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Abstract

We present a series representation for the dynamical two-point function of the local spin
current for the XXZ chain in the antiferromagnetic massive regime at zero temperature.
From this series we can compute the correlation function with very high accuracy up to
very long times and large distances. Each term in the series corresponds to the contri-
bution of all scattering states of an even number of excitations. These excitations can be
interpreted in terms of an equal number of particles and holes. The lowest term in the
series comprises all scattering states of one hole and one particle. This term determines
the long-time large-distance asymptotic behaviour which can be obtained explicitly from
a saddle-point analysis. The space-time Fourier transform of the two-point function of
currents at zero momentum gives the optical spin conductivity of the model. We obtain
highly accurate numerical estimates for this quantity by numerically Fourier transform-
ing our data. For the one-particle, one-hole contribution, equivalently interpreted as a
two-spinon contribution, we obtain an exact and explicit expression in terms of known
special functions. For large enough anisotropy, the two-spinon contribution carries most
of the spectral weight, as can be seen by calculating the f-sum rule.
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1 Introduction

Transport phenomena in spatially one-dimensional quantum systems are an active area of
research, both theoretically and experimentally [1–10]. Some of the more prominent one-
dimensional models are integrable and therefore amenable to an exact treatment. In linear
response, their transport properties are determined by the dynamical correlation functions of
current densities. In this work we shall focus on the XXZ spin-1/2 chain with Hamiltonian

H = J
L
∑

j=1

¦

σx
j−1σ

x
j +σ

y
j−1σ

y
j +∆

�

σz
j−1σ

z
j − 1

�

©

−
h
2

L
∑

j=1

σz
j , (1)

where the σα ∈ EndC2, α = x , y, z, are Pauli matrices. The three real parameters of the
Hamiltonian are the anisotropy ∆, the exchange interaction J > 0, and the strength h > 0 of
an external longitudinal magnetic field.

The basic quantities that can be transported in the XXZ chain are heat and magnetiza-
tion. The total heat current of the XXZ chain is a conserved quantity. This implies that the
corresponding thermal conductivity is purely ballistic and is determined entirely by a ther-
mal Drude weight that can be calculated exactly at any temperature for any value of ∆ and
h [11–13]. Technically, the thermal Drude weight can be inferred from the spectral properties
of a properly defined quantum transfer matrix [11,14–16].

For the current of the magnetization the situation is different. The total spin current is not
conserved, except in the free Fermion case∆= 0. Still, it may have a ballistic contribution. In
that case the corresponding conductivity consists of a singular ‘dc part’ quantified by a Drude
weight and a regular ω-dependent ‘ac part’, where ω is the frequency. There is a vast body
of literature on the numerical calculation of both, the singular and the regular contribution,
at finite temperature T > 0 (for an overview see the recent review article [1]). On the an-
alytical side, the T = 0 Drude weight in the critical regime of the XXZ chain is known [17].
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Results for the Drude weight at finite T and on the leading asymptotic behaviour of the regu-
lar part for ω→ 0 are also available. In particular, exact lower bounds, based on the Mazur
inequality [18], were established in both cases [3,19–24]. For the Drude weight in the regime
−1 < ∆ < 1 at magnetic field h = 0 it has been argued that the Mazur bound obtained by
taking all known families of conserved charges into account is tight. This bound, furthermore,
does agree with earlier results for the Drude weight based on an extension of the thermo-
dynamic Bethe ansatz [25–27]. In the latter case, the input invoked from the Bethe Ansatz
solution of the XXZ chain [28, 29] enters in the form of the string hypothesis [30, 31], whose
applicability is not established beyond the calculation of thermodynamic quantities, where its
use is equivalent to the use of fusion hierarchies [32,33]. For the low-energy excitations of the
XXZ chain over the degenerate ground state in the antiferromagnetic massive regime of the
phase diagram, considered in this work, it is known to give an incorrect description [29,34,35].

It is important to stress that all these works deal with the conductivity of the XXZ chain
in the limit ω→ 0; we are not aware of any exact result for genuine finite frequencies in the
literature. In any case, our work presented below is independent of and rather orthogonal
to the previous results in that, instead of T > 0, ω = 0, we consider T = 0, ω > 0 in the
framework of an exact calculation of a dynamical correlation function that does not involve
any kind of string hypothesis.

So far, the most successful attempts to exactly calculate dynamical correlation functions
of the XXZ chain were based on different types of form factor series expansions. Besides the
series involving form factors of the Hamiltonian [36–45], there is a different type of series
that utilizes form factors of the quantum transfer matrix of the model [46]. The latter type
has been dubbed the thermal form factor expansion. It was designed to deal with the canon-
ical finite temperature case, but, in principle, can be extended to include certain generalized
Gibbs ensembles [47]. The thermal form factor expansion has not been much explored so far,
but it seems to have certain advantages over the more conventional expansions employing the
form factors in a Hamiltonian basis. In [48, 49] it was observed that it can have rather nice
asymptotic properties as compared to the conventional representation [50,51] and can be in-
terpreted as a resummation of the latter. For the XXZ chain in the massive antiferromagnetic
regime, we observed a remarkable simplification of the Bethe root patterns occurring in the
low-temperature limit [52]. In this limit all string excitations disappear and the whole spec-
trum of the quantum transfer matrix can be interpreted in terms of particle-hole excitations.
This made it possible to derive a series representation for the longitudinal correlation functions
of the XXZ chain in the massive antiferromagnetic regime, in which the nth term comprises
all scattering states of n particles and n holes in a 2n-fold integral with an integrand that is
explicitly expressed in terms of known special functions [53, 54]. This has to be contrasted
with older representations in which the integrand for general n is itself a sum over multiple
integrals [36], a multiple residue [35] or, in the best case, a product of explicit functions and
Fredholm determinants [55]. It is the simple explicit form in [53,54] which makes the higher-
n terms in the form factor series efficiently computable. The observed fast convergence of the
series, on the other hand, is not a feature of the thermal form factor approach, but can be
attributed to the massive nature of the excitations.

In Ref. [46], thermal form factor series were introduced with the example of operators of
‘length one’, where the length of an operator is defined as the number of lattice sites on which
it acts non-trivially. The local Pauli matrices σαj are examples of such operators. The local spin
current

J j = −2iJ(σ−j−1σ
+
j −σ

+
j−1σ

−
j ) (2)

has length two. The results of Ref. [46] can be rather naturally extended to operators of
arbitrary length. Although the general formula is easy to guess, its proof is slightly techni-
cal. It will be presented in a forthcoming publication. For a subclass of these operators (the
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‘spin-zero’ operators) we can then introduce certain ‘properly normalized form factors’ which
can be related to the theory of factorizing correlation functions and the Fermionic basis ap-
proach [56–60]. This allows to obtain series representations which, in the antiferromagnetic
massive regime, are as explicit as the series for the longitudinal correlation functions obtained
in [53, 54]. Prior to working out the general theory, we shall present here our results for
the current-current correlation functions 〈J1(t)Jm+1〉 that may be of particular interest to the
physics community. For this special case the result may be obtained with moderate effort by
combining [57, 60] with [46, 53, 54]. One has to start with a two-site generalized density
matrix involving a twist or ‘disorder parameter’ α and then use the R-matrix symmetry, that
imposes a set of quadratic relations on the two-site generalized density matrix, together with
the reduction relation for the latter. The general case is harder and requires the techniques
introduced in [58,59].

2 Two-point function of currents

2.1 Form factor series

The antiferromagnetic massive regime of the ground state phase diagram of Hamiltonian (1)
is defined by the inequalities∆= ch(γ)> 1 and |h|< h` = 4J sh(γ)ϑ2

4(0|q) for γ > 0. Here we
have set q = e−γ, and ϑ4 denotes a Jacobi theta function. For the Jacobi theta functions, that
will be frequently needed below, we shall follow the conventions of Ref. [61], see (37)-(38) for
a reminder. Other special functions that occur in the definition of the form factor amplitudes
belong to the families of q-gamma and q-hypergeometric (or basic hypergeometric) functions.
We list their definitions and some of their properties in Appendix A.

In order to be able to present our series representation for the current-current correlation
functions, we first of all have to fix some notation. In the antiferromagnetic massive regime,
the dispersion relation of the elementary excitations can be expressed explicitly in terms of
theta functions

p(λ) =
π

2
+λ− i ln

�

ϑ4(λ+ iγ/2|q2)
ϑ4(λ− iγ/2|q2)

�

, (3a)

ε(λ) = −2J sh(γ)ϑ3ϑ4
ϑ3(λ)
ϑ4(λ)

. (3b)

Here p is the momentum, ε is the dressed energy (for h = 0), λ the rapidity, and we will use
the convention ϑ j = ϑ j(0|q).

The integrands in each term of our form factor series are parameterized in terms of two sets
U = {u j}`j=1 and V = {vk}`k=1 of ‘hole and particle type’ rapidity variables of equal cardinality
`. For sums and products over these variables we shall employ the short-hand notations

∑

λ∈U	V

f (λ) =
∑

λ∈U

f (λ)−
∑

λ∈V

f (λ) ,
∏

λ∈U	V

f (λ) =

∏

λ∈U f (λ)
∏

λ∈V f (λ)
. (4)

We define

Σ= −
πk
2
−

1
2

∑

λ∈U	V

λ (5)

and
φ(±)(λ) = e±iΣ

∏

µ∈U	V
Γq4

�1
2 ±

λ−µ
2iγ

�

Γq4

�

1∓ λ−µ
2iγ

�

. (6)
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We introduce multiplicative spectral parameters H j = e2iu j , Pk = e2ivk and the following special
basic hypergeometric series,

Φ1(Pk,α) = 2`Φ2`−1

�

q−2, {q2 Pk
Pm
}`m 6=k, { Pk

Hm
}`m=1

{ Pk
Pm
}`m 6=k, {q2 Pk

Hm
}`m=1

; q4, q4+2α

�

, (7a)

Φ2(Pk, Pj ,α) = 2`Φ2`−1

�

q6, q2 Pj
Pk

, {q6 Pj
Pm
}`m 6=k, j , {q

4 Pj
Hm
}`m=1

q8 Pj
Pk

, {q4 Pj
Pm
}`m 6=k, j , {q

6 Pj
Hm
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; q4, q4+2α

�

. (7b)

We further define
Ψ2(Pk, Pj ,α) = q2αr`(Pk, Pj)Φ2(Pk, Pj ,α) , (8)

where

r`(Pk, Pj) =
q2(1− q2)2

Pj
Pk

(1− Pj
Pk
)(1− q4 Pj

Pk
)

�

∏̀

m=1
m 6= j,k

1− q2 Pj
Pm

1− Pj
Pm

��

∏̀

m=1

1− Pj
Hm

1− q2 Pj
Hm

�

, (9)

and introduce a ‘conjugation’ f (H j , Pk, qα) = f (1/H j , 1/Pk, q−α).
This allows to define the core part of our form factor densities, which is a matrix M with

matrix elements

Mi, j = δi j

�

Φ1(Pj , 0)−
φ(−)(v j)

φ(+)(v j)
Φ1(Pj , 0)

�

− (1−δi j)
�

Ψ2(Pj , Pi , 0)−
φ(−)(vi)
φ(+)(vi)

Ψ2(Pj , Pi , 0)
�

. (10)

By M̂ we denote the matrix obtained from M upon replacing u j � −v j . We finally introduce
one more function

Ξ(λ) =
Γq4

�1
2 +

λ
2iγ

�

G2
q4

�

1+ λ
2iγ

�

Γq4

�

1+ λ
2iγ

�

G2
q4

�1
2 +

λ
2iγ

� . (11)

Then the form factor amplitudes of the current-current correlation functions are

A
(2`)
J
(U,V|k) =

�

∑

λ∈U	V ε(λ)
4ϑ1(Σ)/ϑ′1

�2� ∏

λ,µ∈U	V

Ξ(λ−µ)
�

det
`
{M}det

`
{M̂}det

`

�

1
sin(u j − vk)

�2

, (12)

where ε(λ) is the dressed energy and ϑ′1 = ϑ
′
1(0|q).

Using these amplitudes as well as the momentum and dressed energy defined in (3) we can
formulate our main result. For every m≥ 0, the dynamical two-point function of spin currents
of the XXZ chain in the antiferromagnetic massive regime and in the zero-temperature limit
can be represented by the form-factor series




J1(t)Jm+1

�

=
∞
∑

`=1

C (2`)(m, t) , (13)

where

C (2`)(m, t) =
∑

k=0,1

(−1)mk

(`!)2

∫

C`h

d`u
(2π)`

∫

C`p

d`v
(2π)`

A
(2`)
J
(U,V|k)ei

∑

λ∈U	V(tε(λ)−mp(λ)) (14)

is the `-particle `-hole contribution. The integration contours in (14) can be chosen as
Ch = [−

π
2 , π2 ]−

iγ
2 + iδ and Cp = [−

π
2 , π2 ] +

iγ
2 + iδ′, where δ,δ′ > 0 are small. The derivation

of (13), (14) is slightly cumbersome. It relies on a generalization of our work in Ref. [46] that
will be published elsewhere and on the technical achievements obtained in Refs. [53,54].
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Figure 1: The real and imaginary contributions of the ` = 1 term and of the sum of
` = 1 and ` = 2 terms to




J1(t)J1

�

for ∆ = 1.2 are compared to LCRG results. The
insets show that the `= 2 contribution becomes negligible on this scale for tJ > 2.

2.2 Spin-current correlations

Except for the vicinity of the isotropic point, the contributions from higher ` terms in (13) to



J1(t)Jm+1

�

turn out to be small and to decrease rapidly in time. We plot the contributions
of the ` = 1 term and of the sum of the ` = 1 and ` = 2 terms to the current autocorrelation
function (m= 0) for ∆= 1.2 in Fig. 1.

In order to estimate the truncation error of our exact series representation we compare
with independent exact results for t = 0. For small m such results are available due to the
factorization of the reduced density matrix in the static case [57–59]. We have checked that,
for 0 ≤ m ≤ 2 with various values of ∆, away from the isotropic point, the sum of the ` = 1
and `= 2 terms in (13) recovers the known exact values with good accuracy. For example, for
∆= 1.5, the exact value of




J1(0)J2

�

is −0.333748 . . ., while (13) yields −0.333687 . . ..
For t > 0 independent exact data are no longer available and the results of the form factor

series are compared to a light-cone renormalization group (LCRG) calculation. The latter
is a density-matrix renormalization group algorithm which makes use of the Lieb-Robinson
bounds to obtain results for infinite chain lengths [62,63]. In the LCRG calculations, we keep
8192 states in the truncated Hilbert space. The truncation error reaches ∼ 10−6 at the longest
simulation times shown. A comparison with calculations where the number of states kept is
varied (not shown) suggests that the error of the LCRG calculations remains always smaller
than the size of the symbols used to represent the results from the form factor series. The
LCRG data and the form factor series are in excellent agreement.

The explicit formula (13) makes it possible to evaluate the correlation function
〈J1(t)J

�

≡
∑Lc

m=0〈J1(t)Jm+1

�

, where Lc ∈ N, even for large Lc and t numerically. As an
illustration, we plot the real and imaginary parts of 〈J1(t)J

�

for ∆ = 3 with Lc = 349 in Fig-
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ure 2. The contributions from higher ` are small in this case and we only include ` = 1. The
high-frequency oscillation in the right plot, centred around zero, and the continuous decay of
the correlation function for long times clearly indicate that, in agreement with common belief,
the zero-temperature spin transport is non-ballistic. A ballistic contribution would show up as
a non-vanishing constant long-time asymptotics of this correlation function.
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Figure 2: 〈J1(t)J
�

for ∆ = 3, Lc = 349 and times 0 < tJ < 5 (left), 10 < tJ < 24
(right).

For smaller∆, the conclusion is less obvious from our data for small times, see the left panel
in Fig. 3. However, in contrast to purely numerical methods the thermal form factor expansion
allows to obtain highly accurate data for long times, see the right panel in Fig. 3. These data
clearly show that the correlation function decays and has low-frequency oscillations.
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Figure 3: 〈J1(t)J
�

for ∆= 1.5 and times 0< tJ < 5 (left), 10< tJ < 24 (right). We
used Lc = 219.

The upper limit Lc in the sum over distances between the current operators is determined
by a characteristic velocity of the excitations and the maximum time scale we want to reach.
We fix Lc ¦ v2 t, where v2 is the upper critical velocity appearing in the long-time large-distance
asymptotic analysis of the current-current correlation functions (see Sec. 2.3 below). Typical
values of v2 are listed in Table 1. We will choose similar values of Lc in the sections below
unless the contributions from large distances m are negligible.
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Table 1: Velocity v2/J for various anisotropies ∆ according to equation (19).

∆ 1.5 2 3

v2/J 7.47329 9.06159 12.6851

2.3 Long-time large-distance asymptotics

From the example in Fig. 1, we see that the two-particle two-hole term significantly contributes
to the numerical value of the correlation function only at short times. The long-time large-
distance asymptotics of the correlation function is entirely determined by the one-particle one-
hole term,




J1(t)Jm+1

�

∼ C (2)(m, t) . (15)

This is what makes the series representation (13), (14) so efficient. The double integral
C (2)(m, t) can be numerically evaluated as accurately as we wish, because its asymptotic be-
haviour for m, t → ∞ at fixed ratio v = m/t is known in closed form from a saddle-point
analysis. Such type of analysis was carried out for the two-point functions of the local mag-
netization 〈σz

1(t)σ
z
m+1〉 in one of our previous works [64]. Here the mathematical problem is

exactly the same. Referring to equations (78), (79) in Appendix C, we can rewrite C (2)(m, t)
as

C (2)(m, t) =

∫
π
2

−π2

dz1

2π

∫
π
2

−π2

dz2

2π
f (z1, z2)e

t(g(z1)+g(z2)) , (16)

where

g(z) = i
�

ε(z)− vp(z)
�

, (17a)

f (z1, z2) =A(2)s (z1, z2|0) + (−1)mA(2)s (z1, z2|1) . (17b)

The definition ofA(2)s can be found in equation (79) below. The important point is that f (z1, z2)
has a double zero at z1 = z2 implying that (16) is of the same form as the integral analysed
in [64].

Let us briefly recall the main results of [64]. The asymptotics of C (2) is determined by
the roots of the saddle-point equation g ′(z) = 0 on steepest descent contours joining −π/2
and π/2. The saddle-point equation is most compactly expressed in terms of Jacobi elliptic
functions and their parameters that will also occur below in our discussion of the one-particle
one-hole contribution to the optical conductivity. We shall need the elliptic module k, the
complementary module k′ and the complete elliptic integral K . They are all conveniently
parameterized in terms of the elliptic nome q by means of ϑ j ≡ ϑ j(0|q),

k = ϑ2
2/ϑ

2
3 , k′ = ϑ2

4/ϑ
2
3 , K = πϑ2

3/2 . (18)

Let

v1 =
4JKk2 sh(γ)
π(1+ k′)

, v2 =
4JKk2 sh(γ)
π(1− k′)

(19)

and k1 = v1/v2. The first relation (18) is invertible which allows us to interpret K as a function
of k. Let K1 = K(k1). Then the saddle-point equation can be represented as

sn
�

4K1z
π

�

�

�

�

k1

�

=
v
v1

, (20)
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where sn is a Jacobi elliptic function. The solutions of the saddle-point equation divide the
m-t world plane into three different asymptotic regimes,

0< v < v1 , v1 < v < v2 , v2 < v , (21)

which were called [64] the ‘time-like regime’, the ‘precursor regime’ and the ‘space-like regime’
by analogy with the asymptotic analysis of electro-magnetic wave propagation in media.

Here we recall only the result of the asymptotic analysis in the time-like regime as it is
relevant for the ‘true long-time behaviour’. For the other two asymptotic regimes the reader
is referred to [64]. In the time-like regime, 0 < v/v1 < 1, the saddle-point equation (20) has
two inequivalent real solutions,

λ− =
π

4K1
arcsn

�

v
v1

�

�

�

�

k1

�

, λ+ =
π

2
−λ− , (22)

located in the interval [0,π/2]. The function occurring on the right hand side is the inverse
Jacobi-sn function. The long-time large-distance asymptotics of C (2)(m, t) in the time-like
regime is then determined by the saddle points,

C (2)(m, t)∼
f (λ+,λ−)
πt

∏

σ=±

et g(λσ)
p

g ′′(λσ)
. (23)

Note that the product on the right hand side can be expressed explicitly in terms of elementary
transcendental functions of v = m/t [64].

3 Optical Conductivity

Quite generally, current-current correlation functions determine transport coefficients within
the framework of linear response theory. The correlation function of two spin-current opera-
tors considered above determines the optical spin-conductivity σ(ω).

3.1 Form factor series

Several equivalent formula expressing σ(ω) for the XXZ chain in terms of current-current
correlation functions have been described in the literature (see e.g. [1,4]). For our convenience
and in order to make this work more self-contained, we have included concise derivations in
Appendix B. We are interested in the thermodynamic limit in which the following lemma holds
true.

Lemma 1. The real part of the optical spin conductivity of the XXZ chain can be represented as

Reσ(ω) =
1− e−

ω
T

2ω

∫ ∞

−∞
dt eiωt

�

2
∞
∑

m=0




J1(t)Jm+1

�

T −



J1(t)J1

�

T

�

. (24)

Proof. We start with equation (70) from Appendix B,

Reσ(ω) =
1− e−

ω
T

2ω

∫ ∞

−∞
dt eiωt lim

L→∞

1
L

L
∑

j,m=1




J j(t)Jm

�

T . (25)
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Here L is the length of the periodic system. We shall assume L to be even. The Hamiltonian is
invariant under translations modulo L and under parity transformations j→ L− j+1. Hence,

1
L

L
∑

j,m=1




J j(t)Jm

�

T =
L
∑

m=1




J1(t)Jm

�

T

=



J1(t)J1

�

T +

L
2−1
∑

m=1




J1(t)Jm+1

�

T +



J1(t)J L
2+1

�

T +
L−1
∑

m= L
2+1




J1(t)Jm+1

�

T

=



J1(t)J1

�

T + 2

L
2−1
∑

m=1




J1(t)Jm+1

�

T +



J1(t)J L
2+1

�

T . (26)

Here, we have split the summation so that, upon using the L-periodicity of the lattice, the
summed-up terms do get farther and farther away from the first site. This produces the factor
of 2 and is necessary for appropriately taking the thermodynamic limit. Hence,

lim
L→∞

1
L

L
∑

j,m=1




J j(t)Jm

�

T =



J1(t)J1

�

T + 2
∞
∑

m=1




J1(t)Jm+1

�

T , (27)

where the expectation values on the right hand side are now those in the thermodynamic limit
(m fixed, L→∞).

The zero-temperature limit of (24) for ω > 0 is obvious. In this limit we can take our
numerical results for 〈J1(t)J〉 from section 2.2 with Lc sufficiently large in order to compute
Reσ(ω) numerically from Lemma 1. The results shown in Fig. 4 and Fig. 6 below were ob-
tained this way. On the other hand, the summation over all lattice sites involved in (24) can
be easily carried out analytically on the series representation (13), (14), and we obtain the
following lemma.

Lemma 2. In the antiferromagnetic massive regime for T → 0 the correlation function under the
integral in (24) has the thermal form factor series representation

2
∞
∑

m=0




J1(t)Jm+1

�

−



J1(t)J1

�

=

∑

`∈N
k=0,1

1
(`!)2

∫

C`h

d`u
(2π)`

∫

C`p

d`v
(2π)`

A(2`)σ (U,V|k)eit
∑

λ∈U	V ε(λ|h) , (28)

where
A(2`)σ (U,V|k) = −i ctg

�

1
2

�

πk+
∑

λ∈U	V p(λ)
�

�

A
(2`)
J
(U,V|k) . (29)

Proof. Re
∑

λ∈U	V ip(λ) > 0 if u j ∈ Ch and vk ∈ Cp as can, for instance, be seen from Ap-
pendix A.2 of [35]. Hence, the summation over m can be performed by the geometric sum
formula.

With equation (28), we have an alternative starting point for a numerical computation of
the real part of the optical conductivity at T = 0. Again, we would have to substitute this
formula into (24) for T = 0, ω > 0 and calculate the Fourier transform numerically. For the
time being we refrain from this possibility. The direct use of (13) and (14), for which we could
resort to existing computer programs [54], gives reliable numerical results as can be seen from
Fig. 4. Our algorithm uses numerical saddle point integration. For a use with (28), (29) we
would have to modify it as some of the poles of the integrand are now located at the saddle
points. We leave the interesting questions of how to deal with this situation numerically and
how to calculate the long-time asymptotics analytically for future studies.
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3.2 Two-spinon contribution

In the general case of ` particle-hole excitations, the numerical evaluation of the Fourier trans-
form seems to be the most efficient way to make use of Lemma 2. For the ` = 1 particle-hole
contribution, however, following the examples of [38,42,65], the Fourier transformation can
be carried out by hand. The details of the calculation are discussed in Appendix C.

We introduce two functions

r(ω) =
π

K
arcsn

�

p

(h`/k′)2 −ω2

h`k/k′

�

�

�

�

k
�

, (30a)

B(z) =
1

G4
q4

�1
2

�

∏

σ=±

Gq4

�

1+ σz
2iγ

�

Gq4

�

σz
2iγ

�

Gq4

�3
2 +

σz
2iγ

�

Gq4

�1
2 +

σz
2iγ

� , (30b)

where h` has been defined at the beginning of Sec. 2.1. Using (18) and (30) we can formulate
our result for the two-spinon contribution to the optical conductivity.

Lemma 3. The two-spinon contribution to the real part of the optical conductivity of the XXZ
chain at zero temperature and in the antiferromagnetic massive regime can be represented as

Reσ(2)(ω) =
q

1
2 h2
`
k

8k′
B
�

r(ω)
�

∆− cos
�

r(ω)
�

ϑ2
3

ϑ2
3

�

r(ω)/2
�

1
q

�

(h`/k′)2 −ω2
��

ω2 − h2
`

�

, (31)

as long as h` <ω< h`/k
′. It vanishes outside of this range of ω.

The derivation of this result is discussed in Appendix C. In the above expression (31), we
identify two van-Hove singularities at the upper and lower 2-spinon band edges, see the last
factor on the right hand side. They are both canceled by B

�

r(ω)
�

as B(z) has double zeros at
integer multiples of π. As a result, Reσ(2)(ω) has square-root singularities, both at the lower
and the upper 2-spinon band edges, away from the isotropic point.

As a consistency test, we plot the spin conductivity obtained from a numerical Fourier
transformation of the `= 1 parts of




J1(t)Jm+1

�

and the above analytic result in Fig. 4. The two
curves agree well except for very small frequencies ω. Note that we perform the summation
and the numerical integration in (25) without introducing any window functions or filters.
The overall factor ω−1 in (25) could then introduce an artificial instability. We nevertheless
observe only a small deviation from zero in the vicinity ofω= 0. This indicates a high accuracy
of our spin-current correlation data.

With decreasing anisotropy ∆, the peak position moves towards ω = 0 while its height
increases, see Fig. 5. This is expected because the XXZ chain has a non-zero T = 0 Drude
weight in the isotropic limit [17]. A short discussion of the isotropic limit is presented in
Appendix C.

3.3 More than two spinons

For `≥ 2, simple analytic expressions like (31) are not available. Nevertheless, as has already
been mentioned, the spin-current correlation function is enumerable for sufficiently large m
and t. This enables us to perform a direct Fourier transformation, at least in principle. In
practice, calculating higher contributions is time-consuming. Here we therefore only present
a result for ` = 2, which corresponds to the 4-spinon case. Inside the two-spinon band the
additional contribution from 4-spinon states is small, away from the isotropic point. Above the
2-spinon upper band edge, however, a small conductivity is entirely carried by the scattering
states of four and more spinons. For∆= 2,3 the maximum of the `= 2 contribution is located
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0

5 · 10−2
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0.2

0.25

ω/J

R
e

σ
(2

) (
ω
)

∆ = 3, ℓ = 1

direct FT
analytic formula

Figure 4: Comparison of the analytic result (31) and a numerical Fourier transfor-
mation of the ` = 1 part of




J1(t)Jm+1

�

for anisotropy ∆ = 3. For the latter we use
0≤ m≤ 399 and 0≤ tJ ≤ 50.

0 5 10 15 20 25
0

0.5

1

1.5

ω/J

R
e

σ
(2

) (
ω
)

ℓ = 1

∆ = 1.5
∆ = 2
∆ = 3

Figure 5: `= 1 contribution, Eq. (31), to Reσ(2)(ω) for various ∆.

close to the upper 2-spinon band edge, and we expect this contribution to be significant even
near the lower 2-spinon band edge as ∆→ 1. An example for ∆= 3 is shown in Fig. 6.

As a benchmark for the accuracy of our results we consider the f -sum rule [66],
∫ ∞

0

dω Reσ(ω) = − lim
L→∞

π〈H0〉
2L

, (32)

where H0 denotes the ‘kinetic part’ of the Hamiltonian, obtained from (1) by setting ∆, h= 0.
The results of a numerical comparison of the left and right hand side of the sum rule (32) are
summarized in table 2. We find, in particular, that for the chosen anisotropies the sum of the
`= 1 and `= 2 terms is already extremely close to the full weight.
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0 10 20 30 40
0

5 · 10−2

0.1

0.15

0.2

0.25

ω/J

R
e

σ
(ω

)

∆ = 3, ℓ = 1, 2

ℓ = 1
100 × (ℓ = 2)

Figure 6: The ` = 1 and ` = 2 contributions to Reσ(ω) for ∆ = 3. Note that the
contribution from ` = 2 is multiplied by a factor 100. For the Fourier transform for
`= 2 we use data for




J1(t)Jm+1

�

with 0≤ m≤ 39 and 0≤ tJ ≤ 30.

Table 2: Both sides of the f -sum rule (32) for ∆= 1.5,2 and 3 and J = 1.

∆ lhs of (32): `= 1 lhs of (32): (`= 1) + (`= 2) rhs of (32)

1.5 1.56692 1.64348 1.64394

2 1.36065 1.37615 1.37624

3 0.987313 0.989092 0.989116

4 Summary and Conclusions

We have presented an exact thermal form factor expansion for the dynamical current-current
correlation function




J1(t)Jm+1

�

of the spin-1/2 XXZ chain in the massive antiferromagnetic
regime at zero temperature. In this expansion, the correlation function is given as a sum over `
particle-hole excitations or, equivalently, 2` spinon excitations. The formula can, in principle,
be evaluated numerically for arbitrary distances m and times t, leading to numerically exact
results. We note, in particular, that the series in the number of particle-hole excitations `
converges fast, except for anisotropy ∆ → 1. The long-time, large-distance asymptotics is
determined by the `= 1 contribution. We attribute the fast convergence to the massive nature
of the involved excitations.

We have also provided a form factor series representation for limL→∞
1
L

∑L
j,m=1




J j(t)Jm

�

which allows to calculate the real part of the optical spin conductivity Reσ(ω) by a direct
Fourier transform. For the ` = 1 (2-spinon) contribution the Fourier transform can be per-
formed analytically, leading to a closed form expression for the 2-spinon optical conductivity.
We find that Reσ(ω) is finite only within the 2-spinon band which starts at some finite fre-
quency. At both edges of the spinon band, the conductivity shows a square-root behavior. By
checking the f -sum rule, we have shown that the ` = 1 and ` = 2 contributions account for
almost the entire spectral weight if we are not too close to the isotropic point.
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Another test of our form factor series for



J1(t)Jm+1

�

was provided by DMRG results.
We also note that the obtained Reσ(ω) looks quite similar to the finite temperature results in
Ref. [67], which were obtained by DMRG as well, except for small frequencies. The Lorentzian-
type peak around ω = 0 observed in this paper, which seems to decrease with increasing T ,
therefore appears to be a genuine finite-temperature effect related to the expected diffusive
behavior. To understand the low-frequency behavior better, it would therefore be of interest
to extend our form factor series expansion to finite temperatures.

This is not totally out of reach, since the thermal form factor approach is a genuine finite-
temperature method which only has been used in the zero-temperature limit here to produce
fully explicit results. One of our future goals is indeed to keep the temperature finite. For
this purpose we will need better control of the non-linear integral equations that describe
the excited states of the quantum transfer matrix. Simplifications should occur in the high-
temperature limit, where we have a rather complete understanding [68] of the involved aux-
iliary functions.

Further future goals include a proof of the convergence of the series and an estimation of
the truncation error. Given the explicit nature of the integrands in our series and the recent
progress in related cases [49, 69] this may now appear within reach. We shall also work out
thermal form factor series expansions of general two-point functions of spin zero operators
and provide the details of the proof of (13), (14) in a forthcoming publication.
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A Special functions

In this appendix we gather the definitions of the special functions needed in the main part of
the text and list some of their properties.

We start with functions that can be expressed in terms of infinite q-multi factorials which,
for |q j|< 1 and a ∈ C, are defined as

(a; q1, . . . , qp) =
∞
∏

n1,...,np=0

(1− aqn1
1 . . . q

np
p ) . (33)

A first set of such functions are the q-Gamma and q-Barnes functions Γq and Gq,

Γq(x) = (1− q)1−x (q; q)
(qx ; q)

, (34a)

Gq(x) = (1− q)−
1
2 (1−x)(2−x)(q; q)x−1 (q

x ; q, q)
(q; q, q)

. (34b)

They satisfy the normalization conditions

Γq(1) = Gq(1) = 1 (35)
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and the basic functional equations

[x]qΓq(x) = Γq(x + 1) , Γq(x)Gq(x) = Gq(x + 1) , (36)

where [x]q = (1− qx)/(1− q) is a familiar form of the q-number.
Closely related are the Jacobi theta functions ϑ j(x) = ϑ j(x |q), j = 1, . . . , 4. Setting q = e−γ

they can be introduced by

ϑ4(x |q) = (q2; q2)(e−2ixq; q2)(e2ix q; q2) (37)

and

ϑ1(x) = −iq
1
4 eix ϑ4(x + iγ/2) , ϑ2(x) = q

1
4 eix ϑ4(x + iγ/2+π/2) ,

ϑ3(x) = ϑ4(x +π/2) . (38)

The parameter q of the theta functions is called ‘the nome’. Sometimes we suppress their nome
dependence, but only if the value of q is clear from the context.

The Jacobi theta functions are connected with the q-gamma functions through the second
functional relation of the latter,

ϑ4(x |q)
ϑ4(0|q)

=
Γ 2

q2

�1
2

�

Γq2

�1
2 −

ix
γ

�

Γq2

�1
2 +

ix
γ

� . (39)

We shall also frequently employ the common notational convention for the ‘theta constants’,
ϑ j = ϑ j(0|q), j = 2,3, 4, ϑ′1 = ϑ

′
1(0|q).

Another class of functions needed in the main text are the basic hypergeometric functions
[70]. They are defined in terms of finite q multi-factorials (or q-Pochhammer symbols),

(a1, . . . , ak; q)m = (a1; q)m(a2; q)m . . . (ak; q)m , (a; q)m =
m−1
∏

k=0

(1− aqk) , (40)

by the infinite series

rΦs

�a1, . . . , ar

b1, . . . , bs

; q, z
�

=
∞
∑

k=0

(a1, . . . , ar ; q)k
(b1, . . . , bs, q; q)

�

(−1)kq
k(k−1)

2

�s+1−r
zk . (41)

B The spin conductivity of the XXZ chain

In this appendix we recall the derivation of several alternative formulae for the ‘spin conduc-
tivity’.

B.1 Gauge fields coupling to the Hamiltonian

We decompose the Hamiltonian (1) as

H = H0 +∆HI − hSz , (42)

where

H0 = 2J
L
∑

j=1

�

σ+j−1σ
−
j +σ

−
j−1σ

+
j

�

, HI = J
L
∑

j=1

�

σz
j−1σ

z
j − 1

�

. (43)
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Under a Jordan-Wigner transformation the operator H0 goes to a tight-binding type Hamil-
tonian, while HI becomes a nearest-neighbour density-density interaction. In the Fermion
picture, it is H0 which couples to an external electro-magnetic field via so-called Peierls phases
which can be understood as a manifestation of a U(1) gauge field. For details see e.g. Chap-
ter 1.3 of the book [71]. In the spin-chain picture, switching on an external field means to
replace

σ−j → eiϕ j(t)σ−j , σ+j → e−iϕ j(t)σ+j , (44)

where t is the time variable. We shall restrict ourselves to a spatially homogeneous field (‘the
case of long wave length’),

ϕ j(t)−ϕ j−1(t) = λ(t) . (45)

Then H0 turns into

Hλ = 2J
L
∑

j=1

�

eiλ(t)σ+j−1σ
−
j + e−iλ(t)σ−j−1σ

+
j

�

. (46)

By analogy with the electro-magnetic case we shall assume that the gauge field is related
to the ‘electric field’ E as

∂tλ(t) = −eaE(t) , (47)

where e is a unit charge and a a unit length (‘lattice spacing’). This implies the relation

λF (ω) = −
iea
ω

EF (ω) , with λF (ω) =

∫

R

dt eiωt λ(t) , (48)

for the Fourier transforms. We shall consider a class of fields λ for which |λ(t)| ≤ eεt for
t → −∞ and |λ(t)| ≤ c t for t →∞, where ε, c > 0. The first condition is compatible with
an adiabatic switching on of the field and the second one admits ‘electric fields’ which are
asymptotically constant and allow us to probe the dc conductivity. For such fields the Fourier
transform λF (ω) exists within a strip 0< Imω< ε and should be interpreted as a ‘+-boundary
value’ on the real axis.

B.2 Current operators

An external ‘electric field’ will induce a current into a wire. Let us recall the construction of
the corresponding current operator.

We start with the definition of the operator of the time derivative of a physical quantity in
the Schrödinger picture. The Schrödinger equation,

i∂t U(t) = H(t)U(t) , U(0) = id , (49)

determines the time evolution operator U(t) for a system with generally time dependent
Hamiltonian H(t). If A is any operator in the Schrödinger picture, then the corresponding
operator AH in the Heisenberg picture is

AH(t) = U−1(t)AU(t) . (50)

Equations (49) and (50) imply that

i∂tAH(t) = −U−1(t)[H(t), A]U(t) (51)

or
U(t)(∂tAH(t))U

−1(t) = i[H(t), A] = Ȧ . (52)
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We may think of this equation as defining the time derivative Ȧ of A in the Schrödinger picture.
Applying this to the local magnetization 1

2σ
z and H(t) = Hλ +∆HI − hSz we obtain

1
2 σ̇

z
j = −J j+1(t) + J j(t) , (53)

where
J j(t) = 2iJ

�

eiλ(t)σ+j−1σ
−
j − e−iλ(t)σ−j−1σ

+
j

�

. (54)

Equation (53) has the form of a continuity equation for the local magnetization. For this reason
J j(t) is interpreted as the density of the spin current.

Let

J=
L
∑

m=1

Jm(0) =
L
∑

m=1

Jm . (55)

Then the total magnetic current is the sum

J(t) =
L
∑

m=1

Jm(t) = J−λ(t)H0 +O(λ2) (56)

and the time dependent Hamiltonian has the expansion

Hλ +∆HI − hSz = H +λ(t)J+O(λ2) . (57)

The latter two equations are all we need in order to calculate the average current induced by
the external field within the linear response theory. The small time dependent perturbation
we can read off from (57) is V (t) = λ(t)J.

B.3 Linear response of the current

We denote the density matrix of the canonical ensemble by ρc and the density matrix obtained
by time evolving ρc with Hλ by ρ(t). Then the linear response formula

tr
��

ρ(t)−ρc

�

J(t)
	

= −i

∫ t

−∞
dt ′




[(J(t))H(t − t ′), V (t ′)]
�

T (58)

determines the averaged current to linear order in V (for a concise derivation see e.g. Sec-
tion L.22 of [72]). Inserting here (56) and (57) we obtain

tr
�

ρ(t)J(t)
	

= −〈H0〉Tλ(t)− i

∫ ∞

−∞
dt ′ Θ(t − t ′)




[J(t − t ′),J]
�

Tλ(t
′) +O(λ2) . (59)

In this equation Θ is the Heaviside step function and J(t) denotes the total current J in the
Heisenberg picture that is evolved with respect to the unperturbed Hamiltonian H. We have
made use of the fact that 〈J〉T = 0 due to the invariance of the XXZ Hamiltonian under parity
transformations.

The ‘experimentally relevant quantity’ is the Fourier transformed current per volume which
in physical units is given by

JF (ω) = −ea

∫ ∞

−∞
dt eiωt

tr
�

ρ(t)J(t)
	

a3 L
. (60)

Due to the remark below (48), the integral on the right hand side is to be interpreted as a
+-boundary value if ω is real.
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If we substitute (59) into (60), use the convolution theorem as well as (48) and neglect
all terms of quadratic oder in λ or higher, we arrive at ‘Ohm’s law’,

JF (ω) =
e2

a
σL(ω)EF (ω) , (61)

where σL(ω) is the specific optical conductivity,

σL(ω) =
1

L(ω+ i0)

§

−i〈H0〉T +
∫ ∞

0

dt eiωt



[J(t),J]
�

T

ª

. (62)

Assuming



[J(t),J]
�

T to be bounded for t → +∞ we see that the right hand side of (62)
is a holomorphic function of ω in the upper half plane. This implies that the real part and
the imaginary part of the optical conductivity are not independent, but are connected by the
Kramers-Kronig relation.

B.4 Real part of the optical conductivity

For this reason we can focus our attention on the real part of the conductivity. We wish to
rewrite it in a form appropriate for taking the thermodynamic limit. We basically follow the
arguments given in [4] and start by switching to a spectral representation of the integral on
the right hand side of (62). Employing the notation

Zλ = tr
¦

e−
1
T (Hλ+∆HI−hSz)

©

, pn =
e−

En
T

Z0
, ωmn = Em − En , (63)

where the En are the eigenvalues of the Hamiltonian (1) with corresponding eigenstates |n〉,
the spectral representation takes the form

∫ ∞

0

dt eiωt



[J(t),J]
�

T = i
∑

m,n
Em 6=En

pn − pm

ω−ωmn + i0

�

�〈m|J|n〉
�

�

2
. (64)

Now, if Em 6= En,

1
ω+ i0

·
1

ω−ωmn + i0
=

1
ωmn

�

1
ω−ωmn + i0

−
1

ω+ i0

�

. (65)

Using this identity as well as the Plemelj formula 1/(ω+ i0) = −iπδ(ω) +P(1/ω) we obtain
the spectral representation

ReσL(ω) =
π

L

§

−〈H0〉T +
∑

m,n
Em 6=En

pm − pn

ωmn

�

�〈m|J|n〉
�

�

2
ª

δ(ω)

−
π

L

∑

m,n
Em 6=En

pm − pn

ωmn

�

�〈m|J|n〉
�

�

2
δ(ω−ωmn) . (66)

This representation immediately implies the f-sum rule (32).
Now notice that the free energy per lattice site

f (λ) = −
T
L

ln Zλ (67)
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satisfies [73] the relation

∂ 2
λ f (λ)

�

�

λ=0 = −
〈H0〉T

L
+

1
L

∑

m,n
Em 6=En

pm − pn

ωmn

�

�〈m|J|n〉
�

�

2 −
1

T L

∑

m,n
Em 6=En

pm

�

�〈m|J|n〉
�

�

2
. (68)

This quantity is the so-called Meissner fraction. It vanishes in the thermodynamic limit [73],
which follows from the fact that the effect of the external field λ is equivalent to a mere
twist of the boundary conditions of the original Hamiltonian (1). Inserting (68) into (66) and
switching back from a spectral representation to a Fourier integral we obtain

ReσL(ω) = πδ(ω)∂
2
λ f (λ)

�

�

λ=0 +
1− e−

ω
T

2ωL

∫ ∞

−∞
dt eiωt




J(t)J
�

T

= πδ(ω)∂ 2
λ f (λ)

�

�

λ=0 +
e
ω
T −1

2ωL

∫ ∞

−∞
dt e−iωt




J(t)J
�

T . (69)

From here it is obvious that ReσL(ω) is even. Since the Meissner fraction vanishes in the
thermodynamic limit, we obtain the formula

Reσ(ω) = lim
L→∞

ReσL(ω) =
1− e−

ω
T

2ω

∫ ∞

−∞
dt eiωt lim

L→∞




J(t)J
�

T

L
(70)

that is used in the main text.

C Two-spinon contribution

C.1 Two-spinon dynamical structure function

Defining

S(2`)
J
(Q,ω) =

∞
∑

m=−∞

∫ ∞

−∞
dt ei(Qm+ωt) C (2`)(m, t) (71)

the function

SJ(Q,ω) =
∞
∑

`=1

S(2`)
J
(Q,ω) (72)

is called the dynamical structure function of the local magnetic currents. In the following we
shall obtain an explicit expression for the one-particle one-hole term S(2)

J
(0,ω).

For this purpose we start with a close inspection and simplification of the amplitude

A
(2)
J
(u, v|k) =

� (ε(u)− ε(v))ϑ′1
4 sin(u− v)ϑ1(Σ)

�2 Ξ2(0)MM̂

Ξ(u− v)Ξ(v − u)
, (73)

where

Σ= −
1
2
(u− v +πk) , Ξ(z) =

Γq4

�1
2 +

z
2iγ

�

Γq4

�

1+ z
2iγ

�

G2
q4

�

1+ z
2iγ

�

G2
q4

�1
2 +

z
2iγ

� , (74a)

M= Φ1(P; 0)−Φ1(P; 0)
φ(−)(v)
φ(+)(v)

, M̂= Φ̂1(H; 0)− Φ̂1(H; 0)
φ(−)(u)
φ(+)(u)

, (74b)
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with H = e2iu, P = e2iv and

φ(−)(v)
φ(+)(v)

=
φ(−)(u)
φ(+)(u)

= e−2iΣ
Γq4

�1
2 +

i(v−u)
2γ

�

Γq4

�

1− i(v−u)
2γ

�

Γq4

�1
2 −

i(v−u)
2γ

�

Γq4

�

1+ i(v−u)
2γ

�
, (75a)

Φ1(P; 0) = Φ̂1(H; 0) = 2Φ1

�q−2, P/H

q2P/H
; q4, q4

�

, (75b)

Φ1(P; 0) = Φ̂1(H; 0) = 2Φ1

�q−2, H/P

q2H/P
; q4, q4

�

. (75c)

Using the q-Gauß identity [70],

2Φ1

�q−2, H/P

q2H/P
; q4, q4

�

=
Γq4

�1
2 +

i(v−u)
2γ

�

Γq4(1
2)Γq4

�

1+ i(v−u)
2γ

�
, (76)

as well as the functional equations for the q-gamma and q-Barnes functions, the amplitude
can be rewritten as

A
(2)
J
(u, v + iγ|k) =

�

ε(u) + ε(v)
2

�2 (−1)kq
1
2 tg

�1
2(u− v − iγ+πk)

�

2sin(u− v)

× B(u− v)
�

ϑ′1

ϑ4

�1
2(u− v +πk)

�

�2

, (77)

where B(z) was defined in equation (30) of the main text. Note that B(z) has a double zero
at z = 0. Hence, the simple pole at u = v stemming from the sine function is canceled by a
double zero of B(u− v).

For this reason we can write

C (2)(m, t) =
∑

k=0,1

∫
π
2

−π2

dz1

2π

∫
π
2

−π2

dz2

2π
A(2)s (z1, z2|k)e

imkπ+i
∑2

j=1(tε(z j)−mp(z j)) , (78)

where

A(2)s (z1, z2|k) =
1
2

�

A
(2)
J
(z1, z2 + iγ|k) +A

(2)
J
(z2, z1 + iγ|k)

�

=
q

1
2

2

�

ε(z1) + ε(z2)
2

�2 B(z1 − z2)
∆+ (−1)k cos(z1 − z2)

(ϑ′1)
2

ϑ2
4

�1
2(z1 − z2 +πk)

� . (79)

It follows that

S(2)
J
(Q,ω) =

∑

k=0,1

∫
π
2

−π2

dz1

∫
π
2

−π2

dz2 A
(2)
s (z1, z2|k)

×δ2π

�

Q− p(z1)− p(z2) +πk
�

δ
�

ω+ ε(z1) + ε(z2)
�

, (80)

where δ2π is a 2π-periodic delta function.
We now substitute

 

z1

z2

!

7→

 

λ

P

!

=

 

1
2

�

p(z1)− p(z2)
�

p(z1) + p(z2)

!

. (81)
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For the substitution recall [35] that p(x) is monotonically increasing on [−π/2,π/2] with
p(−π/2) = 0, p(π/2) = π. Furthermore, the inverse function can be written as

p−1(y) = −
π

2K
arcsn

�

cos(y)
�

�k
�

, (82)

where k is the elliptic module and K the complete elliptic integral (see (18)). Setting

A(P,λ|k) =
A(2)s

�

p−1(P/2+λ), p−1(P/2−λ)
�

�k
�

p′
�

p−1(P/2+λ)
�

p′
�

p−1(P/2−λ)
� (83)

we obtain

S(2)
J
(Q,ω) =

∑

k=0,1

§

∫ π

0

dP

∫
P
2

− P
2

dλ+

∫ 2π

π

dP

∫ π− P
2

−π+ P
2

dλ
ª

A(P,λ|k)

×δ2π

�

Q− P +πk
�

δ
�

ω+ ε(p−1(P/2+λ)) + ε(p−1(P/2−λ))
�

. (84)

In the latter equation the P integration is now trivial. For Q ∈ (0,π) we obtain

S(2)
J
(Q,ω) =

∫
Q
2

−Q
2

dλ A(Q,λ|0)δ
�

ω+ ε(p−1(Q/2+λ)) + ε(p−1(Q/2−λ))
�

+

∫
π−Q

2

−π−Q
2

dλ A(Q+π,λ|1)δ
�

ω+ ε(p−1(Q+π2 +λ)) + ε(p−1(Q+π2 −λ))
�

. (85)

In the limit Q→ 0 the first integral can at most contribute to the value of S(2)
J

at the single
point (0,−2ε(−π/2)). We shall ignore this irregular contribution. Taking into account that
A(P,λ|k) = A(P,−λ|k) we see that at all other points

S(2)
J
(0,ω) = 2

∫
π
2

0

dλ A(π,λ|1)δ
�

ω+ ε(p−1(π2 +λ)) + ε(p
−1(π2 −λ))

�

. (86)

Further noticing that

ε(p−1(π2 ±λ)) = −
h`
2k′

Æ

1− k2 sin2(λ) and ε(λ) = −2J sinh(γ)p′(λ) , (87)

see (A.11) of [52] and (A.19) of [35] for more details, we can readily calculate the remaining
integral. Using (30) we arrive at

S(2)
J
(0,ω) =

q
1
2 h2
`
k

4k′
B
�

r(ω)
�

∆− cos
�

r(ω)
�

ϑ2
3

ϑ2
3

�

r(ω)/2
�

ω
q

�

(h`/k′)2 −ω2
��

ω2 − h2
`

�

, (88)

for ω ∈ [h`, h`/k
′]. Outside this interval the function S(2)

J
(0,ω) vanishes.

The first integral on the right hand side of (85) can at most contribute to S(2)
J
(0,ω) at

ω= −2ε(p−1(0)) = h`, which means exactly at the lower band edge.

One should incorporate 2π into p′ appearing in these works due to the different conventions we use here for
the dressed momentum.
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C.2 Two-spinon optical conductivity

We would like to connect the two-spinon contribution to the structure function with the real
part of the optical conductivity. For this purpose we first note that




J1(t)Jm+1

�

=
�




J1(−t)Jm+1

�

�∗
. (89)

In order to see this we start with a finite chain of length L for which

�




J1(−t)Jm+1

�

�∗
=



(J1(−t)Jm+1)
†
�

=



Jm+1J1(−t)
�

=



Jm+1(t)J1

�

=



JL(t)JL−m

�

=



J1(t)Jm+1

�

. (90)

Here we have used the invariance under parity transformations in the last equation. Equation
(90) holds for every finite L, hence also in the thermodynamic limit.

Now (89) implies



J1(t)Jm+1

�

=
∞
∑

`=1

�

C (2`)(m,−t)
�∗

. (91)

Thus, the two-spinon contribution to the correlation function of the total currents per lattice
site is

�

2
∞
∑

m=0




J1(t)Jm+1

�

T −



J1(t)J1

�

T

�(2)
=
∞
∑

m=0

C (2)(m, t) +
∞
∑

m=1

�

C (2)(m,−t)
�∗
=
∞
∑

m=−∞
C (2)(m, t) , (92)

as can be seen from taking the complex conjugation of the explicit expression (78). Hence,
with (24) and (71),

Reσ(2)(ω) =
S(2)
J
(0,ω)

2ω
, (93)

which is valid for allω> 0 and T = 0. Lemma 3 and Eq. (31) in the main text therefore follow
directly from Eq. (88).

C.3 The isotropic limit: `= 1

We consider Reσ(2)(ω) near the lower 2-spinon band edge in the isotropic limit γ → 0. A

convenient parameter in this limit is q′ = e−
π2
2γ which approaches zero quickly. The energy gap

∆ε in the absence of a magnetic field is

∆ε = −ε(
π

2
)∼

8Jπ shγ
γ

q′ .

Our main goal is to show that the peak location ω∗ of Reσ(2) is parameterized as ω∗ ∼ Cq′

while the corresponding height is given by Reσ(2)(ω∗)∼ C ′/q′ for some constants C , C ′.
The various constants behave in this limit as follows,

k ∼ 1 , k′ ∼ 4q′ ,

K(k)∼
π2

2γ
, h` ∼

16Jπ shγ
γ

q′ .

The upper 2-spinon band edge h`
k′ thus reaches 4Jπ.
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Note that r(ω) = π at the lower 2-spinon band edge, ω = h`. Then we conveniently
parameterize

r(ω) = π−
γ

π
εr , ω= h`(1+ ε

′) . (94)

We assume that εr ,ε
′ are O(1). They are not independent but constrained by (30a),

sn(K +
K
π2
γεr |k) = cd(

K
π2
γεr |k) =

Ç

(h`
k′ )2 −ω2

h`k
k′

.

By expanding both sides up to O((q′)2), we find that εr and ε′ are related by

chεr − 1= 4(ε′ +
(ε′)2

2
) .

In particular, when both of them are infinitesimally small, εr ∼ 2
p

2ε′. This essentially explains
the

q

ω2 − h2
`

behaviour of Reσ(2)(ω) for generic γ.
Now that B(π+ z) = B(z), we have in this limit,

B(r(ω)) = B(
γεr

π
)∼

1

G4(1
2)

εr

2π2
sh
εr

2

∏

σ=±1

G2(1+ σεr
2iπ )

G(1
2 +

σεr
2iπ )G(

3
2 +

σεr
2iπ )

,

where G is the (undeformed) Barnes G function. The limits of the other factors in (31) are
easily expressed in terms of εr ,

ϑ2
3

ϑ2
3

�

r(ω)/2
� ∼

1

4q′ ch2 εr
2

,

1
q

�

(h`/k′)2 −ω2
��

ω2 − h2
`

�

∼
k′

h2
`
k sh εr

2

,

1
∆− cos(r(ω))

∼
1
2

.

All in all, Reσ(2)(ω) behaves near h` in the rational limit as

Reσ(2)(ω)∼
1

128q′G4(1
2)π2

F(εr) , F(x) =
x

ch2 x
2

∏

σ=±1

G2(1+ σx
2iπ)

G(1
2 +

σx
2iπ)G(

3
2 +

σx
2iπ)

.

Numerically, F(εr) has a maximum at εr ∼ 1.3508 and the corresponding peak location is
ω∗ ∼ 1.2369h`. Therefore we conclude that Reσ(2)(ω∗) behaves as 1/q′, while ω∗ behaves
as q′. The above argument only takes into account the contribution from the `= 1 sector but
we expect that the higher excitations do not alter the qualitative behavior in this limit.
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