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Shashin Pavaskar, Riccardo Penco and Ira Z. Rothstein

Department of Physics, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Abstract

We utilize the coset construction to derive the effective field theory of magnon-phonon
interactions in (anti)-ferromagnetic and ferrimagnetic insulating materials. The action
is used to calculate the equations of motion which generalize the Landau-Lifshitz and
stress equations to allow for magneto-acoustic couplings to all orders in the fields at
lowest order in the derivative expansion. We also include the symmetry breaking effects
due to Zeeman, and Dzyaloshinsky-Moriya interactions. This effective theory is a toolbox
for the study of magneto-elastic phenomena from first principles. As an example we use
this theory to calculate the leading order contribution to the magnon decay width due
to its the decay into phonons.
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1 Introduction

In this paper we utilize effective field theory (EFT) techniques to investigate magneto-elastic
phenomena in insulators in the long wavelength limit. The interaction between phonons and
magnons is a well developed subject. For earlier theoretical work on phonon-magnon inter-
actions, see for instance [1–9] and for experimental work, see [10–12]. Here, we will be
utilizing the coset construction [13–16] which, to the best of our knowledge, has yet to be
applied to magneto-elastic systems. A primary, but not limited, goal of this paper is to set the
stage for understanding the interactions of Skyrmionic with magnons and phonons [17].

Within our EFT approach, the action is completely dictated by the spontaneous symmetry
breaking pattern. In the absence of gapless modes which carry conserved quantum numbers
(e.g. itinerant electrons), the relevant degrees of freedom at sufficiently low energies are the
Goldstone bosons associated with the spontaneously broken global symmetries. The latter
act non-linearly on the Goldstone fields, and therefore are not always manifest. The coset
construction [13–16] is a powerful algorithmic tool to generate an effective action for the
Goldstone modes which is invariant under all the symmetries, including the ones that are
realized non-linearly. The action will be organized as a derivative expansion valid up to a
cutoff energy of the order of the spontaneous symmetry breaking scale. We also use this
formalism to capture systematically the consequences of a small explicit breaking of certain
symmetries–e.g. due to an external magnetic field, or the presence of Dzyaloshinsky-Moriya
(DM) interactions among spins.

Solids break a multitude of space-time symmetries, including translations, rotations and
boosts. Moreover, homogeneous and isotropic solids possess emergent internal translational
and rotational symmetries (see e.g. [18–20]), which are also spontaneously broken in the
ground state, as will be discussed below. We should stress that the assumption of isotropy
is convenient but by no means necessary. It is straightforward to relax this assumption and
consider instead a finite subgroup of rotations (for a relativistic solid, this was done for instance
in [21]). The relevant symmetries and the associated generators are given in Table 1. The
resulting symmetry breaking pattern is summarized in Eq. (2).

Magneto-elastic interactions are characterized by a multitude of scales, and the derivative
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expansion can be implemented in different ways depending upon whether or not there are
hierarchies among them. We will refer to these possible choices as different power counting
schemes. For simplicity of presentation we will make a simple choice of scales. Exploring other
hierarchies can be achieved by minor variations. Our EFT approach can in principle predict a
large number of effects from first principles. Here, we will only focus on a set of illustrative
observables calculated in a particular power counting scheme.

Conventions: we will work in units such that ħh = 1. Lowercase indices a, b, c, . . . run over
1, 2, lowercase indices i, j, k, . . . run over the number of spatial dimensions, while uppercase
indices A, B, C , . . . run over 1, 2,3. We use (−,+,+,+) as the metric convention. Our conven-
tions for (anti-)symmetrization of indices are A(i j) =

1
2(Ai j + A ji) and A[i j] =

1
2(Ai j − A ji).

2 Relevant symmetries

Given the non-relativistic nature of the system we are considering, the appropriate space-time
symmetry group is the Galilean group, which is comprised of time and spatial translations,
spatial rotations, Galilean boosts, and total mass (or, equivalently, particle number). As we
will discuss at length below, the spontaneous breaking of Galilean invariance, places non-trivial
constraints on the dynamics of the system, which in turn enhances predictive power.

Our system also admits a number of internal symmetries including spin rotations and, if
we restrict ourselves to homogeneous and isotropic systems, an emergent internal ISO(d)
symmetry [20] (in d spatial dimensions) whose implementation will be discussed in the next
section.

All these continuous symmetries and their corresponding generators are summarized in
Table 1. The generators satisfy an algebra whose only non-vanishing commutators are

[Li , K j] = iεi jkKk , [Li , Pj] = iεi jkPk ,

[Ki , H] = −iPi , [Ki , Pj] = −iMδi j ,

[Q i , T j] = iεi jkTk , [Q i ,Q j] = iεi jkQk ,

[SA, SB] = iεABCSC , [Li , L j] = iεi jk Lk .

(1)

Notice in particular that the internal symmetry generators Q i , SA and Ti , commute with all the
generators of the Galilei group, as befits the generators of internal symmetries.

Table 1: Relevant symmetries of lattice of spins in three spatial dimensions in the
continuum limit. Some of these symmetries may be spontaneously and/or explicitly
broken .

Symmetries Generators
Time translations: H
Spatial translations: Pi
Spatial rotations: Li
Galilean boosts: Ki
Total mass: M
Spin rotations: SA
Homogeneity: Ti
Isotropy: Q i
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Discrete symmetries such as parity and time-reversal will also play an important role in
what follows. The transformation properties of the above generators under these symmetries
are listed in Table 2. Under parity and time-reversal, each generator X in the first column
transforms as iX → ±iX with the appropriate sign shown in the second and third column. A
factor of “i” was included in these transformation rules for later convenience, to more easily ac-
count for the fact that time-reversal is implemented in a way that is anti-linear and anti-unitary
(as opposed to parity, which is linear and unitary). Notice however that our transformation
rules are equivalent to the ones that some readers may already be familiar with. For instance,
the transformation rule of the spin SA under time reversal, which we write as iSA → iSA, is
equivalent to SA→−SA owing to the anti-linear nature of time-reversal.

Table 2: Transformation properties of various symmetry generators under parity and
time-reversal. Each generator X in the first column transforms as iX →±iX with the
appropriate sign shown in the second and third column.

Generators Parity Time-reversal
H + −
Pi − +
Li + +
Ki − −
M + −
SA + +
Ti − +
Q i + +

3 Effective actions

In this section, we will discuss the way in which the symmetries are realized in
(anti-)ferromagnets and ferrimagnets. We first address how some of these symmetries are
spontaneously broken, and derive the effective action for the ensuing Goldstone modes. A
discussion of explicit symmetry breaking is postponed until Section 7.

3.1 Spontaneous symmetry breaking pattern

The full symmetry group will be denoted by G with elements g, while the unbroken subgroup
will be denoted by H with elements h. The vacuum manifold corresponds to the coset G/H.
(Anti-)ferromagnets and ferrimagnets have the same symmetry breaking pattern save for time
reversal, as depicted in Figure 1. Including lattice effects, all three cases possess the following
spontaneous breaking pattern:

unbroken=



















H
Pi + Ti ≡ P̄i
Li +Q i ≡ L̄i
S3
M

, broken=











Ki
Ti
Q i
S1, S2 ≡ Sa

, (2)

where we have assumed the spins to be oriented along the “3” direction. This pattern describes
all the spin configurations in Figure 1. The distinction between these cases can be understood
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Figure 1: Schematic representation of the ground state spin configuration of (a )
ferromagnets, (b ) antiferromagnets, and (c ) ferrimagnets.

by recalling that SA→ −SA under time-reversal. Thus, the first configuration (ferromagnets)
maximally breaks time-reversal invariance, the second one (antiferromagnets) preserves it,
and the last one (ferrimagnets) once again breaks it, but in a more “gentle way”, as the amount
of breaking is controlled by the difference between the magnitude of the spins pointing upward
and those pointing downwards. In other words, time-reversal gets restored in the limit where
these spins have the same magnitude. As is well known, the fate of time-reversal invariance
turns out to have a significant effect on the spectrum of gapless modes (see e.g. [22]), which
will be discussed in Section 5.2.

At this stage, it is worth pointing out that, since Ti and Q i are spontaneously broken, Pi
and Li must be as well in order for the linear combinations P̄i and L̄i to remain unbroken.
In fact, broken generators are always defined only up to the addition of unbroken ones. The
broken generators listed above are just one particular choice of bases for the coset space of
broken symmetries. Moreover, since some of these are space-time symmetries, not all the
broken generators in our basis will give rise to Goldstone modes [23]. As we will see, phonons
and magnons are the only Goldstone modes associated with the symmetry breaking pattern in
Eq. (2).

3.2 Coset construction for phonons and magnons

Starting from the symmetry breaking pattern (2), there exists a systematic procedure, known
as the coset construction, [13–16] to write down a low energy effective action for the Goldstone
modes. A modern and concise review of this technique can be found for instance in Sec. 2
of [24]. We will now apply it to the problem at hand to write down an effective action for
phonons and magnons.1

The starting point of a coset construction is a choice of parametrization of the vacuum
manifold. The parametrization that we will work with is

Ω= e−iH t ei x i P̄i eiηi Ki eiπi Ti eiθ iQ i eiχaSa . (3)

There is a considerable amount of freedom involved in choosing this parameterization, as
the order of the exponentials and the basis of broken generators are to a large extent arbitrary.
However, different choices are connected to each other by a field redefinition and thus generate
identical predictions for physical quantities. One can think of Ω as the most general broken
symmetry transformation, supplemented by an unbroken spatial and time translation.

The fields ηi ,πi ,θ i and χa in Eq. (3) are the Goldstone modes associated with the sponta-
neous breaking of Ki , Ti ,Q i and Sa respectively and their transformation rules under the action

1For separate discussions of magnons and (relativistic) phonons based on the coset construction, see respec-
tively [22,25] and [20]. The low-energy effective theory of (anti-)ferromagnets was also discussed in [26–29].
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of G is defined by the equation [16]

gΩ(t, x ,Φ) = Ω(t ′, x ′,Φ′)h(Φ, g) , (4)

where Φ = {ηi ,πi ,θ i ,χa}, and h is some element of the unbroken subgroup that generically
depends on the Goldstone fields as well as the group element g.

Table 3: Action of the symmetries on the coordinates, the phonon fields πi , and the
magnon fields χa.

t ′ ~x ′ π′i(t
′, ~x ′) χ ′a(t

′, ~x ′)
H t + c ~x πi(t, ~x) χa(t, ~x)
P̄i t ~x + ~a πi(t, ~x) χa(t, ~x)
L̄i t R−1

i j ( ~θ )x j R−1
i j ( ~θ )π j χa(t, ~x)

S3 t ~x πi(t, ~x) R−1
ab(θ3)χb(t, ~x)

M t ~x πi(t, ~x) χa(t, ~x)
Ki t ~x − ~vt πi + vi t χa(t, ~x)
Q i t ~x R−1

i j ( ~θ )φ j − x i χa(t, ~x)
Ti t ~x πi + ci χa(t, ~x)
Sa t ~x πi(t, ~x) χa(t, ~x) +ωa + . . .
P t −~x −πi(t, ~x) χa(t, ~x)
T −t ~x πi(t, ~x) χa(t, ~x)

As previously mentioned, not all of these modes are physically independent of each other. In
fact, we will see in a moment that the fields ηi and θ i can be removed while preserving all the
symmetries by imposing certain “inverse Higgs” constraints [30]. The remaining fields, πi and
χa, will respectively describe phonon and magnon excitations. The transformation properties
of coordinates, phonon fields, and magnon fields are summarized in Table 3.

Starting from the coset parametrization Ω, one can calculate the Maurer-Cartan form de-
fined as Ω−1dΩ:

Ω−1dΩ= i
§

−Hdt + P̄ i(ηid t + d x i)−M(ηid x i + 1
2 ~η · ~η d t) +Qi 1

2ε
i jk
�

R−1(θ )dR(θ )
�

jk

+ K idηi + T j
�

(d x i + dπi)Ri j(θ )−η jd t − d x j
�

+ Sa 1
2ε

aBC
�

O−1(χ)dO(χ)
�BC

ª

, (5)

where we have introduced the matrices Ri j ≡
�

eiθ iQ i

�

i j
and OAB ≡

�

eiχaSa
�

AB. Note that this re-

sult follows using only the algebra in Eq. (1), and as such, can be obtained without committing
to any particular representation for the group generators.

Even though we are considering a non-relativistic system, it is convenient to use the rel-
ativistic notation where xµ = (t, x i), and define P̄t ≡ −H. We should stress that this is just
a matter of notational convenience, and we are not imposing Lorentz invariance. With this
notation, we can rewrite the Maurer-Cartan form as follows:

Ω−1dΩ ≡ id xνeν
µ
�

P̄µ +∇µπi Ti +∇µθ i Q i +∇µηiKi

+∇µχaSa + AµM + A′µS3

�

. (6)
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This equation defines the “covariant derivatives” of the Goldstones ∇µπi ,∇µθ i ,∇µηi and
∇µχa, as well as the “connections” Aµ and A′µ and vierbein eν

µ, which read:

e0
0 = 1, ei

j = δi
j , ei

0 = 0, e0
i = ηi , (7a)

∇tπ
i = (∂tφ

j −ηk∂kφ
j)R j

i(θ ) , (7b)

∇ jπ
i = ∂ jφ

kRk
i(θ )−δi

j , (7c)

∇tθ
i = 1

2ε
ikl
�

R−1(θ )(∂t −η j∂ j)R(θ )
�

kl , (7d)

∇ jθ
i = 1

2ε
ikl
�

R−1(θ )∂ jR(θ )
�

kl , (7e)

∇tη
i = ∂tη

i −η j∂ jη
i , (7f)

∇ jη
i = ∂ jη

i , (7g)

∇tχ
a = 1

2ε
aBC

�

O−1(χ)(∂t −η j∂ j)O(χ)
�

BC , (7h)

∇ jχ
a = 1

2ε
aBC

�

O−1(χ)∂ jO(χ)
�

BC , (7i)

At =
1
2 ~η

2 , (7j)

Ai = −ηi , (7k)

A′t =
1
2ε

ab
�

O−1(χ)(∂t −η j∂ j)O(χ)
�

ab , (7l)

A′j =
1
2ε

ab
�

O−1(χ)∂ jO(χ)
�

ab , (7m)

where we have defined φ i ≡ x i +πi to streamline the notation. φ i ’s are the comoving coordi-
nates of the solid, which at equilibrium (i.e. when πi = 0), can be chosen to be aligned with
the physical coordinates x i [18].

The fields ηi and θ i can now be removed from the theory in a way that is compatible with
all the symmetries by solving the inverse Higgs constraints [30]

∇tπ
i ≡ 0 , ∇[iπ j] ≡ 0 . (8)

The first constraint can be solved immediately for ηi and yields ηi = ∂tπ
j(D−1) j i , with

Di j ≡ ∂iφ j . The second constraint can instead be solved for Ri j(θ ) using the same strategy em-
ployed for instance in Sec. V of [20]. After substituting both solutions back into the remaining
covariant derivatives, the low-energy effective action will only depend on the phonon field πi

and the magnon field χa through the combinations:2

∇(iπ j) = (D
p

DT DD−1)i j −δi j , (9a)

∇tχ
a =

1
2
εaBC

�

O−1[∂t − ∂tπ
k(D−1)k

j∂ j]O
	

BC , (9b)

∇iχ
a =

1
2
εaBC(O−1∂iO)BC , (9c)

where Di j = ∂iφ j = δi j + ∂iπ j and, once again, OAB ≡
�

eiχaSa
�

AB.
Covariant derivatives of η’s and θ ’s, once expressed solely in terms of the fields πi and χa,

turn out to have a higher number of derivatives per field compared to the ones in Eqs. (9).
Thus, these quantities can be neglected at lowest order in the derivative expansion. More-
over, the coset connections Aµ and A′µ are needed only if one is interested in higher covariant
derivatives of the π’s and χ ’s, or in couplings with additional fields. In this paper we won’t be
interested in either, and therefore these connections won’t play any role for our purposes.

2Notice that, although it’s not obvious, the tensor (D
p

DT DD−1) that appears in (9a) is actually symmetric. This
can be checked explicitly by working perturbatively in the fields πi .
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By combining the building blocks (9) in a way that preserves the unbroken symmetries in
Eq. (2), one can write down all the terms in the low-energy effective action that are exactly
invariant under all the symmetries, including the ones that are broken spontaneously. How-
ever, the latter are realized non-linearly and thus are not manifest. Therein lies the power of
the coset construction.

There are also some terms that we can write down that are invariant only up to a total
derivative. Following the high-energy physics terminology (see e.g. [31]), we will generically
refer to these terms as Wess-Zumino-Witten (WZW) terms, even though they do not have a
topological origin and their coefficient is not quantized. These kind of terms can be obtained
systematically by combining the 1-forms that appear in front of the various generators in Eq.
(5) to build 5-forms α that are exact, i.e. α= dβ , and manifestly invariant under all unbroken
transformations.3 Once again, the coset construction ensures that any α built this way is
actually invariant under all the symmetries—including the broken ones. Therefore, the 4-form
β is in principle allowed to shift by a total derivative under a symmetry transformation [31–
33], and its integral is in general a WZW term.4 Using the solutions to the inverse Higgs
constraints (8), we can always express these WZW terms solely in terms of π’s and χ ’s.

For the system under consideration, there are two WZW terms that we should include in
our effective Lagrangian. In particular, note that if we were restricted to our building blocks
(9) our action would not have time derivatives acting on the phonon field. In order to write
down WZW terms, it is convenient to denote withωX the 1-form associated with the generator
X in the Maurer-Cartan form (5) up to an over all factor of “i”. Hence, with this notation we
have for instance ωH = −d t, and so on. The two exact 5-forms that we can write down are
then

απ = εi jkδ`mωKm
∧ωP̄` ∧ (ωP̄i

+ωTi
)∧ (ωP̄j

+ωT j
)∧ (ωP̄k

+ωTk
)

= d
��

η`d x` + 1
2 ~η

2d t
�

∧ dφ i ∧ dφ j ∧ dφkεi jk

�

, (10a)

αχ = εi jkεabωSa
∧ωSb

∧ (ωP̄i
+ωTi

)∧ (ωP̄j
+ωT j

)∧ (ωP̄k
+ωTk

)

= d
�

2εab(O−1dO)ab ∧ dφ i ∧ dφ j ∧ dφkεi jk

�

. (10b)

The derivation of the RHS of Eq. (10b) is summarized in Appendix A. Once again, notice
that the 5-forms above are fully invariant under all the symmetries, even though they are
manifestly invariant only under the unbroken ones. The 4-forms that give rise to the relevant
WZW terms are the ones in square brackets on the RHS of Eqs. (10). Using the solutions to
the inverse Higgs constraints, we can then write down the WZW terms explicitly as follows:

LπW ZW ≡
c1

2
det(D) [∂tπ

j(D−1) j
i]2 , (11a)

LχW ZW ≡
c2

2
det(D)εab

�

(O−1∂tO)ab − ∂tπ
k(D−1)k

j(O−1∂ jO)ab

�

, (11b)

with c1, c2 arbitrary coefficients.
Up until now we have only concerned ourselves with invariance under continuous symme-

tries. However, time-reversal plays a crucial role in determining the spectrum of low-energy
excitations in magnetic systems. It is straightforward to derive how space-time coordinates
and Goldstone fields transform under parity and time-reversal. To this end, we require that
the coset parametrization Ω remains invariant when the broken generators transform accord-
ing to the rules summarized in Table 2. This leads to the transformation rules shown in Table
3.

3More generally, in d space-time dimensions one would need to consider a (d + 1)−form α that is exact.
4More precisely, not all the terms built this way will be WZW terms, since they could turn out to be accidentally

exactly invariant. However, all WZW terms can be built this way [32].
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Using these results, we infer that∇(iπ j),∇tχ
a, LπW ZW ,LχW ZW (∇iχ

a) are even (odd) under
parity, whereas ∇(iπ j),∇iχ

a,LπW ZW , (∇tχ
a,LχW ZW ) are even (odd) under time-reversal.

Finally, we should point out that, although the quantities in Eqs. (9) and (11) have been
derived in three dimensions, they can be used in any number of spatial dimensions d, provided
one lets the lowercase indices i, j, k, . . . run from 1 to d. In the remainder of this paper we
will mostly restrict ourselves to the d = 3 case, unless otherwise stated.

3.3 Effective action for phonons and magnons

At low-energies and large distances, the most relevant terms in the Lagrangian will be those
with the least number of derivatives. In practice, this requirement means something slightly
different for the phonon field πi and the magnon field χa, i.e. the derivative expansion is
implemented differently on the two fields. This can be easily seen from the fact that, unlike
the χ ’s, each π in Eqs. (9) and (11) appears with a derivative.5 Therefore at lowest order
in the derivative expansion, anharmonic corrections to the free Lagrangian for phonons and
magnons are suppressed by higher powers of ∂iπ

j and χa (which, with our conventions, are
both dimensionless). When these quantities are small, one can safely expand the terms in Eqs.
(9) and (11) in powers of ∂ π and χ and keep only the first few terms. This is certainly the
appropriate thing to do if we are interested in studying small fluctuations around a particular
ground state of the system—as we will do for instance in Secs. 4.2 and 5.2.

It is however not necessary to perform such an expansion at this stage. In fact, by keeping
intact the non-linear structures in (9) and (11) we will be able to also describe non-trivial
field configurations where the first derivative of the phonon field is of order one, with second
derivatives being suppressed. A similar approach is taken in General Relativity where the
Einstein-Hilbert action can be derived starting from spin-2 perturbations around a particular
ground state—the Minkowski vacuum—and then resumming all non-linear interactions that
are dictated by symmetry, locality, and self-consistency [34]. This action can then be used to
describe spacetimes other than Minkowski as long as higher derivative curvature invariants
for these solutions remain small in units of the cutoff.

Since magnons do not carry one derivative per field, we allow the field itself to vary at the
order one level, but its first derivatives must remain small in units of the cutoff. We can sys-
tematically include higher derivative corrections at the cost of introducing additional unknown
Wilson coefficients.

Thus, we are going to use the full expression for our Goldstone covariant derivatives and
WZW terms, and write down the most general effective Lagrangian that contains one derivative
on each π, and the least possible number of derivatives on the χ ’s. For ferromagnets, this
requirement leads to the following effective Lagrangian:

Lferromagnets = LπW ZW +LχW ZW − F1(u)−
1
2 F i j

2 (u)∇iχa∇ jχ
a , (12)

where we have defined ui j ≡ ∇(iπ j) for notational convenience, F1 and F i j
2 admit an a priori

arbitrary series expansion in powers of ui j . Notice that the i-type indices and a-type indices
cannot be contracted with each other, because the former transform under L̄i , whereas the
latter under S3. Moreover, we have not included a term of the form ∇tχa∇tχ

a which would
contain a term quadratic in χ with two time derivatives, because for ferromagnets it is sub-
leading compared to LχW ZW which contains a quadratic term with only one time derivative.
The latter, in turn, is allowed only because time-reversal is broken. Hence, this term cannot
appear in the effective Lagrangian for anti-ferromagnets, which reads:

Lantiferromagnets = LπW ZW − F1(u)−
1
2 F i j

2 (u)∇iχa∇ jχ
a + 1

2 F3(u)∇tχa∇tχ
a . (13)

5The reason for this is that the phonons are associated with a broken Abelian group.
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The leading kinetic term for the χ ’s now comes from the last term in Eq. (13) rather than from
LχW ZW , and this leads to a different dispersion relation for magnons [22], as we will see in a
moment.

Finally, the low-energy excitations in ferrimagnets derive their kinetic term from an inter-
play between the term ∇tχa∇tχ

a and LχW ZW . The coefficient c2 in LχW ZW is much smaller
than in ferromagnets since its size is determined by the scale at which time reversal is spon-
taneously broken, which in ferrimagnets is parametrically smaller than the scale at which all
other symmetries are broken. Thus, the effective action for ferrimagnets is:

Lferrimagnets = LπW ZW +LχW ZW − F1(u)−
1
2 F i j

2 (u)∇iχa∇ jχ
a + 1

2 F3(u)∇tχa∇tχ
a . (14)

4 Phonons

Let us start by turning off the magnon field and focusing on the phonons. Then, our effective
Lagrangian reduces to

L→
c1

2
det(D) [∂tφ

j(D−1) j
i]2 − F1(u) , (15)

where, as the reader may remember, we have previously defined Di j = ∂iφ j and
ui j = (D

p
DT DD−1)i j −δi j .

4.1 The Elasticity equations

It is convenient to exploit the fact that, in an isotropic system, the function F1 depends only
on the SO(3)-invariant contraction of the tensor ui j . In any such contraction, the outermost
tensors D and D−1 drop out. This means that F1 can also be regarded as an arbitrary function
of
p

DT D or, equivalently, (DT D)i j = ∂kφi∂
kφ j ≡ Bi j , which is the metric in the co-moving

coordinate system. Therefore, we can work with the Lagrangian

L→
c1

2
det(D) [∂tφ

j(D−1) j
i]2 − F1(B) , (16)

where, with a slight abuse of notation, we have replaced F1(u)→ F1(B).
This action admits a simple physical interpretation if we think of the φ i ’s as comoving

coordinates—meaning that φ i(x) labels the volume element at position x . Denoting by ρ(φ i)
the mass density in the comoving frame, the mass density in the lab frame is [18]

ρ(x) = ρ(φ i)det(∂iφ j) . (17)

This quantity is actually the zero component of the identically conserved current6

Jµ =
ρ(φ)

3!
εµνρσ∂νφ

i∂ρφ
j∂σφ

kεi jk . (18)

From this current, we can deduce the velocity at which volume elements move around in the
lab frame:

v i =
J i

J0
= −(∂tφ

j)(D−1) j
i . (19)

With this identification, the equation ∂µJµ = 0 reproduces the standard continuity equation,
∂tρ + ∂i(ρv i) = 0. Notice that this result for v i is consistent with the covariant derivative in
eq. (9b), where the time derivative becomes the “fisherman derivative".

6By identically conserved we mean that this is not a Noether current that follows from a symmetry of the
Lagrangian (16).
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Moreover, homogeneity implies that the comoving mass density must be a constant, i.e.
ρ(φ i) = ρ̄. This can be deduced more formally by noting that the symmetry generators Ti
act on the fields φ i as constant shifts: φ i → φ i + c i . As a result, we see that the first term in
the Lagrangian (16) is just the usual kinetic energy 1

2ρv2 with the identification c1 ≡ ρ̄; the
second term can be thought of as a potential energy contribution.

The equations of motion can be obtained as usual from the Euler-Lagrange equations for
πi , or equivalently φ i , that follow from the Lagrangian (16). However, as is usually the case
for Goldstone fields, their equation of motion are also equivalent to the conservation equations
for the associated broken generators. In our case, the equations for the phonons follow from
the conservation equations for the “homogeneity generators” Ti . Equivalently, we can also
consider the equations for momentum conservation, since the momentum generators Pi and
the Ti ’s are equivalent up to an unbroken generator: Ti = P̄i − Pi . We therefore consider

∂µTµi = 0, (20)

with

Tµi =
∂ L

∂ (∂µφ j)
∂ iφ j −ηµi L . (21)

An explicit calculation of Tµi yields

T0i = ρ̄(det D)(∂tφ
k(D−1)ik) = −ρv i , (22a)

T i j =
∂ L
∂ Dik

D jk −δi j L = −ρv i v j +σi j , (22b)

where we have identified the stress tensor

σi j ≡ F̃1δi j − 2
∂ F̃1

∂ Bk`
∂iφ

k∂ jφ
` . (23)

Then, leveraging the conservation of the current (18), Eq. (20) reduces to the familiar elas-
ticity equations:

ρ(∂t + v j∂ j)v
i = ∂ jσ

ji . (24)

4.2 Phonon Spectrum

Let us now expand the Lagrangian (16) up to quadratic order in the π fields to derive the
existence of phonon excitations in the static unstressed ground state 〈φ I〉= x I . Expanding Bi j
in the phonon fields π’s, we find

Bi j = δi j + ∂iπ j + ∂ jπi + ∂kπi∂
kπ j . (25)

At quadratic order in the π fields the Lagrangian is then given by

L(2)π =
c1
2 ∂tπ

i∂tπi −
c4+c5

2 (∂iπ
i)2 − c5+c3

2 ∂iπ j∂
iπ j , (26)

where the coefficients c3, c4 and c5 are defined by the relations:

∂ F1

∂ Bi j

�

�

�

�

δi j

≡
c3

2
δi j , (27)

∂ 2F1

∂ Bi j∂ Bkl

�

�

�

�

δi j

≡
c4

4
δi jδkl +

c5

4
(δikδ jl +δ jkδil) . (28)
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where we have utilized the isotropy of the background. Given the assumption of isotropy, we
can decompose the strains into their irreducible components

∂iπ j = (Si jkl + Ai jkl + Ti jkl)∂kπl , (29)

where Si jkl , Ai jkl and Ti jkl are the projectors onto the symmetric-traceless, anti-symmetric and
the trace parts.

Si jkl =
1
2
(δikδ jl +δilδ jk)−

1
3
δi jδkl ,

Ai jkl =
1
2
(δikδ jl −δilδ jk) ,

Ti jkl =
1
3
δi jδkl .

(30)

It is easy to see that the anti-symmetric part is just the θ goldstone and can be set to zero since
we have integrated it out. The irreducible components of the strains are orthogonal to each
other. The decomposition in (29) allows us to re-write the action in (26) as

L=
c1

2
(∂tπ

i)2 −
c5 + c3

2
(Si jkl∂

kπl)2 −
4c5 + 3c4 + c3

2
(Ti jkl∂

kπl)2 . (31)

This puts constraints on the coefficients of the Lagrangian

G ≡ c5 + c3 > 0 , 3K ≡ 2c5 + 3c4 − c3 > 0 , (32)

where we have identified the coefficients with the shear G and bulk modulus K . This is straight-
forward to see since the trace part only contributes to pure compression whereas the traceless
symmetric part contributes to pure shear of the material. It is now convenient to decompose
πi into the sum of a longitudinal part πi

L and a transverse part πi
T , such that

~∇ · ~πT = 0 , ~∇× ~πL = 0 . (33)

It follows from the Lagrangian (31) that these two components satisfy two different wave equa-
tions, which admit solutions—the sound waves, or phonons—with linear dispersion relations
ω2 = v2

L,T k2, and longitudinal and transverse speeds given by

v2
L =

4G + 3K
3ρ̄

, v2
T =

G
ρ̄

. (34)

From (32), this implies that v2
L >

4
3 v2

T .7

4.3 Power Counting

The effective Lagrangian (16) is the leading term in a suitably defined derivative expansion.
This means that the elasticity equations we derived from it are only valid to the extent that
higher derivative corrections are negligible. Similarly, the quadratic Lagrangian (26) can be
trusted only if it is safe to neglect the non-linear corrections that arise by expanding (16) to
higher orders in πi . Under what circumstances are these good approximations?

To address this question, we will make the simplifying assumption that vL and vT are of
the same order, which we will schematically denote with vπ. Then, the effective action (16)
can be written as

S
ħh
=

∫

d td3r
ρ̄ v2

π

ħh
L(π̇/vπ,∂iπ j) , (35)

7See however [35] for an interesting UV model that violates this bound.
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where we have momentarily reintroduced an explicit factor of ħh to make dimensional analysis
more transparent. On naturalness grounds, we will assume that the Lagrangian density L—
which is a dimensionless function of dimensionless arguments—only contains coefficients of
order one. This implies immediately that quadratic Lagrangian (26) is a good approximation
for field configurations such that π̇/vπ,∂iπ j � 1.

It is convenient to introduce a new time variable t ′ ≡ vπ t. This is equivalent to introducing
new units such that time is measured in the same units as lengths, and the sound speeds are
dimensionless numbers of O(1). In these new units, the action above becomes

S
ħh
=

∫

d t ′d3r
ρ̄ vπ
ħh

L(∂t ′π,∂iπ j) . (36)

This action now depends on a single length scale, Lπ ≡ (ρ̄vπ/ħh)−1/4, which therefore should
be identified with the length cutoff of our effective theory. This means that higher derivative
corrections to (36) must appear in the combinations Lπ∂i and Lπ∂t ′ = (Lπ/vπ)∂t . Hence,
our effective action can reliably describe phonon excitations with frequencies ω� vπ/Lπ and
wave-numbers |~k| � 1/Lπ.

5 Magnons

In the incompressible limit one can neglect the phonon field, and the effective Lagrangian for
the magnon fields reduces to

L→
c2

2
εab(O−1∂tO)ab +

c6

2
(∇tχa)

2 −
c7

2
(∇iχa)

2 , (37)

where we have defined F3(u= 0)≡ c6 and F i j
2 (u= 0)≡ c7δ

i j . The coefficient c2 is ∼ (c6c7)3/4

for ferromagnets,� (c6c7)3/4 for ferrimagnets, and vanishes for antiferromagnets.

5.1 Nonlinear Equations of Motion

As we did for the phonons in the previous section, we can easily derive the non-linear equations
of motion for the magnons. This will allow us to make contact with the standard literature on
magnetism. To this end, it is convenient to perform the following field redefinition:

χ1 ≡ θ sinφ, χ2 ≡ −θ cosφ , (38)

and to introduce the unit-norm vector

n̂= O(χ) x̂3 = (sinθ cosφ, sinθ sinφ, cosθ ) . (39)

In terms of these new fields, after some algebra, the Lagrangian (37) becomes

L→ −c2 φ̇ cosθ + c6
2 (∂t n̂)2 −

c7
2 (∂i n̂)2 . (40)

Note that the first term doesn’t admit a simple expression in terms of n̂ because, unlike the
other ones, it is only invariant up to a total derivative. This can be easily checked using the fact
that n̂ transform linearly under spin rotations, and hence that its change under infinitesimal
spin rotations is δn̂= ~ω× n̂. This implies that

δθ = ωy cosφ −ωx sinφ ,

δφ = ωz −ωx cotθ cosφ −ωy cotθ sinφ , (41)
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or, equivalently, that the χ fields must transform as

δχ1 = −
ωx

1+χ2
1/χ

2
2

(χ2
1/χ

2
2 +

q

χ2
1 +χ

2
2 cot

q

χ2
1 +χ

2
2 ) +ωzχ2 ,

δχ2 = −
ωy

1+χ2
1/χ

2
2

(1+χ2
1/χ

2
2

q

χ2
1 +χ

2
2 cot

q

χ2
1 +χ

2
2 )−ωzχ1 . (42)

It is then easy to check that the Lagrangian (40) changes by a total time derivative under a
spin rotation:

δL= − d
d t

�

1
sinθ

�

ωy sinφ +ωx cosφ
�

�

. (43)

Once again, rather than deriving the equations of motion by varying the Lagrangian (37)
with respect to our fields, we will resort to the conservation of the Noether currents associated
with spin rotations. In order to calculate the currents, we must account for the fact that the
WZ term is only invariant up to a total time derivative. Including this contribution leads to

Jµa = (−c2na − c6(∂t n̂× n̂)a , c7( ~∇n× n̂)a) . (44)

The equations of motion, for θ and φ can now be written in a very compact form in terms
of n̂ by imposing ∂µJµa = 0 to find:

c2 ∂t n̂= −(c6∂
2
t n̂− c7∇2n̂)× n̂ . (45)

When c6∂t � c2, the first term on the righthand side can be neglected, and our result reduces
to the well-known Landau-Lifshitz equation for ferromagnets [22,36].

The informed reader will notice that these equations are missing the so-called “Gilbert
damping” term, induced by the magnon finite lifetime. As is well known, an action formalism,
from which we have derived our equations of motion, is inherently time symmetric. To account
for damping one should work within the so-called “in-in" formalism. In section (6.4) we will
calculate the magnon damping using our formalism. To generate the Gilbert damping would
entail using these results in conjunction with the in-in formalism [37].

5.2 Magnon Spectrum

Let us now turn our attention to the spectrum of long-wavelength excitations around the
ground state. For simplicity, we will work with the Lagrangian (37), which strictly speaking is
appropriate for ferrimagnets; (anti-)ferromagnets can be easily recovered by taking appropri-
ate limits. These limits will in turn affect the power counting, as we will discuss in the next
section.

Expanding (37) up to quadratic order in the χ ’s, we find

L(2)χ =
c2

2
εabχ

a∂tχ
b +

c6

2
∂tχa∂tχ

a −
c7

2
∂iχa∂

iχa . (46)

The dispersion relations for the magnon modes then follow by demanding that the determinant
of the quadratic kernel vanishes in Fourier space. If the coefficient c2 doesn’t vanish, as is the
case for ferri- and ferro-magnets, then one finds that, in the small k limit,

ω2
+ '∆

2 +O(k2) , ω2
− '

�

k2

2m

�2

+O(k6) , (47)

where we have introduced the gap∆= c2/c6 and the effective mass m= c2/(2c7). The gapped
modes with dispersion relation ω2

+ are physical provided c2 is small enough that the energy
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gap ∆ falls below the cutoff of the effective theory. This is the case for ferrimagnets, but not
ferromagnets, as we discuss in the following section and further elaborate on in Appendix B.

When c2 = 0, one instead finds two modes with identical linear dispersion relation:

ω2
± = v2

χk2 , (48)

with the phase velocity equal to v2
χ = c7/c6. Note that the three parameters that appear

in the dispersion relations above are not all independent: they are related to each other by
∆ = 2mv2

χ . The mechanism by which a term with a single time derivatives can turn a pair of
gapless modes with linear dispersion relation into a gapped mode and a mode with quadratic
dispersion relation has been studied extensively in the literature—see e.g. [38–40] and refer-
ences therein.

5.3 Power counting

Let us first consider anti-ferromagnets, where c2 = 0; in this case, the low-energy effective La-
grangian (37) acquires an accidental symmetry. Although Galilean boosts appear to be explic-
itly broken in the incompressible limit, when the phonon fields are neglected, the Lagrangian
for antiferromagnets is formally invariant under Lorentz transformations with “speed of light”
v2
χ = c7/c6; indeed, it has the same form as the Lagrangian for a relativistic nonlinear sigma

model SO(3)/SO(2). This additional symmetry ensures that the coefficients c6,7 get renormal-
ized by nonlinearities in (37) in such a way that their ratio remains constant. Higher derivative
corrections to (37) won’t generically preserve this accidental symmetry—even though it would
be technically natural for them to do so—and can therefore affect the ratio c7/c6.

Because of this accidental symmetry, the power counting scheme for anti-ferromagnets is
virtually identical to that for a relativistic theory, with the speed of light replaced by vχ . Keep-
ing length and time scales separate, we find that the only length scale that can be built out of
c6 and c7 is Lχ = (c6c7)−1/4, and the only time scale is Lχ/vχ . In the absence of fine-tunings,
these must be the scales that suppress higher derivative corrections to the effective Lagrangian
(37) (as usual, up to loop factors of 4π and coefficients of order one).8 In other words, ob-
servables in the effective theory can be calculated in an expansion in powers of ωLχ/vχ and
kLχ . Furthermore, non-linearities in (37) are suppressed compared to the quadratic terms as
long as χa� 1.

Let us now turn our attention to the case of ferromagnets, where c2 ∼ L−3
χ . The gap ∆

becomes comparable to the energy cutoff of the effective theory, i.e. ∆ ∼ vχ/Lχ
9, and there-

fore the corresponding mode exits the regime of validity of the effective theory. An equivalent
viewpoint is that the second term in the quadratic Lagrangian (46) becomes negligible com-
pared to the first one for ω� vχ/Lχ . By themselves, the first and third term describe a single
propagating mode with a non-relativistic dispersion relation—the second mode in Eq. (47).
In fact, combining the χa in a single complex field Ψ = χ1 + iχ2, the Lagrangian (46) with
c6 = 0 reduces to the standard Lagrangian for a non-relativistic field Ψ. Thus, in this case the
power counting is implemented exactly like in a theory for non-relativistic point particles (see
e.g. [24,41]).10

Finally, let us discuss the case of ferrimagnets, where c2 is non-zero but small in units of the
cutoff, i.e. c2 L3

χ � 1. This ratio introduces an additional expansion parameter that controls the
soft breaking of time reversal [25]. The low-energy excitations are akin to a light relativistic

8Of course, one can always engineer materials where this assumption fails, i.e. higher derivative terms are
suppressed by unnaturally small coefficients. In this case, the power counting must be adjusted accordingly.

9Here we have used the relation c2 ∼ (c6c7)3/4 valid for ferromagnets.
10One technical difference compared to ordinary non-relativistic particles is that all magnon self-interactions are

suppressed by at least two derivatives.
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particle and a heavy non-relativistic particle interacting with each other (of course, the inter-
actions that are not invariant under Galilei nor Lorentz boosts). At energies ∆�ω� vχ/Lχ ,
the gap is negligible and one is left with an essentially gapless mode interacting with a heavy
non-relativistic particle; explicit power counting can then be implemented as in non-relativistic
QED and QCD [24, 41, 42]. At energies ω� ∆, one can treat also the gapped mode as non-
relativistic, and switch to a new effective theory with cutoff ∆ that describes soft interactions
of two non-relativistic particles with widely separated masses ∆ and m. Note that there is no
distinction between the various cases

As in the case of the solid we may relate the cut-off to the UV parameters of the the-
ory. There is one fundamental energy scale J , the exchange energy (see section 7 ) and one
length scale, the lattice spacing a. Therefore, these must be the length (Lχ = a) and time
(Lχ/vχ = ħh/J) scales which suppress higher dimensional operators.

6 Magnon-Phonon interactions

We will finally turn our attention to the coupled system of phonons and magnons. Magne-
toelastic effects have already been studied in ferromagnets [9,43–46], ferrimagnets [47], and
antiferromagnets [48–50]. However, the focus has been on particular effects (e.g. Spin See-
beck effect [51–53]) or particular materials (e.g. Yttrium Iron Garnet [11, 46]). In contrast,
we are interested in universal low-energy phenomena that follow directly from symmetries.
In this section we will derive a few such results.

6.1 Generalized equations of motion

We will start by deriving the coupled equations of motion for magnon and phonon fields, which
generalize the elasticity and Landau-Lifshitz equations discuss previously. In order to obtain
the most general form of these equations, we work with the Lagrangian for ferrimagnets. Using
the definition for n̂, ρ and ~v we can rewrite Eq. (14) as

L= 1
2ρv2 +LχW ZW − F1(B)−

1
2 F i j

2 (B)∂i n̂ · ∂ j n̂+
1
2ρ F̃3(B)Dt n̂ · Dt n̂ , (49)

where in the last term we have used eq. (9b) and defined Dt ≡ (∂t + v i∂i) and redefined
F3 = ρ F̃3. Varying this Lagrangian with respect to the magnon fields, we obtain

ρ
c2

c1
Dt n̂−ρn̂× Dt(F̃3Dt n̂) +ρ F̃3∂i v

i n̂× Dt n̂+ n̂× ∂i(F
i j
2 ∂ j n̂) = 0 , (50)

while varying with respect to the phonon fields yields:

ρ Dt

�

vi +
c2

2c1
εab(O−1∂iO)ab + F̃3Dt n̂ · ∂i n̂

�

= ∂ j(σ ji + σ̄ ji + σ̃ ji) , (51)

where

σ̄ ji = (∂mn̂) · (∂p n̂)

�

δi j

2
F mp

2 −
∂ F mp

2

∂ Bkl
∂kφi∂lφ j

�

, (52)

σ̃ ji = −ρ(Dt n̂) · (Dt n̂)

�

δi j

2
F̃3 −

∂ F̃3

∂ Blk
∂iφl∂ jφk

�

. (53)

These equations are a generalization of previous works on magneto-elastic equations [54–57].
Notice that we have used the continuity equation ∂tρ+ ∂i(ρv i) = 0 to simplify Eqs. (50) and
(51). We can recover the equations for ferromagnets (anti-ferromagnets) by setting F̃3 = 0
(c2 = 0). Interestingly, when the stresses on the right-hand side of Eq. (51) are negligible, the
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quantity that is conserved in a comoving sense is no longer the local velocity of the solid, but
in fact a combination that also involves the magnons. To the best of our knowledge the results
for the fully non-linear equations of motion, to leading order in derivatives, (50) and (51) are
novel.

6.2 Power Counting in the Mixed Theory

Once we consider both magnons and phonons at the same time, the power counting be-
comes much more complex. Consider, for instance, the case of antiferromagnets, for which
LχW ZW = 0. We now have two characteristic length scales, Lχ and Lπ (which need not be of
the same order as their ratio is dictated by the micro-physics), and at least two independent
speeds, vχ and vπ (assuming that longitudinal and transverse speeds are of the same order,
which need not be the case). Based on our previous discussions on power counting, the natural
expectation is that the functions appearing in the Lagrangian (49) scale like

F1 ∼
vπ
L4
π

, F i j
2 ∼

vχ
L2
χ

, F̃3 ∼
vπL4

π

vχ L2
χ

, (54)

and that higher powers of π̇ are suppressed by vπ. Observables should now be calculated in
an expansion in powers of ωL</v>, kL<, L</L>, and v</v>, where L> (L<) is the largest
(smallest) between Lπ and Lχ , and similarly for the speeds.

Unfortunately, one cannot associate a priori a definite scaling to each term in the La-
grangian (49). This is because, when vertices are combined into Feynman diagrams, internal
lines can be off-shell but an amount that is controlled by one or more of the expansion param-
eters listed above. A similar problem occurs in non-relativistic QED and QCD, and it’s handled
by resorting to the method of regions (see e.g. [24, 41, 42, 58]). Ferro- and ferri-magnets11

presents a similar challenge, except that the relevant kinematical regions are different com-
pared to those of ferromagnets.

Ultimately, these subtleties related to power counting become relevant only if one wants
to calculate higher order corrections in a systematic way. At lowest order, it is usually straight-
forward to drop subleading corrections and zero in on the leading contribution to whatever
process one is interested in. To illustrate this, in what follows we will consider the leading cor-
rections to the propagation of magnons due to couplings with the phonons. At leading order,
these effects are captured by interactions in the Lagrangian (49) that are quadratic in χ and
linear in π

Lint =
c2

2
∂iπ

iεabχ
a∂tχ

b −
c2

2
εabχ

a∂tπ
i∂iχ

b

−
c8

2
∂kπ

k∂iχ
a∂ iχa − c9∂iχ

a∂ jχ
a∂ (iπ j)

+
c10

2
(∂iπ

i)(∂tχ
a)2 − c6χ̇aπ̇

k∂kχa , (55)

where we have defined

δF i j
2

δBkl
≡

c8

2
δi jδkl +

c9

2
(δikδ jl +δilδ jk) , (56a)

δF3

δBi j
≡

c10

2
δi j . (56b)

It is straightforward to estimate the natural size of the coefficients in (55) in terms of Lχ,π and
vχ,π.

11As we discussed in the previous section, ferrimagnets feature yet another expansion parameter, c2 L3
χ
, control-

ling the amount of time reversal breaking.
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p
p′

k

Figure 2: Feynman diagram describing the emission of a phonon from a magnon

6.3 Magnons in a stressed sample

Consider now a magnetic material under the application of a constant stress (normal and
shear). This causes the atoms to displace from their equilibrium positions, which is captured
by a non-zero expectation value for the phonon fields. We will denote the linear strain ten-
sor in the sample by γi j = 〈∂(iπ j)〉. In the limit where the strain is small (note that γi j is
dimensionless), the leading corrections to the quadratic Lagrangian for magnons in Eq. (46)
will come from the interactions shown in Eq. (55) with the phonon fields replaced by their
expectation value:

Lint→
c2γ

2
εabχ

a∂tχ
b −

c8γ

2
∂iχ

a∂ iχa − c9γ
i j∂iχ

a∂ jχ
a +

c10γ

2
(∂tχ

a)2 , (57)

where we used the fact that the shear is by assumption time-independent, and we defined
γ= δi jγi j .

Assuming moreover that the stress is homogeneous, i.e. that γi j is just a constant tensor,
we can easily derive the corresponding modification to the dispersion relations of magnons.
Once again, the case of ferro- and ferri-magnets need to be treated separately from the case of
antiferromagnets, for which c2 = 0. The final outcome is that the magnon dispersion relations
retain the same qualitative form, but the parameters ∆, m and v2

χ get modified as follows:

∆→∆′ =∆
�

1+ γ
�

1−
c10

c6

��

, (58a)

m→m′ = m

�

1+ γ

�

1−
c8

c7

�

− 2
c9

c7
γi j k̂i k̂ j

�

, (58b)

v2
χ→ v2 ′

χ = v2
χ

�

1+ γ

�

c8

c7
−

c10

c6

�

+ 2
c9

c7
γi j k̂i k̂ j

�

. (58c)

Interestingly, it remains true that ∆′ = 2m′v2 ′
χ . We should also emphasize that the full

action (49) can also be used to calculate the magnon dispersion relations in regimes where
γi j ∼O(1). In that case, however, one needs to take into account the full non-linear structure
of the functions Fi(B). The advantage of focusing on small strains is that the coefficients
appearing in (57) will also control other phenomena, such as the magnetic damping we are
about to discuss. The effect of straining the lattice on anti-ferromagnetic magnons has also
been studied in [59].

6.4 Magnetic Damping

As previously mentioned our analysis has not included the Gilbert damping, which is typically
added as a phenomenological term, but for magnetic insulators the damping arises due to
magnon decay mediated by the interaction Lagrangian in Eq. (55). The decay width can be
calculated from the cut diagram, which is the square of the amplitude shown in Fig. 2. This
process induces a torque on the lattice that contributes to the Einstein-de Haas effect [60]. The
converse process, where a phonon emits a magnon, is not allowed unless some of the sym-
metries are explicitly broken, as will be discussed in the next section. For simplicity, in what
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follows we are going to focus on (anti-)ferromagnets. Our analysis can be easily extended to
the case of ferrimagnets.

Ferromagnets. On general grounds, we would expect interactions with the lowest number of
derivatives to give the dominant low-energy contribution to the process shown in Fig. (2). In
ferromagnets, where c2 6= 0, this suggests that we focus on the term in the first line of Eq. (55).
In fact, when the derivatives are estimated on-shell using the dispersion relation appropriate
for ferromagnets, we find that

c2
2 ∂iπ

iεabχ
a∂tχ

b

c2
2 εabχa∂tπi∂iχ b

∼
k3/m
vπk2

=
k

mvπ
. (59)

This means that the second interaction in (55) is actually the leading one, i.e.

Lint→−
c2

2
εabχ

a∂tπ
i∂iχ

b. (60)

The corresponding amplitude is given by

iM= −
i

2
p

c1
ωλ(k)ε̂

?
λ(k) · (~p+ ~p

′) , (61)

where ωλ(k) and ε̂λ(k) are respectively the dispersion relation and the polarization vector
associated with a phonon of polarization λ. Notice also that the amplitude associated with
the interaction (60) includes a factor of (1/pc1)(1/

p
c2)2 that accounts for the non-canonical

normalization of the phonon and magnon fields.
The total decay rate can be obtained as usual by integrating the amplitude squared over

all possible final states that conserve momentum, with a relativistic (nonrelativistic) normal-
ization for the phonon (magnon) states. The explicit results for longitudinal and transverse
phonons are:

ΓL =
1

4c1

∫

d3p′

(2π)3
d3k

2ωL(k)(2π)3
ωL(k)

2 [(~p+ ~p
′) · ~k]2

~k2

× (2π)4δ3(~p− ~p′ − ~k)δ(ω(p)−ω(p′)−ωL(k))

=
2m3v3

L

3πρ̄p
(p−mvL)

3θ (p−mvL) ,

and

ΓT =
1

4c1

∫

d3p′

(2π)3
d3k

2ωT (k)(2π)3
ωT (k)

2

�

(~p+ ~p′)2 −
[(~p+ ~p′) · ~k]2

~k2

�

× (2π)4δ3(~p− ~p′ − ~k)δ(ω(p)−ω(p′)−ωT (k))

=
mvT

15πρ̄p
(p−mvT )

4 (4p+mvT )θ (p−mvT ) ,

where in final results we have used the fact that c1 is equal to the background density ρ̄.

Anti-Ferromagnets. In the antiferromagnetic case, c2 = 0 and the power counting is such that
the momentum and energy scale in the same way. This is because both phonons and magnons
now have linear dispersion relations: ω2

L,T = v2
L,T k2 and ω2 = v2

χ p2, respectively. Thus all the
terms in (55) contribute at the same order, and the expressions for the decay rates become
more complicated:
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ΓT =
2p5(1− v̂T )v̂T

�

v̂3
T + 6v̂2

T + 14v̂T + 14
�

(c6 + c9)2

105πc1c2
6(v̂T + 1)5

Θ(1− v̂T ) , (62)

ΓL =
p5

210πc1c2
6 v̂L(v̂L + 1)5

(4c2
6 v̂6

L + 20c2
6 v̂5

L + 32c2
6 v̂4

L − 56c6c10 v̂2
L + 8c6c8 v̂4

L + 40c6c8 v̂3
L

+ 8c6c8 v̂2
L + 8c6c9 v̂6

L + 40c6c9 v̂5
L + 72c6c9 v̂4

L + 40c6c9 v̂3
L − 48c6c9 v̂2

L + 14c2
10 v̂2

L − 35c2
10 v̂L

+ 35c2
10 + 28c10c8 v̂2

L − 70c10c8 v̂L + 14c10c8 − 140c10c9 v̂L + 84c10c9 + 18c2
8 v̂2

L − 15c2
8 v̂L

+ 11c2
8 + 8c8c9 v̂4

L + 40c8c9 v̂3
L + 72c8c9 v̂2

L − 100c8c9 v̂L + 36c8c9 + 4c2
9 v̂6

L + 20c2
9 v̂5

L

+ 40c2
9 v̂4

L + 40c2
9 v̂3

L + 12c2
9 v̂2

L − 120c2
9 v̂L + 60c2

9)Θ(1− v̂L) ,
(63)

where v̂L,T ≡ vL,T/vχ .
The purpose of this calculation is only illustrative. For one thing the result is a function

of the unknown quantities (vL,T , vχ , c6, c8, c9, c10), all of which would have to be fit from data.
Furthermore, phenomenologically, one would typically be more interested in the finite tem-
perature decay rate as as well as the transport lifetime. This analysis was performed for the
special case of Yttrium Iron Garnet in [46]. It is straightforward exercise to calculate these
quantities in the effective field theory.

7 Explicit symmetry breaking

Explicitly breaking internal spin rotations leads to a broad range of interesting phenomena.
To gain some physical intuition for how explicit symmetry breaking can arise, we shall begin
by recalling the microscopic origin of the symmetric Lagrangian in the incompressible limit,
Eq. (37).

7.1 Continuum limit of the Heisenberg model

The strong coupling expansion of the half filled Hubbard model reduces to the Heisenberg
model,

H = −J
∑

〈i j〉

~Si · ~S j . (64)

Since the Hubbard model only involves spin independent nearest neighbor interactions, this
Hamiltonian is independent of the magnetic moment. i.e. J only depends upon the matrix
element of the Coulomb interaction between electrons centered on neighboring atoms. In this
way we can think of the Heisenberg model as an effective theory of the Hubbard model where
we have integrated out the atomic orbits. At higher orders in the strong coupling expansion,
the Hamiltonian (64) gets corrected by the so-called “bi-quadratic" terms of the form

∆H = −J̃
∑

〈i j〉

( ~Si · ~S j)
2 . (65)

While such terms, if numerically significant, can have considerable effects on the phase tran-
sition [61] the low energy theory of Goldstones below the critical point is unchanged by their
presence.

Starting from the Heisenberg Hamiltonian (64), we can obtain (minus) the static limit
of the Lagrangian density (40) by taking to the continuum limit. This is accomplished by
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parameterizing the spins as ~Si ≡ S n̂i , where the magnitude S is constant and replacing
i → ~r, j → ~r + ~δ, where ~r is the position of the ith spin with some choice of origin. The
sum over nearest neighbors becomes an integral over ~r. We then coarse grain by averaging
over the ~δ’s,12 and take the limit ~δ→ 0,S →∞ with δ2S2 fixed.

The final result is

−Lstatic =
c7

2
(∂i n̂)

2 , (66)

and c7 ∼ Jδ2S2.

7.2 Explicit symmetry breaking and spurions

To properly capture the long distance physics of explicit symmetry breaking we utilize a spurion
analysis (see e.g. [62]). We will assume that the associated length and time scales are much
longer than those at which spontaneous symmetry breaking occurs, so that explicit breaking
can be treated perturbatively using spurion fields. The symmetry breaking parameter (in cut-
off units) is treated as an additional expansion parameter, whose relative size compared to
other corrections will depend upon the energy/length scale of interest.

7.2.1 Zeeman Interactions

Arguably the simplest source of explicit symmetry breaking is the Zeeman coupling between
spins and a constant external magnetic field. At the microscopic level, this is described by
supplementing the microscopic Hamiltonian with a term

∆H = −µ
∑

i

~B · ~Si . (67)

This interaction explicitly breaks the spin SO(3) down to the SO(2) subgroup that leaves ~B
invariant

The spurion technique amounts to treating the explicit symmetry breaking as if it were a
spontaneous breaking due to an operator ~Ψ—the spurion field—that develops a small expec-
tation value 〈~Ψ〉= µ ~B. The advantage of this approach is that the spurion can be treated like
any other matter field and coupled to the Goldstone modes following the standard rules of the
coset construction [16,63]. The spurion transforms in a linear representation of the full sym-
metry group (G), ~Ψ → g ~Ψ. However, to form invariant using the coset construction we are
interested in objects which transform under the unbroken subgroup H. The field ~Ψ′ = Ω−1 ~Ψ is
such an object as it transforms as ~Ψ′→ h(Φ, g)~Ψ′, where Φ stands for all the Goldstone fields.
However, ~Ψ′ transforms reducibly under H so we decompose ~Ψ′ into irreducible representa-
tions of the unbroken group, i.e. Ψ′a and Ψ′3. Finally we add to the effective action terms that
depend on these irreps and are manifestly invariant under the unbroken group. To this end
it is helpful to notice that the microscopic interaction preserves time reversal if the spurion is
assumed to be odd, i.e. to transform as ~Ψ→−~Ψ.

In a ferromagnet, where time reversal is spontaneously broken, we are allowed to write
terms involving the spurion that are not invariant under time reversal. Consequently, at leading
order in µBLχ/vχ we have

Lspurion = F(B)Ψ′3 = F(B)O−1
3A (χ)Ψ

A = F(B)n̂ · ~Ψ→ F(B)µn̂ · ~B , (68)

where in the last step we have replaced the spurion with its expectation value. Since, in
the continuum limit, an external magnetic field couples to the Noether density of spin [22],

12By isotropy, we must have 〈δiδ j〉 ∼ δ2δi j .
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the function F(B) is constrained 13. More precisely, since the Ferromagnetic spin density is
given by ~s = c2det(D)n̂ for a ferromagnet, this fixes F(B) = c2det(D). The operator in (68)
introduces mixing between magnons and longitudinal phonons when ~B is not aligned with the
unbroken spin direction (the 3 direction, in our notation)14 . Of course, the incompressible
limit (F(B) = constant) of this result could have also been obtained more easily by taking the
continuum limit of the microscopic interaction (67).

In the case of an antiferromagnet, the leading interaction with the spurion must be invari-
ant under time reversal, and therefore we have

Lspurion = F(B)Ψ′a∇tχ
a→ F(B)O−1

aA (χ)µB
A∇tχ

a. (69)

Of course, the interaction (69) is also allowed for ferromagnets. But in the incompressible
limit, this is not the leading correction to the effective action for ferro-magnons. The functional
form of F(B) is also constrained in this case from the anti-ferromagnetic spin density to be
ρ F̃3(B). As in (68), this also results in phonon-magnon mixing when ~B is not aligned with the
unbroken spin direction. Interestingly, Zeeman interactions cannot introduce mixing between
magnons and transverse phonons—a result that follows straightforwardly from our spurion
analysis.

7.2.2 The Dzyaloshinsky-Moriya (DM) interactions

At the microscopic level the Dzyaloshinsky-Moriya (DM) interaction [64,65] takes the form:

H =
∑

〈i j〉

( ~Si × ~S j) · ~Di j , (70)

where the vector ~Di j depends on two neighboring lattice points, and in perturbation theory
can be expressed as a linear combination of matrix elements of the orbital angular momentum
operator [66]. This interaction occurs when the inversion symmetry is broken in a material,
and leads to the canting of the spins in the ground state. It explicitly breaks spin and spatial
rotations down to the diagonal subgroup, generated by ~J ≡ ~S + ~L.

At the microscopic level, one can distinguish between two types of DM interactions de-
pending on whether ~Di j is parallel or perpendicular to the lattice vector ~ri j connecting the
sites i and j. In the continuum limit, the first case yields the so-called Bloch-type DM inter-
actions, which arise for instance in non-centrosymmetric bulk materials [67]. In the second
case, the resulting DM interaction is dubbed Néel-type. This interaction is anisotropic, and it
occurs for example when a thin film ferromagnet is placed on top of a non-magnetic material
with a large spin-orbit interaction (interfacial DM interaction) [68]. Significant theoretical
and experimental attention has been recently devoted to DM interactions, as they provide a
mechanism to stabilize magnetic Skyrmions [69–82].

Instead of taking the continuum limit of the microscopic interactions (70), we are going to
use the spurion technique to infer the corresponding terms in the effective action for magnons
and phonons. In order to break spatial and spin rotations down to the diagonal subgroup, we
need a spurion field that transforms in a non-trivial representations of both symmetries, which
we will take to be the fundamental representations for simplicity, i.e. we will use a field ΨA

i .
There are two distinct ways of implementing the desired explicit breaking by giving a vev to
the spurion, and they correspond to the two types of DM interactions mentioned above:

Bloch: 〈ΨA
i 〉= δ

A
i D‖ , (71a)

Néel: 〈ΨA
i 〉= ε

A
i j D

j
⊥ . (71b)

13We thank Tomas Brauner for pointing this out to us.
14When ~B is not aligned with the magnetization, the system will precess around the field. Damping will even-

tually lead to alignment on longer time scales.
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In order to couple the spurion to phonon and magnons, we will follow the blueprint out-
lined for the Zeeman interaction: we first introduce a new field Ψ′ ≡ Ω−1Ψ, then break it up
into its irreducible representations under the (spontaneously) unbroken group, Ψ′3i and Ψ′ai .
The leading symmetry breaking term in the effective Lagrangian is then

Lspurion = F(B)Ψ′ai ∇
iχa→ F(B)O−1(χ)aA〈ΨA

i 〉∇
iχa . (72)

It is easy to show that, after replacing the spurion with the appropriate expectation values in
(71) and taking the incompressible limit (F(B) = constant), this spurion action reproduces
the familiar expressions for the Bloch and Néel DM interactions:

Bloch: D‖εi jk n̂i∂ j n̂k , (73a)

Néel: D j
⊥(n̂ j∂i n̂

i − n̂i∂i n̂
j) . (73b)

Away from the incompressible limit, the coupling (72) gives rise to a kinetic mixing be-
tween the longitudinal phonon and either ∂aχ

a (Bloch) or εab∂aχb (Néel). This however is
not the only source of kinetic mixing, since one should also consider the operator

L′spurion = F ′(B)Ψ′ai ∇
(iπ j)∇ jχa , (74)

which additionally generates a kinetic mixing between magnons and the transverse phonons.
See e.g. [83–86] for recent work on phonon-magnon mixing.

8 Conclusions

We have demonstrated how to build an effective field theory for magneto-elastic interactions
using the space-time coset construction. The action non-linearly realizes all of the broken
symmetries in a long wavelength approximation. The action includes all orders in the fields
with a fixed number of derivatives, which makes the theory valid for any background where
∂ 2χ/Λ2

χ � 1. We have also shown how to systematically include the effects of explicit sym-
metry breaking due to Zeeman and DM interactions. Other symmetry breaking terms can
be included using the same line of reasoning as presented in the last section. We have pre-
sented several new results most important of which are eqs. (50) and (51) that generalized
the Landau-Lifshitz equations to allow for incompressibility. Applications of our formalism to
Skyrmionic physics will follow in a subsequent publication.
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A WZW term for magnons

In this short appendix, we provide a few more details about the derivation of the RHS of Eq.
(10b). To this end, we’ll focus our attention on the 2-form ω2 ≡ εabωSa

∧ωSb
, which can be
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written more explicitly as

ω2 =
1
2ε

aBC[O−1dO]a3 ∧ [O−1dO]BC . (75)

Using the fact that O−1 = OT , and writing explicitly the sums over the indices B = b, 3 and
C = c, 3, we find

ω2 = ε
abOAaOBb dOA3 ∧ dOB3 . (76)

At this point, it is convenient to think of the matrix elements OAB as a triplet of mutually
orthogonal unit vectors defined by

m̂(a)A ≡ OA
a , n̂A ≡ OA3 . (77)

Then,
εabOAaOBb = (m̂

(1)
A m̂(2)B − m̂(2)A m̂(1)B ) = εABC n̂C . (78)

The result on the RHS follows from the fact that the expression in the intermediate step must
be antisymmetric, orthogonal to n̂A and n̂B, and its contraction with εABC n̂C must be equal to
2. Thus, the 2-form in Eq. (76) can be written as

ω2 = εABC n̂A dn̂B ∧ dn̂C . (79)

Now, if we parametrize the unit vector as in Eq. (39), we can calculateω2 explicitly to obtain

ω2 = 2 sinθ dθ ∧ dφ = d[−2 cosθ dφ] . (80)

However, the discussion in Sec. 5.1 shows that this is also equivalent to

ω2 = d[εab(O−1dO)ab] . (81)

B Magnons in ferromagnets

In the ferromagnetic case, the term in the action with one time derivative is the leading order
kinetic term. Therefore, we may eliminate the term with two time derivatives via a field
redefinition such that

∂tχa∂tχ
a→ (∂ 2χa)

2 + . . . , (82)

where the remaining terms involves sub-leading operators (see e.g. [41]). Recall that our
power counting for the FM case dictates that time derivatives scale like two spatial derivatives,
based on the dispersion relation ω = k2/2m. Then, the effective action for a ferromagnet
describes a single propagating degree of freedom. This can be traced back to the existence of
a primary (second class) constraint

pa
χ −

1
2
εabχ b = 0 , (83)

where the pa
χ ’s are the momenta conjugate to the χa ’s. The canonical quantization of this

constrained theory has been discussed in detail in [25,87]. One must use care in defining the
external states, by proceeding through the Dirac procedure for constrained systems. The Dirac
bracket algebra will be satisfied via the field expansions for χ and its conjugate momentum
pχ ,

χa =

∫

d3k
(2π)3

(akε
ae−ik·x + a†

kε
a?eik·x) ,

pa
χ = −

1
2

∫

d3k
(2π)3

(akε
ae−ik·x − a†

kε
a?eik·x) , (84)
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where k · x = −ωk t + ~k · ~x and [ak, a†
k] = (2π)

3δ3(~k− ~k′), and

εa = (1,−i)/
p

2 . (85)

This is equivalent to the statement that the complex field Ψ = 1p
2
(χ1 + iχ2) only contains

annihilation operators, as is the case for an ordinary non-relativistic field:

Ψ =

∫

d3k
(2π)3

ake−ik·x . (86)
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