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Abstract

2-group symmetries are generalized symmetries that arise when 1-form and 0-form sym-
metries mix with each other. We uncover the existence of a class of 2-group symmetries
in general 4d N = 2 theories of Class S that can be constructed by compactifying 6d
N = (2, 0) SCFTs on Riemann surfaces carrying arbitrary regular punctures and outer-
automorphism twist lines. The 2-group structure can be captured in terms of equivalence
classes of line defects plus flavor Wilson lines, which can be thought of as accounting for
screening of line defects while keeping track of flavor charges. We describe a method
for computing these equivalence classes for a general Class S theory using the data on
the Riemman surface used for compactifying its parent 6d N = (2, 0) theory.
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1 Introduction

Generalized global symmetries have transformed our way of thinking about quantum field
theory, bringing the study of extended defects to the fore. A systematic study of generalized
symmetries was kicked off by [1] (see also related previous works [2–7]), where higher-form
symmetries were defined. Higher-form symmetries of different types can mix together to give
rise to generalized symmetries known as higher-group symmetries. In particular, 0-form and
1-form symmetries mix together to give rise to 2-group symmetries, which form the subject of
this work.

2-group symmetries have been analyzed extensively in the recent literature [8–21]. How-
ever, such analyses have largely relied on using a Lagrangian description or are restricted to
topological theories. In this paper, we analyze 2-group symmetries in 4d N = 2 theories of
Class S, which in general do not admit a conventional Lagrangian description.

For this analysis, we encode the 2-group symmetry in terms of properties of certain equiv-
alence classes of line defects plus flavor Wilson lines. These equivalence classes are then read
from the data of the compactification of the 6d N = (2, 0) theory used to construct the Class
S theory. The general idea of using compactifications of higher-dimensional theories to learn
about generalized symmetries of lower-dimensional theories has proved to be very effective.
See [21–39] for recent works employing this idea.

Let us now provide an overview of the paper. We begin in Section 2 by reviewing how
1-form symmetry groups can be understood in terms of equivalence classes of line defects
with two line defects regarded in the same class if there exists a local operator living at their
junction. We then point out that the computation of the global form of 0-form flavor sym-
metry groups can also be phrased in a similar language, where now instead of considering
equivalence classes of line defects, one instead considers equivalence classes of flavor Wilson
lines.

These considerations naturally lead to the idea that combining the two situations and con-
sidering equivalence classes of line defects plus flavor Wilson lines, which corresponds to keep-
ing track of flavor center charges of junction local operators, should tell us something about
the mixing of 1-form and 0-form symmetries. Indeed, as we discuss, these equivalence classes
are related to a class of 2-group symmetries. In more detail, the three different equivalence
classes discussed above fit into a short exact sequence whose associated Bockstein homomor-
phism controls the Postnikov class defining the 2-group symmetry [12].

In Section 3, we discuss these equivalence classes in the context of gauge theories. If the
gauge group is simply connected, then one can straightforwardly compute the equivalence
classes in terms of gauge and flavor center charges of the matter content of the gauge theory.
For non-simply-connected gauge groups, the computation is more involved. See the soon to
appear paper [40].

Section 4 discusses the computation of these equivalence classes for any arbitrary 4d N = 2
Class S theory that can be obtained by compactifying a 6d N = (2,0) SCFT on a Riemann
surface carrying regular twisted and untwisted punctures and possibly closed twist lines. The
line defects of the 4d theory arise by compactifying surface defects of the 6d theory along
1-cycles on the Riemann surface. The junction local operators between 4d line defects are
obtained by compactifying 6d surface defects along 2-chains whose boundary is formed by
the 1-cycles corresponding to the 4d line defects. If the 2-chain passes over a puncture on
the Riemann surface, the associated 4d junction local operator carries flavor center charges
under the flavor algebra associated to the puncture. We describe a method of computing the
flavor center charges of these junction local operators which generalizes the method described
in [32] for computing the flavor center charges of genuine (non-junction) local operators. In
the process, we also formulate the analysis of [31], for computing 1-form symmetries of Class
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S theories, in more invariant terms that does not require a choice of A and B cycles on the
punctured Riemann surface.

In Section 5, we illustrate the general procedure of Section 4 by implementing it in detail
for a particular Class S theory. This theory also admits a Lagrangian description as 4d N = 2
gauge theory with so(4n+2) gauge algebra and 4n hypers in vector representation of the gauge
algebra. The method of Section 4 predicts a non-trivial 2-group symmetry for this theory if
the gauge group is Spin(4n+ 2), which can be verified by applying the analysis of Section 3.
This provides a check of the general prescription of Section 4.

Generalizing the considerations of this paper to include irregular punctures would be an
interesting future direction.

2 Generalities

2.1 1-Form Symmetries

The genuine line defects1 of a QFT T can be classified by imposing an equivalence relation2

which regards two line defects L1 and L2 to be equivalent if there exists a non-zero local
operator living at the junction of L1 and L2. Let us furthermore say that we do not keep
account of the the flavor charges of junction local operators implementing the equivalences.
Let the resulting set of equivalence classes be denoted as ÒO. In this paper, we only study those
QFTs for which ÒO forms a finite abelian group under the OPE of line defects.

L1 L2
O21

t

=⇒ q(L1) = q(L2)

Figure 1: Consider two line defects L1 and L2 such that there exists a junction local
operator O21 6= 0 between them. Then, we can construct a configuration as shown
on the left side of figure with time flowing horizontally. For charge conservation, the
charges q(L1) and q(L2) of L1 and L2 must match.

The relevance of the above equivalence relation becomes manifest as one tries to define
topological operators measuring charges of line defects. Then, L1 and L2 must have same
charge if there is a local operator living at their junction. See Figure 1. Thus the set of possible
charges is the abelian group ÒO, and the topological operators are specified by elements of the
Pontryagin dual O of ÒO. In other words, O is the 1-form symmetry group of T. The theory
T can be coupled to these topological operators by turning on a background [B2] ∈ H2(M ,O)
(where M is a compact spacetime manifold) for the 1-form symmetry, which places the topo-
logical operators at the location of the Poincare dual of [B2].

2.2 Global Form of 0-Form Flavor Symmetry Group

Now we consider flavor Wilson lines in a similar language. Let

f= fna ⊕ u(1)a (1)

1A non-genuine line defect is one that is constrained to live at the boundaries or corners of higher-dimensional
defects. On the other hand, a genuine line defect exists independently of any higher-dimensional defects.

2This equivalence relation is also known as ‘screening’ in the literature.
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be the flavor symmetry algebra of T, such that fna is a non-abelian semi-simple Lie algebra and
u(1)a is the abelian part of f. Now let us define

F = Fna × U(1)a (2)

to be a group whose associated Lie algebra is f, such that Fna is the simply connected group
associated to fna and U(1)a is a group3 whose associated Lie algebra is u(1)a. Let us consider
flavor Wilson lines transforming in representations of F and impose an equivalence relation
which regards two flavor Wilson lines R1 and R2 (where R1 and R2 are two representations
of F) to be equivalent if there exists a genuine local operator4 living at the junction of R1
and R2. Thus, R1 is equivalent to R2 if T contains a genuine local operator transforming
in representation R2 ⊗ R∗1 where R∗1 is the complex conjugate of R1. Let the resulting set of
equivalence classes of flavor Wilson lines be denoted as ÒZ.

As discussed in [32], the existence of current local operator for the flavor symmetry ensures
that ÒZ can be described as the abelian group

ÒZ = bZF/YF , (3)

where bZF is the Pontryagin dual of the center ZF of F (which can be written as
ZF = ZF,na × U(1)a where ZF,na is the center of the simply connected group Fna) and YF is
the subgroup of bZF formed by the flavor center charges of genuine local operators of T.

The Pontryagin dual Z of ÒZ is a subgroup of ZF and is instrumental in specifying the 0-form
flavor symmetry group F of T, which can be written as

F = F/Z . (4)

The theory T can be coupled to a background principal bundle for F , which is specified by a
map

B1 : M → BF , (5)

where BF is the classifying space of F . Such a bundle cannot always be lifted to an F bundle.
The obstruction to lifting is captured by the pullback B∗1[w2] ∈ H2(M ,Z) of a characteristic
class

[w2] ∈ H2(BF ,Z) . (6)

Let B∗1w2 ∈ C2(M ,Z) be a Z-valued 2-cochain on M which is a representative of B∗1[w2].
Then we can think of the locus specified by Poincare dual of B∗1w2 as location of “topological
operators valued in Z under which the flavor Wilson lines valued in ÒZ are charged” since
moving a part of this locus across a flavor Wilson line produces a phase factor determined in
terms of the pairing ÒZ ×Z → U(1).

Thus, the relationship between flavor Wilson lines in ÒZ and background field B∗1w2 is the
same as the relationship between line defects in ÒO and background field B2.5

2.3 2-Group Symmetries

Now consider the set of line defects plus flavor Wilson lines, which can be described by el-
ements of the form (L, R) where L is a line defect and R is a representation of F . Consider

3We would furthermore require that the charges of local operators under each U(1) factor in U(1)a are integers.
4A non-genuine local operator is one that is constrained to live at the boundaries or corners of higher-

dimensional defects. On the other hand, a genuine local operator exists independently of any higher-dimensional
defects.

5In fact, this is one way to understand why turning on a 1-form symmetry background for a non-abelian gauge
theory corresponds to turning on non-trivial w2 for the gauge bundle.
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imposing the same equivalence relation as in the last two subsections. That is, if there exists
a local operator living at the junction of L1 and L2 transforming in representation R2 ⊗ R∗1,
then declare (L1, R1) to be equivalent to (L2, R2). Let the resulting set of equivalence classes
be denoted as bE . Then, the three groups discussed above form a short exact sequence

0→ ÒZ → bE → ÒO→ 0 , (7)

because flavor Wilson lines (without any attached line defects) in ÒZ form a subgroup of bE and
modding out the data of flavor Wilson lines from bE should result in ÒO, by definition.

Let Bw ∈ C2(M ,E) be the background field whose Pontryagin dual describes the location
of topological operators labeled by E under which the lines in bE are charged. The three back-
ground fields B2, Bw, B∗1w2 are related to each other via the short exact sequence

0→ C2(M ,O)→ C2(M ,E)→ C2(M ,Z)→ 0 , (8)

induced by the short exact sequence

0→O→ E → Z → 0 . (9)

Pontryagin dual to the short exact sequence (7). We have

Bw = ew2 + i (B2) , (10)

where ew2 ∈ C2(M ,E) is a lift of B∗1w2 ∈ C2(M ,Z) under the projection map

C2(M ,E)→ C2(M ,Z) (11)

in (8) and i (B2) ∈ C2(M ,E) is the image of the 1-form symmetry background
B2 ∈ C2(M ,O) under the injection map

i : C2(M ,O)→ C2(M ,E) (12)

in (8).
A consequence is that the 1-form symmetry background B2 is not necessarily closed. Acting

with differential on (10), we obtain

δew2 + i (δB2) = 0 , (13)

since Bw is closed. This can be further rewritten as

i
�

B∗1w3 +δB2

�

= 0 , (14)

where w3 ∈ C3(BF ,O) is a representative of the class

Bock [w2] ∈ H3(BF ,O) , (15)

obtained by applying to [w2] the Bockstein homomorphism

Bock : H2(BF ,Z)→ H3(BF ,O) , (16)

associated to the short exact sequence (9). Since i is an injection, we deduce that

δB2 + B∗1w3 = 0 , (17)

which means that the 1-form symmetry background B2 is non-closed.
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In general, if the 1-form and 0-form symmetry backgrounds of a theory satisfy the relation

δB2 + B∗1Θ = 0 , (18)

such that 0 6= [Θ] ∈ H3(BF ,O), then we say that the 1-form and 0-form symmetries of the
theory mix with each other to form a non-trivial 2-group symmetry with Postnikov class [Θ].
It should be noted that there is no 2-group symmetry if [Θ] = 0 since then we can pick a
representative Θ = 0 ∈ C3(BF ,O) which restores δB2 = 0. Notice that another consequence
of a non-trivial 2-form symmetry is that

B∗1[Θ] = 0 , (19)

which constrains the possible 0-form symmetry backgrounds B1.
Thus, we learn that if line defects and flavor Wilson lines of a theory T mix with each other

as in (7), then we have a potential 2-group symmetry with Postnikov class

[Θ] = Bock [w2] , (20)

where [w2] ∈ H2(BF ,Z) is the characteristic class capturing the obstruction of lifting bun-
dles for the 0-form flavor symmetry group F = F/Z to bundles for the group F discussed
above, and Bock is the Bockstein homomorphism associated to (9). The 2-group symmetry
degenerates to a direct product of 1-form symmetry O and 0-form symmetry F whenever the
Postnikov class (20) vanishes. In such a situation, we say that the 2-group symmetry is trivial,
which is a slight abuse of language since O and F can still be non-trivial.

An example of such a situation occurs if the short exact sequence (9) splits, which is equiv-
alent to the splitness of the short exact sequence (7). Splitness means that we can write E as
a direct product of the form

E ' i(O)×Y , (21)

where i(O) ⊆ E is the image of the map O→ E , and Y is some subgroup of E . When a short
exact sequence splits, the associated Bockstein homomorphism becomes the trivial homomor-
phism and hence the Postnikov class [Θ] in (20) vanishes.

3 Gauge Theories

In this section, we study the various generalized symmetries discussed in previous section for
gauge theories. Consider a 4d gauge theory with a gauge algebra

g=
⊕

i

gi , (22)

such that each gi is a non-abelian finite simple Lie algebra. Furthermore, assume that the
gauge group of the gauge theory is

G =
∏

i

Gi , (23)

such that each Gi is simply connected group associated to the Lie algebra gi . Let f be the flavor
algebra of the gauge theory and let F be the group associated to the flavor algebra as in (2).

The gauge theory carries Wilson-’t Hooft line defects and flavor Wilson lines. Before ac-
counting for the matter content, in any gauge theory of the above type, we can restrict the
possible charges of lines to lie in

bZG × bZF , (24)
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where bZG is the Pontryagin dual of the center ZG of the gauge group G, which can be written
as ZG =

∏

i Zi where Zi is the center of Gi . The elements of bZG in (24) are purely Wilson line
defects and the elements of bZF in (24) are flavor Wilson lines.

Now, the charges of matter content of the gauge theory form a sublattice

M ⊆ bZG × bZF . (25)

These are the charges of genuine and non-genuine local operators arising due to the presence
of the matter content. The charges of purely genuine local operators form a subgroup

YF =M∩ bZF (26)

of M, which captures the flavor center charges of gauge-invariant local operators of the gauge
theory. Moreover, forgetting the flavor charges, the matter content gives rise to charges lying
in a subgroup YG ⊆ bZG which can be described as

YG = π (M) , (27)

if π denotes the projection map bZG × bZF → bZG .
The various groups discussed so far sit in a matrix of short exact sequences

0 YF M YG 0

0 0 0

0 bZF bZG × bZF bZG 0

0 ÒZ bE ÒO 0

0 0 0 (28)

such that every row and column forms a short exact sequence and every square commutes.
The short exact sequence (7) responsible for potential 2-group symmetry (20) appears in the
last row of (28).

In other words, O,E ,Z are subgroups respectively of ZG , ZG × ZF , ZF under which the
elements of YG ,M, YF respectively are uncharged. Moreover, O is a subgroup of E such that

O = E ∩ ZG , (29)

and Z is obtained from E by forgetting information about ZG , i.e.

Z = π (E) , (30)

if π denotes the projection map ZG × ZF → ZF . The flavor symmetry group F of the gauge
theory is then as described as in (4), which captures the fact that the elements of Z ⊂ F are
equivalent to gauge transformations specified by the projection of E onto ZG , and so should
not be regard as flavor symmetries of the theory. In fact, the groups O,E ,Z appeared in this
form in the recent work [21].

The above considerations are modified if the gauge group is chosen to be

G′ = G/Γ , (31)
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with Γ ⊆ ZG , where in general we now also have to choose a discrete theta parameter [3].
Now, one needs to take into account the flavor center charges of local operators living at the
ends of magnetic and dyonic Wilson-’t Hooft line defects, which receive extra contributions
due to fermions in the matter content. A classic example is that in a 4d N = 2 theory with
SU(2) gauge group and N f hypers in fundamental, the monopole acquires flavor charges and
transforms in a spinor irrep of so(2N f ) flavor symmetry algebra [41]. We do not perform a
systematic analysis of potential 2-group symmetries for such gauge theories in this paper, but
see the soon to appear paper [40] for more details. It should be noted, however, that these
extra contributions do not impact the calculation of Z, which can still be described as the
subgroup ZF under which the elements of YF are uncharged, where

YF =M∩ bZF , (32)

and M ⊆ bZG′ × bZF captures the charges of the matter content of the gauge theory. In other
words, the flavor symmetry group

F = F/Z (33)

is left unchanged as one changes the global form of the gauge group and/or discrete theta
parameters.

4 Class S

In this section, we describe a general method for obtaining the three main groups ÒO, ÒZ and
bE , and the short exact sequence (7) associated to them for 4d N = 2 theories of Class S. As
discussed in Section 2, this short exact sequence captures a 2-group symmetry of the theory.

4.1 6d N = (2,0) Theories and Their Surface Defects

We begin by reviewing some facts about dimension-2 surface defects in 6d N = (2,0) theories.
Consider a 6d N = (2, 0) theory which is specified by a finite simple Lie algebra g of A, D, E
type. Let G be the simply connected group associated to g. Dimension-2 surface defects of
the N = (2,0) theory play an important role in our considerations. Akin to the discussion of
line operators above, we can classify these surface defects by imposing an equivalence relation
which regards two surface defects S1 and S2 to be equivalent if there exists a non-zero line
defect living at the junction of S1 and S2. The resulting set of equivalence classes forms an
abelian group bZG which is the Pontryagin dual of the center ZG of the group G.

These N = (2,0) theories are non-genuine or relative 6d theories, that is they live at the
boundaries of 7d topological QFTs. The dimension-2 surface defects of the 6d theory arise via
topological dimension-3 hyper-surface defects of the 7d theory ending at the 6d boundary. A
consequence of this is that taking a surface defect S1 around another surface defect S2 on the
6d boundary produces a braiding between the corresponding hyper-surface defects in the 7d
bulk, and resolving this braiding produces a phase in the correlation function, implying that
the surface defects of the 6d theory are mutually non-local. This phase can be expressed as

exp
�

2πi〈α,β〉
�

, (34)

where α,β ∈ bZG are the equivalence classes that S1 and S2 live in respectively. That is, the
non-locality of surface defects of the 6d theory is captured in a bi-homomorphism

〈·, ·〉 : bZG × bZG → R/Z , (35)

which is often referred to as pairing.
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An N = (2,0) theory of type g has a discrete 0-form symmetry group isomorphic to the
group Og of outer automorphisms of the finite simple Lie algebra g. The 0-form symmetry acts
on the surface defects as outer-automorphisms act on bZG .

Let us collect all this data for reference:

• For g= su(n), we have bZG ' Zn, and the pairing is specified by

〈 f , f 〉=
1
n

, (36)

where f is the center charge of the fundamental irrep of g= su(n). This determines the
pairing on bZG ' Zn as f is its generator.
We have Og ' Z2 that acts by sending an element of bZG ' Zn to its inverse.

• For g = so(4n), we have bZG ' Zs
2 × Z

c
2. The center charges s and c associated to the

spinor and cospinor irreps of g= so(4n) generate Zs
2 and Zc

2 respectively.
For n> 2, we have Og ' Z2 that acts by interchanging s and c.
For n = 2, we have Og ' S3, i.e. the permutation group of three objects. It acts by
permuting s, c and v = s+ c.
For n= 2m, the pairing is

〈s, s〉= 0 , 〈c, c〉= 0 , 〈s, c〉=
1
2

. (37)

For n= 2m+ 1, the pairing is

〈s, s〉=
1
2

, 〈c, c〉=
1
2

, 〈s, c〉= 0 . (38)

• For g= so(4n+ 2), we have bZG ' Z4. The center charge s associated to the spinor irrep
of g= so(4n+ 2) generates bZG ' Z4.
We have Og ' Z2 that acts by sending an element of bZG ' Z4 to its inverse.
For n= 2m, the pairing is

〈s, s〉=
3
4

. (39)

For n= 2m+ 1, the pairing is

〈s, s〉=
1
4

. (40)

• For g= e6, we have bZG ' Z3. The center charge f associated to the 27 dimensional irrep
of g= e6 generates bZG ' Z3.
We have Og ' Z2 that acts by sending an element of bZG ' Z3 to its inverse.
The pairing is

〈 f , f 〉=
2
3

. (41)

• For g= e7, we have bZG ' Z2. The center charge f associated to the 56 dimensional irrep
of g= e7 generates bZG ' Z2.
The outer-automorphism group is trivial.
The pairing is

〈 f , f 〉=
1
2

. (42)

• For g= e8, we have bZG = 0. The outer-automorphism group is trivial.
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o
αo ·α

Figure 2: An outer-automorphism twist line (shown in black) acts on the element of
bZG carried by a K1-chain (shown in red and blue).

4.2 1-Form Symmetries

Consider compactifying a 6d N = (2, 0) theory of type g = A, D, E on a Riemann surface C of
genus g. We allow C to carry untwisted and twisted regular punctures, and also closed twist
lines. The resulting 4d N = 2 Class S theory is also a non-genuine, relative theory that lives
at the boundary of a 5d TQFT. This is reflected in the fact that the line defects of the 4d theory
are mutually non-local as they live at the ends of dimension-2 topological surface defects of
the 5d theory.

The line defects of the 4d theory can be obtained by compactifying dimension-2 surface
defects of the 6d theory along 1-cycles of C. We are interested in only keeping track of 4d line
defects modulo screenings a.k.a. junction local operators, as above. Thus, we can restrict the
surface defects of the 6d theory to lie in bZG . To see this, consider two surface defects S1 and
S2 belonging to the same class in bZG and let their compactification on some cycle C give rise
to two line defects L1 and L2 in the 4d theory. Then, there exists a non-zero local operator in
the 4d theory living at the junction of L1 and L2, which is obtained by wrapping on C the line
defect in the 6d theory living at the junction of S1 and S2. This local operator between L1 and
L2 does not carry any flavor charges.

Thus, we can restrict our attention to line defects obtained by consistent wrappings of 6d
surface defects valued in bZG along 1-cycles of the punctured Riemann surface C. Since C carries
outer-automorphism twist lines, which act on elements of bZG , it requires a bit of effort to define
what a “consistent wrapping” means. To make this precise, we define the notions of K1 and
K2 chains, cycles and homologies.

Consider a 1-chain C that crosses an o-twist line. Let C carry an element α ∈ bZG on one side
of an o-twist line. Then, a consistent wrapping requires C to carry the element o · α ∈ bZG on
the other side of the o-twist line. See Figure 2. Let us call such a consistent wrapping along a
1-chain as a K1-chain. Similarly, a K1-cycle is a consistent wrapping of bZG surface defects along
a 1-cycle on C. In particular, the element of bZG carried by a K1-cycle returns back to itself under
the action of all the outer-automorphisms associated to all the outer-automorphism twist lines
that the associated 1-cycle crosses. Note that we require that a puncture cannot lie inside the
underlying 1-chains and 1-cycles associated to K1-chains and K1-cycles.

In a similar fashion, we define K2-chains, which have the property that if p and p′ are two
points lying on the underlying 2-chain such that there exists a path λ connecting p and p′

that crosses an o-twist line, and the 2-chain carries the element α ∈ bZG at p, then the element
carried by the 2-chain at p′ must be o ·α ∈ bZG . This provides constraints on α as there might
exist two paths λ1 and λ2 both connecting p and p′, but such that λ1 crosses o1-twist line and
λ2 crosses o2-twist line with o1 6= o2, then we must have o1 · α = o2 · α. K2-chains describe
consistent compactifications of surface defects over the corresponding 2-chains. K2-chains
can be of two types: non-extended and extended. A non-extended K2-chain is one whose
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· · ·
P1 P2 Pk

R1 ⊗R2 ⊗ · · · ⊗Rk

Figure 3: A 6d surface defect compactified on a K2-chain (shown in red) whose
boundary is a K1-cycle (shown in blue) leads to a 4d local operator (shown in red)
living at the end of a line defect corresponding to the K1-cycle (shown in blue). If
the K2-chain passes over a puncture Pi , then the local operator is charged under a
representation Ri of Pi . See (60).

underlying 2-chain does not contain any puncture. On the other hand, an extended K2-chain
is one whose underlying 2-chain contains atleast one puncture.

The boundary of a K2-chain is a K1-cycle. So, we can define two kinds of K1-homologies:
extended K1-homologyL and non-extended K1-homologyK, depending on whether we regard
or do not regard K1-cycles living at the boundaries of extended K2-chains as trivial.

These homologies carry a pairing bi-homomorphism 〈·, ·〉H : H × H → R/Z, where
H ∈ {K,L} denotes either K or L. This pairing 〈·, ·〉H on H is deduced from the pairing 〈·, ·〉
on bZG and the intersection pairing between 1-cycles on C. To specify the pairing




[C1], [C2]
�

H
where [C1], [C2] ∈ H, let us choose two representative K1-cycles C1, C2 of [C1], [C2] respec-
tively. Say the 1-cycles underlying C1 and C2 intersect at n points p1, p2, · · · , pn, and let t1,i

and t2,i be the tangent vectors along C1 and C2 respectively at pi . Also let αi ∈ bZG be the
element carried by C1 at pi and βi ∈ bZG be the element carried by C2 at pi . Then, we have




[C1], [C2]
�

H =
∑

i

si 〈αi ,βi〉 , (43)

where si = ±1 is defined via
t1,i ∧ t2,i = si Pi vol , (44)

where Pi > 0 and vol is a chosen orientation of C. In other words, si = +1 if the orientation
described by t1,i ∧ t2,i matches the orientation of C, and si = −1 if the orientation described
by t1,i ∧ t2,i is opposite to the orientation of C.

Compactifying 6d surface defect along a K2-chain D leads to a 4d local operator living
at the end of the 4d line defect corresponding to K1-cycle C , where C = ∂ D. See Figure 3.
This local operator can carry flavor charge only if the 2-chain underlying D contains some
punctures, i.e. if D is an extended K2-chain. Thus, if one wants to keep track of flavor charges
of junction local operators, one should study K1-homology K, but if one does not want to keep
track of flavor charges, then one should study K1-homology L. Consequently, the non-extended
K1-homology K is not very relevant for the discussion of 1-form symmetry, but would play a
crucial role in the discussion of 2-group symmetry in Section 4.4.

On the other hand, the extended K1-homology L was proposed in [31] to be the group, also
known as defect group [42], formed by 4d line defects modulo screenings and flavor charges,
with the mutual non-locality of line defects being captured by the pairing 〈·, ·〉L on L described
above. L was explicitly computed in [31] for all possible Class S theories, but a general in-
variant description of L as a K1-homology was not described explicitly. The discussion of this
subsection can be viewed as filling that gap. It should be emphasized that this proposal is
only valid when all the punctures (twisted or untwisted) are regular punctures. For irregular
punctures, we need to add new K1-chains whose underlying 1-chains can end on irregular
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punctures, and not all K1-cycles which are boundaries of extended K2-chains are trivial if the
K2-chain passes over irregular punctures. See Section 5 of [31] and Section 3.2 of [36] for
some examples illustrating these modifications.

A genuine (also called ‘absolute’) 4d N = 2 Class S theory TΛ is obtained from the non-
genuine, relative Class S theory T by choosing a topological boundary condition BΛ of the
associated 5d TQFT and compactifying the 5d TQFT on a segment with one end of the segment
occupied by the non-genuine 4d N = 2 theory T and the other end of the segment occupied
by BΛ. The resulting genuine, absolute 4d N = 2 Class S theory TΛ has a group Λ of genuine
line defects modulo screenings and flavor charges, where Λ, also known as polarization, is a
maximal subgroup of L such that




[C], [D]
�

L = 0 , ∀ [C], [D] ∈ Λ . (45)

The other line defects lying in L−Λ are non-genuine line defects (modulo screenings) of TΛ.
We can identify the 1-form symmetry group OΛ of TΛ as

OΛ = bΛ , (46)

which is the Pontryagin dual of Λ.

4.3 Global Form of 0-Form Flavor Symmetry Group

Let us now discuss the global form of flavor symmetry group of a Class S theory. It should be
noted that we only consider manifest flavor symmetry of the theory encoded in the properties
of the regular punctures. The true full flavor symmetry of the theory may be an enhancement
of the manifest flavor symmetry. The discussion in this subsection is a review of the contents
of [32], to which the reader is referred to for more details. The detailed properties of the
punctures required in the following analysis can be found in [43–54].

Let us label the punctures on C as Pi . If the puncture Pi lives at the end of an o-twist line,
then it is characterized by a homomorphism

ρi : su(2)→ h∨o , (47)

where h∨o is the Langlands dual of the subalgebra ho ⊆ g left invariant by the action of o on g.
The puncture contributes a flavor symmetry algebra fi to the 4d theory which is given by the
commutant of the image

ρi

�

su(2)
�

⊆ h∨o . (48)

Let us decompose
fi =

⊕

µ

fi,µ ⊕ u(1)ai , (49)

where fi,µ is a non-abelian finite simple Lie algebra and u(1)ai is the abelian part of fi . Cor-
respondingly, we associate a group bZi which is Pontryagin dual of the center Zi of the group

Fi =
∏

µ

Fi,µ × U(1)ai , (50)

where Fi,µ is the simply connected group with associated Lie algebra fi,µ and U(1)ai is a group
with associated Lie algebra u(1)ai . In total, the group of possible flavor center charges is

bZF =
∏

i

bZi . (51)

The subgroup YF ⊆ bZF of flavor center charges occupied by genuine local operators receives
two different kinds of contributions. First, there is a contribution coming from each puncture
Pi:
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• If Pi is a Z2-twisted puncture for g = su(2n+ 1), then the 4d theory contains genuine
local operators whose flavor center charges lie in a sublattice YF,i ⊆ bZi generated by
the center charges of irreps contained in a representation S∨o,i of fi . S∨o,i is obtained by
viewing the fundamental representation of h∨o = sp(n) from the point of view of the
subalgebra fi ⊆ sp(n) 6.

• If Pi is not of the above type, then the 4d theory contains genuine local operators whose
flavor center charges lie in a sublattice YF,i ⊆ bZi generated by the center charges of irreps
contained in a representation S∨o,i of fi obtained by viewing the adjoint representation of
h∨o from the point of view of the subalgebra fi ⊆ h∨o .

Combining all these contributions, we find that at least the sublattice

Y ′F =
⊕

i

YF,i ⊆ bZF (52)

of flavor center charges is realized by genuine local operators of the 4d theory.
The second contribution to YF arises from K2-cycles, that is from surface defects wrapping

the whole C. The idea is that such a surface defect wrapping C gives rise to a genuine local
operator in the 4d theory. Since the surface defect passes over each puncture Pi on C, the
corresponding local operator transforms in some representation of each flavor algebra fi . The
K2-cycles form a group Y which is either Zm or Z2×Z2. Choose some generators gα for Y . For
Y ' Zm, we have a single generator g1, while for Y ' Z2×Z2, we have two generators g1, g2.
Each generator gα provides a contribution Yα to YF . In a small neighborhood of a puncture Pi ,
the K2-cycle gα carries some element βi ∈ bZG that is left invariant by the outer-automorphism
o associated to Pi . Let Ri be an irreducible representation whose charge under ZG is βi . Then,
as discussed in detail in [32], Ri descends to an irreducible representation R∨o,i of h∨o , where
h∨o is the algebra associated to Pi as discussed above. Viewing R∨o,i from the point of view
of the subalgebra fi ⊆ h∨o provides us with a (in general reducible) representation R∨o,i of fi .

Then, Yα ⊆ bZF is the sub-lattice generated by center charges of irreps of f contained in the
representation

R=
⊗

i

R∨o,i (53)

of f=
⊕

i fi .
Combining the two contributions, we have

YF =


⋃

α

Yα ∪ Y ′F
�

, (54)

which is the sublattice of bZF generated by the union of Y ′F and all Yα.

4.4 2-Group Symmetries

As discussed in Section 4.2, we should study the non-extended K1-homology K in order to
study 2-group symmetry of Class S theories. The non-extended K1-homology K is related to
the extended K1-homology L as

L=K/N , (55)

where N is the subgroup of elements [C] ∈K such that



[C], [D]
�

K = 0 , ∀ [D] ∈K . (56)

6We remind the reader that h∨o is a subalgebra associated to each puncture Pi as discussed above.
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b[C]

[C]

−a[C]

−[C]

b[C] − a[C]OPE

Figure 4: Taking OPE of two local operators living at the ends of two line defects that
are inverse of each other leads to a genuine local operator. The flavor center charges
are added in this process.

a[C]
[C]

a[C] + b
[C]b

OPE

Figure 5: Taking OPE of a genuine local operator with a local operator living at the
end of a line defect leads to another local operator living at the end of that line defect.
The flavor center charges are added in this process.

That is, the elements in N have trivial pairing with all elements of K. Physically, this is because
an extended K2-chain making an element [C] ∈ N trivial gives rise to a local operator that
lives at the end of a line operator L in the class [C]. Since L ends, it can have no non-locality
with other line operators.

Now we want to keep track of the flavor center charges of local operators living at the ends
of line defects in N . Let Y[C] ⊆ bZF be the subset of flavor center charges occupied by local
operators living at the end of a line defect [C] ∈ N . Any two elements a[C], b[C] ∈ Y[C] are
related as

b[C] − a[C] ∈ YF . (57)

This follows from taking OPE of line defect [C] with a local operator of charge b[C] living at
its end, and a line defect −[C] with a local operator of charge −a[C] at its end. See Figure 4.
Moreover, we have

a[C] + b ∈ Y[C] , (58)

if b ∈ YF and a[C] ∈ Y[C]. This follows from taking OPE of line defect [C] with a local operator
of charge a[C] living at its end, and a genuine local operator of charge b. See Figure 5. Thus
one only needs to determine a single element a[C] ∈ Y[C] and then

Y[C] = a[C] + YF (59)

determines the whole Y[C] in terms of a[C].
To determine an element a[C] ∈ Y[C], pick a K1-cycle C in class [C] and an extended K2-

chain D such that ∂ D = C . Let D be the set of punctures that lie in the underlying 2-chain
associated to D. In a local neighborhood of a puncture i ∈ D, the K2-chain D carries an
element βD,i ∈ bZG that is left invariant by the outer-automorphism o associated to Pi . Let RD,i
be an irreducible representation whose charge under ZG is βD,i , and let R∨o,D,i be the irrep of
h∨o that descends from the irrep RD,i of g, where h∨o is the algebra associated to Pi as discussed
in Section 4.3. Viewing R∨o,D,i from the point of view of the subalgebra fi ⊆ h∨o provides us with
a (in general reducible) representation R∨o,D,i of fi . Then, a[C] can be taken to be the center
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charge of any irrep of f contained in the representation

RD =
⊗

i∈D
R∨o,D,i

⊗

i /∈D
1i (60)

of f=
⊕

i fi , where 1i denotes the trivial representation of fi .
Now, we can choose a[C] + a[D] as a[C]+[D], from which we see that

Y[C] + Y[D] = Y[C]+[D] . (61)

Thus, the subset
M :=

⋃

[C]∈N

�

[C], Y[C]
�

⊆K× bZF (62)

is a subgroup of K× bZF which plays the role of ‘matter content’ for a Class S theory.
We obtain a matrix of exact sequences akin to (28)

0 YF M N 0

0 0 0

0 bZF K× bZF K 0

0 ÒZ bEL L 0

0 0 0 (63)

where bEL is the group formed by equivalence classes of line defects plus flavor Wilson lines of
the relative 4d N = 2 Class S theory T.

For a genuine absolute 4d N = 2 Class S theory TΛ, the above matrix of short exact
sequences (63) gives rise to a matrix of short exact sequences when restricted to Λ ⊂ L

0 YF M N 0

0 0 0

0 bZF KΛ × bZF KΛ 0

0 ÒZ bEΛ Λ 0

0 0 0 (64)

where
KΛ = π−1(Λ) , (65)

if π : K → L is the projection map associated to modding out K by N . Consequently, bEΛ
is the group formed by equivalence classes of genuine line defects plus flavor Wilson lines
of the absolute 4d N = 2 Class S theory TΛ, which thus has a potential 2-group symmetry
governed by the Postnikov class (20) with Bockstein homomorphism associated to the short
exact sequence

0→OΛ→ EΛ→ Z → 0 , (66)
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which is the Pontryagin dual of the short exact sequence in the bottom-most row of (64).
Notice that we can express

bEΛ = eπ−1(Λ) , (67)

if eπ : bEL→ L is the projection map associated to modding out bEL by ÒZ.

5 An Illustrative Example

Consider compactifying g= so(4n+2)N = (2, 0) theory on a sphere with two maximal twisted
regular punctures (labeled by i = 1, 2) and two minimal twisted regular punctures (labeled by
i = 3, 4). See Figure 6. We have bZG = Z4 and the outer-automorphism acts on bZG by sending
each element to its inverse.

··
·P3

· · ·
P1

g= so(4n+ 2)

··
· P4

· · ·
P2

C12

C13

Figure 6: The example considered in the text involves compactification of 6d
N = (2,0) theory of g = so(4n + 2) on a sphere carrying four Z2 twisted regular
punctures. The dashed lines display the locus of the Z2 outer-automorphism twist
lines. P1 and P2 are maximal punctures and each of them carries an sp(2n) flavor
algebra. P3 and P4 are minimal punctures and neither of them carries a non-trivial
flavor algebra. C13, which is shown completely in blue, is a cycle encircling P1 and
P3. C12 is a cycle encircling P1 and P2, which is divided into two segments, shown
in red and blue, separated by outer-automorphism twist lines.

5.1 1-Form Symmetry

Let us first compute K and N . We have cycles Ci surrounding each puncture i. Since these
cross the outer-automorphism twist line once, only the elements in Z2 ⊂ bZG can be placed
along them. Thus these cycles lead to non-trivial elements [Ci] ∈ K such that 2[Ci] = 0. In
addition to these, we have cycles C13, C12 encircling two out of four punctures. See Figure 6.
Along C13, we can wrap any element of bZG , leading to a non-trivial element [C13] ∈ K such
that 4[C13] = 0. On the other hand, C12 crosses twist lines twice, and hence is divided into
two sub-segments. Along a sub-segment, we can place any element of α ∈ bZG . Then, along
the other sub-segment we are forced to place −α. Thus this cycle gives rise to a non-trivial
element [C12] ∈ K such that 4[C12] = 0. These elements of K satisfy certain relationships,
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which are
∑

i

[Ci] = 0 ,

[C1] + [C2] = 2[C12] ,

[C1] + [C3] = 2[C13] .

(68)

Thus, we can choose a basis [C1], [C12], [C13] for K, implying that

K ' Z2 ×Z
(12)
4 ×Z(13)

4 , (69)

where Z(1i)
4 is the Z4 group generated by [C1i].

The only non-trivial pairing on K is



[C12], [C13]
�

=
1
2

. (70)

The elements of K which have zero pairing with all elements of K are thus
[Ci], 2[C12], 2[C13]. Thus, we have

N ' Z2 ×Z
(12)
2 ×Z(13)

2 ⊂K , (71)

where Z(1i)
2 is the Z2 subgroup of Z(1i)

4 .
Consequently, we have the defect group

L=K/N ' Z[12]
2 ×Z[13]

2 , (72)

where Z[1i]
2 := Z(1i)

4 /Z(1i)
2 . It is generated by [C12], [C13] such that 2[C12] = 2[C13] = 0, and

the pairing on L is given by (70). This reproduces the result of [31].
We have three possible choices of polarization Λ ⊂ L. These are Λe = Z

[13]
2 , Λm = Z

[12]
2

and Λd = Z
[23]
2 , where Z[23]

2 denotes the diagonal Z2 subgroup of Z[12]
2 ×Z[13]

2 . The respective
absolute Class S theories all have 1-form symmetry OΛ ' Z2.

5.2 Global Form of 0-Form Flavor Symmetry Group

Let us compute YF now. The punctures i = 1, 2 have fi = h∨o = sp(2n), while the punctures
i = 3, 4 have fi = 0. The total (manifest) flavor algebra is f= ⊕ifi = sp(2n)1⊕sp(2n)2. To this
we associate F = Sp(2n)1 × Sp(2n)2.

First let’s compute Y ′F . Since fi = h∨o for i = 1,2, we have S∨o,i = Ai , i.e. the adjoint irrep of
fi = sp(2n)i . Thus we have Y ′F = 0. Now, notice that a K2-cycle must carry the same element of
bZG at every point of C and this element must be left invariant by the outer-automorphism, and
hence must lie in the Z2 subgroup of bZG ' Z4. Thus Y ' Z2 and we have a single generator
g1. We pick Ri to be vector irrep of g = so(4n + 2) which descends to R∨o,i = Fi i.e. the
fundamental irrep of fi = sp(2n)i for i = 1,2. Consequently, we have

⋃

α Yα = Y1 = (Z2)1,2,
where (Z2)1,2 is the diagonal Z2 subgroup of bZF = (Z2)1 × (Z2)2 and (Z2)i is the Pontryagin
dual of the center of Sp(2n)i .

In total, we have
YF = (Z2)1,2 , (73)

and
ÒZ = bZF/YF = (Z2)[1,2] , (74)

where (Z2)[1,2] := (Z2)1×(Z2)2
(Z2)1,2

. The (manifest) flavor symmetry group of the theory is

F = F/Z =
Sp(2n)1 × Sp(2n)2

Zdiag
2

, (75)

where Zdiag
2 is the diagonal subgroup of the Z2 ×Z2 center of F = Sp(2n)1 × Sp(2n)2.
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5.3 2-Group Symmetry

Finally, let us compute M. We choose the K2-chain D1 making C1 trivial to be the one con-
taining the puncture 1 but no other puncture i 6= 1. Every point in D1 carries the non-trivial
element in the Z2 subgroup of bZG ' Z4, which captures flavor center charge of the vector irrep
of g= so(4n+ 2), which we choose to be RD1

. It leads to the representation

RD1
= F1 ⊗ 12 (76)

of f = sp(2n)1 ⊕ sp(2n)2, where Fi denotes the fundamental irrep of sp(2n)i and 1i denotes
the trivial rep of sp(2n)i . Thus, we have

a[C1] = (1, 0) ∈ (Z2)1 × (Z2)2 . (77)

Similarly, we choose the K2-chain D1i making 2C1i trivial to be the one that contains punctures
1 and i, where i ∈ {2, 3}. Again, every point in D1i carries the non-trivial element in the Z2
subgroup of bZG ' Z4. We choose RD1i

to be the vector irrep of g= so(4n+ 2). This leads to

RD12
= F1 ⊗ F2 ,

RD13
= F1 ⊗ 12 ,

(78)

from which we obtain
a2[C12] = (1,1) ∈ (Z2)1 × (Z2)2 ,

a2[C13] = (1,0) ∈ (Z2)1 × (Z2)2 .
(79)

Thus, M ' Z4
2 is generated by (1,0, 0,1, 0), (0,2, 0,0, 0), (0, 0,2, 1,0), (0,0, 0,1, 1) ∈ K × bZF

= Z2 ×Z
(12)
4 ×Z(13)

4 × (Z2)1 × (Z2)2, from which we compute

bEL ' Z
[12]
2 ×

�

Z[13]
4

�

[1,2]
, (80)

where
�

Z[13]
4

�

[1,2]
is a Z4 such that its Z2 subgroup is (Z2)[1,2] and

�

Z[13]
4

�

[1,2]
/(Z2)[1,2] = Z

[13]
2 . (81)

The short exact sequence
0→ ÒZ → bEL→ L→ 0 (82)

in (63) becomes

0→ (Z2)[1,2]→ Z
[12]
2 ×

�

Z[13]
4

�

[1,2]
→ Z[12]

2 ×Z[13]
2 → 0 . (83)

Let us now study 2-group symmetries of various absolute 4d N = 2 absolute Class S theories
associated to polarizations Λe,Λm,Λd :

• For Λ= Λm, we obtain
bEΛ ' Z

[12]
2 × (Z2)[1,2] (84)

by using (67). The short exact sequence

0→ ÒZ → bEΛ→ Λ→ 0 (85)

in (64) becomes

0→ (Z2)[1,2]→ Z
[12]
2 × (Z2)[1,2]→ Z

[12]
2 → 0 , (86)

which clearly splits and hence there is no 2-group symmetry.
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• For Λ= Λe, we have
bEΛ '

�

Z[13]
4

�

[1,2]
(87)

by using (67). The short exact sequence (85) becomes

0→ (Z2)[1,2]→
�

Z[13]
4

�

[1,2]
→ Z[13]

2 → 0 , (88)

which does not split and hence there is a potential non-trivial 2-group symmetry.

• For Λ= Λd , we have
bEΛ '

�

Z[23]
4

�

[1,2]
, (89)

where
�

Z[23]
4

�

is the Z4 subgroup of Z[12]
2 ×

�

Z[13]
4

�

[1,2]
generated by combining the

generators of Z[12]
2 and

�

Z[13]
4

�

[1,2]
. The short exact sequence (85) becomes

0→ (Z2)[1,2]→
�

Z[23]
4

�

[1,2]
→ Z[23]

2 → 0 , (90)

which does not split and hence there is a potential non-trivial 2-group symmetry.

5.4 Check Against Gauge Theory Prediction

The above results for polarization Λ = Λe can be verified using a Lagrangian description be-
cause the Class S theory under consideration admits a limit under which it becomes a weakly
coupled 4d N = 2 gauge theory with gauge algebra so(4n + 2) and 4n hypermultiplets in
vector irrep of the gauge algebra. The quiver diagram of the gauge theory can be written as

�

sp(2n)1
�

so(4n+ 2) F �

sp(2n)2
�1

2F
1
2F F

. (91)

The sp(2n)1 ⊕ sp(2n)2 flavor symmetry is realized by splitting the 4n hypers into two blocks
of 2n hypers each. The choice of polarization Λ = Λe corresponds to gauge group being the
simply connected group G = Spin(4n+2), in which case we can apply the general analysis of
Section 3.

We have bZG ' Z4 and bZF ' (Z2)1 × (Z2)2. The sublattice M ' Z2 × Z2 is generated by
(2, 1,0), (2, 0,1) ∈ bZG × bZF = Z4 × (Z2)1 × (Z2)2. From this, using (27) we compute that YG
is the Z2 subgroup of bZG = Z4, implying that the theory has a 1-form symmetry which is the
Pontryagin dual of

ÒO = bZG/YG ' Z2 . (92)

Using (26) we compute that YF = (Z2)1,2 is the diagonal Z2 subgroup of
bZF = (Z2)1 × (Z2)2, which implies that

ÒZ = bZF/YF = (Z2)[1,2] , (93)

and the global form of flavor symmetry group is

F = F/Z =
Sp(2n)1 × Sp(2n)2

Zdiag
2

. (94)

Moreover, we can compute the short exact sequence

0→ ÒZ → bE → ÒO→ 0 (95)

in (28) to be
0→ Z2→ Z4→ Z2→ 0 , (96)

matching the result (88) obtained above using our general method applicable to any Class S
theory. Thus, we have verified the predicted 2-group symmetry using the Lagrangian descrip-
tion.
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