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Abstract

We consider a UV-complete field-theoretic model in general dimensions, including
d = 2 + 1, which consists of two copies of the long-range vector models, with O(m)
and O(N−m) global symmetry groups, perturbed by double-trace operators. Using con-
formal perturbation theory we find weakly-coupled IR fixed points for N ≥ 6 that reveal a
spontaneous breaking of global symmetry. Namely, at finite temperature the lower rank
group is broken, with the pattern persisting at all temperatures due to scale-invariance.
We provide evidence that the models in question are unitary and invariant under full con-
formal symmetry. Furthermore, we show that this model exhibits a continuous family of
weakly interacting field theories at finite N.
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1 Introduction

The phenomenon of persistent symmetry breaking (PSB), i.e., spontaneous breaking of a global
symmetry that persists at arbitrarily high temperatures, was first noticed by Weinberg [1].
Since then it has been actively discussed in cosmology [2–7], quantum field theory [8–16]
and holography [17–24].

The AdS/CFT candidates for persistent order are perturbatively stable, but the symmetric
phase has smaller free energy. In fact, there are a number of theoretical results, which guar-
antee symmetry restoration at sufficiently high temperatures in certain particular settings, yet
in some models the PSB behavior is possible. Thus, during the last year a number of papers
studied critical points of the bi-conical O(m) × O(N − m) model in the context of the PSB.
At finite temperature T , these models exhibit spontaneous symmetry breaking, and because
of scale-invariance symmetry breaking persists to an arbitrarily high T [8, 11–13]. Further-
more, the authors of [14, 16] constructed critical gauge theory models in 3 + 1 dimensions
which exhibit symmetry breaking at arbitrary high temperatures in the infinite N limit. Note
that starting from a scale invariant model resolves the issue of UV completeness, present in
the original example of PSB [1]. There are also examples of non-unitary models of persistent
breaking in the presence of chemical potential [9,10,25–27].1

The aforementioned works suggest that persistent breaking of global symmetries is possi-
ble. Therefore, the standard logic which suggests that the disordered phase has larger entropy
S, and therefore for sufficiently large T the disordered phase would have smallest free energy
F = E − T S, under certain circumstances can break down.

In this paper, we study persistent symmetry breaking in critical models with the long-range
interactions. While the models of interest can be defined in general dimensions 1 < d < 4 (d
is bounded to ensure the stability of the model, fixed by the unitarity bound), our primary
interest will be in physically motivated case of d = 2+ 1. In 2+ 1 dimensions, the Coleman-
Hohenberg-Mermin-Wagner (CHMW) theorem prohibits spontaneous breaking of continuous
symmetries at non-zero temperature [29–31]. However, the necessary assumptions for the
CHMW result can be evaded, for instance, by focusing on spontaneous breaking of discrete
symmetries. This is what was done in [8], which studied persistent breaking of the global
Z2 symmetry in the Z2 ×O(N) long-range vector model. Moreover, the continuous symmetry
in similar models can also be broken persistently in d = 2 + 1, owing to yet another way
around the assumptions behind the CHMW theorem: by considering systems with long-range
interactions [30,32,33].2 In this paper the bi-conical long-range critical O(m)×O(N−m) vector
model is studied perturbartively, close to the Gaussian mean field theory point. We explore IR
flows and properties of the IR fixed points at zero temperature. As a result interesting in its
own right, we show that our model in 3d exhibits a conformal manifold of interacting fixed
points at infinite N . At finite N the continuous space of interacting fixed points persists and is
parametrized by a continuous family of Gaussian theories in the UV.

One of the main advantages of considering long-range interactions is the possibility to
formulate a model admitting perturbative treatment in arbitrary number of dimensions d. This
is achieved by the choice of the critical exponent of the bi-local kinetic term of the generalized
free field. Subsequently turning on a quartic coupling results in an RG flow, terminating at
a weakly-coupled IR fixed point, located in the perturbative vicinity of the long-range mean
field theory point [35]. While this approach bears certain similarity to the Wilson-Fisher ε-
expansion [36], it is applicable in any d, including d = 3.

1Persistent order can be also considered in the context of spontaneous breaking of higher-form symmetries,
see e.g., [28]. In this work we focus on the ordinary (zero-form) symmetries.

2This is to be contrasted with the earlier models of PSB [11–13], that studied the local bi-conical
O(m)×O(N −m) vector models, where continuous symmetry breaking can occur only in non-integer dimensions
3< d < 4. The latter choice of dimension, however, raises the issue of unitarity [34].
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An important feature of the long-range models is absence of the local stress tensor. Without
the stress tensor full conformal symmetry of the scale-invariant fixed point is not manifest. An
extensive supporting argument in favor of the full conformal invariance of the RG fixed point
of the long-range Ising model (i.e., O(N) vector model with N = 1) has recently been put
forward in [37, 38, 40, 55]. For large N , the long-range O(N) vector model at criticality has
been studied in [41,42] using 1/N expansion, with the most recent works [43,44] providing a
strong evidence that the critical regime of this model is in fact described by a CFT (see also [41,
42, 45–49] for previous calculations of critical exponents).3 At the same time, full conformal
invariance of the critical bi-conical long-range O(m)×O(N−m)model is less understood. Full
conformal symmetry, if present, would restrict the functional form of the three-point functions
of primary operators, and ensure that cross-correlators of primaries with different conformal
dimensions vanish. We perform several consistency checks of the long-range O(m)×O(N−m)
vector models at criticality and confirm expected behavior of the two and three-point functions,
dictated by full conformal symmetry. In the process, we verify that the anomalous dimensions
of all considered single-trace and double-trace operators remain real, which is a necessary
condition of unitarity.

This paper is organized as follows. In section 2.1 we begin by defining our model. Working
at the linear order in perturbation theory near free critical point, we derive the RG flow equa-
tions for the quartic double-trace interaction coupling constants. Then we analyze the fixed
points of the RG flow for different choices of scaling dimensions of the scalar fields vector
multiplets φ1,2. In particular, we focus on the models admitting negative fixed point value of
the coupling constant g3 corresponding to the quartic operator φ2

1φ
2
2 . Behavior of such fixed

points at finite temperature is then explored in section 3. Specifically, we demonstrate that
some of the fixed points g3 < 0 lead to an instability of the symmetric vacuum φ1 = 0 of the
effective action at T > 0. The resulting model therefore breaks O(m) symmetry spontaneously
at any non-zero temperature, exhibiting the phenomenon of PSB.

The model in question admits a continuous family of interacting fixed points, that we dis-
cuss in section 2.2. We additionally explore the nature of the critical regime of the considered
bi-conical model at zero temperature in section 2.3, where we calculate anomalous dimen-
sions of various single-trace (quadratic) and double-trace (quartic) operators. To this end,
we take into account the operator mixing effect, and diagonalize the correlation matrices by
finding the true basis of primary operators. As we mentioned above, fixed point of an interact-
ing long-range model, lacking a local stress-energy tensor, might end up being scale-invariant
but not conformal invariant. We carry out several checks of the full conformal symmetry in
section 2.4. In that section, we calculate cross-correlator between quadratic and quartic con-
formal primaries, and demonstrate that they vanish at the considered order in ε-expansion.
We also calculate three-point correlator and show that at leading order it agrees with the form
dictated by the conformal symmetry.

The results of the paper are summarized in section 4.

3It was argued in [38, 55] that the non-local CFT describing the IR fixed point of the long-range φ4 model
can also be found at the IR end-point of an RG flow triggered by coupling the short-range vector field to the
generalized free field of dimension (d + s)/2. Such a coupling is irrelevant in the short-range regime, and can be
studied perturbatively near the long-range to short-range crossover point. O(N) generalization of this IR duality
has recently been discussed in [43].
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2 Long range O(m)×O(N −m) vector model at criticality

2.1 The model and the RG flow

Consider the following Gaussian action in 1≤ d < 4 dimensions 4,

S0 =N1

∫

dd x1

∫

dd x2

~φ1(x1) · ~φ1(x2)

|x1 − x2|
2(d−∆φ1

)
+N2

∫

dd x1

∫

dd x2

~φ2(x1) · ~φ2(x2)

|x1 − x2|
2(d−∆φ2

)
. (1)

The model (1) describes two real-valued generalized free scalar fields ~φ1 and ~φ2 transforming
in vector representation of the O(m) and O(N −m) global symmetry groups. Our conventions
are such that m < N . The coefficients N1,2 are fixed so that the two point functions of ~φ1,2
in position space are normalized to one. The scaling dimensions of the generalized free fields
are

∆φi
=

d − εi

4
, i = 1, 2 . (2)

For brevity, we will be suppressing O(m), O(N −m) vector indices below.
In what follows, we are going to consider deformation of the free action (1) by the follow-

ing double-trace operators

O1 = (φ
2
1)

2 , O2 = (φ
2
2)

2 , O3 = φ
2
1φ

2
2 . (3)

Choosing εi � 1, one can make these operators weakly relevant, with the leading order scaling
dimensions ∆1 = 4∆φ1

, ∆2 = 4∆φ2
and ∆3 = 2(∆φ1

+∆φ2
). At the same time, the leading-

order two-point functions of these operators are given by

〈Oi(x)O j(0)〉= δi j
Ni

|x |2∆i
,

N1 = 8m2
�

1+
2
m

�

N2 = 8(N −m)2
�

1+
2

N −m

�

N3 = 4m(N −m) . (4)

Similarly, the leading-order three-point functions

〈Oi(x1)O j(x2)Ok(x3)〉 =
Ck

i jNk

|x12|∆−2∆k |x23|∆−2∆i |x13|∆−2∆ j
,

∆ = ∆i +∆ j +∆k , (5)

are fixed by the OPE coefficients (we list only the non-zero ones)

C1
11 = 8 (m+ 8) , C1

33 = 2(N −m) , C3
13 = 4 (m+ 2) , C3

33 = 16 ,

C3
32 = 4(N −m+ 2) , C2

33 = 2m , C2
22 = 8 (N −m+ 8) .

(6)

The latter are related by
Ck

i j = C j
ikN j/Nk . (7)

Consider now the following deformation of the Gaussian theory (1)

S = S0 +
3
∑

i=1

giµ
εi

N

∫

dd x Oi(x) , (8)

4The range of d ensures the stability of of the model, and is fixed by the unitarity bound, d/4>∆φ ≥
d−2

2
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where µ is an arbitrary RG scale, and we also denoted ε3 = (ε1 + ε2)/2. This deformation
induces an RG flow, that at the next-to-leading (one-loop) order in perturbation around the
free regime has the form

µ
d gi

dµ
= −εi gi +

πd/2

NΓ
� d

2

�

∑

j,k

C i
jk g j gk +O(g3

i ) . (9)

We are interested in the interacting IR critical regime of the model (8). To this end, we need
to determine fixed-points of the RG flow (9). At the one-loop order, the critical parameters
can be found by plugging in the values of the OPE coefficients (6) into the r.h.s. of (9). One of
the fixed points, with g3 = 0, describes two decoupled copies of the long-range vector models.
We will not be considering this fixed point it in what follows. When g3 6= 0 the fixed points
can be found by solving the following system of coupled second-order equations,

g̃1 =
C1

11

N
g̃2

1 +
C1

33

N

�α+ 1
2α

�2
g̃2

3 ,

g̃2 =
C2

22

N
g̃2

2 +
C2

33

N

�α+ 1
2

�2
g̃2

3 ,

1=
C3

13

N
4α
α+ 1

g̃1 +
C3

33

N
g̃3 +

C3
32

N
4

α+ 1
g̃2 .

(10)

Here we have rescaled the couplings as gi = g̃i
Γ( d

2 )
πd/2 εi , and defined the parameter

α=
ε1

ε2
. (11)

Notice that the equations (10) are invariant under the redefinitions α → 1/α, m → N − m,
g̃1↔ g̃2, originating from a simple interchange of notations for the fields φ1,2 in the original
action (8). Therefore there is a one-to-one correspondence between the family of solutions
with α ≥ 1 and α ≤ 1. Without loss of generality we restrict our analysis to the case α ≥ 1.
Another thing to point out is that α is a free parameter, just like N and m and is fixed by
construction. Since the scalar fields do not acquire anomalous dimensions, α is unaffected by
the dynamics of the model.

It can be easily seen, as we discuss below in section 3, that the persistent symmetry breaking
is only possible when the fixed-point value of the coupling constant g3 is negative. These are
the solutions of (10) that we wish to explore.

While in general it is difficult to solve the system of second-order equations (10) analyti-
cally, a simplification can be achieved in the large N limit. We begin by considering the case
of N � 1, m� 1, with fixed m/N =O(1). Denoting

x1 =
m
N

, x2 = 1− x1 , (12)

we can re-write equations (10) at the leading order in 1/N as

g̃1 = 8x1 g̃2
1 + 2x2

�α+ 1
2α

�2
g̃2

3 ,

g̃2 = 8x2 g̃2
2 + 2x1

�α+ 1
2

�2
g̃2

3 ,

1=
16
α+ 1

(α x1 g̃1 + x2 g̃2) .

(13)
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These equations admit a solution only if α = 1, in which case they are degenerate, and a line
of fixed points consisting of two branches emerges,5

g̃±1 =
1±

q

1− 64x1 x2 g̃2
3

16x1
,

g̃±2 =
1∓

q

1− 64x1 x2 g̃2
3

16x2
, (14)

g̃3 ∈
�

−
1

8
p

x1 x2
,+

1
8
p

x1 x2

�

.

The two branches meet at the end points g̃3 = ±1/(8px1 x2), forming a circle, see Fig. 1. The
coordinate on this circle parametrizes one of the directions on the two-dimensional conformal
manifold of the model (8); we will discuss the latter in more detail in section 2.2. The cor-
responding exactly marginal operator O′+, obtained by mixing the double-trace operators Oi ,
i = 1, 2,3, will be derived below in section 2.3.

There is a special point g̃1 = g̃2 = 1/8, g̃3 = 1/4 where O(m) × O(N − m) symmetry is
enhanced to the full O(N). Being independent of x1, it can be found as the intersection point
of curves with different x1. Since the RG equations in the infinite N limit, given by (13), are
invariant w.r.t. g̃3→− g̃3, another intersection point is given by g̃1 = g̃2 = 1/8, g̃3 = −1/4.

Additionally, each curve has “decoupled” points g̃−1 = g̃−3 = 0, g̃−2 = 1
8x2

and

g̃+2 = g̃+3 = 0, g̃+1 =
1

8x1
where only one critical long-range vector model survives.

To find corrections to the large-N solution (14) at the next-to-leading order in 1/N expan-
sion, we substitute the ansatz

g̃i → g̃i +δ g̃i/N +O(1/N2) , α= 1+δα/N +O(1/N2) (15)

into (10), and linearize over the 1/N terms. This yields




1− 16 g̃1 x1 0 −4 g̃3 x2
0 1− 16 g̃2 x2 −4 g̃3 x1

2x1 2x2 0









δ g̃1
δ g̃2
δ g̃3



=





64 g̃2
1

64 g̃2
2

−4
∑3

i=1 g̃i



+





−2 g̃2
3 x2

2 g̃2
3 x1

g̃2 − ( g̃1 + g̃2)x1



δα ,

(16)
where we suppressed the O(1/N2) terms. The matrix on the left hand side is singular and the
linear system has a solution if and only if the following constraint is satisfied:

4
�

3− 8 g̃2(3− 16 g̃3 x1 x2)− 8 g̃3 x1

�

1+ 4 g̃3(1− 2x1)
��

− x1δα= 0 . (17)

This means every fixed point of the infinite N conformal manifold (14) survives finite N cor-
rections in a theory with the appropriate chosen α.

Let us demand that finite but large N theory has α= 1. Corresponding fixed points are the
intersections of (14) with the following surface obtained by setting δα= 0 in (17), see Fig. 1,

3
8
= g̃2(3− 16 g̃3 x1 x2) + g̃3 x1

�

1+ 4 g̃3(1− 2x1)
�

. (18)

One of the intersection points is g̃1,2 = 1/8, g̃3 = 1/4, which is the theory with full O(N)
symmetry. Another fixed point has g3 < 0, and exhibits persistent symmetry breaking, as
discussed later in section 3. Similar conclusion holds for other values of α.
Another class of tractable large-N CFTs can be obtained by considering the limit N →∞ with
fixed m. In this case coupling constants will grow linearly with N , g̃i = g̃ (1)

i N + g̃ (0)

i + . . ..

5This solution was in fact first found in [13], that considered the bi-conical O(m)×O(N −m) model in 4− ε
dimensions. At the one-loop order in perturbation theory, the fixed point of this model is determined by the
equations (10) with α= 1.
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Figure 1: Conformal manifolds (14) for x1 = 1/2 (blue), x1 = 1/3 (orange) and
x1 = 1/4 (brown). Black points correspond to g̃1 = g̃2 = 1/8, g̃3 = ±1/4 which are
common for all x1. Orange surface, (18) with x1 = 1/3, intersects the orange curve at
two points (with positive and negative g̃3) which are two theories with m/N = 1/3,
α= 1, and large but finite N . Theory with positive g̃3 = 1/4 has the global symmetry
enhanced to O(N), while the theory with negative g̃3 = −1/4 at finite temperatures
exhibits persistent symmetry breaking O(m)×O(N −m)→ O(m− 1)×O(N −m).

Substituting this into (10) and solving order by order in the large N limit yields a real solution
of the form6

g̃1 =
N

8(m+ 8)
− 2

� g (0)

3 (m+ 2)

m+ 8

�2
, g̃2 = 0 , g̃3 = g (0)

3 , α=
m+ 8
m− 4

, m> 4 ,

g̃1 =
N

8(m+ 8)
− 72

� g (0)

3

m+ 8

�2
, g̃2 =

1
8

, g̃3 = g (0)

3 , α= −
m+ 8
m− 4

, m< 4 ,

(19)

where the O(1/N) terms are suppressed. The solution is not unique, the coefficient g (0)

3 cannot
be fixed without accounting for higher order corrections in 1/N . Moreover, α is constrained,

α= αc ≡
�

�

�

m+ 8
m− 4

�

�

� . (20)

Higher order in 1/N contributions remove the ambiguity in (19). Furthermore, higher order
terms decrease the value of α such that 1 ≤ α ≤ αc , i.e., αc is an upper critical value above
which only complex fixed points exist. We verified explicitly there are fixed points with large
and fixed m, N → ∞, α ≤ αc which have g̃3 < 0 and which exhibit persistent symmetry
breaking.
Fixed points for theories with small N ∼ O(1) are difficult to analyze analytically but (10)
can be readily solved numerically. Ultimately, one finds a large family of stable fixed points
with real-valued couplings and g̃3 < 0. For m = 1 there are such fixed points for any N ≥ 6
and appropriate α. Thus, persistent breaking of discrete global symmetry is possibly already

6As expected, in the limit x1 = m/N → 0 the fixed points ( g̃+1 , g̃+2 , g̃3) of (14) converge to (19) for m� 1.
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in the Z2×O(5)model. In [8] it was reported that N > 17 is necessary for symmetry breaking
because the analysis there was restricted to α = 1 theories, while here we consider more
general models with arbitrary positive α. For m = 2 fixed points with g̃3 < 0 (and persistent
breaking) appear for all N ≥ 7 and the appropriate α. More generally for m ≤ 5 we find
g̃3 < 0 fixed points for all N ≥ m+ 5 and for m ≥ 5 for all N ≥ 2m, using the nomenclature
m≤ N −m.

We note that negative g̃3 is necessary but not sufficient for persistent symmetry breaking.
So far our emphasis was on the value of g̃3. We will consider finite temperature effects in more
detail in section 3.

2.2 Family of interacting CFTs at finite N

In section 2.1, while working in the infinite N limit, we encountered a conformal manifold of
interacting fixed points. In this section, we are going to discuss the origin of this conformal
manifold, as well as its fate at finite N .

We are interested in analyzing fixed points of the model (8). At the Gaussian fixed
point, gi = 0, i = 1, 2,3, we have a continuous family of CFTs, parametrized by scaling di-
mensions ∆φ j

, j = 1, 2. In the previous section, we expressed these scaling dimensions as
∆φ j

= (d − ε j)/4, in terms of the ratio α= ε1/ε2, and ε2. This is convenient to do because in
interacting theory, while working at the linear order in perturbation theory (in ε1,2) one can
simply factor ε2 out of all expressions.

Let us fix εi in the UV. Since (1) are non-local, they are not getting renormalized, and
therefore values of ∆φ1

,∆φ2
remain the same along the RG flow. Now let us assume this

theory admits a non-trivial interacting fixed point (g?1, g?2, g?3). There are different scenarios
concerning whether it belongs to a continuous family:

• Fixed point (g?1, g?2, g?3) is a solution of equations βi = 0, i = 1,2, 3, and it exists for some
open set of∆φ j

, j = 1,2. Then corresponding interacting fixed points form a continuous
family, parametrized by ∆φ j

, j = 1,2, just like it was for the Gaussian fixed points. This
is the general case scenario, which assumes the fixed point equations βi(g j ,εk) = 0 are
non-degenerate.

• Fixed point (g?1, g?2, g?3) is a solution of βi = 0, that exists only for the isolated point(s)
on the (∆φ1

,∆φ2
) plane. There is no continuous family of interacting fixed points in this

case.

• The system of equations βi = 0, is degenerate w.r.t. g1,2,3, and for consistency ∆φ1
,∆φ2

must be related to each other, forming a curve on the (∆φ1
,∆φ2

) plane. There is a
continuous family of interacting fixed points in this case, it is two-dimensional, and
intersects the (∆φ1

,∆φ2
) plane along a one-dimensional curve.

In each scenario above, besides βi(g∗) = 0, we also assumed g∗i satisfy additional constraints,
e.g. g∗1,2 > 0, to ensure stability of the model.

In section 2.1, we saw that in the infinite N limit we have the third scenario, while finite
N models follow first scenario, i.e. also admit a continuous family of fixed points. Specifically,
in the infinite N limit, for fixed m/N = O(1), we saw that the system of quadratic equations
(13) is degenerate. Its admits a one-parametric family of solutions (14). The corresponding
exactly marginal operator O′+, that we discuss in more detail latter in section 2.3, manifests
existence of a one-dimensional conformal manifold. Together with the parameter ε1 = ε2,
and associated non-local deformation of (1), we obtain a two-dimensional continuous family
of CFTs. It is algebraically straightforward to find 1/N corrections to the leading order solu-
tion (14). For instance, at the next-to-leading order one needs to solve the linearized system
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of equations (16). The one-dimensional conformal manifold in the ε1 = ε2 theory, that we
observed in the infinite N limit, is lifted by the 1/N corrections: there is no marginal operator
O′ (for any possible mixing of the double-trace operators Oi) in this case. However, impos-
ing the constraint (17) one is able to see that by changing the parameters ε1,2 in the UV the
two-parametric family of interacting CFTs survives. A similar argument will remain true at
any order in 1/N expansion.

In fact, it is easy to see numerically that the two-parametric family of interacting CFTs exists
at finite N . For instance, in Fig. 4 for the theory with m = 1, N = 6 we plot critical g̃?3 for
various admissible values of α for which interacting fixed point exists. Analogous numerical
analysis can be used to establish existence of the family of interacting CFTs for general m, N .7

2.3 Anomalous dimensions

Before we proceed with the finite temperature analysis in section 3 we would like to provide
some checks that the fixed points with negative g3, which we found in section 2.1, correspond
to UV complete unitary theories. For that purpose in this section we calculate anomalous
dimensions of the composite operators Oi

8. We find the anomalous dimensions to be real,
which is a necessary condition for unitarity.

We begin with repeating the derivation of the anomalous dimensions at leading order of
the conformal perturbation theory [55–58], keeping in mind that our theory is non-local. At
linear order the conformal perturbation theory gives

〈Oi(x1)O j(x2)〉= δi j
Ni

|x |2∆i
−

3
∑

k=1

gkµ
εk

N

∫

dd x3〈Oi(x1)O j(x2)Ok(x3)〉+O(g2
k) , (21)

where the three point function is calculated at the Gaussian fixed point. After substituting the
leading order OPE expansion,

Oi(x1)Ok(x3) =
3
∑

j=1

C j
ik

|x13|∆−2∆ j
O j(x1) + . . . , (22)

we get

〈Oi(x1)O j(x2)〉= δi j
Ni

|x12|2∆i
−

3
∑

k=1

gkµ
εk

N

� C j
ikN j

|x12|2∆ j

∫

dd x3

|x3|∆−2∆ j
+ (i↔ j)

�

+O(g2
k) . (23)

Integrating out within a shell µ−1 < |x3| < µ−1
IR

between the subtraction scale µ and the IR
cutoff µIR results in the following change

δ〈Oi(x1)O j(x2)〉= −
2π

d
2

Γ
� d

2

�

3
∑

k=1

gkµ
εk

N

� C j
ikN j

|x12|2∆ j

µ
−εik j
IR −µ−εik j

εik j
+ (i↔ j)

�

+O(g2
k) , (24)

where εik j = εi + εk − ε j . Consider the case of equal epsilons, εi = ε. Then

µ
∂

∂ µ
〈Oi(x1)O j(x2)〉= −

2ε
N |x12|2 (d−ε)

3
∑

k=1

g̃k

�

C j
ikN j + C i

jkNi

�

+O(ε2) . (25)

7Interestingly enough, there is the aforementioned family for m = 1 and any N ≥ 2, except for N = 4, when
the continuous family of solutions disappears. Solutions still seem to exist for a certain discrete set of α, realizing
second scenario above (although ε1 is still continuous). For example, for α = 1, N = 4, m ∈ {1, 2,3}, we obtain
g̃1 = g̃2 =

1
24 , g̃3 =

1
12 . This solution, however, has positive g3 and hence does not exhibit the PSB.

8In this paper, we denote quartic and quadratic operators in the action as Oi and Õi respectively, while the
analogous operators at the interacting fixed points are denoted with primes.
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By O′i we will denote primary operators in the weakly interacting theory at the fixed point.
The Callan-Symanzyk equation for O′i with the anomalous dimension γi is given by

µ
∂

∂ µ
〈O′i(x1)O′i(x2)〉= −2γi 〈O′i(x1)O′i(x2)〉 , (26)

where to zeroth order in ε

O′i =
3
∑

k=1

V k
i Ok +O(ε) , 〈O′i(x1)O′j(x2)〉=

∑3
k=1 V k

i V k
j Nk

|x12|2 (d−ε)
=

δi j

|x12|2 (d−ε)
. (27)

The transition matrix V k
i is determined by requiring compatibility of (26) with (27), i.e., using

(27) and definition of O′i , we obtain

µ
∂

∂ µ
〈O′m(x1)O′n(x2)〉= −

1
|x12|2 (d−ε)

∑

i, j

�

N jV
j

nγ jiV
i

m + NiV
i

mγi jV
j

n

�

+O(ε2) , (28)

γ ji =
2ε
N

∑

k

g̃kC j
ik =

∂ β j

∂ gi
+ εδi j .

Let us choose V i
m to be the eigenvectors of γ ji with eigenvalues γm, or equivalently,

∑3
i=1 γ jiV

i
m = γmV j

m, then9

µ
∂

∂ µ
〈O′m(x1)O′n(x2)〉= −

2γmδmn

|x12|2 (d−ε)
+O(ε2) . (29)

Comparing to (26), we conclude that the anomalous dimensions are given by the eigenvalues
of γi j .

The derivation of anomalous dimensions for non-equal εi ’s is similar. This is a nearly
degenerate case, and therefore it is convenient to introduce an intermediate ε defined by
εi = ε+δεi with δεi ∼ ε. Next we rescale the operators Oi → µδεiOi . In particular, (25) for
rescaled fields takes the form

µ
∂

∂ µ
〈Oi(x1)O j(x2)〉=

−2
|x12|2 (d−ε)

�

−δε j N j δi j +
1
N

3
∑

k=1

εk g̃k

�

C j
ikN j +C i

jkNi

�

�

+O(ε2) . (30)

Repeating the same steps as before, we conclude that the anomalous dimensions of O′m in the
nearly degenerate case are given by the eigenvalues, γm, of the matrix

γi j = −δεi δi j +
2
N

∑

k

εk g̃kC i
jk =

∂ βi

∂ g j
+ εδi j . (31)

To recapitulate, we find that non-locality of the model does not affect the expression for the
anomalous dimensions. At leading order of the conformal perturbation theory [55–58] they
are given by the eigenvalues of the derivatives matrix ∂ βi

∂ g j
evaluated at the fixed point. For the

scaling dimensions of the operators O′i we find

∆′m = d − ε+ γm = d +ωm , (32)

where ωm are the eigenvalues of the derivatives matrix ∂ βi
∂ g j

.

9Two terms within parenthesis in (28) are equal, because it follows from (7) that N jγ ji =
2ε
N

∑

k g̃kC k
i j Nk

is a symmetric matrix. Hence, for our choice of V i
m we get γm

∑

j N j V
j

n V j
m = γn

∑

i Ni V
i

n V i
m, and therefore

∑

j N j V
j

n V j
m = δmn, because degeneracy is lifted, i.e., γm 6= γn for m 6= n.

10

https://scipost.org
https://scipost.org/SciPostPhys.12.6.181


SciPost Phys. 12, 181 (2022)

The anomalous dimensions simplify in the case when all epsilons are equal. Then one of the
three eigenvalues of γi j can be readily derived using βi = 0 and (9),

3
∑

j=1

γi j g̃ j = 2ε g̃i . (33)

This eigenvalue corresponds to an irrelevant operator O′ =
∑3

i=1 g̃iOi with scaling dimension

∆′ = d + ε . (34)

The scaling dimensions of two additional operators, O′± ,are given by

∆′± = d − ε+ γ± , (35)

γ± =
4ε
N

�

κ2 ±
q

κ2
2 − κ1

�

, κ1 = 48(N + 16) g̃1 g̃2 , κ2 = g̃1(m+ 14) + g̃2(N −m+ 14) .

Note that they are real, because the radicand in the above expression is non negative,

κ2
2 − κ1 = g2

1(m+ 14)2 + g2
2(N −m+ 14)2 − 2g1 g2

�

(m+ 14)(N −m+ 14)− 2(m+ 2)(N −m+ 2)
�

, (36)

and therefore,10

κ2
2 − κ1 ≥

�

g1(m+ 14)− g2(N −m+ 14)
�2 ≥ 0 . (37)

For finite N and m the operators with scaling dimensions∆′+ and∆′− are weakly irrelevant and
relevant respectively. Thus the critical surface (subspace of irrelevant deformations at the in-
teracting fixed point) has codimension 1 in the space of nearly marginal couplings (g1, g2, g3).
Using the last equation in (10), we deduce that in the large rank limit with m/N fixed∆+→ d,
∆−→ d−ε. The O′+ operator corresponds to an exactly marginal deformation associated with
a line of fixed points (14) that emerges in the infinite N limit. Each point on the conformal
manifold has one weakly relevant and one weakly irrelevant deformation with scaling dimen-
sions d ∓ ε respectively.

Next consider the following single trace operators

eO1 = φ
2
1 , eO2 = φ

2
2 . (38)

We remind the reader that byOi we denote quartic operators, invariant under O(m)×O(N−m),
while Õi above are quadratic in fields. Their scaling dimensions at the Gaussian fixed point
are given by e∆1 = 2∆φ1

, e∆2 = 2∆φ2
. The two- and three-point functions satisfy

〈 eO j(x) eOk(0)〉= δ jk

eNk

|x |2e∆k
,

eN1 = 2m , eN2 = 2(N −m) , (39)

and

〈Oi(x1) eO j(x2) eOk(x3)〉 =
eCk

i j
eNk

|x12|e∆−2e∆k |x23|e∆−2∆i |x13|
e∆−2e∆ j

,

e∆ = ∆i + e∆ j + e∆k , (40)

where the non-zero OPE coefficients eCk
i j can be expressed in terms of Ck

i j

eC1
11 = C3

13 , eC2
31 = C2

33 , eC2
22 = C3

32 , eC1
32 = C1

33 . (41)

10Stability of the fixed point requires g1 and g2 to be non-negative.
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As before they are related by
eCk

i j = eC
j
ik
eN j/eNk . (42)

To calculate the leading order correction to the scaling dimensions of eOi at the weakly inter-
acting fixed point, we resort to the linear order conformal perturbation theory

〈 eO j(x2) eOk(x3)〉= δ jk
Nk

|x23|2e∆k
−

3
∑

i=1

giµ
εi

N

∫

µ−1

dd x1〈Oi(x1) eO j(x2) eOk(x3)〉+O(g2
k) , (43)

where the three point function is calculated at the Gaussian fixed point, and µ is a floating
cutoff scale. In particular, using the leading order OPE expansion,

Oi(x1) eO j(x2) =
2
∑

k=1

eCk
i j

|x12|e∆−2e∆k

eOk(x2) + . . . , (44)

one can calculate a small change in the two point function under variations in the floating
cutoff scale µ,

δ〈 eO j(x2) eOk(x3)〉= −
3
∑

i=1

giµ
εi

N

�
eCk

i j
eNk

|x23|2e∆k

∫ µ−1
IR

µ−1

dd x1

|x1|e∆−2e∆k
+ (k↔ j)

�

+O(g2
k) . (45)

In the case of equal epsilons, εi = ε, we obtain

µ
∂

∂ µ
〈 eO j(x2) eOk(x3)〉= −

2ε
N |x23|d−ε

3
∑

i=1

g̃i

�

eCk
i j
eNk + eC

j
ik
eN j

�

+O(ε2) . (46)

At this point we introduce primary operators in the weakly interacting CFT, i.e.,
eO′i =

∑2
k=1

eV k
i
eOk +O(ε) with the anomalous dimension eγi . The Callan-Symanzyk equation

for eO′i is given by

µ
∂

∂ µ
〈 eO′i(x1) eO′i(x2)〉= −2eγi 〈 eO′i(x1)fO′ i(x2)〉 , (47)

where

〈 eO′i(x1) eO′j(x2)〉=

∑2
k=1

eV k
i
eV k

j
eNk

|x12|d−ε
=

δi j

|x12|d−ε
. (48)

The transition matrix eV k
i is determined by requiring compatibility of (47) with (48),

µ
∂

∂ µ
〈 eO′m(x1) eO′n(x2)〉= −

1
|x12|d−ε

2
∑

k, j=1

�

eNkeV
k

n eγk j eV
j

m + eN j eV
j

meγ jkeV
k

n

�

+O(ε2) , (49)

eγk j =
2ε
N

3
∑

i=1

g̃i eC
k
i j .

Let us choose eV j
m to be the eigenvectors of eγk j with eigenvalues eγm, or equivalently,

∑2
j=1 eγk j eV

j
m = eγmeV

k
m, then11

µ
∂

∂ µ
〈fO′m(x1) eO′n(x2)〉= −

2eγmδmn

|x12|d−ε
+O(ε2) . (50)

11Two terms within parenthesis in (49) are equal, because it follows from (42) that eN jeγ ji is a symmetric matrix.
Hence, for our choice of eV i

m we get eγm

∑

k
eNk
eV k

n
eV k

m = eγn

∑

j
eN j
eV j

n
eV j

m, and therefore
∑

k
eNk
eV k

n
eV k

m = δmn, because
degeneracy is lifted, i.e., eγm 6= eγn for m 6= n.
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O’
i
(x )1

   k
   (x)

k
k

k

O’
j
(x )2

Figure 2: Linear order contribution to the correlator 〈fO′ i(x1)O′j(x2)〉. Solid lines
represent propagators of the scalar fields. Integration is done over the insertion point
x .

Comparing to (26), we conclude that the anomalous dimensions are given by the eigenvalues
of eγk j ,

eγ± =
ε

N

�

C3
13 g̃1 + C3

32 g̃2 ±
r

�

C3
13 g̃1 − C3

32 g̃2

�2
+ 4C1

33C2
33 g̃2

3

�

,

eV± =





C3
13 g̃1 − C3

32 g̃2 ±
Ç

�

C3
13 g̃1 − C3

32 g̃2

�2
+ 4C1

33C2
33 g̃2

3

2C2
33 g̃3

, 1



 . (51)

Note that the anomalous dimensions, eγ±, are manifestly real for all m and N .
For non-equal εi ’s, the scaling dimensions of two operators eO′i can be similarly derived

e∆′m =
d
2
+ eωm , (52)

where eωm are the eigenvalues of the 2× 2 matrix

eγk j = −
εk

2
δk j +

2
N

3
∑

i=1

εi g̃i eC
k
i j . (53)

In the vicinity of α = 1, i.e. for ε1 ≈ ε2 the eigenvalues of (53) are perturbatively close to
(51), which are real. Therefore eigenvalues of (53) will also be real, at least until two of them
collide.
To conclude, we have calculated anomalous dimensions of all quadratic and quartic operators
at the interacting fixed points, at leading order in the conformal perturbation theory. Assuming
the fixed point is stable, all scaling dimensions are real, as it is necessary for unitarity of the
IR theory.

2.4 Tests of conformal invariance

The fixed point QFT is certainly scale invariant, but it is not necessarily a CFT. In this section
we perform a number of tests to provide evidence that the scale symmetry in our models is
enhanced to the full conformal group. For simplicity we consider the case of equal epsilons
only, εi = ε. The case of non equal epsilons is similar.
We start by calculating the two point function of primaries at the fixed point, 〈fO′ iO′j〉. These
correlators could be non-zero if the model is scale invariant but non-conformal. However, it
must vanish if the theory exhibits full conformal symmetry.
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O’
i
(x )

1

   k
   (x)

k
k

k

Figure 3: Linear order contribution to the correlation function of fO′ i with a primary
built off two scalar fields and any number of derivatives (solid square). Solid lines
represent propagators of the scalar fields. Integration is done over the insertion point
x .

To linear order in ε to evaluate 〈fO′ iO′j〉 we should calculate the diagram shown in Fig. 2. Up
to an overall factor, we have

Fig.2∝
εµε

|x12|
d−ε

2

∫

dd x
1

|x − x1|
d−ε

2 |x − x2|
3(d−ε)

2

= π
d
2
ε (|x12|µ)ε

|x12|
3(d−ε)

2

Γ
� d−2ε

2

�

Γ
� d+ε

4

�

Γ
�3ε−d

4

�

Γ
� d−ε

4

�

Γ
�3(d−ε)

4

�

Γ (ε)
,

(54)
where the proportionality constant is some function of g̃k, N and m, and we used the following
identity

∫

dd x
1

|x − x1|α|x − x2|β
= πd/2

Γ
�α+β−d

2

�

Γ (α/2)Γ (β/2)

Γ
� d−α

2

�

Γ
� d−β

2

�

Γ (d −α/2− β/2)
|x12|d−α−β . (55)

Gamma function Γ (ε) in the denominator of (54) introduces one extra power of ε and therefore
to linear order in ε that expression vanishes, yielding

〈fO′ i(x1)O′j(x2)〉= 0+O(ε2) . (56)

As can be seen from (55), this result also holds if O′j(x2) is replaced with a scalar operator
which is quartic in fields and has any number of derivatives. Likewise the linear order correc-
tion to the correlation function of fO′ i with any operator which is more than quartic in fields
also vanishes identically.
Consider now the correlation function of fO′ i with a primary operator, which is quadratic in
fields and which includes any number of derivatives. This correlator vanishes to zeroth order
in the coupling constant, because the Gaussian theory is conformal. The linear order correction
is shown in Fig. 3, it factorizes into a product of two sub-diagrams. One of them vanishes,
because it is proportional to the correlation function of two distinct primaries in the Gaussian
model.
The upshot of this calculation is that up to linear order in ε the two point function of fO′ i with
various operators is compatible with the conformal symmetry – all two-point correlators of
operators with non-equal dimensions vanish. This result can be used to show that the three
point function,

〈fO′ i(x1)fO′ j(x2)fO′k(x3)〉=
2
∑

`1,`2,`3=1

eV `1
i
eV `2

j
eV `3

k 〈 eO`1
(x1) eO`2

(x2) eO`3
(x3)〉 (57)

is conformal up to linear order in ε.
Indeed, integrating out distances within the shell µ−1 < |x | < µ−1

IR
and using (44) results in

the following change

δ〈 eO`1
(x1) eO`2

(x2) eO`3
(x3)〉= (58)

−
3
∑

k=1

gkµ
ε

N

�

2
∑

m=1

C̃m
k`3
〈 eO`1

(x1) eO`2
(x2) eOm(x3)〉0

∫ µ−1
IR

µ−1

dd x
|x |d−ε

+ (1↔ 3, 2↔ 3)
�

+O(g2
k) .
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Or equivalently,

µ
∂

∂ µ
〈 eO`1

(x1) eO`2
(x2) eO`3

(x3)〉 = −
2
∑

m=1

γ̃m`3
〈 eO`1

(x1) eO`2
(x2) eOm(x3)〉0

+ (1↔ 3, 2↔ 3) +O(g2
k) , (59)

where γ̃m`3
is defined in (49). Plugging it back into (57) and using the fact that V `i are the

eigenvectors of γ̃m` with eigenvalues eγi , we conclude that the three point function (57) takes
the following general form

〈fO′ i(x1)fO′ j(x2)fO′k(x3)〉 ∼
∑ µ−γ̃i−γ̃ j−γ̃k

|x12|
d−ε

2 +αi jk |x13|
d−ε

2 +αik j |x23|
d−ε

2 +α jki
, (60)

where the sum includes all possible α’s which satisfy αi jk = α jik ∼ ε and αi jk + αik j + α jki =
γ̃i + γ̃ j + γ̃k. In particular, for i = j = k, we get only one possible term with αiii = γi , and
the associated three point function at linear order in ε is necessarily conformal. We should
only consider the case when one of the three indices i, j, k is different from the other two, e.g.,
i = j = + and k = −. In the limit x1→ x2 the leading order singularity takes the form

〈fO′+(x1)fO′+(x2)fO′−(x3)〉 −→x1∼x2

µ−γ̃i−γ̃ j−γ̃k

|x12|
d−ε

2 +α++− |x13|d−ε+2α+−+
. (61)

Since x1 ∼ x2, one can substitute an appropriate OPE for the fO′+(x1)fO′+(x2) on the left hand
side. However, we have shown that the two-point function of fO′− with various operators
respects conformal symmetry to linear order in ε. Thus, only the term proportional to fO′− in
the OPE contributes in this limit. As a result, the left hand side scales as 1/|x13|d−ε+2γ− . In
particular, α+−+ = γ−, α++− = 2γ+−γ− and the three point function 〈fO′ ifO′ jfO′k〉 is necessarily
conformal up to linear order in ε.

3 Thermal physics

To understand the unbroken symmetries of the critical model at finite temperature we consider
the effective potential, Veff. To leading order in εi , thermal fluctuations simply induce quadratic
terms in addition to the quartic potential (8). Starting from the thermal correlation function
for the generalized free fields we find

〈φa
j (τ, ~x)φc

i (0)〉β =
∞
∑

m=−∞

δacδi j

[(τ+mβ)2 + ~x2]∆φi
⇒ 〈φ2

i 〉β = N x i

2ζ(2∆φi
)

β2∆φi
. (62)

Together with the interaction terms in (8) this leads to the following effective potential for the
zero mode

Veff(φ1,φ2;β) =Mφ1
(β)φ2

1 +Mφ2
(β)φ2

2 +
g1µ

ε1

N
(φ2

1)
2 +

g2µ
ε2

N
(φ2

2)
2 +

g3µ
ε3

N
φ2

1φ
2
2 , (63)

where we dropped terms suppressed by the higher powers of ε , and

Mφ1
(β) = 2

g1µ
ε1

N

�

1+
2

N x1

�

〈φ2
1〉β +

g3µ
ε3

N
〈φ2

2〉β , (64)

Mφ2
(β) = 2

g2µ
ε2

N

�

1+
2

N x2

�

〈φ2
2〉β +

g3µ
ε3

N
〈φ2

1〉β . (65)
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In the absence of quadratic terms12, Mφ1
=Mφ2

= 0, the potential reaches its minimum value
at φ2

i = 0. Hence, the system exhibits full O(m)×O(N −m) symmetry at zero temperature.
However, finite temperature effects may break the symmetry provided that Mφi

< 0. If that
occurs, the higher order perturbative corrections cannot restore the symmetry, because mul-
tiloop quadratic terms are suppressed by additional powers of εi , whereas terms with higher
powers of fields will be subdominant in the vicinity of the origin φ2

i = 0. Therefore, to prove
that the symmetry is broken at finite temperature, it is enough to show that the model admits a
fixed point where one of the quadratic terms in the effective potential (63) becomes negative.
Thermal expectation values 〈φ2

i 〉β , given by (62), are positive, and therefore Mφi
can only

become negative if some of the critical couplings gi are negative. Since the couplings g1 and
g2 must be positive to ensure stability of the model, the only scenario would be g3 < 0, while
4g1 g2 ≥ g2

3 to exclude the runaway behavior. In fact, the potential is always bounded from
below as long as the fixed point equations (10) are satisfied [12, 50]. We verified explicitly
(numerically or analytically) that the stability condition 4g1 g2 ≥ g2

3 holds in all the examples
discussed below.
We first analyze the N →∞ limit with x1 = m/N kept fixed. The effective potential in this
case assumes the following form13

Veff(z;β) = 2
µε

N

�

〈z〉β z +
z2

2

�

, z =
p

g1φ
2
1 ±
p

g2φ
2
2 . (66)

Here we used the leading order relation between the critical couplings, g3 = ±2
p

g1 g2, which
follows from (14). For positive g3, 〈z〉β > 0, and the effective potential is minimized byφ2

i = 0
because φ2

i cannot be negative. For negative g3 the situation is more nuanced. Provided
constraints φ2

i > 0 are satisfied, the minimum is reached at

z =
p

g1φ
2
1 −
p

g2φ
2
2 = −〈z〉β = (x2

p
g2 − x1

p

g1)
2ζ(d/2)
βd/2

, for g3 < 0 , (67)

where in the expression for 〈z〉β we dropped εi-suppressed terms. This defines a one-dimensi-
onal family of minima in the space of fields – a hyperbola in the (φ1,φ2) plane. In the special
case when x1

p
g1 = x2

p
g2, the parameter 〈z〉β = 0, and there is trivial solution φ2

1 = φ
2
2 = 0,

together with the non-trivial ones φ2
1 = φ

2
2 > 0. Hence in this case we can not establish

symmetry breaking unless 1/N corrections are taken into account. But in all other cases (67),
together with the constraints φ2

i > 0, necessarily yields the solutions with at least one or both
fields being non-zero.

When N is finite, one in principle needs to minimize (63) with the additional conditions
φ2

i > 0. Provided one of the masses is negative, say Mφ1
< 0, the minimum is given by

�

φ2
1
φ2

2

�

=
−Nµ−ε1

2g1

�

Mφ1

0

�

, (68)

while the only point with the unbroken symmetry φ2
1 = φ

2
2 = 0 is not a minimum. It is thus

sufficient to show there are critical points with negative Mφ1
, which we do numerically. Thus

typically there are two solutions for critical g̃i for a given value of α. There are points with
g3 < 0 for which Mφ1

is positive, but there are also those where Mφ1
< 0. We illustrate that

in Fig. 4 for m = 1, N = 6. The behavior for m = 1 and N > 6 as well for m = 2, N ≥ 7, and
more generally N ≥ min(m+ 5,2m), is similar (we use the notations m ≤ N −m). There are
always values of α ≤ αc such that g3,Mφ1

< 0, and hence the corresponding critical points
exhibit persistent symmetry breaking.

12Note that Mφi
has the non-canonical scaling dimension of d+εi

2 .
13As we explained in section 2.1, in the large rank limit the couplings must satisfy α → 1, and therefore

ε1 = ε2 = ε.
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Figure 4: Critical value of g3 as a function of α for m= 1, N = 6 case. Orange region
corresponds to Mφ1

< 0.

4 Discussion

In this paper we constructed and studied a three-dimensional model comprised of two copies
of the generalized free fields φ1,2 in the fundamental representation of O(m) and O(N −m)
respectively. The bare dimensions are tuned such that quartic interactions are weakly rele-
vant and consequently the model can be analyzed using conformal perturbation theory. One
key property of our model is that it exhibits global continuous symmetry breaking at arbitrar-
ily large temperatures. To our knowledge this is the first example of a UV complete unitary
3d model exhibiting persistent breaking of a continuous global symmetry. It bypasses the
Coleman-Hohenberg-Mermin-Wagner no-go theorem [29–31] by incorporating non-local in-
teractions.14

Besides N and m the model is parametrized by α = ε1/ε2, where ∆1,2 = (d − ε1,2)/4 are
bare scaling dimensions of fundamental fields and we work in the regime εi � 1 to leading
order in εi .

We found that the resulting IR flow terminates at the fixed points located in the perturbative
vicinity of the origin. In this sense our model is similar to the Banks-Zaks construction [52]. In
the infinite N limit, we find a conformal manifold, which is in fact a circle. It includes points
where the coupling constant g3, that controls the coupling between O(m) and O(N−m) fields,
vanishes, and the model degenerates into two decoupled long range models, one of which is
free and the other critical. It also includes a point where global symmetry is enhanced to O(N).
For us of particular interest are the fixed points with g3 < 0, as this is a necessary (but not
sufficient) condition for the symmetry to be broken at finite temperature. For large but finite
N we have a continuous family of CFTs parametrized by εi . The perturbative fixed points with
g3 < 0 also survive for finite N . This behavior continues up to small values of N . Assuming
m≤ N −m, we find that g3 < 0 fixed points exist for any N ≥max(m+ 5,2m).

At zero temperature, 〈φ2
i 〉 = 0 and the full O(m)×O(N −m) symmetry is preserved. We

argue this is a unitary theory with full conformal symmetry, not merely a set of scale-invariant
fixed points. For that purpose we show that the anomalous dimensions are real. We also
study two- and three-point functions. Working at the linear order in ε1,2 we demonstrate that

14Placing a theory on a curved spacetime is another way to bypass the CHMW theorem. For instance, the O(N)
model in AdS evades it [51], but at high temperatures the symmetry is restored in this model.
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two-point functions of the operators with different scaling dimensions vanish, as required by
full conformal symmetry. Furthermore, within the same approximation three-point functions
exhibit the form consistent with the full conformal invariance. While our results do not con-
stitute a proof, they strongly suggest the interacting O(m)× O(N −m) theory is unitary and
conformal, which extends previous results [37] arguing for conformality of the interacting
long range O(m) model.

At finite temperature T certain fixed points with g3 < 0, which appear for
all N ≥ max(m + 5, 2m) and particular α, exhibit spontaneous symmetry breaking
O(m) × O(N − m) → O(m − 1) × O(N − m). Since the theory is scale-invariant, symmetry
breaking persists at all temperatures. Thus our model provides a generalization of [8] which
considered the case of m= 1 and reported persistent breaking of discrete Z2 = O(1) symmetry.
The crucial ingredient in the present construction is the non-local interaction, which is neces-
sary to circumvent the CHMW no-go theorem. In contrast, existing examples of local theories
which exhibit persistent symmetry breaking are either UV-incomplete [1], or require fractional
dimensions [11,12] where unitarity is violated [34], or require strictly infinite N [14,16]. In
particular, it is still an open question whether persistent breaking of a discrete symmetry is
possible in a local, UV-complete, unitary, relativistic three-dimensional theory. A candidate for
such a model was suggested in [11, 12].15 However, it is hard to establish the existence of
PSB phenomenon in their model directly in 2 + 1 dimensions. A similar question regarding
continuous symmetry in 2+1 dimensions is answered by the CHMW theorem which prohibits
such a behavior. It would therefore be interesting to generalize the CHMW no-go result in
the context of local, UV-complete, unitary, relativistic three-dimensional theories with discrete
symmetries.

Our results prompt further research. Recently, generalized free fermionic models, per-
turbed by four-fermionic interaction, have been considered in [53]. It would be interesting
to see if such non-local models lead to conformal fixed points which can exhibit persistent
symmetry breaking. Beyond the fermionic QFTs one can ask a similar question already for the
lattice settings. It is well-known that in local, i.e. short range lattice models symmetries are
always restored at sufficiently large temperatures, of the order of the inverse lattice size [54].
This is also the case for models with exponentially decaying interactions, which should be
regarded as local in all physical senses. The question our work poses is to see if for lattices
with the polynomial interactions the results of [54] break down and if persistent breaking is
possible.
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