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Abstract

We investigate macroscopic behaviors of fluctuating domain walls in nonequilibrium
open systems with the help of the effective field theory based on symmetry. Since the
domain wall in open systems breaks the translational symmetry, there appears a gap-
less excitation identified as the Nambu-Goldstone (NG) mode, which shows the non-
propagating diffusive behavior in contrast to those in closed systems. After demon-
strating the presence of the diffusive NG mode in the (2 + 1)-dimensional dissipative
Josephson junction, we provide a symmetry-based general analysis for open systems
breaking the one-dimensional translational symmetry. A general effective Lagrangian
is constructed based on the Schwinger-Keldysh formalism, which supports the presence
of the gapless diffusion mode in the fluctuation spectrum in the thin wall regime. Be-
sides, we also identify a term peculiar to the open system, which possibly leads to the
instability in the thick-wall regime or the nonlinear Kardar-Parisi-Zhang coupling in the
thin-wall regime although it is absent in the Josephson junction.
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1 Introduction

A domain wall, codimension one object, is ubiquitous in nature from the condensed-matter
physics to the high-energy physics [1–5]. The sine-Gordon kink in the Josephson junction [6],
the magnetic domain wall in various magnets [7], the interface of two different phases [8] sep-
arated by, e.g., the first-order phase transition (like liquid and gas), and extended membrane-
like objects in the string theory [9] all give the domain-wall realization in diverse physical
systems. There are several different reasons why the domain wall is a stable object appear-
ing in diverse systems: for instance, some of the domain walls are topological solitons [4, 5]
showing a particle-like behavior, and others have the topological charge supporting its stability.

A remarkable property of the domain-wall solution is that it breaks the one-dimensional
spatial translational symmetry. As a result, a fluctuation of the domain-wall position propa-
gates as a gapless mode in closed systems. The presence of the propagating gapless mode is
universal independent of the underlying microscopic model, and this gapless mode is identi-
fied as the Nambu-Goldstone (NG) mode [10–12] associated with the translational symmetry
breaking. One way to describe the universal macroscopic dynamics of the domain wall is
to use the low-energy effective field theory (EFT) based on the symmetries [13–20]. Recent
progresses in the nonrelativistic generalization of the NG theorem enables us to establish a
sophisticated EFT approach to the domain-wall dynamics based on the spacetime symmetry
breaking [21] and also to provide a unified view on the coupled dynamics of the domain wall
and other NG modes [22,23].

Turning our attention to nonequilibrium systems, we find qualitatively different domain-
wall dynamics from the aforementioned gapless propagating mode. In nonequilibrium open
systems, we often encounter the gapless diffusive fluctuation instead of the gapless propagat-
ing one. A familiar example of the domain-wall dynamics is a linear surface growth between
two different phases, which provides an example of the universality class in nonequilibrium
systems modeled by the Edwards-Wilkinson equation [24]. Besides, there is another universal-
ity class driven by nonlinear fluctuations, which leads to the so-called the Kardar-Parisi-Zhang
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(KPZ) universality class [25]. Recent experimental and theoretical developments have demon-
strated the presence of the KPZ universality class in various low-dimensional systems [26–32].
Nevertheless, despite these developments, the universal domain-wall dynamics in nonequilib-
rium open systems has not been clarified so far in a unified way with those in closed systems
based on the symmetry-based EFT.

The main purpose of this paper is twofold: The first purpose is to elucidate the low-energy
dynamics of the magnetic flux in the (2+1)-dimensional dissipative Josephson junction, which
gives a canonical condensed-matter example of the domain wall. The Josephson junction is
a layer insulator sandwiched by two superconducting electrodes, for which the dynamics of
the phase difference between the two electrodes is modeled by the sine-Gordon equation (see,
e.g., Refs. [6,33]). Moreover, the dissipative effects due to the environment (such as electrons
or phonons) are inevitable in experimental finite-temperature realizations, and the effective
description is given by the dissipative generalization of the sine-Gordon equation [33–37].
Thus, the dissipative Josephson junction serves as an ideal condensed-matter example of open
systems where the domain-wall solution, describing the position of the magnetic flux, appears
as a sine-Gordon kink. The second purpose of this paper is to investigate general consequences
of the one-dimensional translational symmetry breaking in open systems. In fact, it remains
unclear what is the universal property of the fluctuating domain wall in general nonequilibrium
open systems in sharp contrast to those in closed systems.

To accomplish twofold goals, we rely on the symmetry-based field-theoretical approach
to the nonequilibrium dynamics, whose basis is recently developed in constructing the EFT
for a dissipative fluid in closed systems [38–48] and generalized to describe the NG mode
in open systems [49–53] (see also Ref. [54] for a holographic realization of the NG mode
in open systems). In particular, we rely on the path-integral formalism from two different
viewpoints—a bottom-up view from the Martin-Siggia-Rose (MSR) formalism for classical
stochastic systems [55–57] and a top-down view from the Schwinger-Keldysh formalism for
quantum open systems [58–63]. In both views, a recent perspective of the symmetry structure
of open systems clarified in Refs. [49–53] is crucial. The notion of the symmetry becomes a
little complicated since the corresponding physical charge in open systems is no longer con-
served due to the dissipative coupling to the environment. Nevertheless, we can still define the
spontaneous symmetry breaking and the associated NG mode in open systems [49–53]. The
symmetry peculiar to open systems is different from the approximate symmetry that is explic-
itly but weakly broken. Accordingly, the behavior of NG modes discussed in this paper is also
different from the gapped and overdamped pseudo-NG modes associated with approximate
translational symmetry breaking [64–66].

In the first part (Sec. 2), we take a bottom-up route, starting from the classical stochastic
description of the (2+1)-dimensional dissipative Josephson junction. Using the Fokker-Planck
(operator) and the MSR (path-integral) formalisms, we clarify the symmetry structure peculiar
to the open systems, and then derive the effective theory for the domain-wall fluctuation on the
top of the sine-Gordon kink. The resulting energy spectrum of the fluctuation in two regimes—
thin-wall and thick-wall regimes—shows the appearance of a diffusive pair mode; a gapless
diffusion mode and its gapped partner. In the second part (Sec. 3-4), we take a top-down route,
relying on the symmetry-based Schwinger-Keldysh formalism, which has been applied to the
NG mode attached to the SSB for the time-translational and internal (or on-site) symmetries
in open systems [51, 53]. Based on the symmetry and Schwinger-Keldysh requirements, we
construct the most general effective Lagrangian for open systems with the one-dimensional
translational symmetry breaking. The resulting effective Lagrangian demonstrates that the
presence of a pair of the diffusive NG mode is a universal result in the thin-wall regime, while it
also has a peculiar term possibly leading to a linear propagation and instability of the NG mode
in the thick-wall regime. We also find that the same peculiar term leads to the nonlinear cubic
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interaction term in the thin-wall regime, which may induce the KPZ universality class [25–32].
Our results show that the presence of the diffusive NG mode is a universal property of the stable
domain wall in nonequilibrium open systems, and there is a model-dependent peculiar term
that could induce the KPZ universality class.

The organization of the paper is in order: In Sec. 2, we investigate the fluctuation dynam-
ics of the domain wall in the dissipative Josephson junction. In Sec. 3, we briefly review the
Schwinger-Keldysh formalism in preparation to formulate the EFT for open systems. In Sec. 4,
we construct the effective Lagrangian of open systems with translational symmetry breaking to
investigate the universal property of the dissipative domain wall. Sec. 5 is devoted to the sum-
mary and outlook. In Appendix A, we present an EFT for the domain wall in finite-temperature
closed systems in comparison to that given in the main text.

2 Dissipative domain wall in Josephson junction

In this section, we investigate the domain-wall dynamics in the dissipative Josephson junction
with noise. While the subject of this section is interesting in its own right, it also illustrates our
general motivation and formulation on spontaneous translational symmetry breaking and the
resulting dynamics in open systems given in the subsequent sections. We provide the model
describing the dissipative Josephson junction with noise in Sec. 2.1. To discuss the symmetry
breaking of the stationary solution of the model, we introduce the operator and path integral
formalisms in Sec. 2.2 and identify a peculiar symmetry structure in open systems in Sec. 2.3.
In Sec. 2.4, we show that the stationary solution spontaneously breaks the translational sym-
metry peculiar to open systems and investigate the dynamics of the NG field associated with
the symmetry breaking.

2.1 Dissipative sine-Gordon model with noise

The Josephson junction consists of two superconducting electrodes separated by a few nanome-
ter thin layers of the insulator. By applying a uniform magnetic field parallel to the layer, a
magnetic flux φ ∈ [0, 2π] sticks to the insulator (see the left panel of Fig. 1). The dynamics
of the magnetic flux is described by the dissipative sine-Gordon equation [34,35]:

∂ 2
t φ(t, x )−∇2φ(t, x ) +m2 sinφ(t, x ) +α∂tφ(t, x )− β∇2∂tφ(t, x ) = ξ(t, x ), (1)

where we scaled the space and time length to make the coefficients of the first two terms on
the left-hand side to be unity. The mass term comes from the Josephson current due to the
phase difference between the two superconducting electrodes, associated with the magnetic
flux. Compared with the sine-Gordon model in closed systems, we have three additional terms
α∂tφ, β∇2∂tφ and ξ, describing effects of the dissipation and noise. The terms proportional to
α and β captures the dissipative effect from quasi-particle tunneling and the surface resistance
of the superconductors, respectively, while ξ corresponds to a bias current density [34, 35].
We also take account of the possible fluctuating property of the bias current density ξ(t, x ),
whose stochastic property is assumed to be a Gaussian white noise with no bias [36,37]:

〈ξ(t, x )〉ξ = 0, 〈ξ(t, x )ξ(t ′, x ′)〉ξ = Aδ(t − t ′)δ2(x − x ′), (2)

where 〈· · · 〉ξ represents the average over the noise ξ. The parameter A characterizes the mag-
nitude of the bias current noise. Although the noise magnitude A is usually related to the
friction magnitudes by the fluctuation-dissipation relation, we do not assume such relations
to carry out a general analysis. In experimental realizations, these dissipative effects are in-
evitable at a finite temperature, and typically the noise magnitude A is proportional to the
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Magnetic flux

Figure 1: Left: A magnetic flux applied to a insulator layer by a uniform magnetic
field in y-direction. Right: 2π-kink phase differenceφ(t, x ) induced by the magnetic
flux (m= 1.0).

temperature of the environment. Due to the terms proportional to α, β as well as the noise,
Eq. (1) describes an open system exposed to the dissipation.

The vital point for our subsequent analysis is that Eq. (1) in the mean-field limit, where the
right-hand side is replaced by its averaged value 0, supports the following sine-Gordon kink
as the domain-wall solution:

φ̄(x − x0) = 4arctan
�

em(x−x0)
�

, (3)

where we imposed the following boundary condition

lim
x→−∞

φ(t, x , y) = 0 and lim
x→∞

φ(t, x , y) = 2π. (4)

This solution describes a domain wall localized at position x0 as shown in the right panel
of Fig. 1. The imposed boundary condition (4) means that there is one magnetic flux line
piercing the sandwiched insulator along the y-direction (see Fig. 1). Thus, the (2 + 1)-
dimensional Josephson junction realizes the domain-wall solution (3) when we apply an ap-
propriate amount of the magnetic field parallel to the layer to impose the boundary condition
(4). In the following of this section, we will clarify the dynamics of the realized domain wall
based on the symmetry of the dissipative Josephson junction.

2.2 Operator and path integral formalisms for stochastic dynamics

The crucial point for the domain-wall dynamics is that the presence of the wall breaks a spatial
translational invariance. In closed systems, this spontaneous symmetry breaking results in
a gapless collective excitation identified as the NG mode, which dominates the low-energy
dynamics of the wall. However, since the dissipative sine-Gordon equation (1) describes the
open system exposed to the dissipation and noise that break the momentum conservation, we
need to be careful about what is the symmetry of our open system [49–53].

We shall now clarify the notion of the symmetry and the NG mode in open systems. For that
purpose, it is useful to rely on operator and path-integral formalisms for the stochastic equation
of motion, which are known as the Fokker-Planck formalism and the MSR formalism [55–
57], respectively (see, e.g., Ref. [67] for a review). In particular, we mainly employ the MSR
formalism, which directly leads to the effective Lagrangian of the NG mode associated with
the domain wall.

In preparation for moving to the Fokker-Planck operator formalism, we first introduce a
field variable χ(t, x ) conjugate to φ(t, x ) and decompose Eq. (1) as

∂tφ(t, x ) = χ(t, x ), (5a)

∂tχ(t, x ) =∇2φ(t, x )−m2 sinφ(t, x )−αχ(t, x ) + β∇2χ(t, x ) + ξ(t, x ). (5b)
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Then, we introduce the probability distribution for φ and χ as

P[t;φR(x ),χR(x )]≡
∏

x

〈δ(φR(x )−φ(t, x ))δ(χR(x )−χ(t, x ))〉ξ. (6)

Note thatφR(x ) and χR(x ) denote c-number field configurations whileφ(t, x ) and χ(t, x ) are
solutions of the stochastic equations of motion (5). Note that φR(x ) is also in [0,2π] as well
as the magnetic flux φ(t, x ). Equation (6) defines the probability distribution functional that
the field variables {φ(t, x ),χ(t, x )} realize a configuration {φR(x ),χR(x )} at a given time t.

Using the equations of motion (5), we can show that the time evolution of the probability
distribution P[t;φR(x ),χR(x )] is described by the Fokker-Planck equation

∂tP[t;φR(x ),χR(x )] = −HFPP[t;φR(x ),χR(x )], (7)

where we introduced the Fokker-Planck Hamiltonian as

HFP ≡
∫

d2 x
�

δ

δφR(x )
χR(x )

+
δ

δχR(x )

�

∇2φR(x )−m2 sinφR(x )−αχR(x ) + β∇2χR(x )
�

−
A
2

δ2

δχR(x )2

�

.

(8)

Notice that the Fokker-Planck equation (7) looks similar to the Schrödinger equation for the
wave function in quantum theory. Motivated by this observation, we define field operators by

φ̂R(x ) = φR(x ), χ̂R(x ) = χR(x ), χ̂A(x ) = −i
δ

δφR(x )
, φ̂A(x ) = +i

δ

δχR(x )
. (9)

Introducing the commutation relation as [Â, B̂] = ÂB̂− B̂Â, one finds that the above operators,
by definition, satisfy the canonical commutation relations

[φ̂R(x ), χ̂A(x
′)] = [φ̂A(x ), χ̂R(x

′)] = δ(2)(x − x ′), (10)

where the other commutators vanish. Therefore, we can regard the Fokker-Planck equation
(7) as the analogue of the Schrödinger equation with imaginary time.

On the other hand, it should be also emphasized remarkable differences between the
Fokker-Planck equation and the ordinary Schrödinger equation. First, P[t;φR(x ),χR(x )] in
the Fokker-Planck formalism describes the real-valued probability distribution while the wave
function in quantum theory does the complex-valued function, whose square gives the prob-
ability distribution. Second, the Fokker-Planck Hamiltonian is not the Hermitian operator in
sharp contrast to the usual Hamiltonian in quantum theory. As a result, despite the similar
structure with quantum theory, the low-energy spectrum of the resulting NG mode will be
qualitatively different.

As in quantum theory, instead of the operator formalism, we can use the equivalent path-
integral (or Lagrangian) formalism known as the MSR formalism [55–57]. In fact, we can
perform a systematic computation of the correlation function based on the path-integral for-
mula for the generating functional Z[ jφ , jχ] given by

Z[ jφ , jχ]≡〈ei
∫

dtd2 x [ jφ(t,x )φ(t,x )+ jχ (t,x )χ(t,x )]〉ξ

=

∫

DφRDχRDφADχA eiSMSR[φR,χR,φA,χA]+i
∫

dtd2 x [ jφ(t,x )φR(t,x )+ jχ (t,x )χR(t,x )],
(11)

where jφ and jχ are the source fields to compute correlation functions of stochastic variables
φ(t, x ) and χ(t, x ). In the second line, we introduced the auxiliary fields φA and χA to make
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φR and χR as solutions of the equations of motion (5) and performed the integration over
the noise. We also dropped a Jacobian factor since it does not play an important role in the
following analysis. The phase space MSR action iSMSR is given by

iSMSR =

∫

dtd2 x
�

iχA∂tφR − iφA∂tχR −HFP

�

=

∫

dtd2 x
�

iχA

�

∂tφR −χR

�

− iφA

�

∂tχR −∇2φR +m2 sinφR +αχR − β∇2χR

�

−
A
2
φ2

A

�

.

(12)

Furthermore, integrating out the conjugate variables χR and χA, one can also find the config-
uration space MSR action for the dissipative sine-Gordon model as follows:

iSMSR[φR,φA] =

∫

dtd2 x
�

−iφA

�

∂ 2
t φR −∇2φR +m2 sinφR +α∂tφR − β∇2∂tφR

�

−
A
2
φ2

A

�

.

(13)
Note that φR corresponds to the physical quantity describing the original magnetic flux,
whereas φA is an auxiliary field to make φR as a solution of the original Langevin equation. In
the noiseless limit A→ 0, this action reduces to the Fourier expression of the delta functional
using the auxiliary field φA, which restricts field configurations of φR to be those satisfying
the deterministic dissipative sine-Gordon equation. In other words, the last term in Eq. (13)
captures the effect of the noise. Likewise, in the phase space action, χR is the physical quantity
while χA is an auxiliary field.

2.3 Translational symmetry

Based on the Fokker-Planck and MSR formalisms presented in the previous section, we discuss
spatial translational symmetries in the open system. In the MSR formalism, we define the
symmetry as the invariance of the MSR action (12) or (13) under the corresponding transfor-
mation. The equivalent definition of the symmetry in the Fokker-Planck formalism is given by
the charge operator commuting with the Fokker-Planck Hamiltonian (recall that the Fokker-
Planck Hamiltonian generates the time translation).

We then investigate the symmetry of the dissipative Josephson junction. First of all, note
that the MSR action Eq. (12) and Eq. (13) does not have an explicit coordinate dependence:
namely, our model is invariant under the following transformation:



















φR(t, x )→ φ′R(t, x ) = φR(t, x + εA),
φA(t, x )→ φ′A(t, x ) = φA(t, x + εA),
χR(t, x )→ χ ′R(t, x ) = χR(t, x + εA),
χA(t, x )→ χ ′A(t, x ) = χA(t, x + εA),

(14)

associated with the spatial translation x → x ′ = x−εA. The corresponding conserved Noether
charge is provided by

Pi,A ≡
∫

d2 x
�

χR(t, x )∂iφA(t, x ) +χA(t, x )∂iφR(t, x )
�

, (15)

with ∂i = (∂x ,∂y). In the Fokker-Planck formalism, the operator version of this Noether charge
generates the spatial translation. In fact, by the use of the commutation relation (10), one can
reproduce the infinitesimal transformation rule of, e.g., φR in Eq. (14) as

δεA
φ̂R(x )≡ i

�

εA ·P̂A, φ̂R(x )
�

= εA ·∇φ̂R(x ), (16)
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and others follow in the same way. One can also check the spatial translational symmetry as the
commutativity of the Noether charge P̂i,A with the Fokker-Planck Hamiltonian [ĤFP, P̂i,A] = 0.
We refer to this symmetry as Pi,A-symmetry.

Although the operator P̂i,A gives a conserved charge generating the spatial translation (14),
this quantity does not represent a physical momentum because P̂i,A involves the auxiliary fields
φA and χA. As in the non-dissipative sine-Gordon model, the physical momentum should be
defined solely by the physical fields φR and χR as

P̂i,R ≡
∫

d2 x χ̂R(x )∂iφ̂R(x ). (17)

In contrast to P̂i,A, the physical momentum P̂i,R, however, is not conserved because it does not
commute with ĤFP as

i
�

ĤFP, P̂i,R

�

=

∫

d2 x
�

�

−αχ̂R + β∇2χ̂R + iAφ̂A

�

∂iφ̂R

�

+ (surface term). (18)

The non-vanishing contribution results from the terms proportional to α, β , and A, and thus,
the presence of the dissipation and noise makes the physical momentum P̂i,R to be noncon-
served. This is because the physical momentum accompanied by the magnetic flux φR diffuses
into the environment and becomes a non-conserved quantity in the open system. In other
words, there is no Pi,R-symmetry in contrast to closed systems.

The above structure is a salient feature of open systems: the physical charge P̂i,R is not
conserved due to the dissipation and noise while there is a Pi,A-symmetry generated by the
conserved auxiliary charge P̂i,A. The crucial point here is that it is possible for a steady-state
solution to spontaneously break the present Pi,A-symmetry. Following the definition in closed
systems, we define the spontaneous Pi,A-symmetry breaking in the dissipative Josephson junc-
tion systems by the existence of a certain physical order parameter field ΦR(t, x ) as follows:

∃ ΦR(t, x ) such that 〈δεA
ΦR(t, x )〉= 〈[iεA · P̂A, Φ̂R(t, x )]〉 6= 0, (19)

where 〈· · · 〉 denotes the path-integral average with the MSR action (13). One can find that the
condition for the order parameter field is simply given by ∂i〈ΦR(t, x )〉 6= 0, so that it precisely
indicates the inhomogeneity of the steady-state solution. Since the mean-field solution (3)
indeed breaks the translational symmetry associated with the conserved charge P̂x ,A, we can
investigate the domain-wall dynamics in open systems from the perspective of the symmetry
breaking. Although the origin of the two kinds of charges and symmetry structures may be
unclear so far, we will see that they naturally arise from the underlying quantum theory based
on the Schwinger-Keldysh formalism in Sec. 3.

2.4 Effective Lagrangian for the domain-wall fluctuation

Let us investigate the domain-wall dynamics of the dissipative sine-Gordon model using the
configuration space MSR action (13). First of all, the equations of motion in the MSR formalism
are given by

0=
δSMSR[φR,φA]
δφA(t, x )

= −∂ 2
t φR +∇2φR −m2 sinφR −α∂tφR + β∇2∂tφR + iAφA, (20a)

0=
δSMSR[φR,φA]
δφR(t, x )

= −∂ 2
t φA+∇2φA−m2φA cosφR +α∂tφA− β∇2∂tφA. (20b)

To solve these equations, we employ a mean-field approximation in which the solution sat-
isfies SMSR[φR,φA] = 0. This condition comes from the fact that the generating functional
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without the external fields satisfies Z = 1 because of Eq. (11). With the use of Eq. (20a), the
MSR action turns into SMSR[φR,φA] =

∫

dtd2 x Aφ2
A/2, which leads to φA = 0 in the mean-

field approximation. As is expected, with the boundary condition lim
x→−∞

φR(t, x ) = 0 and

lim
x→∞

φR(t, x ) = 2π corresponding to Eq. (4), one finds the stationary domain-wall solution in

the mean-field approximation, given by

φR(t, x ) = φ̄(x − x0) = 4 arctan(em(x−x0)), φA(t, x ) = 0. (21)

Thus, identifying the order parameter field as φR(t, x ), we find that the domain-wall solution
spontaneously breaks Px ,A-symmetry. From the path-integral viewpoint, this solution gives a
saddle-point solution describing the domain wall.

We then consider the fluctuation on the top of the saddle point domain-wall solution (21).
To parametrize the fluctuation around the realized domain wall, we introduce field variables
πR(t, x ) by promoting x0 to a dynamical field, and πA(t, x ) as follows:

φR(t, x ) = φ̄
�

x +πR(t, x )
�

, φA(t, x ) = φ̄′
�

x +πR(t, x )
�

πA(t, x ), (22)

with φ̄′(x) ≡ ∂x φ̄(x). One can regard Eq. (22) as a field redefinition useful to analyze the
fluctuation around the domain-wall solution located at x = 0. As we will see later, the fluc-
tuation fields πR and πA include a gapless mode, so that we refer to these fields as NG fields.
We put a little complicated prefactor of πA to assign it to the same dimension as πR. The rea-
son for this choice will be clarified from the underlying Schwinger-Keldysh viewpoint around
Eq. (67). We also note that φ̄(x) satisfies

φ̄′′(x) = m2 sin φ̄(x). (23)

Substituting the parametrization (22) into the original MSR action (13), we can derive the
effective action for the fluctuation (πR,πA) as

iSMSR[πR,πA] = i

∫

dtd2 x
�

L(2) +L(int)
�

. (24)

Here, we introduced the quadratic (interacting) part of the effective Lagrangian as L(2) (L(int))
based on the expansion with respect to the fluctuation fields πR and πA. From the direct
computation with the help of Eq. (23), we obtain the quadratic part as

L(2) = −φ̄′(x)2πA

�

∂ 2
t +α∂t −∇2 − β∂t∇2

�

πR

+ 2φ̄′(x)φ̄′′(x)πA(∂xπR + β∂t∂xπR) + βφ̄
′(x)φ̄′′′(x)πA∂tπR +

iA
2
φ̄′(x)2π2

A.
(25)

One may think that this quadratic part L(2) looks more complicated than the original MSR
action. In fact, even if we neglect the interaction terms, the coefficients appearing in L(2) are
x-dependent, which makes the further analysis difficult. This difficulty results from the fact
that the effective Lagrangian (25) still keeps a bunch of gapped excitations [recall that Eq. (25)
is obtained just by the field redefinition without focusing on the low-energy regime]. However,
it is possible to drastically simplify the analysis by focusing only on the gapless mode. In the
following, we consider two different regimes, in which such simplification is available; that is,
the thin-wall and the thick-wall regimes.

2.4.1 Low-energy spectrum in thin-wall regime

We first consider the thin-wall regime, which corresponds to the usual low-energy limit of the
domain-wall dynamics. One can regard this regime as the case where the length scale of the
domain-wall fluctuation of our interest is sufficiently larger than the thickness of the wall.
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Let us then investigate the low-energy spectrum for the domain-wall fluctuation. The vital
point here is that x-dependent coefficients such as φ̄′(x)2 take the nonvanishing value only
near the domain-wall position x = 0. For this reason, we rely on the ansatz that the NG fields
πR andπA are localized at the domain-wall position x = 0 as eπR/A(t, y)≡ πR/A(t, x = 0, y) (see,
e.g., Ref. [22]). This ansatz enables us to simplify the action (25) to the low-energy MSR ef-
fective action for the NG fields eπR and eπA as

iSthin =

∫

dtdy 8m
�

−ieπA(t, y)
�

∂ 2
t + γ∂t − β∂t∂

2
y − ∂

2
y

�

eπR(t, y)−
A
2
eπA(t, y)2 +O(π4)

�

= −
1
2

∫

dtdy
�

eπR(t, y) eπA(t, y)
�

�

0 iG−1
A;⊥

iG−1
R;⊥ 8mA

��

eπR(t, y)
eπA(t, y)

�

+O(π4), (26)

with the effective damping constant γ ≡ α + m2β/3. In the second line, we introduced the
inverse of the retarded/advanced Green’s function G−1

R/A;⊥ as

G−1
R;⊥ = 8m[∂ 2

t + γ∂t − β∂t∂
2
y − ∂

2
y ] and G−1

A;⊥ = 8m[∂ 2
t − γ∂t + β∂t∂

2
y − ∂

2
y ]. (27)

Besides, from the lower-right component of the matrix in Eq. (26), we can also find the sym-
metric Green’s function GRR;⊥, which describes the correlation function of the original stochas-
tic variables φ. In the Fourier space, it is given by

GRR;⊥(ω, ky) = 8mAGR;⊥(ω, ky)GA;⊥(ω, ky) =
A

8m
1

(ω2 − k2
y)2 +ω2(γ+ βk2

y)2
. (28)

We note that the cubic interaction term, corresponding to the nonlinear term in the KPZ equa-
tion, disappears in the thin-wall regime. We will revisit this point in Sec. 4.6 from a general
EFT viewpoint.

The above result enables us to clarify the low-energy spectrum of the NG fields eπR and eπA.
We can find the pole location of the retarded Green’s function by solving

0= G−1
R;⊥(ω, ky) = 8m(−ω2 − iγω− iβωk2

y + k2
y). (29)

This allows us to identify the dispersion relation of the NG fields eπR and eπA as

ω(ky) = −i
γ+ βk2

y

2
± i

√

√

√

�

γ+ βk2
y

2

�2

− k2
y =







−
i
γ

k2
y +O(k4

y),

−iγ− i(β − γ−1)k2
y +O(k4

y).
(30)

Figure 2 shows the dispersion relation and the symmetric Green’s function for eπR and eπA. We
clearly see that eπR and eπA describe a pair of the gapless mode (NG mode) and its gapped
partner. In sharp contrast to the NG mode in closed systems, the dispersion relation only
has the negative imaginary part in the low-wavenumber limit. The absence of the real part
indicates that the NG mode associated with the domain wall in open systems diffuses without
propagation. This is a salient feature of the NG mode in open systems [49–53].1

One can also confirm the consistency with the usual propagating NG mode in the closed
system. In fact, when we consider the smaller value for the dissipative couplings α and β ,
the relaxational gap for the gapped partner becomes smaller. At the vanishing the dissipa-
tive coupling with α = β = 0, Eq. (29) eventually reproduces the gapless linear dispersion
relation for (a pair of) the propagating NG mode. This is consistent with the result for the
zero-temperature domain wall in closed systems (see, e.g., Ref. [21] for a symmetry-based
approach for the domain-wall dynamics at zero temperature).

1The propagator (29) has the same form as that of the telegraphic equation. Therefore, the similar spectrum
has been discussed in various systems (see, e.g., Refs. [68–70] for recent discussions on the transverse wave in
liquids).
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Figure 2: The dispersion relation (30) (left) and the symmetric Green’s function (28)
(right) of the NG mode in the thin-wall regime with (γ,β , A, m) = (0.25, 0.5,1.0, 1.0).

2.4.2 Low-energy spectrum in thick-wall regime

Let us next consider the opposite of the thin-wall regime, called the thick-wall regime. In this
regime, we consider the dynamics of the fluctuation carrying momentum larger than m. In
other words, for fluctuations under consideration, the wall thickness m−1 is sufficiently large,
and they feel as if there is a constant slope continuing endlessly. This is a spatial analogue of
the slow-roll inflation in cosmology [71,72].

One can take the thick-wall regime by approximating the domain-wall configuration as

φ̄′(x) =
4memx

1+ e2mx
' 2m. (31)

Then, we can drastically simplify the effective Lagrangian (25) by setting all higher derivatives
like φ̄′′(x) to zero. The resulting effective action in the thick-wall regime is

iSthick =

∫

dtd2 x 4m2
�

−iπA(t, x )
�

∂ 2
t +α∂t − β∂t∇2 −∇2

�

πR(t, x )−
A
2
πA(t, x )2 +O(π4)

�

.

(32)
Note that πR(t, x ) and πA(t, x ) in the thick-wall regime have a dependence on the spatial
coordinate x in contrast to that in the thin-wall one. From the effective action, we can read
off a set of the Green’s function and the dispersion relation as before. For instance, one finds
the retarded Green’s function in the Fourier space as

G−1
R (ω, k) = 4m2(−ω2 − iαω− βωk2 + k2), (33)

from which we can identify the dispersion relation of the NG mode as

ω(k) = −i
α+ βk2

2
± i

√

√

√

�

α+ βk2

2

�2

− k2 =







−
i
α

k2 +O(k4),

−iα− i(β −α−1)k2 +O(k4),
(34)

with k = (kx , ky). Therefore, even in the thick-wall regime, there appear a gapless NG mode
and its gapped partner as in the thin-wall one. We see that the translational symmetry along
the x-direction effectively recovers for the NG field in the thick-wall regime, and furthermore,
the dispersion relation in the present case becomes isotropic including the wavenumber kx .
We, however, note that the configuration of the original phase variable breaks the translational
symmetry even in the thick-wall regime.
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2.5 Underdamped Langevin dynamics in Josephson transmission line

Before closing this section, we investigate the dynamics of the kink in the Josephson trans-
mission line (JTL), which is a one-dimensional Josephson junction system obtained after a
dimensional reduction along y-direction (recall the left panel of Fig. 1). A magnetic flux stuck
(or kink) in the JTL is often referred to as a “fluxon,” and its dynamics has been studied from
the viewpoint of the soliton [34–36]. In the present setup, the particle-like behavior of the
fluxon is understood as a localized field configuration described by the dimensionally reduced
thin-wall effective action

iSJTL =

∫

dt 8m
�

−iqA(t)
�

∂ 2
t + γ∂t

�

qR(t)−
A
2

qA(t)
2 +O(q4)

�

, (35)

where we introduced the localized position of the fluxon qR/A(t) by the dimensional reduction
of the NG fields along the y-direction as qR/A(t)≡ eπR/A(t, y = 0).

To investigate the fluxon dynamics, we apply a time-dependent external electric current to
the JTL. Recalling that ξ(t, x ) in Eq. (1) describes the bias current density, we find the effect
of the non-vanishing averaged current is captured by adding the following term in the original
MSR action (13) (without the y-direction due to the reduction):

iSext = i

∫

dtdx φA(t, x)J(t), (36)

where J(t) is a normalized bias current. To apply the analysis for the fluctuations around the
steady state so far, we assume that the applied external current J(t) is sufficiently small so as
to perturb the position of the domain wall without collapsing it. After the same procedure to
derive the low-energy effective action, this term is expressed in terms of qR(t) and qA(t) as

iSext = i

∫

dtdx
�

φ̄′(x)J(t)qA(t) + φ̄
′′(x)J(t)qA(t)qR(t) +O(q3)

�

= i

∫

dt
�

2πJ(t)qA(t) +O(q3)
�

, (37)

where we used the thin-wall ansatz to obtain the second line. Thus, the fluxon dynamics
driven by the external current is described by

iSJTL+ext = −i

∫

dt
¦

qA(t)
�

8m
�

∂ 2
t + γ∂t

�

qR(t)− 2πJ(t)
�

− 4imAqA(t)
2 +O(q3)

©

. (38)

An intuitive understanding of the real-time fluxon dynamics is possible by translating back
the MSR action (38) into the stochastic equation of motion. This translation is also useful
to solve the initial value problem for the fluxon dynamics. Indeed, the quadratic action in
Eq. (38) is identical to the MSR action of the simple Brownian motion driven by the external
force [73]. As a result, the corresponding stochastic equation of motion for the fluxon is given
by the underdamped Langevin equation:

�

∂ 2
t + γ∂t

�

q(t) =
π

4m
J(t) + ξ(t), (39)

with the Gaussian white noise ξ(t)

〈ξ(t)〉ξ = 0, 〈ξ(t)ξ(t ′)〉ξ =
A

8m
δ(t − t ′). (40)
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Suppose that we apply the external current J(t) at time t > 0 with the initial condition for the
fluxon as q(0) = ∂tq(0) = 0. Then, one immediately find the solution of the Langevin equation
as

q(t) = q̄(t) +
1
γ

∫ t

0

dt ′
�

1− e−γ(t−t ′)
�

ξ(t ′) with q̄(t) =
π

4mγ

∫ t

0

dt ′
�

1− e−γ(t−t ′)
�

J(t ′).

(41)

Note that q̄(t) coincides with the averaged position as q̄(t) = 〈q(t)〉ξ, and thus, it is not a
stochastic variable.

We shall then discuss experimental observables resulting from the fluxon dynamics. For
that purpose, we recall the following relations between the phase variable φ(t, x) and the
Josephson current I(t, x) and voltage V (t, x) (see, e.g., Ref. [6]):

I(t, x) = Ic sinφ(t, x), V (t, x) =
1
2e
∂tφ(t, x), (42)

where Ic is the critical current of the Josephson junction and e the elementary charge. The
relation between the phase variable and the NG field (position variable) in the Langevin picture
is also given by φ(t, x) = φ̄

�

x +q(t)
�

; the same one for the R-type variables [recall Eq. (22)].
By expanding this relation on the top of the averaged motion, we can express the experimental
observables I(t, x) and V (t, x) in terms of the fluxon position as

I(t, x)' Ic

�

sin φ̄
�

x + q̄(t)
�

+δq(t)φ̄′
�

x + q̄(t)
�

cos φ̄
�

x + q̄(t)
��

, (43)

V (t, x)'
1
2e

�

φ̄′
�

x + q̄(t)
�

∂tq(t) + φ̄
′′�x + q̄(t)

�

δq(t)∂t q̄(t)
�

, (44)

where we introduced δq(t)≡ q(t)− q̄(t) and neglected the higher-order O(δq2) terms.
With the help of Eq. (41), we can compute correlation functions for the Josephson current

I(t, x) and voltage V (t, x). For example, we find the averaged current and voltage as

〈I(t, x)〉ξ ' Ic sin φ̄
�

x + q̄(t)
�

, 〈V (t, x)〉ξ '
1
2e
φ̄′
�

x + q̄(t)
�

∂t q̄(t), (45)

and their mean square variances at a large time t � γ−1 as

〈δI(t, x1)δI(t, x2)〉ξ ∼
AI2

c t

8mγ2
φ̄′
�

x1 + q̄(t)
�

φ̄′
�

x2 + q̄(t)
�

cos φ̄
�

x1 + q̄(t)
�

cos φ̄
�

x2 + q̄(t)
�

,

〈δV (t, x1)δV (t, x2)〉ξ ∼
At

32e2mγ2
[∂t q̄(t)]

2φ̄′′
�

x1 + q̄(t)
�

φ̄′′
�

x2 + q̄(t)
�

, (46)

where we introduced the deviation of the Josephson current and voltage from their average
values as

δI(t, x)≡ I(t, x)− 〈I(t, x)〉ξ, δV (t, x)≡ V (t, x)− 〈V (t, x)〉ξ. (47)

The overall time-linear dependence of the variances in Eq. (46) is a manifestation of the Brow-
nian motion of the fluxon.

The above results enable us to predict the spatiotemporal profile of the Josephson current
and voltage, which can be measured in experiments by using a few parameters (the low-
energy coefficients) m, γ, and A. For example, Fig. 3 demonstrates the fluxon position and
the resulting voltage at a fixed position driven by the constant bias current J(t) = const. Since
the fluxon motion induce the voltage localized at its position, the voltage takes a nonvanishing
value when the fluxon passes through the position at which the measurement is performed [74,
75].
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Figure 3: Solutions of the Langevin equation (39) (left panel) and the voltage at
a given position x = −3.0 (right panel) a constant bias current with a parameter
set (m,γ, J , A) = (1.0, 0.2,0.8, 0.5). Black lines shows the averaged result while the
colored (red, green, and blue) ones are three sample solutions.

3 Primer to Schwinger-Keldysh EFT for open system

In the previous section, we have analyzed the low-energy spectrum of the domain-wall fluctu-
ation in the dissipative Josephson junction. Starting from the stochastic sine-Gordon model,
we have found that there is a notion of the symmetry and the corresponding conserved charge
even though the physical charge is not conserved due to the dissipation. The derived effective
Lagrangian (25) describes the dynamics of the fluctuation πR/A on the top of the domain-wall
configuration. Considering two simple regimes (thin-wall and thick-wall regimes), we have
shown the appearance of the NG mode in open systems: a pair of the diffusive gapless mode
and gapped partner.

In the remaining part of the present paper, we investigate the universality of the obtained
results, i.e., the consequences following just from the translational symmetry breaking in open
systems, which is independent of the details of the microscopic model. To perform a model-
independent analysis, we rely on the symmetry-based construction of a general effective La-
grangian based on the Schwinger-Keldysh formalism. This section is devoted to the prepara-
tion for writing down the general low-energy effective action in open systems.

3.1 Towards low-energy effective action for open quantum system

Let us begin with a brief review of the basics of the Schwinger-Keldysh effective field theory for
open quantum systems (see, e. g., Ref. [76] for details). Suppose that the open system under
consideration is realized as a subsystem of the closed total system. The total system then
contains two kinds of dynamical degrees of freedom: system variables ψ and environment
variables σ (see the left panel of Fig. 4). The goal of the Schwinger-Keldysh EFT for open
systems is to describe n-point real-time correlation functions of low-energy observables Ô(t, x )
composed of the system variable ψ. The simplest example is an expectation value of the
physical quantity Ô(t, x ) given by

〈Ô(t, x )〉 ≡ Tr
�

ρ̂0Ô(t, x )
�

= Tr
�

ρ̂0Û†(t,−∞)Ô(−∞, x )Û(t,−∞)
�

, (48)

where ρ̂0 denotes an initial density operator at t = −∞ and Û(t,−∞) does the time evolution
operator of the total system from time t = −∞ to time t. Note that the time evolution is
generated by the unitary operator Û(t,−∞) since the total quantum system is assumed to be
closed.

To systematically compute general n-point correlation functions for the system variableψ,
it is useful to introduce the closed-time-path generating functional. The closed-time-path gen-
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t = + ∞t = − ∞ ψ2, σ2, j2
ρ0

ψ1, σ1, j1
t

Figure 4: (Left) An open system realized through the interaction with the environ-
ment. (Right) Closed time contour in the Schwinger-Keldysh formalism.

erating functional is defined by putting the system in the presence of the different background
fields ja (a = 1, 2) for the forward and backward time evolutions as (see the right panel of
Fig. 4)

Z[ j1, j2]≡ Tr
�

ρ̂0Û†
j2
(∞,−∞)Û j1(∞,−∞)

�

=

∫

Dψ1Dψ2Dσ1Dσ2 exp
�

iStot[ψ1,σ1; j1]− iStot[ψ2,σ2; j2]
�

ρ0(ψ,σ),
(49)

where Û j(∞,−∞) denotes the time-evolution operator with the external field j(t, x ), and
ρ0(ψ,σ) is the initial probability weight determined by ρ̂0. Here, Stot[ψ,σ; j] is a total mi-
croscopic action, which can be decomposed into the following three pieces

Stot[ψ,σ; j] = Ssys[ψ; j] + Senv[σ] + Scoupling[ψ,σ], (50)

where Ssys[ψ; j] and Senv[σ] are the actions for the system and environment sectors while
Scoupling[ψ,σ] describes the coupling between them. We assume the external field j to be
coupled only with the system variable ψ. Due to the two time-evolution operators Û j1 and

Û†
j2

, the number of fields for the path-integral expression in Eq. (49) is doubled as given by,
e.g., ψ1 and ψ2.

By integrating out the environment variables σ, we obtain the following path-integral
formula for the generating functional of the system:

Z[ j1, j2] =

∫

Dψ1Dψ2 exp
�

iSopen[ψ1,ψ2; j1, j2]
�

, (51)

where we defined the microscopic action for the open system Sopen as a sum of the original
system action Ssys[ψ; j] and the influence functional Γ [ψ1,ψ2] [77,78]:

Sopen[ψ1,ψ2; j1, j2] = Ssys[ψ1; j1]− Ssys[ψ2; j2] + Γ [ψ1,ψ2], (52)

where the influence functional Γ [ψ1,ψ2] is defined as

eiΓ [ψ1,ψ2] ≡
∫

Dσ1Dσ2

× exp
�

iSenv[σ1] + iScoupling[ψ1,σ1]− iSenv[σ2]− iScoupling[ψ2,σ2]
�

�

ρ0(ψ,σ).
(53)

We assume that the environment is large enough so that its energy spectrum can be regarded
as continuous. Then, the influence functional Γ [ψ1,ψ2] generally have an imaginary part,
which describes the dissipative dynamics of the system variable.2

2The large volume limit of the environment makes the recurrence time diverge so as to induce the dissipation
of physical charges of the system into the environment [78].
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To further focus on the low-energy dynamics of the system variables ψa, we introduce the
low-energy Wilsonian effective action. The Wilsonian effective action is formally defined by
identifying low-energy degrees of freedom π such as NG fields and the high-energy gapped
degrees of freedom Ψ, separating the fieldψ intoψ= {π,Ψ}, and integrating out Ψ as follows:

exp
�

iSeff[π1,π2; j1, j2]
�

≡
∫

DΨ1DΨ2 exp
�

iSopen[π1,Ψ1,π2,Ψ2; j1, j2]
�

, (54)

where we introduced the doubled NG field (gapped field) as π1 and π2 (Ψ1 and Ψ2). The
NG fields π often correspond to a collective excitation, whose explicit expression in terms
of the microscopic variables ψ could be complicated. Thus, the first-principle derivation of
Seff[π1,π2; j1, j2] sketched above is difficult to accomplish in practice.

Despite the difficulty of the direct derivation, we have a practically sufficient symmetry-
based approach to construct the Wilsonian effective action. The crucial point here is that the ef-
fective action Seff[π1,π2; j1, j2] has to respect the symmetry of the action Sopen[ψ1,ψ2; j1, j2],
which allows us to formulate the systematic construction of Seff[π1,π2; j1, j2]. Thus, we need
to pay attention to the symmetry structure of open systems, which is a little complicated due
to the field doubling and the presence of the influence functional [49–53]. Moreover, the ef-
fective action Seff[π1,π2; j1, j2] must satisfy not only the symmetry constraints but also some
basic conditions resulting from the structure of the closed-time-path generating functional
(49). In the following, we will briefly summarize these conditions (see, e.g., Refs. [40,41] for
a detailed discussion in the case of the closed system).

3.2 Symmetry structure in open system

Suppose that the total microscopic action Stot[ψa,σa; ja = 0], including the environment vari-
able, enjoys a continuous global G-symmetry, which acts on the system and environment fields
as

ψa→ψa + εaδψa, σa→ σa + εaδσa, (55)

where εa (a = 1, 2) denotes independent infinitesimal transformation parameters. For sim-
plicity, we drop the external source from now on, whose inclusion is straightforward. Then,
one finds iStot[ψ1,σ1; j1 = 0]− iStot[ψ2,σ2; j2 = 0] is invariant under the doubled symmetry
G1 × G2, whose transformation parameters are given by ε1 and ε2, respectively.

From the above observation, one may expect that the action Sopen[ψ1,ψ2] is also invari-
ant under (G1 × G2)-transformation. However, this is not true because there is a contribution
coming from the influence functional Γ [ψ1,ψ2]. Due to the elimination of the environment
variable, Γ [ψ1,ψ2] generally induces mixing between the system fields with different sub-
scripts a = 1,2. As a result, the action Sopen[ψ1,ψ2] is only invariant under the diagonal
subgroup of G1 × G2 generated by the transformation (55) with ε1 = ε2(≡ εA) [49–53]:

Sopen[ψ1,ψ2] = Sopen[ψ1 + εAδψ1,ψ2 + εAδψ2]. (56)

We call this symmetry as the GA-symmetry, or the A-type G-symmetry. In other words, the non-
diagonal part of G1 × G2 generated by ε1 = −ε2 is not the symmetry of the open system. This
explicit symmetry breaking represents the violation of the conservation law for the physical
charges: the physical charges of the open system are exposed to irreversible dissipation into
the environment.

The crucial point here is that the open system still enjoys the GA-symmetry despite the
violating conservation law for the physical charges. As a result, a steady state of the open
system can further break the remaining GA-symmetry down to its subgroup HA. Here, we
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define the spontaneous GA-symmetry breaking by the presence of the physical order parameter
field ΦR(t, x )≡ [Φ1(t, x ) +Φ2(t, x )]/2 as follows:

∃ 〈ΦR(t, x )〉 such that 〈δΦR(t, x )〉 6= 0, (57)

where δΦR represents the GA-transformation of the order parameter, and 〈· · · 〉 denotes the
path-integral average. We note that the order parameter field ΦR(t, x ) could be a composite
operator of the system variable. In the classical stochastic limit of quantum open systems, this
definition agrees with that introduced in Eq. (19) in the previous section.

In short, the possible symmetry structure in the open system is summarized as follows:

G1 × G2 → GA (Explicit breaking by environment)

→ HA (Spontaneous breaking by stationary solution).
(58)

To grasp this symmetry structure, it may be useful to recall the result obtained in the previous
section: the sine-Gordon model without the dissipation and noise has the doubled transla-
tional symmetry generated by the physical momentum Pi,R and the auxiliary momentum Pi,A.
The presence of the dissipation and noise makes Pi,R nonconserved quantity, so that it explicitly
breaks the nondiagonal part of the doubled translational symmetry. Besides, the domain-wall
configuration further breaks the remaining translational symmetry, or Px ,A-symmetry, gener-
ated by Px ,A.

3.3 Requirements to Schwinger-Keldysh effective action

Due to the symmetry structure of open systems, it is convenient to employ the Keldysh basis,
in which the doubled field is expressed as the sum and difference of the original ones. For
example, we introduce the doubled NG fields in the Keldysh basis as

πR(t, x )≡
π1(t, x ) +π2(t, x )

2
, πA(t, x )≡ π1(t, x )−π2(t, x ), (59)

where π1 and π2 are the NG fields embedded in the order parameter field in the original
(or 12) basis. This basis is useful because it separates the full dynamics into its classical part
(averages) described by R-type fields, and its quantum part (fluctuations) described by A-type
fields. As we elaborate shortly, we will focus on the classical stochastic regime of the NG field,
which is defined by the effective Lagrangian composed of the terms up to two πA. It is worth
emphasizing that this truncation does not mean the original model needs to be the classical
stochastic systems (like the dissipative Josephson junction discussed in the previous section).

Resulting from the structure of the Schwinger-Keldysh formalism, there are additional re-
quirements to the low-energy Schwinger-Keldysh effective action. Following the discussion
developed in Refs. [40, 41] in the analysis on closed systems, we require the effective action
Seff[πR,πA] to satisfy the following conditions (see Refs. [40,41] for derivation in detail):

1. Unitarity condition The generating functional Z[ j1, j2] satisfies Z[ j1 = j, j2 = j] = 1 with
the initial density operator ρ̂0 satisfying Tr ρ̂0 = 1. To respect this property, the effective
action is assumed to satisfy

Seff[π1 = π2 = π] = Seff[πR,πA = 0] = 0. (60)

Since Z[ j1 = j, j2 = j] = 1 follows from the unitarity of the time-evolution operator
Û†

j Û j = 1 for the total system, we call this as the unitarity condition.

2. Conjugate condition Taking complex conjugate of the generating functional, one finds
Z[ j1, j2]∗ = Z[ j2, j1]. To respect this condition, we require the effective action to satisfy

(Seff[π1,π2])
∗ = −Seff[π2,π1] ⇔ (Seff[πR,πA])

∗ = −Seff[πR,−πA]. (61)
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3. Convergent condition In order to have a well-defined (or convergent) Z[ j1, j2], the imag-
inary part of the effective action is assumed to satisfy the following condition:

Im Seff[πR,πA]≥ 0. (62)

Notice that these conditions are quite general; i.e., they follow from the unitarity of the time-
evolution operator, the self-adjointness and normalization condition of the initial density op-
erator ρ̂0, and the stability of the steady state. We, however, note that there could be a class of
open systems violating some of these properties: for instance, the convergent condition could
be violated if open systems under consideration have no stable steady state. Thus, it may be
fair to say that we focus on a simple class of open systems satisfying the above requirement
like the dissipative Josephson junction system discussed in Sec. 2.

4 General analysis based on Schwinger-Keldysh EFT

In this section, we consider a general open system whose steady state spontaneously breaks
the translational symmetry along the x-direction as in the dissipative sine-Gordon model with
noise discussed in Sec. 2. We construct the most general effective action based only on the
symmetry-breaking patterns and the Schwinger-Keldysh constraints introduced in the previous
section. After identifying the NG fields in Sec. 4.1, we summarize the symmetries of the system
in Sec. 4.2. Then, using the power counting scheme specified in Sec. 4.3, we write down the
Wilsonian Schwinger-Keldysh effective action of the translational NG fields in Sec. 4.4. Re-
stricting two simple regimes (thin-wall and thick-wall regimes), we investigate the dispersion
relations of the resulting NG fields in Sec. 4.5. We also discuss the peculiar coupling term that
could induce the KPZ universality class in Sec. 4.6.

4.1 NG field and material coordinate field

Let us consider a steady state of (d + 1)-dimensional open systems that spontaneously breaks
the A-type spatial translational symmetry along the x-direction, which we call the
Px ,A-symmetry. In that situation, regardless of detailed information on the underlying mi-
croscopic theory, we have an order parameter characterizing the broken Px ,A-symmetry. In
other words, following a general condition of spontaneous GA-symmetry breaking in Eq. (57),
we consider a condensate of the scalar order operator Φ(t, x ) with x-coordinate dependence:3

〈ΦR(t, x )〉= Φ̄(x) with ∂x Φ̄(x) 6= 0. (63)

This condition matches with the definition of the spontaneous symmetry breaking (19) dis-
cussed in the previous section.

Relying on the existence of the inhomogeneous condensate (63), we introduce the dou-
bled NG fields π1(t, x ) and π2(t, x ) as embedded fluctuations on the top of the steady-state
configuration:

Φ1(t, x ) = Φ̄(x +π1(t, x )) and Φ2(t, x ) = Φ̄(x +π2(t, x )). (64)

This embedding motivates us to define the doubled material (or Lagrangian) coordinate fields
X1(t, x ) and X2(t, x ) as

X1(t, x ) = x +π1(t, x ) and X2(t, x ) = x +π2(t, x ), (65)

3Although it is interesting to consider the inhomogeneous spinful condensate as discussed in Ref. [21] for the
zero-temperature case, the consideration of that is beyond the scope of the present paper.
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which enables us to interpret the NG fields π1(t, x ) and π2(t, x ) as the doubled
one-dimensional displacement vectors in elastic theory [79]. In the following analysis, it is
useful to introduce these variables in the Keldysh basis as

XR(t, x )≡
X1(t, x ) + X2(t, x )

2
= x +πR(t, x ), (66a)

πA(t, x ) = X1(t, x )− X2(t, x ), (66b)

with πR(t, x ) and πA(t, x ) defined in Eq. (59). While we will use the NG field πR to investigate
the spectrum of the domain-wall fluctuation, the material coordinate field XR will be more
useful to construct the effective action by virtue of their simple transformation rules. This
is because the material coordinates behave as a scalar even under the act of broken Px ,A-
transformation, as we will see shortly. We also note thatπA(t, x ) is expected to be accompanied
by the derivative of the order parameter Φ̄′(x+πR(t, x )). This is indeed the case if all πA(t, x )
appears by expanding Eq. (64) on the top of the averaged position as

Φ1(t, x )−Φ2(t, x ) = Φ̄′(x +πR(t, x ))πA(t, x ) +O(π3
A), (67)

where we can neglect the higher-order O(π3
A) terms in the classical stochastic limit. Note that

this corresponds to the second equation in Eq. (22) in the dissipative Josephson junction.

4.2 Symmetries of the system

We assume that the underlying open system action Sopen enjoys symmetry under the A-type
spacetime translation and spatial rotation, but not necessarily the Lorentz boost nor Galilean
boost. Then, the effective action Seff[πR,πA] is also invariant under the act of these sym-
metries, defined by the diagonal parts of those transformations given in Eq. (56). Since the
condensate fields Φ1 and Φ2 are assumed to be scalar quantities, the A-type translation and
rotation act on the material coordinate field XR and the NG field πA as

¨

XR(t, x )→ X ′R(t, x ) = XR(t + ε0
A, x + εA),

πA(t, x )→ π′A(t, x ) = πA(t + ε0
A, x + εA),

(68)

and
¨

XR(t, x )→ X ′R(t, x ) = XR(t,R−1
A x ),

πA(t, x )→ π′A(t, x ) = πA(t,R−1
A x ),

(69)

with RA ∈ SO(d)A. It is worth emphasizing that the material coordinate XR and the A-type NG
field πA behave as scalars under the transformations while the R-type NG field πR transforms
nonlinearly under the spatial translation along the x-axis as

πR(t, x )→ π′R(t, x ) = πR(t, x + εA) + ε
1
A. (70)

This nonlinear transformation rule is a manifestation that πR defines the NG field correspond-
ing to the broken Px ,A-symmetry. Thus, it is convenient to construct the effective action in
terms of XR and πA instead of πR and πA to be consistent with the symmetries.

4.3 Power counting scheme

While there appears an infinite number of terms allowed even under the constraints result-
ing from both the symmetry and the structure of the Schwinger-Keldysh formalism, they can
be systematically organized using an appropriate power counting scheme. As usual for the
Schwinger-Keldysh EFT, we here employ a double expansion scheme: one for a derivative ex-
pansion justified in the low-energy limit, and the other for a fluctuation expansion assuming
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the smallness of the fluctuation (see, e.g., Refs. [40, 41] for the detailed discussion on the
fluctuation expansion).

To implement the double expansion schemes, it is useful to introduce two bookkeeping
small parameters p and A: p denotes a typical momentum scale at the scale of interest, and
thus, assumed to be small at a low-energy regime, and A does the magnitude of the fluctuation
attached to the A-type fields. Using these parameters, we employ the power counting scheme
defined by

∂ n
µπR(t, x ) = O(pn,A0), ∂ n

µπA(t, x ) = O(pn,A1), (71)

with µ = 0,1, · · · , d and n = 0,1, 2, · · · , where µ = 0 denotes the temporal index. We regard
the momentum scale of the domain-wall fluctuation πR as small. In the effective action, not
only the NG fields but also the coordinate x can explicitly appear through XR. Note that we
also count the coordinate x and its derivative as

x = O(p0,A0), ∂µx = δ1
µ = O(p0,A0). (72)

It should be emphasized that we do not assign a specific order to the derivative itself because
its power counting is defined together with the objects on which it acts. We can translate our
power counting scheme (71) in terms of the material coordinate XR as

∂ n
t XR = O(pn,An), ∂ n

i XR =

¨

O(p0,A0) (n= 0,1),
O(pn,A0) (n≥ 2).

(73)

The power counting of the spatial derivative acting on XR is a little complicated because the
vector ∂iXR contains an O(p0,A0) term. Accordingly, to write down all possible terms in the
effective action, we will use (∇XR)2 − 1 = O(p1,A0) as a building block instead of (∇XR)2,
which allows us to keep XR as the only scalar in O(p0,A0).

4.4 Constructing the effective action

Based on the above preparation, we now construct the effective action of the translational
NG fields in open systems within the double expansion for p and A. In this paper, we restrict
ourselves to construct the effective action up to the second order with respect to both p and A.
We refer to this regime as a classical stochastic regime because the resulting effective action
corresponds to the MSR action describing the stochastic dynamics of the NG fields.

Since only πA increases the order A in our power counting scheme, we first expand the
effective action for A as

Seff[πR,πA] =

∫

dtdd x Leff(t, x ), (74)

with

Leff(t, x ) = πA(t, x )F1[XR(t, x )] +
i
2
πA(t, x )F2[XR(t, x ),∂µ]πA(t, x ) +O(A3), (75)

where we introduced a function F1[XR(t, x )] of XR and its derivatives and a linear operator
F2[XR(t, x ),∂µ] that includes the derivative acting on πA on their right side.4 Here, note that
the effective Lagrangian at least contains one πA to satisfy the unitarity condition (60), and
the first-order term with respect to πA is real and the second-order term is pure imaginary
due to the conjugate condition (61). The first-order term gives the deterministic part of the
equation of motion, while the second-order term describes the intensity of the noise added to
the deterministic contribution, as we have shown in the MSR action (25) in Sec. 2.

4Since we are considering the effective action, we can give the first-order term for πA without the derivative
term acting on πA with the help of the integration by parts.
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We shall write down F1 and F2 relying on the derivative expansion. Let us first consider
all possible terms up to O(p2) included in the single A-type field sector, or F1-term, which we
identify as follows:

O(p0) : f (XR),

O(p1) : γ(XR)∂t XR, λs(XR)[(∇XR)
2 − 1], (76)

O(p2) : ft(XR)∂
2
t XR, fs(XR)∇2XR, ft x(XR)∂t(∇XR)

2, fx(XR)∂iXR∂ jXR∂i∂ jXR,

λt(XR)(∂t XR)
2, λt x(XR)(∂t XR)[(∇XR)

2 − 1], λx(XR)[(∇XR)
2 − 1]2,

where summations over repeated spatial indices (i = 1, 2, . . . , d) are assumed. Here, f ,γ, fα,
and λα with α = t, s, x , t x are certain real functions of XR. We can obtain F1 by summing up
all the terms in Eq. (76).

Let us continue to write down the second-order terms in the expansion with A. Using the
same strategy as above, we find 14 independent terms up to O(p2). In particular, only five
of them are identified to have a quadratic term for the NG fields πR and πA when we expand
them with respect to πR. The parent terms of them are given by

O(p0) : A(XR),

O(p2) : κt(XR)∂
2
t , κs(XR)∇2, κt x(XR)∇XR ·∇∂t , κx(XR)∂iXR∂ jXR∂i∂ j ,

(77)

where A and κα (α= t, s, x , t x) denote certain real functions of XR that satisfy the convergent
condition. The other 9 terms have the same form as O(p1) and O(p2) terms in Eq. (76) and
are given by replacing each coefficient function accordingly.

Although we have written down all the terms up to O(p2,A2) consistent with the symme-
tries, the resulting effective action is too general: We have not imposed the condition ensuring
that the domain-wall solution satisfies πR = πA = 0, or equivalently XR = x and πA = 0. In
fact, the equation of motion reads

0=
δSeff

δπA(t, x )
= F1[XR(t, x ),∂µ] +O(πA), (78)

which does not, in general, leads to the solution XR = x and πA = 0 because of the term f (XR).
We then impose f (XR) = 0, which is equivalent to eliminate the tadpole term appearing in the
effective Lagrangian.

By expressing the material coordinates by the NG fields πR and πA, we eventually obtain
the most general effective Lagrangian up to O(p2,A2) as

Leff =
�

−γ(x +πR)∂tπR +λs(x +πR)[2∂xπR + (∇πR)
2]− ft(x +πR)∂

2
t πR

+ fs(x +πR)∇2πR + 2 ft x(x +πR)∂t∂xπR + fx(x +πR)∂
2
x πR

+λt(x +πR)(∂tπR)
2 + 2λt x(x +πR)∂tπR∂xπR + 4λx(x +πR)(∂xπR)

2
�

πA

+
i
2
πA

�

A(x +πR) + κt(x +πR)∂
2
t + κs(x +πR)∇2 + κt x(x +πR)∂t∂x

+ κx(x +πR)∂
2
x + eF2

�

πA+O(p3,A3),

(79)

where eF2 is the sum of the terms in F2 other than those in Eq. (77). For later convenience,
we added a negative sign for γ(x + πR)∂tπR and ft(x + πR)∂ 2

t πR. We note that the func-
tional forms of the coefficient functions `m ≡ { fα,γ,λα, A,κα} cannot be specified within the
EFT approach. These functions serve as low-energy coefficients (or functions) of the effective
theory. Their functional forms are, in principle, determined from microscopic information of
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the system, in particular, the configuration of the inhomogeneous condensate Φ̄(x). Never-
theless, the coefficient functions are not completely arbitrary within the EFT approach, and as
we discuss later, their sign would be somewhat constrained by the stability of the steady state.
It is worth emphasizing that the effective Lagrangian (79) captures the general nonlinear in-
teraction between the fluctuation (or NG fields) at the low-energy O(p2) classical stochastic
regime.

4.5 Dynamics of the NG mode

The resulting effective Lagrangian captures the low-energy fluctuation around the inhomoge-
neous condensate Φ̄(x). To investigate the low-energy spectrum of the NG field, we pick up the
quadratic-order part for πR and πA by expanding the effective Lagrangian (79) with respect
to the NG fields as

Leff = L(2)eff +L(int)
eff +O(p3,A3), (80)

where we find the quadratic part of the effective Lagrangian as

L(2)eff =
�

−γ(x)∂tπR + 2λs(x)∂xπR − ft(x)∂
2
t πR + fs(x)∇2πR + 2 ft x(x)∂t∂xπR

+ fx(x)∂
2
x πR

�

πA+
i
2
πA

�

A(x) +κt(x)∂
2
t +κs(x)∇2 +κt x(x)∂t∂x + κx(x)∂

2
x

�

πA. (81)

By comparing the present result with Eq. (25), one identifies the low-energy coefficient
functions in the dissipative Josephson junction as

γ(x) = αφ̄′(x)2 − βφ̄′(x)φ̄′′′(x), ft(x) = fs(x) = φ̄
′(x)2, λs(x) = φ̄

′(x)φ̄′′(x),

ft x(x) = βφ̄
′(x)φ̄′′(x), A(x) = Aφ̄′(x)2,

(82)

where the others not shown in this equation are identified as zero.5 Thus, the low-energy
coefficients in the dissipative sine-Gordon kink are completely controlled by the functional
form of the domain-wall solution φ̄(x). As in the model analysis in Sec. 2, the x-dependence of
the low-energy coefficients makes further analysis difficult, and we will consider two simplified
situations in the following analysis: the thin-wall regime and the thick-wall regime.

4.5.1 Low-energy spectrum in thin-wall regime

As in the previous analysis given in Sec. 2, we rely on the ansatz that the NG fields are localized
at the domain-wall position x = 0, and introduce the localized NG fields eπR and eπA as

eπR/A(t, x⊥)≡ πR/A(t, x = 0, x⊥) with x⊥ = (x
2, x3, · · · , xd). (83)

Here, we define the averaged low-energy coefficients ¯̀
m = { f̄α, γ̄, λ̄α, Ā, κ̄α} as

¯̀
m =

∫ ∞

−∞
dx `m(x). (84)

It should be noted that some of ¯̀
m could vanish through the averaging procedure: For instance,

recall λ̄s in the dissipative Josephson junction is zero though it is present before performing the
integration. In the following analysis, we assume that all the coefficient ¯̀

m does not vanish to
find the most general low-energy spectrum. We also assume the positivity of some low-energy

5The term βφ̄′(x)2πA∂t∇2πR in Eq. (25) is regarded as O(p3,A1) in our power counting so that there is no
term in Eqs. (79) and (81) that can match it.
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coefficients f̄t , f̄s, and γ̄. We expect that this is the case for a large class of models since the first
two coefficients are often proportional to the squared condensate while the last one represents
the dissipative constant. However, we cannot show this assumption model-independently, and
thus, the positivity of these coefficients should be regarded as our another assumption.

Substituting the above ansatz into Eq. (81), we obtain the effective Lagrangian at the
quadratic order as

L(2)thin = eπA(t, x⊥)
�

− f̄t∂
2
t − γ̄∂t + f̄s∇2

⊥

�

eπR(t, x⊥) +
i
2
eπA(t, x⊥)

�

Ā+ κ̄t∂
2
t + κ̄s∇2

⊥

�

eπA(t, x⊥)

= −
1
2

�

eπR(t, x⊥) eπA(t, x⊥)
�

�

0 G−1
A;⊥

G−1
R;⊥ G−1

K;⊥

��

eπR(t, x⊥)
eπA(t, x⊥)

�

, (85)

where we defined∇⊥ ≡ ∂ /∂ x⊥.6 Here, we also introduced the inverse of the Green’s functions
for the localized NG fields eπR and eπA as

G−1
R;⊥(t, x⊥) = f̄t∂

2
t + γ̄∂t − f̄s∇2

⊥, (86a)

G−1
A;⊥(t, x⊥) = f̄t∂

2
t − γ̄∂t − f̄s∇2

⊥, (86b)

G−1
K;⊥(t, x⊥) = −i

�

Ā+ κ̄t∂
2
t + κ̄s∇2

⊥

�

. (86c)

The retarded Green’s function (86a) allows us to extract the low-energy spectrum of the local-
ized NG modes by solving

0= G−1
R;⊥(ω, k⊥) = − f̄tω

2 − iγ̄ω+ f̄sk
2
⊥ with k⊥ = (k

2, k3, · · · , kd). (87)

As a result, we find the dispersion relation of the localized NG modes as

ω(k⊥) =
−iγ̄± i

q

γ̄2 − 4 f̄t f̄sk
2
⊥

2 f̄t
=















−i
f̄s
γ̄

k2
⊥ +O(k4

⊥),

−i
γ̄

f̄t
+ i

f̄s
γ̄

k2
⊥ +O(k4

⊥).
(88)

The dispersion relation derived here shows the essentially same behavior as that derived in
Sec. 2 [recall Eq. (30)]. Likewise, the low-frequency and low-wavenumber part of the sym-
metric Green’s function also shows the same behavior as demonstrated in Fig. 2. Here, we
used our assumption, or the positivity of some low-energy coefficients f̄t , f̄s, and γ̄. Thus,
we conclude that the appearance of the paired mode—one gapless diffusion and one gapped
diffusion—is universal in the thin-wall regime of the realized domain wall in open systems.

4.5.2 Low-energy spectrum in thick-wall regime

In the thick-wall regime, the fluctuation (NG field) cannot see that the slope (or derivative)
of the condensate is changing. For this reason, we simply replace all coefficient functions in
the effective Lagrangian (81) with constants. From the symmetry viewpoint, this replacement
is understood as a consequence of the invariance under XR → XR − ε, which results from the
emergent uniformity of the steady state in the thick-wall regime. This invariance is a symmetry
about the reassignment of the material coordinate XR, rather than a spatial translational sym-
metry, which prohibits the appearance of XR without derivatives in the effective Lagrangian.

6The action in the thin wall regime describes the motion of the membrane-like object. In closed systems, it
can be represented by the Nambu-Goto action with an induced metric on the membrane (see, e.g., Ref. [21]).
However, the domain-wall effective action in open systems does not allow such an expression because we cannot
express the dissipative term in terms of the induced metric.
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The resulting form of the retarded Green’s function is found as

G−1
R (ω, k) = − ftω

2 − iγω+ fsk
2 + fx k2

x − 2iλskx − 2 ft xωkx , (89)

with k = (kx , k⊥). Note that the isotropy is not fully recovered even in the thick wall regime
because the slope takes a non-zero constant value, so that anisotropic terms can survive.7 It
should be mentioned, nonetheless, that these anisotropic terms would not frequently appear
due to the discrete symmetry discussed in the last paragraph of Sec. 4.6. Noting the presence
of the anisotropy in the momentum space, we introduce the polar angle θ measured from the
kx -direction, which expresses the momentum along the x-direction as kx = |k| cosθ . Solving
G−1

R (ω, k) = 0, we find the anisotropic dispersion relation of the NG mode given by

ω(k) =















−
2λs

γ
|k| cosθ − i

fsγ
2 + ( fxγ

2 + 4 ft xλsγ− 4 ftλ
2
s ) cos2 θ

γ3
|k|2 +O(|k|3),

−i
γ

ft
+ 2

�

λs

γ
−

ft x

ft

�

|k| cosθ +O(|k|2).
(90)

In contrast to the thin-wall regime, the dispersion relation (90) with nonvanishing λs supports
the propagating gapless mode with the momentum kx(= |k| cosθ ), along which the transla-
tional symmetry is broken. This propagating mode does not appear in the model analysis in
Sec. 2 because the coefficient λs vanishes in the dissipative sine-Gordon model in the thick-wall
regime (see also the discussion in the subsequent section). Furthermore, it is also remarkable
that this mode could cause instability even with γ > 0 since the dispersion relation can have
a positive imaginary part at the soft momentum region. Since the maximum imaginary part
appears when the momentum is along x-direction (θ = 0), we see that the instability along,
at least, x-direction takes place when the following condition is satisfied:

( fs + fx)γ
2 + 4 ft xλsγ− 4 ftλ

2
s ≤ 0, (91)

where we used the assumption on the positive damping coefficient γ > 0.
Figure 5 shows the dispersion relation (90) for three different values of λs—two for the sta-

ble regimes and the other for the unstable regime—at three different polar angles θ = 0,π/4,
and π/2 measured from the direction along which the translation symmetry is broken. One
clearly sees that the dispersion relation is anisotropic, and the lowest panel shows a possible
appearance of the unstable mode along x-direction while the perpendicular direction does
not support that. The anisotropic and potentially unstable behavior is remarkable in the sense
that it does not appear in the case of the internal/time-translational symmetry breaking, nor
the translational symmetry breaking in closed systems [49, 53] (see also Appendix A for the
discussion of the domain-wall EFT in finite-temperature closed systems).

4.6 Kardar-Parisi-Zhang coupling constant λ̄s

The peculiar behavior of the thick-wall dispersion relation is caused by the coefficient λs.
While it vanishes at the quadratic part of the effective Lagrangian in the thin-wall, we lastly
remark that this coefficient λs may play an important role even in the thin-wall regime via the
interaction term.

In the thin-wall regime, the quadratic part of the effective Lagrangian given by Eq. (85) is
equivalent to the following stochastic equation of motion:

[− f̄t∂
2
t − γ̄∂t + f̄s∇2

⊥]eπ(t, x⊥) = ξ(t, x⊥), (92)

7This is the same as the thick-wall regime of Sec. 2.4.2, where the wall thinness m is not taken to zero.
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Figure 5: The dispersion relation at three different polar angles in (a)-(b) stable
regimes (upper panels) and (c) an unstable regime (a lower panel).

with a noise ξ(t, x⊥) obeying

〈ξ(t, x⊥)〉ξ = 0, 〈ξ(t, x⊥)ξ(t
′, x ′⊥)〉ξ = [Ā+ κ̄t∂

2
t + κ̄s∇2

⊥]δ(t − t ′)δ(d−1)(x⊥ − x ′⊥).
(93)

By further focusing on the long-time and long-distance limit, we keep only the
leading-derivative part, or set f̄t , κ̄t , and κ̄s to zero. As a result, the above equation reduces
to a linearized stochastic differential equation called the Edwards-Wilkinson equation, which
describes the linear surface growth [24].

Let us then investigate the effects of nonlinear fluctuation. To incorporate this, we first
expand Eq. (79) and keep all the cubic interaction terms in the original effective Lagrangian,
which results in

Lint,(3)
eff = πA

�

πR

�

−γ′(x)∂t + 2λ′s(x)∂x − f ′t (x)∂
2
t + f ′s (x)∇

2 + 2 f ′t x(x)∂t∂x + f ′x∂
2
x

�

πR

+λs(x)(∇πR)
2 +λt(x)(∂tπR)

2 + 2λt x(x)∂tπR∂xπR + 4λx(x)(∂xπR)
2
�

+O(p3,A2).

(94)
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Here, we wrote down only the F1-term to illustrate the leading-order effect of the nonlinear
fluctuation. We further simplify these terms by putting an assumption on the low-energy co-
efficients as `m(x = +∞) = `m(x = −∞). This assumption enables us to drastically reduce
the number of cubic interaction terms in the thin-wall regime thanks to

∫

dx `′m(x) = `m(x = +∞)− `m(x = −∞) = 0. (95)

Thus, the terms proportional to `′m(x) in Eq. (94) vanish, so that we only have the two cubic
nonlinear interaction terms in the thin-wall regime as

Lint,(3)
thin = eπA

�

λ̄s(∇⊥π̃R)
2 + λ̄t(∂tπ̃R)

2
�

+O(p3,A2). (96)

Let us then focus on the long-time and long-distance limit again, and briefly discuss the
possible universality class of the derived effective Lagrangian of Eqs. (85) and (96). First of
all, we find −π̃Aγ̄∂tπ̃R as the leading temporal derivative term by assuming that γ̄ does not
vanish. Owing to this term, we can drop the O(∂ 2

t )-terms in the effective Lagrangian for the
long-time dynamics, which means that we miss the gapped partner of the gapless diffusion
mode. Besides, the nonvanishing Ā allows us to further drop all derivative terms controlling
the magnitude of the frequency and wavenumber dependence of noise. We also note that we
keep the leading-order terms in our double expansion scheme with respect to p and A. As a
consequence, we find the following reduced effective Lagrangian:

Lthin = eπA

�

− γ̄∂t + f̄s∇2
⊥

�

eπR + λ̄s eπA(∇⊥ eπR)
2 +

i
2

Āeπ2
A. (97)

This effective Lagrangian precisely matches with the MSR effective Lagrangian for the KPZ
equation defined by the nonlinear stochastic partial differential equation

−γ̄∂t eπ(t, x⊥) + f̄s∇2
⊥ eπ(t, x⊥) + λ̄s

�

∇⊥ eπ(t, x⊥)
�2
= ξ(t, x⊥), (98)

where ξ(t, x⊥) denotes the Gaussian white noise satisfying

〈ξ(t, x⊥)〉= 0, 〈ξ(t, x⊥)ξ(t
′, x ′⊥)〉= Āδ(t − t ′)δ(d−1)(x⊥ − x ′⊥). (99)

We thus specify that the term proportional to λ̄s corresponds to the nonlinear term in the
KPZ equation. Based on this result, we speculate that the original effective theory defined
by Eqs. (85) and (96) belongs to the same universality class as those described by the KPZ
equation [25]. In other words, the constructed effective theory is capable of capturing both
the linear surface growth of the Edwards-Wilkinson equation [24] and the possible emergence
of the KPZ universality class induced by the term proportional to λ̄s.

8

In summary, the symmetry-based effective theory provides a derivation of the universal
low-energy dynamics of the fluctuating domain wall, which is equivalent to the stochastic
surface growth equation. The result of this section implies that the universality class of the
domain-wall dynamics could be controlled by the presence of λ̄s since it gives the KPZ non-
linear coupling. This is a remarkable property of open systems with spontaneous symmetry
breaking since the cubic interaction proportional to the KPZ coupling λ̄s is absent in the ef-
fective theory of the NG mode in closed systems (see Appendix A). However, it should be also
emphasized that the appearance of the KPZ coupling is not guaranteed. For example, the KPZ
coupling vanishes if the underlying dynamics is invariant under the discrete transformation

8Investigating the universality class with the help of the dynamic renormalization group approach is an inter-
esting issue, but beyond the scope of this paper.
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that exchanges the two different steady states separated by the domain wall. This exchang-
ing transformation is typically realized as a sign inversion of the condensation field, which
leads to the transformations XR→−XR and πA→−πA. The invariance of the action to these
transformations restricts λs(x) to be the odd function λs(x) = −λs(−x), so that the averaged
coupling λ̄s is shown to be zero. In the Josephson junction system, the MSR action (13) is
invariant under the discrete transformations, φR → 2π−φR and φA→ −φA. (Recall that φR
corresponds to a phase, and φR = 0 and φR = 2π are equivalent.) This explains why the
effective theory investigated in Sec. 2 lacks the KPZ coupling in the thin-wall regime.

5 Summary and outlook

In this paper, we have investigated the low-energy dynamics of the fluctuating domain wall in
nonequilibrium open systems with the symmetry-based EFT. In Sec. 2, we have discussed the
dissipative Josephson junction in (2+1)-dimensions, and introduced the notion of the symme-
tries in open systems and the MSR formalism to exploit them. We have then derived the MSR
action for the fluctuations around the sine-Gordon kink, which describes a pair of the diffusive
gapless mode and its gapped partner. Based on the constructed effective Lagrangian, we have
also discussed experimental observables in the JTL. Section 3 has been devoted to the intro-
duction of the low-energy Wilsonian effective action in the Schwinger-Keldysh formalism as
preparation for discussing the universal consequences resulting from the translational symme-
try breaking in open systems. In Sec. 4, we have derived the most general effective Lagrangian
for the NG mode and its partner associated with the one-dimensional translational symmetry
breaking in open systems. The thin-wall regime of the constructed effective theory confirmed
that the emergence of the diffusive NG mode is a model-independent general consequence of
the translational symmetry breaking. Moreover, we have also found a remarkable property
of the possible term proportional to λ̄s, which is absent in the two simplified regimes of the
Josephson junction system. We have shown that the term is peculiar to open systems, which
could generate the KPZ nonlinear coupling in the thin-wall regime or cause the instability in
the thick-wall regime. As a result, the macroscopic dynamics of the thin domain wall were
likely to be controlled by the presence/absence of the KPZ coupling λ̄s.

There are several prospects from the present paper. While we have focused on the domain-
wall dynamics in the dissipative Josephson junction, the similar domain-wall dynamics driven
by the electric current plays an important role in magnetic materials (see, e.g., Ref. [80]).
In this case, a nontrivial coupled dynamics of the domain-wall fluctuation and spin wave is
expected to take place as is the case for closed systems [22], which arises as an interplay
of the one-dimensional translational symmetry and spin-rotational symmetry. The use of the
Landau-Lifshitz-Gilbert equation [81,82] allows us to investigate their coupled dynamics.

It is also interesting to generalize our formulation into higher-dimensional or periodic vari-
ants of the translational symmetry breaking. While we mainly restrict ourselves to the one-
dimensional domain wall, we can apply our formulation to the higher-dimensional system as
well as the periodic configuration. While the effective theory of them—e.g., two-directional
translational symmetry breaking by a vortex string [83–87] and skyrmion crystal [88–92]—
has been attracting much attention, a little is known for their open system counterparts. Com-
bining with the recent development of experimental techniques in, e.g., ultracold-atomic and
magnetic systems, we can investigate their possible universal nonequilibrium dynamics in open
systems. For that purpose, it is important to theoretically classify the dynamic universality class
of the NG modes in open systems by taking into account the possible interaction term like KPZ
coupling with the help of the dynamical renormalization group method [93–95].
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A Effective Lagrangian for domain wall in closed systems

In this appendix, we construct the effective field theory of the domain wall in finite-temperature
closed systems and present qualitative differences with the result in open systems. The com-
plete analysis requires consideration of the hydrodynamic mode [38–44], but we here only fo-
cus on the domain-wall degrees of freedom. There are two main sources making the distinction
between open systems and closed systems: the symmetry structure and additional Schwinger-
Keldysh constraint corresponding to the Kubo-Martin-Schwinger (KMS) condition [96, 97].
After explaining these two new ingredients, we construct the leading-order general effective
Lagrangian and investigate the energy spectrum.

Symmetry structure of closed system. First of all, we define closed systems as the systems
in which the physical (or R-type) charges obey the conservation laws. In other words, we do
not separate the system and environment so that the closed-time-path generating functional
takes the form of the second line in Eq. (49) (we consider bothψ and σ as dynamical degrees
of freedom). Then, one finds that Stot[ψ1,σ1]− Stot[ψ2,σ2] enjoys two symmetries defined
by Eq. (55) with independent parameters ε1 and ε2. Thus, it is tempting to say that the system
enjoys the doubled symmetry G1 × G2, but this is not true.

To see this, we turn our attention to the initial density operator ρ0(ψ,σ), which defines a
boundary condition forψ1,σ1 andψ2,σ2. The crucial point here is that the nondiagonal part
of G1 × G2 defined by ε1 = −ε2 = εA/2 breaks this boundary condition. Since the initial state
breaks the symmetry while the action Stot[ψ1,σ1]−Stot[ψ2,σ2] preserves it, we can interpret
this as a variant of the spontaneous symmetry breaking. Thus, the nondiagonal symmetry in
the Schwinger-Keldysh formalism is always spontaneously broken even if the system respects
a conservation law for the physical charge.

In summary, the possible symmetry structure in the closed system is given by

G1 × G2 → GA (Spontaneous breaking by boundary condition)

→ HA (Spontaneous breaking by stationary solution),
(A.1)

instead of Eq. (58) in open systems. In contrast to open systems, we now regard the first
part G1 × G2→ GA as the spontaneous symmetry breaking, and thus the low-energy effective
theory needs to respect the nondiagonal part of G1 × G2 as well as the diagonal one. This
symmetry structure is what the effective field theory of a dissipative fluid respects (see, e.g.,
Refs. [40,41]).

Suppose that the closed system under consideration realizes a stationary state, which
breaks the diagonal part of one-dimensional spatial translational symmetry along the
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x-direction. In other words, the system supports the inhomogeneous condensate (63), from
which we define the doubled NG fields and material coordinate fields as embedding [recall
the discussion around Eqs. (64)-(66)]. Now, we need to respect the spontaneously broken
nondiagonal part of G1×G2. This is accomplished by requiring the shift symmetry for πA since
πA transforms nonlinearly as πA → πA + εA under that symmetry. As a result, the invariant
building blocks used to construct the EFT of the closed-system domain wall are given by

XR(t, x ), ∂tπA(t, x ), ∂iπA(t, x ) and their derivatives. (A.2)

Possible terms appearing in the closed system domain-wall EFT is clearly restricted compared
with the open system one; πA needs to be accompanied by the derivative. As for the power-
counting scheme, we employ the same one with that defined in the main text, which forces
us to be careful since the spatial derivative of XR(t, x ) contains the mixed-order contribution.
We, however, focus only on the leading-order part to illustrate qualitative differences with the
open system result in the main text.

Dynamical KMS symmetry. If we assume that the initial density operator is given by a ther-
mal density operator, there is another Schwinger-Keldysh constraint for the closed system,
called the KMS condition [96, 97]. The KMS condition is the identity, which holds for closed
systems staying initially in the thermal state. Since the closed-time-path generating functional
for such systems also satisfies a variant of the KMS condition, the low-energy effective theory
needs to be a consistent theory reproducing the KMS condition.

To respect the KMS condition for the generating functional at the classical stochastic level,
we require the corresponding dynamical KMS symmetry acting on the NG field as follows [40,
41]:

¨

πR(t, x )→ π′R(t, x ) = πR(−t, x ),
πA(t, x )→ π′A(t, x ) = πA(−t, x )− iβ∂tπR(−t, x ),

(A.3)

where β ≡ 1/T denotes the inverse temperature characterizing the initial thermal density.
Note that this symmetry involves the temporal inversion, and as a result, it defines Z2 sym-
metry. Thus, in addition to three requirements introduced in Sec. 3.3, we assume that the
effective action for the closed system domain wall remains invariant under the dynamical
KMS transformation (A.3 ) as follows:

KMS condition : Seff[π
′
R,π′A] = Seff[πR,πA] + (surface term). (A.4)

A remarkable property of the dynamical KMS symmetry is that it mixes the A-type field and the
time-derivative of the R-type field. As a result, the effective action needs to contain them in
a consistent manner. The dynamical KMS symmetry (A.4 ) guarantees the classical stochastic
version of the KMS condition for the closed-time-path generating functional.

Constructing the general effective Lagrangian. Let us then write down the general effec-
tive Lagrangian in the classical stochastic limit. Here, we restrict ourselves to the leading-order
result in the derivative expansion.

We start from the terms O(A2). Owing to the shift symmetry for πA, possible leading-
order derivative terms are (∂tπA)2 and (∂iπA)2. We here neglect the former term because it
has to be accompanied by the O(p3,A) term to satisfy the dynamical KMS symmetry, which is
beyond O(p2) regime of our interest. One can also say that neglecting (∂tπA)2 term gives
a consistent truncation with the dynamical KMS symmetry. On the other hand, the pres-
ence of (∂iπA)2 together with the KMS symmetry leads to an O(πA) term proportional to
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∂iπA∂t∂iπR = ∂iπA∂t∂iXR, whose coefficient is related with each other. In short, we find two
terms

−κ(XR)∂iπA∂t∂iXR + iTκ(XR)∂iπA∂iπA, (A.5)

which represents the fluctuation-dissipation partner terms related by the KMS symmetry.
Let us now write down other O(A) terms. Using the building blocks (A.2 ), we can con-

struct all possible terms up to O(p2) terms. It is remarkable that the dynamical KMS symmetry
also eliminates an apparently possible term γ(XR)∂tπA since it does not respect the KMS sym-
metry. As a result, the leading-order effective Lagrangian in closed systems is identified as

Leff = ft(XR)∂t XR∂tπA− f (XR)∂iXR∂iπA−
1
2

fs(XR)[(∇XR)
2 − 1]∂iXR∂iπA

−κ(XR)∂iπA∂t∂iXR + iTκ(XR)∂iπA∂iπA

= ft(x)∂tπR∂tπA− fs(x)∂xπR∂xπA− κ(x)∂iπA∂t∂iπR + iTκ(x)∂iπA∂iπA

− f (x)∂xπA− f (x)∂iπR∂iπA− f ′(x)πR∂xπA+O(π3),

(A.6)

where we kept the quadratic fluctuation term in the second line. Note that the term pro-
portional to f (XR) generates the tad-pole term, and thus, the elimination of that leads to
f (x) = const.9 We emphasize that the closed system effective Lagrangian cannot support
terms like γ(XR) and λ(XR) appearing in the open system counterpart. Thus, one sees that the
dissipative term γ(XR) and the KPZ terms λ(XR) are peculiar to the symmetry broken state in
the open system.

Energy spectrum. Based on the identified effective Lagrangian (A.6 ), we can immediately
find the energy spectrum for the fluctuation. As in the main text, we demonstrate them in the
two simple regimes; the thin-wall and thick-wall regimes.

Let us first start with the thin-wall regime. In the thin-wall regime, we have the dimen-
sionally reduced effective Lagrangian given by

L(2)thin = f̄t∂t eπR∂t eπA− f̄ ∂i⊥ eπA∂i⊥ eπR − κ̄∂i eπA∂t∂i eπR + iT κ̄∂i⊥ eπA∂i⊥ eπA

=
i
2

�

eπR eπA
�

�

0 i[ f̄t∂
2
t − f̄∇2

⊥ + κ̄∂t∇2
⊥]

i[ f̄t∂
2
t − f̄∇2

⊥ − κ̄∂t∇2
⊥] −2T κ̄∇2

⊥

��

eπR
eπA

�

, (A.7)

where we introduced low-energy coefficients with overbar after performing x-integration of
the corresponding coefficient functions. Investigating the pole of the retarded Green’s func-
tion, we find the dispersion relation of the fluctuating domain wall as

ω(k⊥) =
±
q

4 f̄ f̄t k
2
⊥ − κ̄2k4

⊥ − iκ̄k2
⊥

2 f̄t
= ±cs⊥|k⊥| −

i
2

D⊥k2
⊥ +O(k3), (A.8)

where we introduced cs⊥ ≡
Æ

f̄ / f̄t and D⊥ ≡ κ̄/ f̄t on the rightmost side. Note that we now
have the propagating NG mode in closed systems in sharp contrast to the purely diffusive NG
mode in open systems discussed in the main text.

We next consider the thick-wall regime. In this case, we can show the constant low-energy
coefficient f (x) = const. vanishes with the help of the thermodynamic consideration. In fact,
the term proportional to f (x) = const. leads to the linear term in the thermodynamic potential,
which spoils the thermodynamic stability. Thus, if the system stays in a stable equilibrium state,

9Furthermore, the dynamical KMS symmetry also requires f ′(x) = 0, which is equivalent to the condition from
the elimination of the tad-pole term.
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f (x) = 0 holds in the thick-wall regime. As a result, we obtain the leading-order effective
Lagrangian as

L(2)thick = ft∂tπR∂tπA− fs∂xπR∂xπA−κ∂iπA∂t∂iπR + iTκ∂iπA∂iπA

=
i
2

�

πR πA
�

�

0 i[ ft∂
2
t − fs∂

2
x +κ∂t∇2]

i[ ft∂
2
t − fs∂

2
x − κ∂t∇2] −2Tκ∇2

��

πR
πA

�

.
(A.9)

From the retarded Green’s function, we obtain the dispersion relation anisotropic in the mo-
mentum space. Introducing the momentum in the cylindrical coordinate as k = (|k| cosθ , k⊥),
we identify the dispersion relation as

ω(k) =
±
p

4 ft fsk2 cos2 θ −κ2k4

2 ft
= ±cs|k| cosθ −

i
2

Dk2 +O(k3). (A.10)

Note that the low-momentum behaviors of the spectrum are qualitatively different depend-
ing on its direction. In fact, one sees that the leading low-momentum behavior is linear
(ω ∼ kx) along the modulation direction while it is quadratic perpendicular to the modu-
lation (ω ∼ k2

⊥).10 This is a general feature of the effective field theory of one-dimensional
modulating phase appearing in, e.g., the smectic-A phase of liquid crystals [98,99], the Fulde-
Ferrell-Larkin-Ovchinnikov phase of superconductors [100, 100,101], and the spiral phase of
chiral magnets [102–107]. The obtained result gives a generalization of the anisotropic dis-
persion for the finite-temperature one-dimensional modulation phase.
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