in the section 4.1, multiply it by (u−v)3

and set u= v. Final equality takes the form

(u− v)
�

F+N ,i+1(v)k
+
i+1(v)F

−
i+1,i(u)k

+
i+1(v)

−1 + F+N ,i(v)k
+
i (v)[E

+
i,i+1(v), F

−
i+1,i(u)]k

+
i+1(v)

−1
�

�

�

�

U+f

�

�

�

u=v
= 0 .

Using the commutation relations k+i+1(v) and E+i,i+1(v) with F−i+1,i(u) which are different for
different Uq(g̃) when i = n + 1 and taking into account that restriction to subalgebra U+f
coincides with the action of the projection P+f onto subalgebra U f one obtains the equality in
U+f

F+N ,i(v) = P+f
�

F+N ,i+1(v)
�

F+i+1,i(v)− F−i+1,i(v)
��

= P+f
�

F+N ,i+1(v) Fi(v)
�

, (D.137)

where i < N − 1 for all Uq(g̃) except Uq(D(1)n ) and

F+N ,i(v) = P+f
�

F+N ,i+2(v)
�

F+i+2,i(v)− F−i+2,i(v)
��

, (D.138)

for the algebra Uq(D(1)n ) at i = n−1, n. To obtain (D.138) one can use (i, i+2)matrix element
in the first space and (i + 2, N) matrix element in the second space of the equality (D.136)
since F−n+1,n(u)≡ 0 for the algebra Uq(D(1)n ).
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The statement of the Proposition is obviously valid for i = N − 1 since
F+N ,N−1(u) = P+f (FN−1(u)). Assume that it is valid for the Gauss coordinate F+N ,i+1(u) with
i < N − 2. Then equality (D.137) takes the form

F+N ,i(v) = P+f
�

P+f
�

FN−1(v) · · · Fi+1(v)
�

Fi(v)
�

.

The statement of the Proposition 7.1 for the Gauss coordinate F+N ,i(v) is proved by induction
since projection P+f possesses the property [3] that for i < j

P+f
�

F j−1(u) · · · Fi(u)
�

= F j−1(u) · · · Fi(u) + . . . , (D.139)

where . . . stands for the terms annihilated by the projection P+f .
Taking in (D.136) matrix entries (1, 2) in the first space and (2, j) in the second space, using

Gauss decompositions (4.37) for the matrix elements of L-operators, multiplying resulting
equality by (u − v)3 and by k−1 (u)

−1k+2 (v)
−1 from the right, normal ordering of the Gauss

coordinates and restricting to subalgebra U+f one obtains after setting u= v

F+j,1(v) = P+f
�

F+j,2(v) F1(v)
�

.

Using induction assumption for the Gauss coordinate F+j,2(v) and (D.139) we finish proof of
the first equality in (7.74).

To prove the second equality in (7.74) we have to repeat all arguments as above for
the transpose-inverse L-operators L̂±(u) using Gauss decomposition (4.40). Taking the cor-
responding matrix elements in (D.136) one can find that

P−f
�

F j−1(v) F̃−j−1,1(v)
�

= F̃−j,1(v)

and
P−f
�

FN−1(v) F̃−N−1,i(v)
�

= F̃−N ,i(v) .

By the property of projection P−f [3]

P−f
�

F j(u) · · · Fi(u)
�

= F j(u) · · · Fi(u) + . . . ,

where . . . stands for the terms which are annihilated by projection P−f and induction assump-
tion one can prove the second equality in the first line of (7.74). The second line in (7.74) can
be proved similarly. �
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