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Abstract

2-group symmetries arise when 1-form symmetries and 0-form symmetries of a theory
mix with each other under group multiplication. We discover the existence of 2-group
symmetries in 5d N = 1 abelian gauge theories arising on the (non-extended) Coulomb
branch of 5d superconformal field theories (SCFTs), leading us to argue that the UV 5d
SCFT itself admits a 2-group symmetry. Furthermore, our analysis determines the global
forms of the 0-form flavor symmetry groups of 5d SCFTs, irrespective of whether or not
the 5d SCFT admits a 1-form symmetry. As a concrete application of our method, we
analyze 2-group symmetries of all 5d SCFTs, which reduce in the IR, after performing
mass deformations, to 5d N = 1 non-abelian gauge theories with simple, simply con-
nected gauge groups. For rank-1 Seiberg theories, we check that our predictions for
the flavor symmetry groups match with the superconformal and ray indices available in
the literature. We also comment on the mixed ‘t Hooft anomaly between 1-form and
0-form symmetries arising in 5d N = 1 non-abelian gauge theories and its relation to
the 2-groupS.
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1 Introduction and Overview

1.1 Motivation

Generalized p-form global symmetries [1] have emerged as a fruitful tool for understanding
new and fundamental properties of quantum field theories (QFTs). The charged objects under
such p-form symmetries are p-dimensional, and symmetry generators are topological operators
of co-dimension p+ 1. The case p = 0 is the standard global symmetry case.

In this paper we will study higher-form symmetries, in particular 0- and 1-form symmetries
in 5d theories. In 5d, 0-form flavor symmetries can enhance at the strongly-coupled supercon-
formal field theory (SCFT) point [2], and have been studied from various perspectives. The
most comprehensive analysis is based on geometric considerations i.e. the realization of 5d
SCFTs as M-theory on singular Calabi-Yau threefolds, as obtained in [3–10]1. In these geomet-
ric studies, however, only the flavor symmetry algebra has been determined, not the global

1Alternative points of view using field theory arguments as well as brane-webs have appeared in e.g. [11–16].
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form of the flavor symmetry group 2. A possible way to constrain the global form was pro-
posed in [18], in terms of field theoretic constraints coming from t’ Hooft anomaly matching
between the 0-form and the 1-form symmetry anomaly present in 5d gauge theories. One of
the results in the paper is the derivation, from the geometry, of the global form, i.e. the 0-form
flavor symmetry group.

Central to this endeavour is the concept of the structure group, which is the group that
acts faithfully on all the states in the theory. We derive the structure group from the geometry,
which encodes all the generators of the symmetries (gauge and global symmetries), and the
charged states, arising from wrapped M2-branes. Quotienting the gauge and global symmetry
groups by the maximal group that acts trivially on the matter, results in the structure group.
The 0-form part of this is the global 0-form flavor symmetry group. We determine this in many
examples, including the rank 1 EN f +1 Seiberg theories, for which we show that the global
symmetry group is the maximally center reduced group except for N f = 1. For example,
for E1 = SU(2)0 the flavor algebra is su(2), and the global flavor symmetry group is SO(3).
This is consistent with the superconformal index [12] and with the proposal in [18]. More
generally, for all the rank 1 ENF+1 theories, the flavor group is in agreement with the results
of the superconformal index, and also the ray index of [19]. Note that we determine the
continuous, non-abelian part of the flavor symmetries, i.e. there could be additional discrete
factors and/or abelian factors.

In addition to 0-form symmetries, 5d SCFTs and gauge theories can also enjoy higher-form
symmetries. From the M-theory realization of 5d theories on singular Calabi-Yau three-folds,
one can identify both theories with 1-form (or magnetic dual 2-form) symmetries [20–22]
as well as 3-form symmetries [23]. Our focus here will be on 1-form symmetries O, which
characterize the spectrum of line operators of the 5d theory. If the theory has an IR gauge
theory description, the 1-form symmetry of the geometric construction and thereby the SCFT
is in agreement with that of the gauge theory (plus instanton particles). Again, these can
be computed purely from the geometry, and do not rely necessarily on an IR gauge theory
description. Global symmetries can have (mixed) ’t Hooft anomalies. In 5d such anomalies
were proposed in [18,24].

To fully determine the global symmetries of a theory, however, it is not enough to compute
the p-form symmetry groups: generalized global symmetries can form higher-group structures.
In the continuous case, this has a description in terms of gauge transformations of the back-
ground gauge fields, which mix with each other. In the case of discrete symmetries, such as
the 1-form symmetries in 5d, the higher-group structure is more subtle. It is the interconnec-
tion between all these aspects, and the exploration of 2-groups in 5d theories that are another
focus of this paper.

Higher-group symmetries arise when p-form and q-form generalized symmetry groups do
not form a direct product, but rather mix with each other [25]. In this paper, we study 2-
group symmetries, formed by 0- and 1-form symmetries, in a class of strongly coupled QFTs,
the aforementioned 5d SCFTs. Various works have studied higher-groups in QFTs in various
dimensions, see e.g. [25–40] where they are discussed from various points of view. Note that
since 5d and 6d SCFTs do not admit a conserved 2-form current multiplet [41], these theories
therefore do not admit continuous 1-form symmetries [38]. However, this does not preclude
the existence of discrete 1-form symmetries, and 2-group structures in which these discrete
1-form symmetries participate.

The 5d SU(2)0 theory, despite its deceptive simplicity, incorporates most of these effects:
it has a non-simply connected global flavor symmetry F = SO(3), a 1-form symmetry O = Z2,
and we show it has a 2-group symmetry, which becomes clearly visible when we deform the

2See a recent work [17] which determines the global form of flavor symmetry groups of 4d N = 2 Class S
theories.
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conformal vacuum to a non-conformal vacuum lying on the Coulomb branch of vacua3 of this
SCFT. The low-energy theory after choosing such a non-conformal vacuum is a U(1) gauge
theory with su(2) flavor symmetry algebra and Z2 1-form symmetry, such that the associated
flavor symmetry group is SO(3) which forms a non-trivial 2-group with the Z2 1-form symme-
try. We observe that this 2-group symmetry continues to hold as we include states of arbitrarily
large energies, leading us to propose that the 2-group symmetry must be a property of the UV
SCFT itself, rather than an emergent property of the low-energy abelian gauge theory descrip-
tion.

Given this rich structure, we devote an entire section of the paper to this theory, which
provides a detailed exposition of the structures in this paper in the simplest possible setting
– and the readers wanting to understand the main conceptual points, may well focus their
attention on section 3. In this context we also discuss the theory obtained after gauging the 1-
form symmetry: the SO(3)0 theory. This has a 2-form symmetry Z2 and we provide evidence
for its global flavor symmetry to be SO(3) as well. If the 2-group symmetry of the SU(2)0
theory is non-anomalous, the SO(3)0 theory has a mixed 0 − 2-form symmetry anomaly – a
general effect when gauging 1-form symmetries in non-anomalous 2-groups.

1.2 Overview of Results

In this more technical part of the introduction, we provide a road map of the results in the
paper. In particular, we give a summary of the relevant concepts, such as the structure group,
the 2-group symmetry and provide an overview of the results.

2-Groups. The class of 2-group symmetries studied in this paper can be understood as an
“extension” of the 0-form symmetry group F (which is taken to be a compact Lie group) of
a QFT T by the 1-form symmetry group O (which is taken to be a finite group) of T. The
“extension class” [P3], often referred to as the Postnikov class, is an element of H3(BF ,O),
which controls the background fields for F and O as follows

δB2 = B∗1P3 , (1)

where P3 ∈ C3(BF ,O) is an O valued 3-cochain on the classifying space BF of F which is
a representative of [P3], B2 ∈ C2(M ,O) is an O valued 2-cochain describing the background
field for 1-form symmetry on the spacetime manifold M , and B∗1 is the pull-back associated to
the map B1 : M → BF describing the background principal F -bundle on M . The relation (1)
has the following two important consequences:

• The 1-form symmetry background field B2 is not closed in the presence of a non-trivial
0-form symmetry background B1.

• The 0-form symmetry backgrounds B1 are constrained such that the pullback B∗1[P3] of
the Postnikov class [P3] to spacetime M is trivial4.

In section 2.1 we discuss how such 2-groups arise naturally in gauge theories, with the
2-group structure being formed between electric5 1-form symmetry and flavor 0-form sym-
metry associated to matter content. It turns out in this analysis that, under some technical

3This is the non-extended Coulomb branch since we are not turning on mass parameters (i.e. the SU(2)0 inverse
gauge coupling).

4In other words, the Postnikov Class [P3] can be thought of as the obstruction class for lifting a 0-form bundle
to a 2-group bundle.

5We do not consider magnetic 1-form symmetries in our analysis as our natural application is to 5d gauge
theories while magnetic 1-form symmetries arise only in 4d gauge theories. The magnetic 1-form symmetries can
also form 2-groups as discussed in [37].
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assumptions, the Postnikov class can be described as

[P3] = Bock
�

[v2]
�

, (2)

where Bock is the Bockstein homomorphism in the long exact sequence in cohomology asso-
ciated to a short exact sequence

0→O→ E → Z → 0 , (3)

where O is the electric 1-form symmetry group, Z appears in the 0-form flavor symmetry
group as

F = F/Z , (4)

where F is the simply connected group associated to the flavor Lie algebra f, and thus Z is the
subgroup of the center ZF of F that is modded out to give rise to the 0-form symmetry group
F . E is an extension of Z by O determined by the matter content, and [v2] ∈ H2(BF ,Z) is
the characteristic class capturing the obstruction of lifting F bundles to F bundles.

It should be noted that the 2-group structure is non-trivial only if the Postnikov class (2)
is a non-trivial element of H3(BF ,O). However, the Bockstein homomorphism applied to
[v2] may lead to trivial elements of H3(BF ,O). A trivial example of this situation occurs if
the short exact sequence (3) splits, in which case the Bockstein homomorphism is the trivial
homomorphism and so we obtain a trivial Postnikov class by applying Bock to [v2]. In all the
cases studied in this paper, we confirm that H3(BF ,O) is non-trivial, so that it is possible for
(2) to be non-trivial if (3) does not split. However, we have not been able to confirm that (2) is
indeed non-trivial for a few cases appearing in this paper. We highlight these cases in section
1.3.

Flavor groups and 2-groups in 5d SCFTs and SQFTs. We apply the general analysis of
section 2.1 to 5d SCFTs. In particular in section 2.2.1, we apply this to the 5d N = 1 abelian
gauge theory arising in the IR when a 5d SCFT is studied with a choice of non-conformal
vacuum lying on its Coulomb branch (CB) of vacua6. We use the M-theory construction of
the 5d SCFTs to determine information about the matter content in this abelian gauge theory.
This analysis determines a 0-form flavor symmetry group F and possibly a 2-group symmetry
for the abelian theory. We propose that F should be identified as the 0-form flavor symmetry
group of the UV 5d SCFT itself7, and similarly the 2-group symmetry in the abelian theory
should also be identified as 2-group symmetry of the UV 5d SCFT. This is because the 0-form
flavor group F and the 2-group symmetry remain invariant as we include states of arbitrarily
high energies as matter content into the above abelian gauge theory, reflecting that F and
2-group are properties of the UV theory itself, which is the 5d SCFT.

In section 2.2.2, we study 5d supersymmetric QFTs (SQFTs) obtained after mass deforming
5d SCFTs. The 0-form flavor symmetry group and possible 2-group symmetry of such a 5d
SQFT can be obtained in a similar fashion by applying the analysis of section 2.1 to the 5d
N = 1 abelian gauge theory arising in the IR when we choose some generic non-conformal
vacuum lying on the CB of vacua8 of the 5d SQFT. Even though we use a generic vacuum in

6Here it should be noted that no mass parameters have been turned on, so the 5d SCFT has not been deformed.
In other words, we are studying the theory on non-extended CB, which is a specific sub-locus of the extended CB,
where the masses and tensions of various dynamical particles and strings have been tuned such that the resulting
theory admits the full flavor symmetry of the 5d SCFT, and thus the theory can be coupled to backgrounds for this
symmetry.

7It should be noted that we restrict our attention to global form of flavor groups associated to the non-abelian
part of the flavor symmetry algebra only.

8Again, this should be understood as a particular sub-locus of the full extended CB. In fact the full extended CB
is by definition the total space formed when the CB of vacua of the 5d SCFT and all the 5d SQFTs (obtained by
mass deforming the 5d SCFT) are fibered over the space of mass deformations.
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CB of the SQFT to derive results about 0-form groups and 2-groups, they continue to hold at
non-generic vacua in CB of the SQFT, since these results are properties of the UV SQFT itself.

The prime example, where we illustrate this, is the SU(2)0 SCFT, which we show to have a
2-group symmetry. For this SCFT, we determine the flavor symmetry group to be SO(3). The
flavor symmetry is broken to U(1) after turning on the mass parameter (which can be identified
as the inverse gauge coupling for the SU(2) gauge group), and the resulting 5d SQFT does not
admit a 2-group symmetry. This 5d SQFT admits a special point in its CB of vacua where the
low-energy theory is the 5d N = 1 non-abelian pure SU(2)0 gauge theory.

0-form/2-form mixed anomaly. As discussed in [25], if a theory has a 2-group without any
‘t Hooft anomaly, then one can gauge the 1-form symmetry to obtain another theory which
has a dual (d − 3)-form symmetry (where d is the spacetime dimension) which does not mix
with 0-form symmetry to form a higher-group structure, but there is a mixed ‘t Hooft anomaly
between the (d − 3)-form and 0-form symmetries. This can be concretely illustrated in the
gauge theory context of section 2.1, which we discuss in section 2.3. If we consider a 5d
SCFT/SQFT having a 2-group symmetry, we would expect to see a mixed ‘t Hooft anomaly
between 2-form and 0-form symmetries in the 5d SCFT/SQFT obtained after gauging the 1-
form symmetry of the starting 5d SCFT/SQFT, provided that the 2-group symmetry in the
starting 5d SCFT/SQFT is non-anomalous.

Perturbative 2-group symmetries. An interesting characterization of our results arises when
a 5d SCFT can be mass deformed such that the resulting theory can be described in the IR by
a 5d N = 1 non-abelian gauge theory. As is well-known, in such a case, the non-abelian flavor
symmetries of the 5d SCFT can be characterized as either perturbative or instantonic, with
perturbative symmetries being the ones visible at the level of the 5d N = 1 non-abelian gauge
theory, while non-abelian instantonic symmetries are not visible at the level of gauge theory
(only its abelian part is visible).

For perturbative symmetries, one would expect the global form of 0-form flavor symmetry
group and 2-groups to be visible at the level of non-abelian gauge theory. Indeed, this turns
out to be the case sometimes. An example is provided by SU(4) gauge theory with Chern-
Simons (CS) level 2 and a hyper in 2-index antisymmetric irreducible representation (irrep)
of the SU(4) gauge group. There is a perturbative su(2) flavor symmetry algebra rotating the
antisymmetric hyper. Using the general gauge theoretic analysis of section 2.1, one finds that
at the level of gauge theory, the 0-form flavor symmetry group corresponding to the su(2)
flavor algebra should be SO(3), which should further mix with the Z2 1-form symmetry to
give rise to a non-trivial 2-group structure. In this case, we find the same results by analyzing
the CB of the corresponding 5d SCFT.

However, in some other cases, we find that the non-abelian gauge theory expectations are
modified at the conformal point. An example is provided again by SU(4) gauge theory with a
hyper in 2-index antisymmetric irrep but now with CS level 0. The gauge theory expectation
is insensitive to CS level, so we would expect same results as for the case with CS level 2.
Instead, the CB of 5d SCFT tells us that the correct 0-form flavor symmetry group is SU(2)
instead of SO(3) and furthermore the SU(2) 0-form symmetry does not mix with the Z2 1-form
symmetry to form a 2-group. This mismatch between the non-abelian gauge theory expecta-
tion and the correct answer at the conformal point can be fixed by accounting for instanton
particles as providing extra matter content in the non-abelian gauge theory while performing
the computation of section 2.1. In section 2.2.3, we gather the required information about
the instanton particles which when accounted in the computation of 2.1 leads to the correct
prediction for global form of 0-form flavor symmetry groups and 2-group symmetries of the
corresponding 5d SCFT.
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Instantonic 2-group symmetries. On the other hand, we find that the instantonic symme-
tries can also form 2-groups, but such 2-groups cannot be understood straightforwardly in
terms of non-abelian gauge theory plus instantons. An example of instantonic 2-group sym-
metry is provided by the 5d SCFT that describes UV completion of 5d N = 1 pure SU(2)
gauge theory with vanishing discrete theta angle, which has an instantonic su(2) flavor sym-
metry algebra. We find that the associated 0-form flavor symmetry group is SO(3)which forms
a non-trivial 2-group with the Z2 1-form symmetry.

This analysis is generalized in section 4, where we study 2-group symmetries (and, in the
process, global forms of 0-form flavor symmetry groups) of 5d SCFTs that admit a mass defor-
mation, such that after the deformation, the low energy theory can be described by some 5d
N = 1 non-abelian gauge theory with a simple, simply connected gauge group [42,43]. This
is done by applying the analysis of section 2.2.1 to these 5d SCFTs. The M-theory construc-
tions of these theories (including non-abelian flavor symmetries) are taken from [10], whose
analysis was based on [9]. We collect the theories showing potentially non-trivial 2-group
structures in section 1.3.

SU(2)0 Seiberg Theory. We devote section 3 to a detailed study of the above-discussed 5d
SCFT that describes UV completion of 5d N = 1 pure SU(2) gauge theory with vanishing dis-
crete theta angle. In sections 3.1 and 3.2, we describe in detail how the M-theory construction
of the theory leads one to conclude that the 0-form symmetry group of the theory is SO(3) and
that it mixes withZ2 1-form symmetry to form a non-trivial 2-group symmetry. Key to this anal-
ysis is the structure group of the abelian gauge theory arising on the Coulomb branch which
relies on non-perturbative input from geometry. In section 3.3, we provide an alternative way
to derive the structure group for this theory that only utilizes the low-energy prepotential and
does not require the details of the geometry and the corresponding non-perturbative input.
In Section 3.4, we argue that the 2-group can be thought of as being induced due to a global
anomaly cancellation for the worldsheet theory of strings ending on branes involved in a Type
IIB construction of the 5d theory.

In section 3.5, we provide additional evidence for the results of sections 3.1 and 3.2. We
compactify the 5d SCFT on a circle of non-zero radius, and study the low-energy theory at a
special point on the resulting 4d CB of vacua. This low-energy theory is a U(1) gauge theory
with 2 massless electrons of charge 2 [44]. The su(2) flavor symmetry rotating the electrons is
the 4d avatar of the instantonic flavor symmetry of the 5d SCFT, and the abelian theory has aZ2
1-form symmetry because the charge of electrons is an even integer, which can be identified as
the avatar of the Z2 1-form symmetry of the 5d SCFT. Applying the general analysis of section
2.1, we find that the low-energy 4d abelian gauge theory should have an SO(3) 0-form flavor
symmetry group which forms a non-trivial 2-group with the Z2 1-form symmetry. We propose
that this 2-group is simply the 4d avatar of the proposed 2-group of the 5d SCFT.

Mixed Anomaly and Higgs branch Matching. In section 3.6, we discuss the relationship
between the 2-group structure for this 5d SCFT proposed in this paper and the mixed 0-form/1-
form anomaly in the low-energy SU(2)0 gauge theory discussed in [18]. This anomaly is
between the Z2 1-form symmetry and U(1)I 0-form symmetry associated to instanton current.
In [45] this anomaly with the U(1)I symmetry was derived from the M-theory reduction on
the link (meaning boundary of the Calabi-Yau realization of the 5d SCFT) reduction. This
mixed anomaly should lift to an anomaly of the 2-group symmetry at the conformal point,
depending on the non-abelian flavor symmetry SO(3). Such a lift, which is compatible with
the 2-group should be possible and we will return to this question in the future. Another
interesting question is how the mixed anomaly is matched on the Higgs branch (HB). We
propose a mechanism to do so, by coupling the sigma-model on the Higgs branch to a 5d Z2
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gauge theory, which realizes the 1-form symmetry.
Another possibility is that there are additional topological sectors that make the 2-group

non-anomalous, in which case, as discussed in section 3.7, one can apply the analysis of section
2.3 to deduce that the global form of the 0-form symmetry group of the 5d SCFT UV completing
the 5d pure SO(3)0 gauge theory is SO(3) which has a mixed anomaly with the magnetic Z2
2-form symmetry. In section 3.8, we comment on the superconformal indices of SU(2)0 and
SO(3)0 SCFTs and the relationship of the index to the global form of 0-form symmetry groups
of these 5d SCFTs.

Flavor Groups of EN f +1 Seiberg Theories. In section 3.9, we use our method to deduce
the global form of 0-form symmetry group of Seiberg theories, which do not admit 1-form
symmetries. This is to illustrate that our method can be applied to deduce 0-form symmetry
groups even when a 5d SCFT has no 1-form symmetry and hence cannot form any 2-group
structure. We find that the flavor group is centerless for N f 6= 1, which is in agreement with
superconformal indices of these theories. We also explain how this result is consistent with
the ray indices of these theories which exhibit representations charged non-trivially under the
flavor center, whose presence would naively seem to suggest that the flavor group is the center-
full simply connected one. In the process of the resolution of this apparent contradiction, we
find that the geometric information needed for our computation is equivalently encoded in the
ray indices.

Appendices. Appendix A.1 reviews the background material needed to understand the ge-
ometric computations performed in the paper. Appendix A.2 reviews how the charges under
center symmetries are encoded in geometry, which form the backbone of the geometric compu-
tations performed in the paper. Appendix A.3 computes the flavor center charges of instantons
which can be used to apply the analysis of section 2.2.3. Appendix B contains the details to
determine the mixed anomaly between 0-form and 1-form symmetries for general 5d gauge
theories, studied in [18] for SU(N). We also review a cubic ‘t Hooft anomaly for 1-form sym-
metries in 5d SU(N) gauge theories [24].

1.3 Single-Node Gauge-Theoretic 5d SCFTs with 2-Group Symmetry

In this subsection, we list all 5d SCFTs lying in a particular class which exhibit 2-group symme-
tries. This class of SCFTs is defined by demanding the existence of a mass deformation which
reduces the theory in the IR to some 5d N = 1 non-abelian gauge theory with a simple, simply
connected gauge group and was studied extensively in [10,42,43]. We present our results in
a tabular form in table 1 and we refer the reader to section 4 for more details. Different rows
of the table denote different 5d SCFTs T. The corresponding 5d gauge theories are displayed
in the first column as

G +⊕iniRi , (5)

where G denotes the gauge group, Ri denotes an irreducible representation of G and ni denotes
the number of full hypermultiplets present in the theory that transform in the representation
Ri . Ri = F denotes fundamental representation for G = SU(n) and vector representation for
G = Spin(n). Ri = Λ2 denotes 2-index antisymmetric irrep for G = SU(n), Sp(n). Ri = S
denotes a spinor irrep for G = Spin(n). A subscript k for G = SU(n); n ≥ 3 denotes that
the CS level is k. A subscript 0 for G = Sp(n), SU(2) denotes that the discrete theta angle is
0. An equality between two gauge theories denotes the fact that the 5d SCFT UV completing
the two gauge theories is same. The second column lists the 1-form symmetry group OT of
the 5d SCFT T which participates in the 2-group structure. The third column displays the 0-
form flavor group FT participating in the 2-group structure. The fourth column lists another
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Table 1: Various 5d SCFTs exhibiting 2-group symmetries. T labels the theory, O
the 1-form symmetry, F the global flavor symmetry group. The last column indi-
cates whether the Postnikov class is known or not. See text for details on how to
read the table. Zdiag

2 is the diagonal Z2 subgroup of the center ZSU(2)
2 ×ZSp(4n−2)

2 of

SU(2)× Sp(4n− 2), where ZSU(2)
2 is the center of SU(2) and ZSp(4n−2)

2 is the center
of Sp(4n− 2).

T OT FT F ′ Confirmed?

SU(2)0 Z2 SO(3) SU(2) Ø
SU(2n)2n Z2n SO(3) SU(2)
Sp(2m− 1)0 +Λ2

= SU(2m)m+4 +Λ2
Z2 SO(3)× SU(2) SU(2)× SU(2) Ø

Sp(2m)0 +Λ2 Z2 SO(3)× SU(2) SU(2)× SU(2) Ø
SU(2n)4 + 2Λ2 Z2 SO(3)× SO(3) SU(2)× SO(3) Ø
SU(2n)0 + 2Λ2 Z2 SO(3)× SU(2) SU(2)× SU(2) Ø
Spin(4n) + (4n− 3)F Z2 PSp(4n− 2) Sp(4n− 2) Ø
Spin(2n+ 1) + (2n− 3)F Z2 SO(3)× Sp(2n− 3) SU(2)× Sp(2n− 3) Ø
Spin(4n+ 2) + (4n− 2)F Z2 SO(3)× PSp(4n− 2) SU(2)×Sp(4n−2)

Zdiag
2

Ø

Spin(4n) + (4n− 4)F Z2 SO(3)× PSp(4n− 4) SU(2)× PSp(4n− 4) Ø
Spin(4n+ 2) + 4mF ;
0≤ m≤ n− 1

Z2 PSp(4m) Sp(4m)

Spin(4n+2)+ (4m+2)F ;
0≤ m≤ n− 2

Z2 PSp(4m+ 2) Sp(4m+ 2) Ø

SU(4)2 +Λ2 Z2 SO(3) SU(2) Ø
SU(4)2 + 3Λ2 Z2 PSp(3)× SU(2) Sp(3)× SU(2)
Spin(7) + 3F Z2 SO(3)× Sp(3) SU(2)× Sp(3) Ø
Spin(12) + 2S Z2 SO(3)3 SU(2)2 × SO(3)2 Ø

group F ′ such that FT = F ′/Z2. The Postnikov class [P3] of the 2-group can be described in
each case as in (2) where [v2] describes a characteristic class in H2(BFT,Z2) which describes
the obstruction of lifting FT bundles to F ′ bundles. The short exact sequence defining the
Bockstein homomorphism in (2) takes the following form in every case

0→ Z2p→ Z4p→ Z2→ 0 , (6)

where p is determined by identifying the first group Z2p with the 1-form symmetry group OT

of T. Finally, the fifth column lists whether the presence of a non-trivial 2-group has been
confirmed, i.e. whether it is known to the authors that the Postnikov class of the 2-group is
non-trivial.

2 2-Groups and Global Form of Flavor in Gauge Theories

In this section we will develop the general theory, to describe the 2-group symmetries in 5d
gauge theories, as well as the global form of the flavor symmetry group. Key to this analysis
is the concept of the structure group, which we introduce first. In the next section, we will
exemplify this general theory with the case of the rank 1 theory SU(2)0, which exemplifies all
of these aspects.
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2.1 The Structure Group and 2-Group Symmetry

Consider a gauge theory with

G : Gauge group, with center ZG and Lie algebra g

F : Simply connected group, with center ZF , associated to the flavor symmetry algebra f

Define E such that

ZG × ZF ⊃ E =maximal subgroup that acts trivially on matter fields. (7)

The structure group of the theory is then

S =
G × F
E

. (8)

The 1-form symmetry of the theory is the subgroup of E formed by elements of the form (∗, 0)

O = {(∗, 0) ∈ E ⊂ ZG × ZF} . (9)

We define the projections
πG : ZG × ZF → ZG

(α,β) 7→ α
πF : ZG × ZF → ZF

(α,β) 7→ β .

(10)

We then have
E ′ E Z

O′ O 0

πG πF

πG πF
(11)

Notice that O′ 'O. The 0-form flavor symmetry group of the theory is then

F = F
πF (E)

=
F
Z

. (12)

Notice that the above groups form a short exact sequence9

0→O→ E → Z → 0 . (13)

Let us assume that the projectionπG of E to ZG is injective, which is equivalent to the condition
E ′ ' E . Let us also define

Z ′ := E ′

O′
. (14)

Notice that Z ′ ' Z if the above assumption holds. Then, the primed groups satisfy a short
exact sequence

0→O′→ E ′→ Z ′→ 0 , (15)

which is isomorphic to (13).

9In this paper we represent all abelian groups as additive groups. Thus, the trivial group is denoted by 0 instead
of 1.
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When the 0-form symmetry background is trivial, the 1-form symmetry background can
be described by an element B ∈ H2(M ,O), where M is the spacetime manifold. The gauge
theory then sum over G/O′ gauge bundles with

w2 = B , (16)

where w2 captures the obstruction to lifting a G/O′ bundle to a G bundle.
Let us turn on a 0-form symmetry background described by a F = F/Z bundle with

v2 ∈ H2(M ,Z) capturing the obstruction of lifting the F/Z bundle to an F bundle. Now
the gauge theory sums over a class of G/E ′ bundles. Let v′2 ∈ H2(M ,Z ′) capture the obstruc-
tion of lifting a G/E ′ bundle to a G/O′ bundle. The 1-form symmetry background B fixes the
further obstruction w2 of lifting G/O′ bundle to a G bundle. Since we do not have a genuine
G/O′ bundle, w2 is not necessarily closed anymore. We have

δw2 = Bock(v′2) , (17)

where Bock is the Bockstein map in the long exact sequence in cohomology

· · · → H2(M ,O′) H2(M ,E ′) H2(M ,Z ′)

H3(M ,O′) H3(M ,E ′) H3(M ,Z ′)→ ·· ·
Bock (18)

associated to the short exact sequence (15). Moreover, the structure group (8) implies that

v′2 = v2 . (19)

The gauge theory sums over all G/E ′ bundles with v′2 specified by v2 as in (19), w2 specified
by B as in (16), and v′2, w2 related by the Bockstein as in (17).

Substituting (16) and (19) into (17), we obtain the relationship

δB = Bock(v2) (20)

between the 1-form and 0-form backgrounds, which expresses the fact that the 1-form sym-
metry O and 0-form symmetry F sit in a 2-group whose Postnikov class is

Bock(bv2) ∈ H3(BF ,O) , (21)

where bv2 ∈ H2(BF ,Z) is the characteristic class capturing obstruction of lifting F = F/Z
bundles to F bundles.

We will also need to consider a small extension of the above situation. Assume that the
projection E → E ′ is not injective, but we can write E = E1×E2 such that O ⊆ E1, the projection
of E1 onto ZG is injective, and the elements in E2 are of the form (0,∗) ∈ ZG×ZF . Let us define
E ′1,E ′2 as projections of E1,E2 onto ZG , and Z1,Z2 as projections of E1,E2 onto ZG . Notice that
E ′2 = 0, E ′ = E ′1 ' E1, Z2 ' E2 and Z = Z1 ×Z2. These groups sit in a short exact sequence

0→O→ E1→ Z1→ 0 . (22)

We can decompose v2 ∈ H2(M ,Z1 ×Z2) as v2 = v2,1 + v2,2 where v2,1 ∈ H2(M ,Z1) describes
the obstruction of lifting an F/Z bundle to an F/Z2 bundle and v2,2 ∈ H2(M ,Z2) describes
the obstruction of lifting an F/Z bundle to an F/Z1 bundle. We sum over G/E ′ bundles such
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that v′2 = v2,1 where v′2 ∈ H2(M ,Z1) captures the obstruction of lifting G/E ′ bundles to G/O′
bundles. This leads us to a 2-group with

δB = Bock(v2,1) , (23)

where Bock is the Bockstein associated to (22). The Postnikov class is

Bock(bv2,1) ∈ H3(BF ,O) , (24)

where bv2,1 ∈ H2(BF ,Z1) is the characteristic class capturing obstruction of lifting F = F/Z
bundles to F/Z2 bundles. We recover the previous case, where E → E ′ is an injective map, if
E2 = 0.

Summary criteria for 2-group symmetries. In summary, we can provide two clear criteria
when a non-trivial 2-group symmetry is present. In the first criterion, we assume that the
following two conditions are satisfied:

• The projection map πG : E → ZG is an injective homomorphism.

• The Postnikov class (21) is a non-trivial element of H3(BF ,O). In particular, the short
exact sequence 0 → O → E → Z → 0 cannot split, i.e. one cannot write E ' O ×Z,
since in that case the Bockstein homomorphisms associated to the short exact sequence
become trivial and the Postnikov class (21) must be trivial.

If these two conditions are satisfied, then we have a non-trivial 2-group structure between
1-form symmetry group O and 0-form symmetry group F with Postnikov class (21).

In the second criterion, we assume that the following two conditions are satisfied:

• We can write E = E1 × E2 such that O ⊆ E1, the projection map πG : E1 → ZG is an
injective homomorphism, and the projection πG(E2) = 0.

• The Postnikov class (24) is a non-trivial element of H3(BF ,O). In particular, the short
exact sequence 0→O→ E1→ Z1→ 0 cannot split.

If these two conditions are satisfied, then we have a non-trivial 2-group structure between the
1-form symmetry group O and the 0-form symmetry group F with Postnikov class (24).

We emphasize that the first condition in both criteria is a technical assumption. It should
be possible to drop this assumption and study the most general case, but all the examples
appearing in this paper can be studied using the above two criteria.

2.2 Application to 5d SCFTs

We now analyze global forms of flavor symmetry groups and 2-groups for 5d SCFTs and 5d
SQFTs obtained by mass-deforming the 5d SCFTs.

2.2.1 At Conformal Point

In this paper, we apply the general setup discussed in the previous subsection to 5d SCFTs that
can be constructed as M-theory compactified on singular Calabi-Yau three-folds that admit
crepant (i.e. Calabi-Yau) resolutions. Actually, M-theory compactified on such a three-fold
only produces a relative 5d theory which has a spectrum of extended operators that are non-
local with each other. An absolute 5d theory is defined by choosing a maximal subset of
extended operators that are mutually local. In this class of theories, there always exists a
canonical choice such that the corresponding absolute 5d SCFT may have 1-form symmetries
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but cannot have 2-form symmetries. In the M-theory realization this is realized by the choice
of asymptotic G4-fluxes [20]. It is believed that there are no further obstructions that disallow
this choice10. In this paper, a 5d SCFT always refers to a theory in the above-discussed class
of M-theory compactifications and furthermore, unless otherwise stated, it is always assumed
that it is the absolute theory obtained by making the above-mentioned canonical choice for
the spectrum of extended operators.

Consider such a 5d SCFT T. Let us denote the non-abelian part of the 0-form flavor sym-
metry algebra of T as f 11. Let the simply connected group associated to f be denoted as F ,
and the center of F be denoted as ZF . Also, let OT denote the 1-form symmetry group of T.
The fully resolved threefold XT associated to T carries irreducible compact Kähler surfaces Si
labeled by i = 1, 2, · · · , r and irreducible P1 fibered non-compact Kähler surfaces Ni labeled by
i = 1, 2, · · · , r f , where r f is the rank of f and r is often called the “rank of 5d SCFT T”. The full
dictionary was determined in [46], with the complete characterization of the Coulomb branch
to geometry determined in [47]. In addition XT contains various compact curves Ci , with the
P1 fibers fi of Ni forming a subset of all compact curves Ci . At the conformal point of T, the
volumes of all Si , Ci are zero.

Let us now move onto a generic Coulomb branch (CB) vacuum of T 12. The compact
surfaces Si acquire non-zero volumes. On the other hand, the P1 fibers fi of Ni remain at zero
volume, since their volumes are proportional to mass parameters of T. The M-theory 3-form
gauge field C3 reduced along Si gives rise to a dynamical ordinary (1-form) gauge field which
is associated to a U(1)(g)i gauge group. The above discussed canonical choice for the absolute
5d theory is realized as follows: for every i, there exists a Wilson line operator Wi which has
charge +1 under U(1)(g)i and charge 0 under U(1)(g)j for j 6= i. In other words, for every i,
a single M2-brane is allowed to wrap the non-compact 1-cycle Ci which is Poincare dual to
the surface Si . Thus, at a generic point in CB, we obtain a 5d N = 1 abelian gauge theory
with gauge group G =

∏

i U(1)(g)i ' U(1)r and non-abelian part of flavor symmetry algebra
being f. M2-branes wrapping compact curves in XT give rise to matter content for the abelian
gauge theory13. The U(1)(g)i charge q(g)i (C) of matter content associated to a curve C can be
obtained as

q(g)i (C) = −Si · C , (25)

where Si · C is the intersection number between Si and C inside XT. This is also the charge
under the center ZG of G since ZG = G. Similarly, one can also determine Z ( f )a charge q( f )a (C)
of matter content associated to C where ZF =

∏

a Z ( f )a such that each Z ( f )a ' Zna
for some

na > 1. We have [21]
q( f )a (C) = −Na · C (mod na) , (26)

such that
Na =

∑

i

αa,i Ni , (27)

where the coefficients αa,i are collected in appendix A.2.
We can now apply the analysis of section 2.1 to the above gauge theory with gauge group

G =
∏

i U(1)(g)i ' U(1)r and matter content provided by all compact curves Ci of XT. This

10But other choices related to this canonical choice by gauging of 1-form symmetries may be obstructed, for
example by ‘t Hooft anomaly of 1-form symmetry etc.

11We believe that including the abelian parts, which exist in some SCFTs, will lead to futher extension of this
result. However, we leave the incorporation of abelian symmetries for future work since we currently do not
completely understand how abelian symmetries are encoded in M-theory.

12Note that we do not turn on any mass parameters.
13The matter content associated to a compact curve C is massless or massive respectively depending on whether

C has zero volume or non-zero volume.
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method was used by [20] to determine the 1-form symmetry group OT of the 5d SCFT T by
proposing that

OT 'O , (28)

where O is the group appearing in the analysis of section 2.1. In a similar vein, we propose
that the 0-form symmetry group FT of the 5d SCFT T is14

FT ' F , (29)

where F is obtained by applying the analysis of section 2.1 to the abelian gauge theory arising
on the CB of T. Moreover, we propose that the 0-form symmetry FT and 1-form symmetry OT

of the 5d SCFT form a 2-group structure with Postnikov class (24). The 2-group structure is
non-trivial if the Postnikov class is non-trivial.

Our proposals for FT and 2-group structures are justified by the fact that we have included
the contributions from all the curves in the geometry to compute these. This means that we
have included the contributions of arbitrarily massive states15 in the theory (e.g. massive BPS
particles and their non-bound combinations). Thus, FT and 2-group structure continue to
hold at arbitrarily high energies leading us to conclude that FT and 2-group structure should
be regarded as properties of the UV 5d SCFT 16.

2.2.2 After Mass Deformations

We can also consider 5d supersymmetric quantum field theories (SQFTs) obtained by mass
deforming 5d SCFTs. Let us consider a mass deformation such that the resulting SQFT T′

has flavor symmetry f′ ⊕ u(1)r f −r ′f ⊂ f where f′ is a non-abelian flavor algebra whose Dynkin
diagram embeds into the Dynkin diagram of f. The subalgebra f′ is associated to irreducible
non-compact surfaces Ni′ for i′ = 1, · · · , r ′f where r ′f is rank of f′. The P1 fibers fi′ of Ni′ remain

at zero volume under the deformation. On the other hand, the P1 fibers fq of remaining r f − r ′f
irreducible non-compact surfaces Nq for q = 1, · · · , r f − r ′f acquire a non-zero volume under
the deformation.

Let the simply connected group associated to f′ ⊕ u(1)r f −r ′f be F ′ × U(1)r f −r ′f with the
center of F ′ being Z ′F . Naively one might think that U(1)r f −r ′f is associated to the surfaces
Nq. However, the P1 fibers fi′ of Ni′ are in general charged under Nq. As a consequence the

centers Z ′F and U(1)r f −r ′f mix with each other. To rectify this, one defines17 the surfaces N ′q

N ′q := nq

�

Nq +
∑

i′
αq,i′Ni′

�

, (30)

where the coefficients αq,i′ ∈Q are determined by requiring that

N ′q · fi′ = 0 ∀ i′ (31)

14It should be noted that this is only the “non-abelian part” of the full 0-form flavor symmetry group of T. Say

the full flavor algebra is f⊕ u(1)k where f is non-abelian. The full flavor group can then be expressed as FT×U(1)k

Γ

where Γ is some subgroup of the center of FT × U(1)k such that the kernel of the projection map from Γ to the
center of U(1)k is trivial. If k = 0, then the full flavor group is FT.

15We emphasize that it is not important for these states to be supersymmetric. Our argument only requires us
to identify the lattice spanned by flavor and gauge charges of arbitrary states in the theory which is known if the
intersections of all the curves and surfaces in the threefold are known.

16To mitigate potential confusions, let us emphasize again that we have not turned on any mass parameters, so
we have not deformed the 5d SCFT. We have simply chosen a non-conformal CB vacuum for the conformal theory
(to perform the computation for FT and 2-group), so the UV microscopic defining theory is the SCFT itself (albeit
placed in a non-conformal vacuum).

17This is related to the Shioda map in F-theory.
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and nq is the smallest positive integer such that

N ′q · Ci ∈ Z (32)

for all compact curves Ci . The U(1)r f −r ′f factor is then associated to the new non-compact
surfaces N ′q.

Let us now move onto a generic point on the CB of T′. The compact surfaces Si acquire
non-zero volumes while the P1 fibers fi′ remain at zero volume. As before, we obtain a 5d
N = 1 abelian gauge theory with gauge group G =

∏

i U(1)(g)i ' U(1)r . The matter content
for the gauge theory is again specified by compact curves Ci . We can now again apply the
formalism of section 2.1 to this abelian gauge theory with F := F ′ × U(1)r f −r ′f with a crucial
ingredient being that the U(1)r f −r ′f charges of matter content associated to a compact curve Ci
are obtained by computing −N ′q ·Ci . We then propose that the 0-form flavor symmetry group18

FT′ of the SQFT T′ is
FT′ ' F , (33)

where F is obtained by applying the analysis of section 2.1 to the above abelian gauge the-
ory arising on the CB of T′. The 1-form symmetry group OT′ of T′ is again identified with O
appearing in the analysis of section 2.1 and we have OT′ ' OT. Moreover, we propose that
the 0-form symmetry FT′ and 1-form symmetry OT′ of the 5d SQFT T′ form a 2-group struc-
ture with Postnikov class (24) obtained after applying the analysis of section 2.1 to the above
abelian gauge theory. The 2-group structure is non-trivial if the Postnikov class is non-trivial.

2.2.3 From 5d N = 1 Non-Abelian Gauge Theory

Consider a 5d SCFT T, which admits a mass deformation such that the theory after the defor-
mation reduces in the IR to a 5d N = 1 non-abelian gauge theory G with a simple19 gauge
algebra g and simply connected gauge group G. Furthermore, assume that the flavor symmetry
algebra fT of the SCFT can be understood as

fT = fhyp ⊕ u(1)I , (34)

where fhyp is the flavor symmetry algebra associated to hypermultiplet content of G, and u(1)I
is the flavor symmetry algebra associated to the instanton symmetry of G generated by the
instanton current Tr(F ∧ F). For a general 5d SCFT, we only have fhyp ⊕ u(1)I ⊆ fT with the
rank of fT equal to the rank of fhyp ⊕ u(1)I , but in what follows in this subsection we assume
that (34) holds.

In such a situation, we can obtain the 1-form symmetry group OT, the 0-form symmetry
group FT associated to the non-abelian part fhyp of the flavor symmetry algebra fT of the 5d
SCFT T, and the 2-group structure between OT and FT, by applying the methods of section
2.1 to the gauge theory G with matter content provided by hypermultiplet content of G and
an extra massive BPS particle which is an instanton of G. The charge qinst

g of the instanton
under the center ZG of G can be taken to be as follows [21]:

• qinst
g = k− A(R)

2 (mod n) if G = SU(n), n 6= 6 with CS level k. Here R is the representation
formed by all the full hypers in G and A(R) is the anomaly coefficient associated to R
(see [48] for more details). Note that we do not need to worry about the existence

18Even though we have included contribution of the abelian factors in the decomposition f→ f′ ⊕ u(1)r f −r′f , we
have still not included contributions from the abelian factors in the flavor symmetry of the theory at the conformal
point. See the last footnote in previous subsection for more discussion.

19One can also relax the constraints on g to include non-simple g, but we do not expand on this general case
here.
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of genuine half-hypers that cannot be paired into full hypers since we assume that G
descends from a 5d SCFT T, as according to the classification of [42] such a situation
does not for n 6= 6.

• qinst
g = k− A(R)

2 −
3
2 s (mod 6) if G = SU(6) with CS level k. Here R is the representation

formed by all the full hypers in G, A(R) is the anomaly coefficient associated to R, and
s = 1 if there exists a half-hyper in 3-index antisymmetric irrep of su(6) that cannot be
paired into a full hyper (otherwise s = 0).

• qinst
g = m (mod 2) if G = Sp(n) with discrete theta angle mπ. Here we are assuming

that the hypermultiplet content is such that a discrete theta angle is allowed.

• Take G = Spin(12) such that there exists a half-hyper in a spinor irrep S of so(12) that
cannot be paired into a full hyper. We have ZG = ZS

2 ×Z
C
2 such that under ZS

2 the spinor
irrep S has charge 1 (mod 2) and the cospinor irrep C has charge 0 (mod 2), and under
ZC

2 the spinor irrep S has charge 0 (mod 2) and C has charge 1 (mod 2). In such a
situation, we have qinst

g = 0 (mod 2) under ZS
2 and qinst

g = 1 (mod 2) under ZC
2 .

• qinst
g = 0 otherwise.

The charges qinst
f of the instanton under the centers of the simply connected groups associated

to simple, non-abelian factors in fhyp can be taken to be as follows:

• Consider G = Spin(2n) with matter content containing m hypers transforming in vector
irrep of G. Then qinst

f = m (mod 2) under the Z2 center of the simply connected group
Sp(m) associated to the flavor symmetry algebra sp(m) rotating these m hypers.

• Consider G = SU(4) with matter content containing m hypers transforming in 2-index
antisymmetric irrep of G. Then qinst

f = m (mod 2) under the Z2 center of the simply
connected group Sp(m) associated to the flavor symmetry algebra sp(m) rotating these
m hypers.

• Consider G = Sp(n) with matter content containing 2m hypers transforming in fun-
damental irrep of G. Then qinst

f =
�

1 (mod 2), 0 (mod 2)
�

under the ZS
2 × Z

C
2 cen-

ter of the simply connected group Spin(4m) associated to the flavor symmetry alge-
bra so(4m) rotating these 2m hypers. Note that the fundamental hypers have charges
�

1 (mod 2), 1 (mod 2)
�

under the ZS
2 ×Z

C
2 .

• Consider G = Sp(n) with matter content containing 2m+ 1 hypers transforming in fun-
damental irrep of G. Then qinst

f = 1 (mod 4) under the Z4 center of the simply connected
group Spin(4m+2) associated to the flavor symmetry algebra so(4m+2) rotating these
2m+ 1 hypers.

• Consider G = Sp(3) with matter content containing 2m + 1 half -hypers transforming
in fundamental irrep of G and 1 half-hyper transforming in 3-index antisymmetric ir-
rep of G. Then qinst

f = 1 (mod 2) under the Z2 center of the simply connected group
Spin(2m+ 1) associated to the flavor symmetry algebra so(2m+ 1) rotating the 2m+ 1
half-hypers.

• Consider G = Spin(7) with matter content containing m hypers transforming in spinor
irrep of G. Then qinst

f = m (mod 2) under the Z2 center of the simply connected group
Sp(m) associated to the flavor symmetry algebra sp(m) rotating these m hypers.
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• Consider G = Spin(8) with matter content containing m hypers transforming in the
spinor/cospinor irrep of G. Then qinst

f = m (mod 2) under the Z2 center of the simply
connected group Sp(m) associated to the flavor symmetry algebra sp(m) rotating these
m hypers.

• For G = E7 with matter content containing m half -hypers transforming in irrep of dimen-
sion 56 of G, we do not have a definite answer for qinst

f under the center of the simply
connected group Spin(m) associated to the flavor symmetry algebra so(m) rotating the
m half-hypers, since at the time of writing this paper we do not know the intersection
properties of P1 fibered non-compact surfaces realizing the so(2m+ 1) flavor symmetry
in this case.

• qinst
f = 0 for all other cases.

The above rules for qinst
f are derived in appendix A.3. Now we can apply the analysis of section

2.1 to the 5d non-abelian gauge theory G with matter content specified by hypers and the
instanton particle whose charges have been collected above. In this way, one would obtain the
same results for the 5d SCFT T as obtained in section 2.2.1 where the analysis of section 2.1
was instead applied to the 5d abelian gauge theory arising on the CB of the 5d SCFT T.

2.3 0-form/2-form Symmetry Mixed Anomaly

If the 2-group symmetry in a 5d SCFT T does not have a ‘t Hooft anomaly, then it can be
thought of alternatively as a mixed ‘t Hooft anomaly between 0-form and 2-form symmetries
of the 5d SCFT eT obtained after gauging the 1-form symmetry OT of T [25]. The anomaly can
be captured by

ωT =

∫

M6

Bock(bv2,1)∪ B3 , (35)

where M6 is a manifold whose boundary is the spacetime M5, B3 describes a background for
the OT 2-form symmetry of eT, and bv2,1, Bock are discussed towards the end of section 2.1.

This can be established quite concretely in the gauge theory context of section 2.1. After
gauging 1-form symmetry O′, one obtains a gauge theory with gauge group eG = G/O′ and
a dual (d − 3)-form symmetry O′ where d is the dimension of spacetime M . A non-trivial
background Bd−2 ∈ Hd−2(M ,O′) is turned on by adding a term to the Lagrangian of the form

w2 ∪ Bd−2 , (36)

where w2 ∈ H2(M ,O′) captures the obstruction of lifting eG = G/O′ bundles to G bundles.
The center Z

eG of eG is

Z
eG =

ZG

O′
. (37)

Furthermore, the structure group of the theory is again defined as

eS =
eG × F
eE

, (38)

where
eE = E

O
. (39)

The projection of eE onto ZF is still Z, thus the 0-form symmetry group F is left unchanged

F = F
Z

(40)
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as expected. The projection eE ′ of eE onto Z
eG is

eE ′ ' E ′

O′
' Z1 , (41)

where the definition of Z1 can be found in section 2.1.
Let us turn on a 0-form symmetry background described by a F/Z bundle with

v2 ∈ H2(M ,Z) capturing the obstruction of lifting the F/Z bundle to an F bundle. From
section 2.1, Z decomposes as Z1 × Z2, due to which v2 decomposes as v2,1 + v2,2 where
v2,1 ∈ H2(M ,Z1) describes the obstruction of lifting an F/Z bundle to an F/Z2 bundle and
v2,2 ∈ H2(M ,Z2) describes the obstruction of lifting an F/Z bundle to an F/Z1 bundle. Now,
from eS we see that the gauge theory sums over eG/eE ′ bundles with

v′2 = v2,1 , (42)

where v′2 ∈ H2(M ,Z1) captures the obstruction of lifting eG/eE ′ bundles to eG bundles. As before,
we have

δw2 = Bock(v2,1) , (43)

where Bock is the Bockstein associated to

0→O′→ E ′1→ Z1→ 0 . (44)

Combining (43) with (36), we obtain the anomaly

ω=

∫

Md+1

Bock(v2,1)∪ Bd−2 , (45)

where Md+1 is a manifold whose boundary is the d-dimensional spacetime M .
We can apply this general analysis to the 5d N = 1 abelian gauge theory arising at a generic

point on CB of the 5d SCFT T discussed in section 2.2. It then seems reasonable to propose
that the anomaly (45) visible at the level 5d N = 1 abelian gauge theory lifts to the anomaly
(35) at the level of the 5d SCFT eT.

3 The SU(2)0 SCFT

The first example we consider is the 5d SCFT T that admits a mass deformation upon which it
reduces in the IR to a pure SU(2) gauge theory with discrete theta angle 0. It is the simplest 5d
SCFT with a non-trivial 1-form symmetry and whose 0-form flavor symmetry algebra contains
a non-trivial non-abelian component. We show that the global form of 0-form symmetry group
of this theory is F = SO(3). Moreover, the Z2 1-form and SO(3) 0-form symmetries of this
5d SCFT form a 2-group. We provide evidence for this 0-form symmetry and the existence of
2-group by noticing that this 2-group symmetry can also be easily seen from a special singular
point in the Coulomb branch of the 4d N = 2 KK theory obtained by compactifying this 5d
SCFT on a circle of non-zero size.

We also discuss a mixed anomaly between the U(1)I 0-form and 1-form symmetries that
arises in the 5d N = 1 SU(2)0 non-abelian gauge theory arising in the IR after mass deforming
the SCFT T [18]. This anomaly might lift to an anomaly of the 2-group at the conformal point,
or the theory might contain an additional topological sector that in the IR also contributes and
eventually cancels the anomaly. In the latter case the total anomaly vanishes and hence the
2-group symmetry at the conformal point can be non-anomalous without spoiling consistency.
We discuss such a potential anomaly cancellation mechanism. If this mechanism is realized
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leading to a non-anomalous 2-group in the 5d SCFT T, then the 5d SCFT eT (which, after a
mass deformation, reduces in the IR to a pure SO(3)0 gauge theory) produced by gauging
the center 1-form symmetry of T also has SO(3) 0-form symmetry group and a Z2 2-form
symmetry group with a mixed 0-2-form symmetry anomaly.

We also study some related 5d SCFTs, namely the rank 1 Seiberg theories, that reduce, after
a mass deformation, to SU(2) gauge theories with n full hypers in fundamental representation,
where 1 ≤ n ≤ 7. These theories do not admit a 1-form symmetry, and hence do not admit
any 2-group symmetries. We determine the global form of the 0-form flavor symmetry group
associated to the non-abelian part of flavor symmetry algebra of these theories.

3.1 Various Phases and Their Associated Geometry

Consider the 5d SCFT T, which is the UV completion of 5d N = 1 pure SU(2) gauge theory
with vanishing discrete theta angle. The corresponding geometry is

N 12 = S1
f N e

, (46)

where N is a non-compact surface (which has a P1 = f N -fibration over C), and a compact
surface S1 indicated by 12, which is a Hirzebruch surface F2. Alternatively the toric diagram
is

SU(2)0 :

N

S1

f
e

(47)

In general in Fn the cone of effective curves is spanned by two rational curves e (shown in
blue) and f (green) with intersection numbers in Fn

e ·Fn
e = −n , f ·Fn

f = 0 , e ·Fn
f = 1 . (48)

The surfaces are glued along f N and e, respectively. From this it follows from the intersections
of the surfaces with the curves, what their charges under gauge and flavor groups discussed
later are:

Curve in S1 U(1) U(1)N ZF ' Z2 U(1)I
e 0 2 0 (mod 2) 1
f 2 −1 1 (mod 2) 0

(49)

Note that the intersection numbers between surfaces and curves are computed as follows. If
a compact curve C lies in a compact surface D, then

D · C = KD ·D C = 2g(C)− 2− C ·D C , (50)

where ·D denotes intersection number of curves inside the surface D, KD is the dual of canonical
class of D and g(C) is the genus of C . If D is a Hirzebruch surface Fn, then we can also use
the expression

KFn
= −2e− (n+ 2) f (51)

to evaluate the above intersection number. On the other hand, if a compact curve C lies in
a compact or non-compact surface D1, and we want to evaluate its intersection number with
some other compact or non-compact surface D2, then

D2 · C = C12 ·D1
C , (52)
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where C12 the curve in D1 that glues D1 to D2, or in other words, that describes the intersection
locus of D1 and D2 from the perspective of D1.

At the conformal point, both the curves e and f have zero volume, so M2-branes wrapping
them provide some massless “matter” contribution20 to the conformal theory21. Since e is
identified with f N , the P1 fiber f N of the non-compact surface N also has zero volume. This
signals that the conformal theory has an f= su(2) 0-form flavor symmetry algebra. The charge
qF (C) of massless “matter” corresponding to curve C (where C is either e or f ) under the center
ZF = Z2 of the simply connected group F = SU(2) associated to f is computed as

qF (C) = −N · C (mod 2) . (53)

We can compute

qF (e) = −N · e (mod 2) = −e ·S1
e (mod 2) = 2 (mod 2) , (54)

and
qF ( f ) = −N · f (mod 2) = −e ·S1

f (mod 2) = −1 (mod 2) . (55)

Going onto the Coulomb branch (CB) of the conformal theory corresponds to providing
non-zero volume to the f curve, but e curve remains at zero volume. Consequently, the com-
pact surface S1 obtains a non-zero volume, and the low-energy theory is a U(1) gauge theory
whose gauge field is obtained by compactifying the M-theory 3-form gauge field C3 on S1.
M2-brane wrapping f now produces a massive BPS particle since the volume of f is non-zero.
Similarly, wrapping M2-brane on e + f produces another massive BPS particle whose mass is
the same as the mass of BPS particle associated to f . The charge q(C) of BPS particle corre-
sponding to curve C (where C is either f or e + f ) under U(1) gauge group is computed as

q(C) = −S1 · C , (56)

We can compute

q( f ) = −S1 · f = −2g( f ) + 2+ f ·S1
f = 0+ 2+ 0= 2 , (57)

and to compute q(e+ f ), we compute q(e)

q(e) = −S1 · e = −2g(e) + 2+ e ·S1
e = 0+ 2− 2= 0 , (58)

which leads to
q(e+ f ) = q(e) + q( f ) = 2 . (59)

Since f N remains at zero volume, the CB theory has an f= su(2) 0-form flavor symmetry alge-
bra. The charges under the center ZF are computed as in (53). The BPS particles associated to
f and e+ f form a doublet22 under the su(2) flavor symmetry. But the Z2 center of F = SU(2)
is actually a part of the U(1) gauge group since these BPS particles carry a non-trivial charge
under the gauge U(1). This means that the true 0-form flavor symmetry group of the theory

20It should be noted that the local operators corresponding to this “matter” are not genuine local operators since
they carry gauge charges when the theory is deformed to Coulomb branch, i.e. they do not exist on their own
independent of some higher-dimensional defects. Instead, they are proposed to arise at the end of a line operator
2L which is the square of a “fundamental” line operator L in the 5d SCFT, and thus these local operators screen
2L. This leads to the conclusion that the 5d SCFT has a Z2 1-form symmetry whose charged line operator is L.
Geometrically L arises by wrapping a single M2-brane on the non-compact curve dual to the compact surface S.

21Actually e decouples from the conformal theory but e + f does not. Since we are only concerned with the
charges of e+ f and f , we can equally well work with the charges of e and f , as we do in what follows.

22Indeed e+ f and f both carry charge 1 under N modulo 2.
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on the CB is F = F/Z2 = SO(3) which should be identified as the 0-form symmetry group of
the UV SCFT (see end of Section 2.2.1 for a justification).

Starting from the conformal point, one can also turn on a mass parameter to deform the 5d
SCFT T to a 5d SQFT T′. This mass parameter provides a non-zero volume to e, but f remains
at zero volume. Since f is the P1 fiber of S = F2, the low-energy theory has su(2) gauge
algebra23 with M2-brane wrapping f providing the massless gauge bosons which combine
with the gauge boson descending from C3 to form gauge bosons for su(2) gauge algebra. M2-
brane wrapping e + f leads to massive BPS particle which is identified as the BPS instanton
of SU(2) gauge group. Since f N has non-zero volume, the su(2) flavor symmetry breaks to
its u(1) cartan which we denote by u(1)N . The charge qN (C) of matter content associated to
curve C under a group U(1)N whose Lie algebra is u(1)N can be obtained by computing

qN (C) = −N · C . (60)

From this, we see that the zero volume P1 fiber f of S has non-trivial charge under U(1)N .
This means that the true u(1) symmetry is obtained by following the procedure described in
section 2.2.2. We need to define a surface

N ′ := n(N +αS) , (61)

such that N ′ · f = 0 and n is the smallest positive integer such that N ′ · e ∈ Z. Solving these
conditions leads to

N ′ =
1
2

N +
1
4

S , (62)

which describes the correct u(1) symmetry which we denote by u(1)I . The charge qI(C) of
matter associated to curve C under a group U(1)I whose Lie algebra is u(1)I can be obtained
by computing

qI(C) = −N ′ · C . (63)

The reason for subscript I in U(1)I is that this symmetry can be identified as the instanton
U(1) symmetry of the non-abelian SU(2) gauge theory, since the charge of f under U(1)I is 0
and the charge of the instanton e+ f under U(1)I is 1.

Giving non-zero volumes to both e and f corresponds to moving onto the Coulomb branch
of the 5d SQFT T′, which can also be understood as the Coulomb branch of the low-energy
SU(2) gauge theory. M2-brane wrapping f curve gives rise to W-bosons corresponding to the
SU(2) → U(1) Higgsing occuring from the viewpoint of the low energy gauge theory. The
charge under gauge U(1) of a BPS particle associated to curve C is computed as in (56). The
u(1)N flavor symmetry is now a good flavor symmetry to use as no P1 fiber having zero volume
is charged under it anymore. The charge under U(1)N of a BPS particle associated to curve C
is computed as in (60).

3.2 2-Group Symmetry

Recall from the discussion in the previous subsection, that the low-energy theory on the
Coulomb branch (without turning on any mass paramters) of the 5d SCFT T is a U(1) gauge
theory with two massive BPS particles f and e + f of charge 2 and equal mass. Moreover,
the two particles form a doublet under an f = su(2) 0-form flavor symmetry, and hence have
charge 1 (mod 2) under the center ZF = Z/2Z of the simply connected group F = SU(2)

23Since we have chosen the 5d SCFT to have a “fundamental” line operator L charged under a Z2 1-form symme-
try, the gauge group is SU(2), which allows for a Wilson line in fundamental representation charged non-trivially
under the center of SU(2).
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associated to f. Thus, the full structure group (combining the gauge and flavor parts) acting
faithfully on the theory can be written as

S =
U(1)× F

E
, (64)

where E ' Z4 is a subgroup of U(1)×ZF generated by
�1

4 , 1
�

where we have represented U(1)
as R/Z and hence 1

4 denotes an order four element of U(1), and we have represented ZF as
Z/2Z and hence 1 denotes the order two element of ZF .

From this, we can see that the Z2 subgroup of E ' Z4 generated by
�1

2 , 0
�

∈ (R/Z)×(Z/2Z)
involves only the elements in the center of the gauge group. Thus the 1-form symmetry O of
the abelian gauge theory can be identified with this Z2 subgroup. According to the proposal
of [20], we should identify O with the 1-form symmetry OT of the 5d SCFT T, i.e

OT = Z2 . (65)

Now projecting E onto ZF we obtain the subgroup Z of ZF generated by 1 ∈ Z/2Z, and
hence Z = ZF . Thus, the 0-form flavor symmetry group of the abelian gauge theory is
F = F/ZF = SO(3). According to the proposal of section 2.2.1, we should identify F with the
0-form symmetry group FT of the 5d SCFT T, i.e

FT = SO(3) . (66)

The groups O, E and Z sit in a short exact sequence (3), which becomes in our case

0→ Z2→ Z4→ Z2→ 0 . (67)

The projection E ′ of E onto U(1) is the Z4 subgroup of U(1) generated by 1
4 . Thus, we satisfy

the conditions for first criterion of section 2.1. Following the analysis of section 2.1, we obtain
the result that the 1-form and 0-form symmetries O and F respectively of the abelian gauge
theory sit in a 2-group symmetry whose associated Postnikov class is

[P3] = Bock(w2) = w3 , (68)

where w2 ∈ H2(BSO(3),Z2) is the characteristic class capturing the obstruction of lifting SO(3)
bundles to SU(2) bundles, also known as the second Stiefel-Whitney class. It is well-known
that the Bockstein homomorphism associated to (67) when applied to w2 gives rise to w3,
which is the third Stiefel-Whitney class. According to the proposal in section 2.2.1, the 1-form
and 0-form symmetries OT and FT respectively of the 5d SCFT should also sit in a 2-group
symmetry whose associated Postnikov class is again (68).

Let us now study the abelian gauge theory arising on the Coulomb branch of the SQFT T′

obtained after mass deformation of T. As we recall from previous subsection, here we have a
u(1)N flavor symmetry and two massive BPS particles whose charges under gauge U(1) and
U(1)N are collected in (49). The structure group of this abelian gauge theory is

S =
U(1)× U(1)N

E
,

E ∼= Z4 =
­�

1
4

,
1
2

�·

⊂ U(1)× U(1)N ∼= R/Z×R/Z .
(69)

Here E can be computed from the Smith normal form of the charge matrix (49)

N =
�

0 −2
−2 1

�

, (70)
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which is

SNF=M=

�

1 0
0 4

�

= A ·N · B , A=

�

−1 −1
1 2

�

, B =

�

0 −1
1 2

�

(71)

Then

Z2/MZ2 =
­�

0
1

�

a , a ∈ Z4

�

mod MZ2
�

·

, (72)

and using the change of basis with integral 1-1 maps A and B

Z2/NZ2 =
­

A−1
�

0
1

�

a , a ∈ Z4

�

mod NZ2
�

·

. (73)

A representative of this is (1, 2), which confirms the realization of E in (69).
The subgroup O generated by elements of the form (∗, 0) ∈ E equals the 1-form symmetry

of the theory and is

OT =O =
­�

1
2

,0
�·

∼= Z2 ⊂ U(1)× U(1)N . (74)

The image under the projection map E → ZF is

Z ∼= Z2 =
­

1
2

·

⊂ U(1)N ∼= R/Z . (75)

Thus, the abelian gauge theory has 0-form symmetry group

F =
U(1)N
Z2

. (76)

The short exact sequence (13) 0→O→ E → Z → 0 becomes

0→ Z2→ Z4→ Z2→ 0 . (77)

The projection of E onto U(1) is E ′ ' Z4 generated by 1
4 ∈ U(1) ' R/Z, implying that the

projection map is injective. Thus, following the arguments of section 2.1, we find a potential 2-
group symmetry in the abelian gauge theory, formed by 0-form symmetry groupF = U(1)N/Z2
and 1-form symmetry group O = Z2, with the Postnikov class being

[P3] = Bock(bv2) ∈ H3(BF ,Z2) , (78)

where bv2 ∈ H2(BF ,Z2) is the characteristic class capturing obstruction of lifting
F = U(1)N/Z2 bundles to F = U(1)N bundles, and Bock is the Bockstein corresponding to
the above short exact sequence (77). However, the above Postnikov class [P3] is trivial due to
the following argument. We can identify bv2 as c1 (mod 2) where c1 is the first Chern class for
F = U(1)N/Z2 ' U(1) bundles. Moreover, we can recognize bv2 as the image of the element
c1 (mod 4) ∈ H2(BF ,Z4) under the map H2(BF ,Z4)→ H2(BF ,Z2) induced by the projection
map Z4→ Z2 in (77). Since this map is the first map and Bockstein is the second map in the
following part of the long exact sequence in cohomology

· · · → H2(BF ,Z4)→ H2(BF ,Z2)→ H3(BF ,Z2)→ ·· · (79)

we find that [P3] = 0. Thus, there is no 2-group symmetry in this abelian gauge theory. Using
the proposal of section 2.2.2, we are lead to the conclusion that the SQFT T′ does not admit a
2-group symmetry.

This conclusion can be much more easily reached from the point of the view of the special
point on the CB of T′ where the low-energy theory is the SU(2)0 non-abelian gauge theory. In
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this case the flavor symmetry is U(1)I associated to the surface N ′ and the structure group is
simply

S = SU(2)0 × U(1)I , (80)

with no possibility of a 2-group structure. The 0-form symmetry group is

F = U(1)I , (81)

which by comparing with (76) leads to the conclusion that U(1)I = U(1)N/Z2. This is related
to the factor of 1

2 relating N and N ′ in (62).
In summary: we provided evidence, that the SU(2)0 SCFT T has a 2-group symmetry

(when the inverse gauge coupling is 0) which can be easily observed when a non-conformal
vacuum lying on the CB of vacua is chosen. However, on the non-abelian gauge theory locus,
i.e. in the 5d SQFT T′ (obtained after turning on inverse gauge coupling) there is no 2-group
symmetry, which can be observed from both kinds of CB vacua of T′ – having respectively
non-abelian gauge theory and abelian gauge theory at low-energies.

3.3 An Equivalent Perspective in Terms of Chern-Simons Couplings

A similar perspective is given by the study of 5d Chern-Simons couplings, and the condition
that it must be integral on M5 [46, 49]. This leads to a rather strong necessary condition on
the possible allowed background. Let us focus on the SU(2)0 example, where the particle and
charges are given in (49). We can now compute the prepotential [46,50], which reads

P = 1
6

�

8φ3
g − 6φgφ

2
N

�

, (82)

where φ g and φN are the Coulomb branch scalars of U(1)g and U(1)N . We are interested in
the Chern-Simons terms in the effective Lagrangian, where we have that CS5 =

∫

Y6
L6, where

∂ Y6 = M5,

L6 =
∂ 3P
∂ φ3

g
Fg ∧ Fg ∧ Fg +

∂ 3P
∂ φg∂ φ

2
N

Fg ∧ FN ∧ FN +
∂ 3P

∂ φ2
g∂ φN

Fg ∧ Fg ∧ FN

= 8Fg ∧ Fg ∧ Fg − 2Fg ∧ FN ∧ FN .

(83)

For consistency of the theory this quantity must be integral on a Y6 [46,49]. As we have seen in
the previous sections and in appendix B the structure group in the coulomb branch may allow
fractional periods of Fg and FN . The most general choice of background which is consistent
with integrality of (83) is given by,

Fg =
vg

2

4
(mod Z) , FN =

ṽ2

4
(mod Z) , ṽ2 = 2vg

2 , (84)

where ṽ2 and vg
2 are the obstruction to the lifting U(1)N/Z2 and U(1)g/Z4 to U(1)N and U(1)g

respectively. This choice of background is consistent with the structure group highlighted in
the previous section

S =
U(1)g × U(1)N

Z4
. (85)
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3.4 The 2-Group from Five-brane Webs

It is possible to describe the 2-group from the IIB (p, q) 5-brane web realization of the SU(2)0
theory

. (86)

First of all, the 1-form symmetry is encoded in the (p, q) 5-branes charges at infinity (of the
infinitely extended 5-branes). The Smith Normal Form (SNF) of the matrix of (p, q) charges
[21]

M =









q1 p1
q2 p2
...

...
qN pN









(87)

satisfies M = AT
1 (SNF(M))A2, where A1 is a N × N matrix and A2 is a 2 × 2 matrix. M and

A2 act on the IIB 2-form field SL(2,Z) doublet (B2, C2). For the SU(2)0 web with manifest
g= su(2) flavor symmetry algebra we have

M =







0 −1
0 −1
2 1
−2 1






, SNF(M) =







1 0
0 2
0 0
0 0






, A2 =

�

1 −1
0 1

�

. (88)

Applying A2 on the doublet (B2, C2) we deduce that the IIB field responsible for the 1-form
symmetry background is C2, and in particular that 2dC2 = 2F3 = 0. This forces the condition
[F3] ∈ H3(M5,Z2).

Having activated the 1-form symmetry background identified with [F3] ∈ H3(M5,Z2), we
can ask now what happens on the world-volume of the two parallel NS5-branes responsible for
the g = su(2) flavor symmetry algebra. For convenience, we work with the S-dual version of
this web (which consist of a rotation of 90 degrees on the web plane (86)). The flavor symme-
try algebra is now given by parallel D5s and the 1-form symmetry is [H] = [dB2] ∈ H3(M5,Z2).
It occurs that the 1-form symmetry background has a non-trivial effect on the world-volume of
the D5-branes, [51]. Ignoring the normal bundle contribution, it was shown in [51] that in or-
der to avoid global worldsheet anomalies on the strings ending on the D-branes, the following
condition must hold,

[H] = Bock(w2) , (89)

where w2 is the obstruction of lifting SU(2)/Z2 bundles to a U(2) bundle and [H] ∈ H3(M5,Z).
Moreover Bock is the Bockstein homomorphism

H2(M5,Z2)→ H3(M5,Z) , (90)

associated to the short exact sequence

0→ Z→ Z→ Z2→ 0 . (91)

The IIB brane-web requires [H] ∈ H3(M5,Z2), which implies that there exist a non-trivial
reduction of (91) to (67). This leads to the identification of w2 with the obstruction of lifting
SO(3) bundles to SU(2) and Bock(w2) in (89) with the one in (68).
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A similar argument can be applied to the IIB web engineering of SU(3)3 gauge theory [52]
with O = Z3, and its superconformal UV completion with g = su(2) flavor symmetry algebra.
However, the reduction of the sequence (91), leads to 0 → Z3 → Z6 → Z2 → 0, which has
trivial Bock(w2), since Z6 ' Z2 × Z3. In conclusion, the 1-form symmetry background in the
IIB webs corresponds to non-trivial torsional configuration for NSNS or RR 3-form flux on the
5d space-time where the theory lives. This implies that the fluxes are automatically pulled
back on the brane stack realising the flavor symmetry in the brane configuration. A 2-group
is therefore induced due to worldsheet anomaly cancellation for the strings ending on the
branes.

3.5 Circle Compactification to 4d N = 2

To provide further evidence for the 2-group structure, we consider the 4d N = 2 theory ob-
tained by compactification of the SU(2)0 SCFT on a finite radius S1. As shown in [44], this
gives rise to a rank 1 theory with the following Seiberg-Witten geometry: the elliptic fibration
has two I1 fibers and one I2 fiber. At the I2 point the IR theory is a U(1)g gauge theory with
two massless monopoles of charge (qm, qe) = (1,0). In addition there is a massive dyon of
charge (1,−2). Combining the two, we obtain two massive excitations carrying purely electric
charge (0,−2). We identify the su(2) flavor symmetry rotating the electric excitations (and
hence also the massless monopoles) as an avatar of the su(2) 0-form symmetry of the 5d SCFT
T. Moreover, since the electric charges are even integers, the theory admits a Z2 electric 1-
form symmetry descending from the center of the U(1)g gauge group, which we identify as
the avatar of Z2 1-form symmetry of the 5d parent. The full structure group is

S =
U(1)g × SU(2)F

Z4
. (92)

Again we can apply the same arguments as in its 5d parent: the 0-form symmetry is
SO(3)F = SU(2)F/Z2, which forms a non-trivial 2-group with the 1-form symmetry Z2, with
the Postnikov class being given by (68) 24. This 2-group structure is the same as the proposed
2-group structure of the 5d parent. We take this as evidence in favor of the presence of 2-group
symmetry in the 5d parent theory, namely the SU(2)0 SCFT.

3.6 Comments on 0-/1-form Symmetry Anomaly

The N = 1 SU(2)0 gauge theory in 5d has a mixed ’t Hooft anomaly between the U(1)I
instantonic 0-form symmetry and the 1-form symmetry O = Z2 [18]. The anomaly takes the
form (see appendix B)

AIR = exp

�

2πi
4

∫

M6

c1(I)∪P(B)

�

, (93)

where c1(I) is the first Chern class for the background U(1)I bundle, B is the background field
for the 1-form symmetry25 and P(B) denotes the Pontryagin square26 of B.

The question we would like to address is how this anomaly is realized in the conformal
theory obtained after turning off the mass deformation. We can consider the following three
options:

(1) The anomaly (93) lifts to a 2-group anomaly, i.e. an anomaly for the full 2-group sym-
metry.

24The magnetic 1-form symmetry is completely broken by the massless monopoles and hence we do not worry
about its contribution to the 2-group structure.

25We work with integer valued cochains. More precisely, the background for 1-form symmetry is B (mod 2).
26This is defined as P(B) = B ∪ B −δB ∪1 B by using cup and higher-cup products.
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(2) The effective field theory after mass deformation is not only the SU(2)0 gauge theory,
but also contains an additional topological sector that carries an anomaly that is inverse
of (93). The total anomaly is trivial, and then the conformal theory would also have no
anomaly.

(3) A combination of the above two scenarios: a topological sector modifies the anomaly
(93), and the modified anomaly lifts to a 2-group anomaly.

Recent work [45] seems to indicate that option 1 is the most likely option. We leave the
determination of the precise fate of the anomaly (93) in the conformal theory to future work.

For now let us assume that there are no additional topological sectors and that the anomaly
(93) lifts to a 2-group anomaly AUV . Then the anomaly needs to be matched along the Higgs
branch of vacua of the conformal theory. We do not know the precise form of AUV , but we
should at least be able to match (93). Let us discuss the matching of (93) on the Higgs branch
in the rest of this subsection.

First of all, the 1-form symmetry is spontaneously broken on the Higgs branch. We take
this to indicate, in a fashion similar to in 4d [1], that the low energy effective theory on the
Higgs branch contains a 5d Z2 gauge theory whose kinetic term takes the form

exp

�

2πi
2

∫

M5

b1δc3

�

, (94)

where b1 and c3 are dynamical Z2 1-form and 3-form gauge fields respectively. The HB is
C2/Z2 whose SO(3) isometry is identified with the SO(3)F 0-form symmetry group of the
conformal theory. So the 0-form symmetry is also completely spontaneously broken, and the
low-energy theory contains a sigma model on C2/Z2. The U(1)I symmetry is non-linearly
realized. We now propose that the anomaly is realized by having a coupling between the
above two sectors: namely the Z2 gauge theory and the sigma model. The coupling takes the
form

exp

�

2πi
4

∫

M5

c1(I)∪ b1 ∪δb1

�

. (95)

The 1-form symmetry background makes b1 non-closed

δb1 = B . (96)

The non-closedness of b1 makes (95) depend on the integer lift b1 of the Z2 gauge field. As
shown in [37], this can be cured by adding the following term to the action

exp

�

−2πi
4

∫

M5

c1(I)∪
�

b1 ∪ B + B ∪ b1

�

�

. (97)

Now, for the total action to be well-defined, the coboundary of the total action should not
depend on the dynamical field b1. We can compute the coboundary to be

exp

�

2πi
4

∫

M6

c1(I)∪
�

δ
�

δB ∪1 b1

�

+P(B)
�

�

, (98)

whose dependence on b1 can be canceled by adding an additional term to the action of the
form

exp

�

−2πi
4

∫

M5

c1(I)∪δBe ∪1 b1

�

. (99)
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After adding this additional term, we obtain a well-defined action, and the remaining terms in
(98) give rise to an anomaly of the form

exp

�

2πi
4

∫

M6

c1(I)∪P(B)

�

, (100)

which matches (93).

3.7 Potential Mixed Anomaly of the SO(3)0 SCFT

As we have discussed in section 2.3, if a 5d theory T has a 2-group symmetry which is non-
anomalous, then the theory eT obtained by gauging the 1-form symmetry of T has a dual 2-form
symmetry which has a mixed anomaly with the 0-form symmetry of eT (which is the same as
the 0-form symmetry of T participating in the 2-group).

In the previous subsection, we discussed an anomaly (93) which can potentially lift to an
anomaly of the 2-group symmetry of the SU(2)0 5d SCFT T. However, there is also a scenario
in which this anomaly is canceled by a topological sector, in which case the conformal theory
has no anomaly. If this scenario is realized, then the 2-group symmetry of the SU(2)0 5d SCFT
would be non-anomalous, and one can apply the analysis of section 2.3 to conclude that the
SO(3)0 5d SCFT eT obtained by gauging the OT = Z2 1-form symmetry would have a 0-form
flavor symmetry group

F
eT = SO(3) (101)

and a 2-form symmetry group
T
eT = Z2 'OT , (102)

with a mixed anomaly

A0−2 = exp

�

2πi
2

∫

M6

B3 ∪w3

�

, (103)

where B3 is the background field for Z2 2-form symmetry w3 is the third Stiefel-Whitney class
of background SO(3) bundle. We emphasize again that these results about the SO(3)0 SCFT
can only be trusted if the 2-group symmetry of the SU(2)0 SCFT is non-anomalous (which
would be the case if the scenario proposed in the previous subsection is actually realized in
the mass deformed SU(2)0 SCFT).

3.8 Superconformal Index for SU(2)0 and SO(3)0
In this ongoing section we have studied the global symmetry of both the SU(2)0 and SO(3)0
theories. For SU(2)0 theory we can compute with strong confidence that the 0-form symmetry
group is SO(3), while for SO(3)0 theory we need to rely on some assumptions regarding the
anomalies to argue that the 0-form symmetry group should be SO(3). One way to test these
predictions is to compute the super-conformal index of these theories.

The superconformal index of G = SU(2)0 theory is [12]

I = 1+χ3(q)t
2 + (1+χ3(q))χ2(u)t

3 +O(t4) , (104)

where q, t, u are the fugacities for u(1)I , the Cartan of su(2)D ⊂ su(2)+ ⊕ su(2)R, and the
Cartan of su(2)−. Here, so(4) = su(2)+ ⊕ su(2)− is the rotation symmetry of the spatial part
of Euclidean spacetime and su(2)R is the R-symmetry of the 5d N = 1 SCFT. χn denotes the
character for n-dimensional irreducible representation of su(2)F which is the enhancement
of u(1)I . Notice that only those representations of su(2)F appear that have trivial charge
under the center of the simply connected group SU(2)F associated to su(2)F . This remains
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to be true at even higher orders of t as can be seen from the result displayed [12]. Thus, the
superconformal index is consistent with our prediction that the SU(2)0 SCFT has SO(3)F flavor
symmetry group. This argument was also used by [18] to argue for SO(3)F flavor symmetry
of the SU(2)0 theory.

We indirectly argue that the superconformal index of G = SO(3)0 theory should be the
same as that of G = SU(2)0 theory due to the equivalence of the instanton partition functions
of two different theories [53]. The 5d superconformal index [12] is a partition function of a
SCFT on S4×S1 and it is computed by localization technique, which is applied to the IR gauge
theory of the SCFT. In short, the ingredient of the index computation is the instanton partition
function and perturbative 1-loop determinants. The perturbative 1-loop determinants of the
two gauge theories match easily, since they are determined by Lie algebra, which is shared by
the two gauge theories. Instanton partition function involves an extra subtlety27 and is not
fixed by a single data. The author of [53] argues that the instanton partition functions for the
two gauge groups should match. Therefore, we conclude that the resulting superconformal
index for G = SU(2)0 and G = SO(3)0 theories should match. With this conclusion and (104),
we conclude that the flavor symmetry group of G = SO(3)0 theory should again be SO(3)F .

3.9 Global Flavor Symmetry of Rank 1 Seiberg Theories

In this subsection we use our method to determine the global form of 0-form flavor symmetry
groups of Seiberg theories, which are 5d SCFTs that admit a mass deformation after which
the theories can be described in the IR in terms of 5d N = 1 non-abelian gauge theories with
gauge group SU(2) and n full hypers in fundamental representation for 0 ≤ n ≤ 7. The case
n= 0 was discussed in previous subsections. We discuss other cases below.

In every case n ≥ 2, we find that the flavor symmetry group is centerless, which matches
with the expectation from the superconformal indices for these theories [12]. We also discuss
how our results match with the expectations from the ray indices for these theories [19].

3.9.1 Geometric Computation of Flavor Symmetry Group

SU(2) + F : For this case the non-abelian part of flavor symmetry of the 5d SCFT T is
fT = su(2). Thus, ZF ' Z/2Z. The corresponding geometry is

N 11
2

f e

. (105)

Here 1k
n indicates a Hirzebruch Fn blown up k times. N describes the su(2) flavor symmetry of

T. We find that E = 0 which implies that the non-abelian part of the 0-form flavor symmetry
group FT of T is

FT = SU(2) . (106)
27One outstanding difference is the following. In G = SU(2)0 = Sp(1)0 theory, the dual gauge group on one

instanton is Ĝ = O(1) = Z2, which is rank 0. When we compute the instanton partition function, we integrate over
Haar measure of Ĝ, so there is no integral to perform in this case. However, for G = SO(3)0 theory, the dual gauge
group on one instanton is Ĝ = Sp(1), so we need to perform an integral to get the instanton partition function.
Moreover, even though two instanton moduli spaces are the same, the bundles on the moduli spaces are not the
same.
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SU(2) + 2F : The corresponding geometry is

N1

12
2

f

e
N3

x1-x2

N2

f -x1-x2

f
e e

f

(107)

N1 and N2 describe an su(3) flavor symmetry of T, and N3 describes an su(2) flavor sym-
metry of T. Thus, ZF ' Z/3Z × Z/2Z. We find that E ' Z2 × Z3 and it is generated by
�1

2 , 0, 1
�

∈ ZG × ZF ' R/Z × Z/3Z × Z/2Z and
�1

3 , 2, 0
�

∈ ZG × ZF . From this, we find that
Z ' Z2×Z3 generated by (0,1) ∈ ZF ' Z/3Z×Z/2Z and (2, 0) ∈ ZF . Thus, the 0-form flavor
symmetry group FT of T is

FT = PSU(3)× SO(3) . (108)

SU(2) + 3F : The corresponding geometry is

N1

13
2

f

e

N4

x 1-
x 2

N2

f -x
1 -x

2

f

e e

f

N3
x2-x3 f

e

e

e

e

(109)

Ni describe an su(5) flavor symmetry of T. Thus, ZF = Z/5Z. We find that E ' Z5 generated
by
�3

5 , 1
�

∈ ZG×ZF ' R/Z×Z/5Z. From this, we find that Z ' Z5 generated by 1 ∈ ZF . Thus,
the 0-form flavor symmetry group FT of T is

FT = SU(5)/Z5 = PSU(5) . (110)

SU(2) + 4F : The corresponding geometry is

N1

14
2

f

e

N4

x 3-
x 4

N2

f -x
1 -x

2

f

e e

f

N3
x2-x3 f

e

e

e

e

N5
e e

f
x1-x2

(111)

Ni describe an so(10) flavor symmetry of T. Thus, ZF = Z/4Z. We find that E ' Z4 generated
by
�3

4 , 1
�

∈ ZG×ZF ' R/Z×Z/4Z. From this, we find that Z ' Z4 generated by 1 ∈ ZF . Thus,
the 0-form flavor symmetry group FT of T is

FT = Spin(10)/Z4 = SO(10)/Z2 . (112)
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SU(2) + 5F : The corresponding geometry is

N1

15
2

f

e

N4

x 3-
x 4

N2

f -x
1 -x

2

f

e e

f

N3
x2-x3 f

e

e

e

e

N6
e e

f

x1-x2

N5
e

e

x 4
-x

5

f

(113)

Ni describe an e6 flavor symmetry of T. Thus, ZF = Z/3Z. We find that E ' Z3 generated by
�2

3 , 1
�

∈ ZG × ZF ' R/Z×Z/3Z. From this, we find that Z ' Z3 generated by 1 ∈ ZF . Thus,
the 0-form flavor symmetry group FT of T is

FT = E6/Z3 . (114)

SU(2) + 6F : The corresponding geometry is

N1

16
2

f

e

N4

x 3-
x 4

N2

f -x
1 -x

2

f

e e

f

N3
x2-x3 f

e

e

e

e

N7
e e

f

x1-x2

N5
e

e

x 4
-x

5

f
N6

f

x
5 -x

6

ee

(115)

Ni describe an e7 flavor symmetry of T. Thus, ZF = Z/2Z. We find that E ' Z2 generated by
�1

2 , 1
�

∈ ZG × ZF ' R/Z×Z/2Z. From this, we find that Z ' Z2 generated by 1 ∈ ZF . Thus,
the 0-form flavor symmetry group FT of T is

FT = E7/Z2 . (116)

SU(2) + 7F : The flavor symmetry for this theory is fT = e8 which has a trivial center. Thus,
the 0-form flavor symmetry group FT of T is

FT = E8 . (117)

3.9.2 Relationship to the Ray Index

The work of [19] provides non-trivial confirmations for our above proposals. Let us discuss
it in the context of the E7 Seiberg theory. The other cases can also be discussed in a similar
fashion.
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For the E7 Seiberg theory, [19] argue that there is a line operator L at the conformal
point such that after the mass deformation (that turns on inverse gauge coupling for SU(2))
L reduces to the Wilson line defect transforming in the fundamental representation of the
SU(2) gauge group. They compute a ray index associated to L which counts the non-genuine
local operators28 living at the end of L, and find that these non-genuine local operators carry
a non-trivial charge under the Z2 center of E7. After the mass deformation, the non-genuine
local operators living at the end of L become non-genuine local operators living at the end of
fundamental Wilson line, and whose charges are

(1,1, 1,0) + (0,α, 0,α) ∈ bZG × bZF,IR ' Z/2Z×Z/2Z×Z/2Z×Z , (118)

whereα ∈ Z. The first element denotes the charge under ZG ' Z2 center of SU(2) gauge group,
the second and third elements denote charge under Z2 × Z2 center of the simply connected
group Spin(12) associated to the so(12) flavor symmetry algebra rotating the 6 fundamental
hypers, and the fourth element denotes the charge under U(1)I 0-form symmetry associated
to the instanton current29. The non-genuine-ness of the local operators (118) reflects in the
fact that they carry non-trivial charges under ZG and hence must arise at the end of a Wilson
line charged non-trivially under ZG , so that the whole configuration is gauge invariant.

Now, let us study the matter content predicted by the geometry that carries non-trivial
charge under ZG . The geometry displaying only the so(12) part of the flavor symmetry is

16
2

N4

x 3-
x 4

N2

f -x
1 -x

2

f

f

N3
x2-x3 f

e

e

e

e

N7
e e

f

x1-x2

N5
e

e

x 4
-x

5

f
N6

f

x
5 -x

6

ee

(119)

From this we see that a blowup x i has charge 1 (mod 2) under the Z2 center of SU(2), charge
(1 (mod 2), 1 (mod 2)) under theZ2×Z2 center of Spin(12) and charge 0 under U(1)I since it is
not an instanton. In other words, it carries charge (1, 1,1, 0) ∈ bZG×bZF,IR ' Z/2Z×Z/2Z×Z/2Z×Z.
On the other hand, the curve f of the compact surface S1 carries charge
(0,0, 0,0) ∈ bZG × bZF,IR ' Z/2Z × Z/2Z × Z/2Z × Z, and the curve e of the compact sur-
face S1 carries charge (0,1, 0,1) ∈ bZG × bZF,IR ' Z/2Z×Z/2Z×Z/2Z×Z. Thus, an arbitrary
curve having a non-trivial charge under ZG takes the form

C = αe+ β f +
∑

i

γi x i , (120)

with α,β ,γi ∈ Z such that
∑

i γi = 2n+ 1. The full charge of such a C is

(1, 1,1, 0) + (0,α, 0,α) ∈ bZG × bZF,IR ' Z/2Z×Z/2Z×Z/2Z×Z , (121)

which precisely matches the charges (118) seen by the ray index.

28A local operator is non-genuine if it cannot exist independently of a higher-dimensional defect.
29Notice that after the mass deformation the flavor symmetry is only so(12)⊕ u(1)I .
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Now, we can compute the charge of (120) under the center of E7 arising in the conformal
theory (when the inverse gauge coupling has been turned off) by using the full geometry (115)
which sees the full e7 symmetry. Under the Z2 center of E7, the charge of e is 0 (mod 2), the
charge of f is 0 (mod 2) and the charge of each x i is 1 (mod 2). Thus the charge of C in
(120) is 1 (mod 2), which is precisely what [19] find as discussed above. Thus, the whole
information about the charges deduced from the geometry can equivalently be deduced from
the ray index!

One might worry that the presence of these non-local operators would imply that E7/Z2
bundles that do not lift to E7 bundles cannot be turned on, i.e. the flavor symmetry of the
conformal theory is E7 instead of E7/Z2. We propose that the conformal theory knows how
to make sense of such non-genuine local operators in the presence of any E7/Z2 background
irrespective of whether it lifts to E7 background or not. This can be easily seen by moving away
from the conformal vacuum to a non-conformal vacuum on the CB of the conformal theory
(but keeping inverse gauge coupling zero). According to the equality of (118) and (121),
these non-genuine operators are associated to the curve (120), from which we can see that
after moving onto the CB, these operators acquire a non-trivial charge 2α+2β +2n+1 under
the U(1) gauge group arising at low-energies while their charge remains 1 (mod 2) under the
center of E7. These operators then arise at the ends of Wilson lines of charges 2α+2β+2n+1
under the U(1) gauge group. The abelian theory knows how to make sense of these non-
genuine operators in the presence of an arbitrary E7/Z2 bundle. This follows from the form
of structure group

S =
U(1)G × E7

Z2
(122)

of the low-energy abelian theory arising on CB, where Z2 is the diagonal combination of the
Z2 subgroup of U(1)G and the Z2 center of E7. The consequence of this structure group is that
a gauge Wilson line of charge 2m+ 1 under U(1)G comes attached to a flavor Wilson line of
charge 1 (mod 2) under the Z2 center of E7. Thus, a non-genuine local operator living at the
end of a gauge Wilson line of charge 2m+ 1 is left invariant under gauge transformations of
S bundles.

4 2-Groups and Global Flavor: Higher Rank

In this section, we study the 2-group symmetry and global form of 0-form flavor symmetry
groups of 5d SCFTs that UV complete 5d N = 1 non-abelian gauge theories carrying simple,
simply connected gauge groups. The M-theory construction of these SCFTs was discussed
in [43] and the encoding of flavor symmetries in the geometry was discussed in [10] 30. We
only consider cases that have a non-trivial 1-form symmetry group (which can be determined
by applying the analysis of [20,21]) and a non-trivial non-abelian part of the 0-form symmetry
algebra (since the analysis of section 2.2.1 only applies to non-abelian flavor factors). Finally,
all the theories exhibiting potentially non-trivial 2-group symmetries are collected in table 1
in section 1.3.

These examples show interesting interplay between perturbative and instantonic 2-group
symmetries of the low-energy 5d gauge theories and the corresponding 5d SCFTs. We have
already seen an example in the previous section, namely the SU(2)0 SCFT, whose 2-group
symmetry comes from the instantonic flavor symmetry, and hence is invisible from the point
of view of the low-energy non-abelian gauge theory description.

30The geometric encoding of the flavor symmetries in a subset of these theories was also discussed in [5–7]
which also studied many other classes of theories.
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In this section, we will observe cases of 5d SCFTs carrying 2-group symmetries that are
formed by perturbative flavor symmetries and are visible in the low energy non-abelian gauge
theory description. One such example is the SU(4) gauge theory with Chern-Simons (CS) level
2 and a hyper in 2-index antisymmetric irreducible representation (irrep) of the SU(4) gauge
group. There is a perturbative SO(3) flavor symmetry group rotating the antisymmetric hyper
which forms a 2-group with the Z2 1-form symmetry. See the discussion surrounding (194)
for a detailed study of this example.

On the other hand, we also observe cases of 5d SCFTs which do not carry a 2-group sym-
metry even though the associated low energy non-abelian gauge theory carries a 2-group sym-
metry. As we explain in section 2.2.3, this is due to the effect of instanton BPS particles which
break the 2-group symmetry. Similar considerations hold for the global form of flavor group,
which might acquire more center charges in passing from IR non-abelian gauge theory to UV
SCFT, due to the contributions of instantons. One such example is the SU(4) gauge theory with
a hyper in 2-index antisymmetric irrep but now with CS level 0. The low-energy non-abelian
gauge theory predicts that the global form of the su(2) flavor symmetry algebra rotating the
antisymmetric hyper is SO(3) which forms a 2-group with the Z2 1-form symmetry. However,
including the contribution of instantons following section 2.2.3, we find that in the corre-
sponding 5d SCFT the global form associated to su(2) flavor algebra is SU(2) and there is no
2-group symmetry.

4.1 General Rank

SU(n)n : Consider the 5d SCFT T which is the UV completion of 5d pure SU(n) gauge theory
with CS level n. The corresponding geometry is

N 12
f e 24 · · · (n− 1)2n−2

h e h e

. (123)

On the CB of T, we have G =
∏n−1

i=1 U(1)i associated to the n − 1 compact surfaces Si and
F = SU(2) associated to the non-compact surface N. We compute that E ' Z2n generated
by
� n−1

2n , n−2
2n , · · · , 1

2n , 1
�

∈ ZG × ZF ' (R/Z)n−1 × (Z/2Z). From this, we compute O ' Zn

generated by
� n−1

n , n−2
n , · · · , 1

n , 0
�

∈ ZG × ZF which is identified with the 1-form symmetry
group OT of T. We also have Z ' Z2 generated by 1 ∈ ZF . Thus, according to our proposal
0-form symmetry group FT of T is

FT =
SU(2)
Z2

= SO(3) . (124)

The short exact sequence (13) becomes

0→ Zn→ Z2n→ Z2→ 0 . (125)

The projection of E onto ZG is E ′ ' Z2n generated by
� n−1

2n , n−2
2n , · · · , 1

2n

�

∈ ZG , implying that
the projection map is injective. Thus, following the arguments of section 2.1 and using our
proposal of section 2.2.1, we find that T has a potential 2-group structure formed by 0-form
symmetry group FT = SO(3) and 1-form symmetry group OT ' Zn with the Postnikov class
being

Bock(bv2) ∈ H3(BSO(3),Z2) , (126)

where bv2 ∈ H2(BSO(3),Z2) is the characteristic class capturing obstruction of lifting
FT = SO(3) bundles to SU(2) bundles, and Bock is the Bockstein corresponding to the above
short exact sequence (125).

The short exact sequence (125) splits for odd n implying that Bock is a trivial homomor-
phism for odd n. Thus, the 2-group structure is trivial for odd n, i.e. the total symmetry group
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is a direct product of 1-form symmetry group Z2 and 0-form symmetry group SO(3). For even
n, (125) does not split, and hence the theory for even n admits a non-trivial 2-group structure
if Bock(bv2) is a non-trivial element of H3(BSO(3),Z2).

SU(2m)m+2 +Λ2; m> 2 : Consider the 5d SCFT T which is the UV completion of 5d SU(2m)
gauge theory having a hyper in 2-index antisymmetric irrep and CS level m+ 2, with m > 2.
The corresponding geometry is

N 12
f e 24 · · · (2m− 2)14m−4

h e h e (2m− 1)4m−2
h e

.
(127)

Notice that we have one blowup on S2m−2. N describes the su(2) flavor symmetry of T. Thus,
ZF ' Z/2Z. We find that E ' Z2 generated by

�1
2 , 0, 1

2 , 0, · · · , 1
2 , 0

�

∈ ZG × ZF ' (R/Z)2m−1

×Z/2Z. From this we see that O = E ' Z2 which is identified with the 1-form symmetry group
OT ' Z2 of T. Thus, the non-abelian part of the 0-form flavor symmetry group is

FT = SU(2) (128)

and there is no non-trivial 2-group structure between OT and FT.

Sp(2m− 1)0 +Λ2 = SU(2m)m+4 +Λ2; Sp(2m)0 +Λ2 : Consider 5d SCFTTwhich is UV com-
pletion of 5d Sp(n) gauge theory having a hyper in 2-index antisymmetric irrep and discrete
theta angle 0. For odd n = 2m− 1, T is also the UV completion of 5d SU(2m) gauge theory
having a hyper in 2-index antisymmetric irreducible representation and CS level m+ 4. The
corresponding geometry is

n2
e

N
f

(n− 4)1+1
8

(n− 3)1+1
8

··
·

(n− 2)1+1
8

(n− 1)1+1
8

e-x , x

h-y, y

h-y, y

e-x , x

e-x , x

2

h-y, y

f -x

f -y

f -x

f -y

2

f -x

f -y

f -x

f -y

11+1
8

f -x

f -ye-x , x

h-y, y

2h e

Mdm/2e

f -x 1,
x 1

x , y

f -x1, x1

y, x

f -x2 , x2

x , y

f -x2, x2

2

x , y

f -xd(n−1)/2e , xd(n−1)/2e

y, x

2

2

2

2

2

(129)
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N and M describe su(2)⊕ su(2) flavor symmetry of T. Thus, ZF ' (Z/2Z)N × (Z/2Z)M . We
find that E ' Z4 generated by

�1
4 , 2

4 , · · · , n
4 , 1, 0

�

∈ ZG × ZF ' (R/Z)n × (Z/2Z)N × (Z/2Z)M .
From this we see that O ' Z2 generated by

�2
4 , 4

4 , · · · , 2n
4 , 0, 0

�

∈ ZG × ZF , which is identified
with the 1-form symmetry group OT ' Z2 of T. We have Z ' Z2 generated by (1,0) ∈ ZF .
Thus, the non-abelian part of the 0-form flavor symmetry group is

FT = SO(3)N × SU(2)M . (130)

The projection of E onto ZG is E ′ ' Z4 generated by
�1

4 , 2
4 , · · · , n

4

�

∈ ZG , implying that the
projection map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4→ Z2→ 0 . (131)

Thus, the 1-form symmetry group OT ' Z2 and SO(3)N part of FT form a non-trivial 2-group
with the Postnikov class being

Bock(ev2) ∈ H3 (BSO(3)N ,Z2) , (132)

where ev2 ∈ H2 (BSO(3)N ,Z2) is the characteristic class capturing obstruction of lifting SO(3)N
bundles to SU(2)N bundles, and Bock is the Bockstein associated to the above short exact
sequence. As discussed in the case of SU(2)0, ev2 can be identified as the second Stiefel-Whitney
class w2 and the Postnikov class Bock(ev2) can be identified as the third Stiefel-Whitney class
w3. Since the Postnikov class is non-trivial, we have a non-trivial 2-group structure.

SU(2m+ 2)4 + 2Λ2; m> 1 : Consider 5d SCFTs which are UV completions of 5d SU(2m+2)
gauge theories having 2 hypers in 2-index antisymmetric irrep and CS level 4, with m> 1. Let
us first consider the m= 2n case. The corresponding geometry is

(m+ 1)2

m8 (m− 1)2+2
8

(m+ 2)2+2
0 (m+ 3)0

· · ·

· · ·

28

2m2+2
0

12+2
8

h+2 f

e

e

h e-
∑

yi h-
∑

x i e h

e-
∑

x ie-
∑

yie-
∑

x i

e
x i

yi x i

e

f

e e

yi

(2m+ 1)0

e-
∑

yi

x i

yi

2

f -x i -yi

f

f -x i -yi

2

f

f -x i -yi

2 2

f -x i -yi

f

· · ·

MN P2

2 2

(133)
with extra gluing rules:

• e− y1 − y2 in Sm+2 is glued to f in N.

• x1, x2 in S1 are glued to x1, x2 in P.

• e in S2m+1 is glued to f − x1 − x2 in P.

• x1 − x2, y2 − y1 in Sm+2i are glued to f , f in M for i = 1, · · · , m
2 .

• x2 − x1, y1 − y2 in Sm+1−2i are glued to f , f in M for i = 1, · · · , m
2 .

• x2 − x1 in P is glued to f in M.
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M, N,P describe three su(2) flavor symmetries of T. The su(2)M flavor symmetry is perturba-
tive while the su(2)N ,P flavor symmetries are instantonic. Thus, ZF ' (Z/2Z)M×(Z/2Z)N×(Z/2Z)P . We
find that E ' Z4 × Z2. The Z4 subfactor of E is generated by
(α1, · · · ,α2m+1, 1, 0, 1) ∈ ZG×ZF ' (R/Z)2m+1×(Z/2Z)N×(Z/2Z)M×(Z/2Z)P where αi =

4−i
4

for 1 ≤ i ≤ m+ 2 and αi =
i−2m

4 for m+ 3 ≤ i ≤ 2m+ 1. The Z2 subfactor of E is generated
by (β1, · · · ,β2m+1, 1, 1, 0) ∈ ZG × ZF where βi =

1
2 if i = m + 1 + 2 j for j ≥ 1 and βi = 0

otherwise. From this we see that O ' Z2 generated by (2α1, · · · , 2α2m+1, 0, 0, 0) ∈ ZG × ZF
which is identified with the 1-form symmetry group OT ' Z2 of T. We have Z ' Z2

2 generated
by (1,0, 1) ∈ ZF and (1, 1,0) ∈ ZF . Thus, the 0-form flavor symmetry group FT of T is

FT = SU(2)N × SO(3)N ,M × SO(3)N ,P , (134)

where SO(3)N ,M = SU(2)N ,M/Z
N ,M
2 where SU(2)N ,M is the diagonal combination of SU(2)N

and SU(2)M , and ZN ,M
2 is the center of SU(2)N ,M . Similarly SO(3)N ,P = SU(2)N ,P/Z

N ,P
2

where SU(2)N ,P is the diagonal combination of SU(2)N and SU(2)P , and ZN ,P
2 is the cen-

ter of SU(2)N ,P .
The projection of E onto ZG is E ′ ' Z4 × Z2 generated by (α1, · · · ,α2m+1) ∈ ZG and
(β1, · · · ,β2m+1) ∈ ZG implying that the projection map is injective. The short exact sequence
(13) becomes

0→ Z2→ Z4 ×Z2→ Z
N ,P
2 ×ZN ,M

2 → 0 , (135)

whose non-trivial part is only

0→ Z2→ Z4→ Z
N ,P
2 → 0 . (136)

Thus, we learn that OT and SO(3)N ,P × SO(3)N ,M part of FT form a non-trivial 2-group with
the Postnikov class being

Bock(ev2) ∈ H3
�

B[SO(3)N ,P × SO(3)N ,M ],Z2

�

, (137)

where ev2 ∈ H2
�

B[SO(3)N ,P × SO(3)N ,M ],Z
N ,P
2

�

is the characteristic class capturing obstruc-
tion of lifting SO(3)N ,P × SO(3)N ,M bundles to SU(2)N ,P × SO(3)N ,M bundles, and Bock is the
Bockstein associated to the above short exact sequence (136).

Let us now consider the m= 2n+ 1 case. The corresponding geometry is

(m+ 1)2

m8 (m− 1)2+2
8

(m+ 2)2+2
0 (m+ 3)0

· · ·

· · ·

18

2m+ 12+2
0

h+2 f

e

e

h e-
∑

yi h-
∑

x i e

e-
∑

yie-
∑

x i

e
x i

yi x i

e

f

e

yi

2

f -x i -yi

f

f -x i -yi

2

f

f -x i -yi

2· · ·

M PN

2

(138)

with extra gluing rules:

• e− y1 − y2 in Sm+2 is glued to f in N.
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• e− x1 − x2 in S2m+1 is glued to f in P.

• x1 − x2, y2 − y1 in Sm+2i are glued to f , f in M for i = 1, · · · , m+1
2 .

• x2 − x1, y1 − y2 in Sm+1−2i are glued to f , f in M for i = 1, · · · , m−1
2 .

M, N,P describe three su(2) flavor symmetries of T. The su(2)M flavor symmetry
is perturbative while the su(2)N ,P flavor symmetries are instantonic. Thus,
ZF ' (Z/2Z)M × (Z/2Z)N × (Z/2Z)P . We find that E ' Z4 × Z2. The Z4 subfactor of E is
generated by (α1, · · · ,α2m+1, 1, 0, 1) ∈ ZG × ZF ' (R/Z)2m+1× (Z/2Z)N × (Z/2Z)M × (Z/2Z)P
where αi =

4−i
4 for 1≤ i ≤ m+2 and αi =

i−2m
4 for m+3≤ i ≤ 2m+1. The Z2 subfactor of E is

generated by (β1, · · · ,β2m+1, 1, 1, 1) ∈ ZG×ZF where βi =
1
2 if i = m+1+2 j for j ≥ 1 and βi = 0

otherwise. From this we see that O ' Z2 generated by (2α1, · · · , 2α2m+1, 0, 0, 0) ∈ ZG × ZF
which is identified with the 1-form symmetry group OT ' Z2 of T. We have Z ' Z2

2 generated
by (1,0, 1) ∈ ZF and (0,1, 0) ∈ ZF . Thus, the 0-form flavor symmetry group FT of T is

FT = SO(3)M × SU(2)N × SO(3)N ,M ,P , (139)

where SO(3)N ,M ,P = SU(2)N ,M ,P/Z
N ,M ,P
2 where SU(2)N ,M ,P is the diagonal combination of

SU(2)N , SU(2)M and SU(2)P , and ZN ,M ,P
2 is the center of SU(2)N ,M ,P .

The projection of E onto ZG is E ′ ' Z4 × Z2 generated by
(α1, · · · ,α2m+1) ∈ ZG and (β1, · · · ,β2m+1) ∈ ZG implying that the projection map is injective.
The short exact sequence (13) becomes

0→ Z2→ Z4 ×Z2→ ZM
2 ×Z

N ,M ,P
2 → 0 , (140)

where ZM
2 is the center of SU(2)M and ZN ,M ,P

2 is the diagonal combination of the centers of
SU(2)M , SU(2)N and SU(2)P . The non-trivial part of the above short exact sequence is

0→ Z2→ Z4→ ZM
2 → 0 . (141)

Thus, we learn that OT and SO(3)N ,M ,P × SO(3)M part of FT form a non-trivial 2-group with
the Postnikov class being

Bock(ev2) ∈ H3
�

B
�

SO(3)N ,M ,P × SO(3)M
�

,Z2

�

, (142)

where ev2 ∈ H2
�

B
�

SO(3)N ,M ,P × SO(3)M
�

,ZM
2

�

is the characteristic class capturing obstruction
of lifting SO(3)N ,M ,P × SO(3)M bundles to SO(3)N ,M ,P × SU(2)M bundles, and Bock is the
Bockstein associated to the above short exact sequence (141).

SU(2m+ 2)0 + 2Λ2; m> 1 : Consider 5d SCFTs which are UV completions of 5d SU(2m+2)
gauge theories having 2 hypers in 2-index antisymmetric irrep and CS level 0, with m> 1. Let
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us first consider the m= 2n case. The corresponding geometry is

(m+ 1)2
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∑
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∑
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∑
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f

f -x i -yi

2

f
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f
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(143)
with extra gluing rules:

• e in Sm+1 is glued to f in N.

• x1 − x2, y2 − y1 in Sm+2i are glued to f , f in M for i = 1, · · · , m
2 .

• x2 − x1, y1 − y2 in Sm+1−2i are glued to f , f in M for i = 1, · · · , m
2 .

M, N describe two su(2) flavor symmetries of T. The su(2)M flavor symmetry is perturbative
while the su(2)N flavor symmetry is instantonic. Thus, ZF ' (Z/2Z)M × (Z/2Z)N . We find
that E ' Z4 generated by (α1, · · · ,α2m+1, 1, 0) ∈ ZG × ZF ' (R/Z)2m+1 × (Z/2Z)N × (Z/2Z)M
where α2m+2−i = αi =

4−i
4 for 1 ≤ i ≤ m + 1. From this we see that O ' Z2 generated by

(2α1, · · · , 2α2m+1, 0, 0) ∈ ZG×ZF which is identified with the 1-form symmetry group OT ' Z2
of T. We have Z ' Z2 generated by (1, 0) ∈ ZF . Thus, the 0-form flavor symmetry group FT

of T is
FT = SO(3)N × SU(2)M . (144)

The projection of E onto ZG is E ′ ' Z4 generated by (α1, · · · ,α2m+1) ∈ ZG implying that the
projection map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4→ Z2→ 0 . (145)

Thus, we learn that OT ' Z2 and SO(3)N part of FT form a non-trivial 2-group with the
Postnikov class being

Bock(ev2) ∈ H3 (BSO(3)N ,Z2) , (146)

where ev2 ∈ H2 (BSO(3)N ,Z2) is the characteristic class capturing obstruction of lifting SO(3)N
bundles to SU(2)N bundles, and Bock is the Bockstein associated to the above short exact
sequence.
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Let us now consider the m= 2n+ 1 case. The corresponding geometry is

(m+ 1)2
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∑
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∑
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∑

yih-
∑
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with extra gluing rules:

• e in Sm+1 is glued to f in N.

• x1 − x2, y2 − y1 in Sm+2i are glued to f , f in M for i = 1, · · · , m+1
2 .

• x2 − x1, y1 − y2 in Sm+1−2i are glued to f , f in M for i = 1, · · · , m−1
2 .

M, N describe two su(2) flavor symmetries of T. The su(2)M flavor symmetry is perturbative
while the su(2)N flavor symmetry is instantonic. Thus, ZF ' (Z/2Z)M×(Z/2Z)N . We find that
E ' Z4×Z2. The Z4 subfactor of E is generated by (α1, · · · ,α2m+1, 1, 0) ∈ ZG×ZF ' (R/Z)2m+1

×(Z/2Z)N × (Z/2Z)M where α2m+2−i = αi =
4−i
4 for 1 ≤ i ≤ m+ 1. The Z2 subfactor of E is

generated by (β1, · · · ,β2m+1, 1, 1) ∈ ZG × ZF where βi =
1
2 if i = m+ 2 j for j ≥ 1 and βi = 0

otherwise. From this we see that O ' Z2 generated by (2α1, · · · , 2α2m+1, 0, 0) ∈ ZG×ZF which
is identified with the 1-form symmetry group OT ' Z2 of T. We have Z ' Z2

2 generated by
(1, 0) ∈ ZF and (0,1) ∈ ZF . Thus, the 0-form flavor symmetry group FT of T is

FT = SO(3)N × SO(3)N ,M . (148)

The projection of E onto ZG is E ′ ' Z4 × Z2 generated by (α1, · · · ,α2m+1) ∈ ZG and
(β1, · · · ,β2m+1) ∈ ZG implying that the projection map is injective. The short exact sequence
(13) becomes

0→ Z2→ Z4→ ZN
2 ×Z

N ,M
2 → 0 . (149)

The non-trivial part of the above short exact sequence is

0→ Z2→ Z4→ ZN
2 → 0 . (150)

Thus, we learn that OT and FT form a non-trivial 2-group with the Postnikov class being

Bock(ev2) ∈ H3
�

B
�

SO(3)N × SO(3)N ,M

�

,Z2

�

, (151)

where ev2 ∈ H2
�

B
�

SO(3)N × SO(3)N ,M

�

,ZN
2

�

is the characteristic class capturing obstruction
of lifting SO(3)N×SO(3)N ,M bundles to SU(2)N×SO(3)N ,M bundles, and Bock is the Bockstein
associated to the above short exact sequence (150).
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SU(2m+ 2)2 + 2Λ2; m> 1 : Consider 5d SCFTs which are UV completions of 5d SU(2m+2)
gauge theories having 2 hypers in 2-index antisymmetric irrep and CS level 2, with m> 1. The
1-form symmetry for such a theory is OT ' Z2. The non-abelian part of the flavor symmetry
algebra is fT = su(2).

Since there is no enhancement of flavor symmetry at the conformal point, we can apply
the analysis in terms of section 2.2.3. We have ZG = Z2m+2, ZF = Z2. The hypers are charged
as (2,1) under ZG × ZF and the instanton particle can be taken to have to charge (4− 2m, 0)
under ZG × ZF . From this we compute that E =O = Z2 and thus the 0-form flavor symmetry
group is

FT = SU(2) , (152)

and there is no 2-group structure.

SU(2n+ 2)n−1 + S2 : Consider the 5d SCFT T which is the UV completion of 5d SU(2n+ 2)
gauge theory having a hyper in 2-index symmetric irrep and CS level n−1. The corresponding
geometry is
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· · ·

(n+ 3)1n−2

n1
n−3

f

e

y-x

h-x-y e-x h e-x

he-xe-x

h

h

x

x f -x

f -x

x

x
x

f -x

f -x

f -x

(n+ 2)1+1+1
n+2
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x
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x y

N
f
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(153)
N describes an su(2) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z2 generated
by
�1

2 , 0, 1
2 , 0, · · · , 1

2 , 0, 1
2 , 0

�

∈ ZG× ZF ' (R/Z)2n+1×Z/2Z. From this we see that O = E ' Z2
which is identified with the 1-form symmetry group OT ' Z2 of T. Thus, the non-abelian part
of the 0-form flavor symmetry group is

FT = SU(2) , (154)

and there is no non-trivial 2-group structure between OT and FT.
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Spin(m+ 3) +mF : Consider the 5d SCFT T which is the UV completion of 5d Spin(m+ 3)
gauge theory having m hypers in vector irrep. For m= 2n, the corresponding geometry is

(n+ 1)m+m
6
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∑
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∑
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f

x
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e
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2e-x

e

e

e

e

e

2

2

2

m

x i

yi

(155)

Ni describe the sp(m+ 1) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z2 gen-
erated by

�1
2 , 0, 0, · · · , 0, 0

�

∈ ZG × ZF ' (R/Z)n+1 ×Z/2Z. From this we see that O = E ' Z2
which is identified with the 1-form symmetry group OT ' Z2 of T. Thus, the 0-form flavor
symmetry group is

FT = Sp(m+ 1) (156)

and there is no non-trivial 2-group structure between OT and FT.
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For m= 2n− 1, the corresponding geometry is
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(157)

Ni describe the sp(m+ 1) flavor symmetry of T. Thus, ZF ' Z/2Z.
For n = 2k, we find that E ' Z2 × Z2 generated by

�

0, 1
2 , 0, 1

2 , · · · , 0, 1
2 , 0, 1

�

∈ ZG × ZF ' (R/Z)n+1 × Z/2Z and
�

0, 0, · · · , 0, 1
2 , 1

2 , 0
�

∈ ZG × ZF .
From this we see that O ' Z2 is the second Z2 subfactor of E which is identified with the
1-form symmetry group OT ' Z2 of T. We have Z = ZF . Thus, the 0-form flavor symmetry
group is

FT =
Sp(m+ 1)
Z2

. (158)

The projection of E onto ZG is E ′ ' Z2 × Z2 generated by
�

0, 1
2 , 0, 1

2 , · · · , 0, 1
2 , 0

�

∈ ZG and
�

0,0, · · · , 0, 1
2 , 1

2

�

∈ ZG , implying that the projection map is injective. The short exact sequence
(13) becomes

0→ Z2→ Z2 ×Z2→ Z2→ 0 . (159)

Since the short exact sequence splits, there is no non-trivial 2-group structure between OT and
FT.

On the other hand, for n = 2k + 1, we find that E ' Z4 generated by
�

0, 1
2 , 0, 1

2 , · · · , 0, 1
2 , 1

4 , 3
4 , 1

�

∈ ZG × ZF ' (R/Z)n+1 × Z/2Z. From this we see that O ' Z2

generated by
�

0,0, · · · , 0, 1
2 , 1

2 , 0
�

∈ ZG × ZF which is identified with the 1-form symmetry
group OT ' Z2 of T. We have Z = ZF . Thus, the 0-form flavor symmetry group is

FT =
Sp(m+ 1)
Z2

= PSp(m+ 1) . (160)

The projection of E onto ZG is E ′ ' Z4 generated by
�

0, 1
2 , 0, 1

2 , · · · , 0, 1
2 , 1

4 , 3
4

�

∈ ZG , implying
that the projection map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4→ Z2→ 0 . (161)
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Thus, we learn that OT and FT form a non-trivial 2-group with the Postnikov class being

Bock(ev2) ∈ H3 (BPSp(m+ 1),Z2) , (162)

where ev2 ∈ H2 (BPSp(m+ 1),Z2) is the characteristic class capturing obstruction of lifting
PSp(m+ 1) bundles to Sp(m+ 1) bundles, and Bock is the Bockstein associated to the above
short exact sequence. Note that 2-group structure is non-trivial because the Postnikov class
Bock(ev2) is a non-trivial element of H3 (BPSp(m+ 1),Z2) for m+ 1= 4k+ 2 [54].

Spin(m+ 4) +mF : Consider the 5d SCFT T which is the UV completion of 5d Spin(m+ 4)
gauge theory having m hypers in vector irrep. For m= 2n−1, the corresponding geometry is

(n+ 1)m+m
6

nm+1

··
·

36

12

24

e

2h

h

e

h

h

e-
∑

x i -
∑

yi

e

N1
m

Nm−1

··
·

N1

M

f -xm, f -ym f -x , x
xm -xm−1 , ym -ym−1

f , f
x2 -x1 , y2 -y1

f , f

fe

2e-x

e

e

e

2

2

2

m

x i

yi

(163)

Ni ,M describe the sp(m)N⊕su(2)M flavor symmetry of T. Thus, ZF ' (Z/2Z)M×(Z/2Z)N . We
find that E ' Z4 generated by

�1
2 , 1

2 , · · · , 1
2 , 1

4 , 1, 0
�

∈ ZG×ZF ' (R/Z)n+1×(Z/2Z)M×(Z/2Z)N .
From this we see that O = E ' Z2 generated by

�

0,0, · · · , 0, 1
2 , 0, 0

�

∈ ZG × ZF which is
identified with the 1-form symmetry group OT ' Z2 of T. We have Z ' Z2 generated by
(1, 0) ∈ ZF . Thus, the 0-form flavor symmetry group is

FT = Sp(m)N × SO(3)M . (164)

The projection of E onto ZG is E ′ ' Z4 generated by
�1

2 , 1
2 , · · · , 1

2 , 1
4

�

∈ ZG , implying that the
projection map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4→ ZM
2 → 0 , (165)

where ZM
2 is the center of SU(2)M . Thus, we learn that OT and SO(3) subfactor of FT form a

non-trivial 2-group with the Postnikov class being

Bock(ev2) ∈ H3 (BSO(3)M ,Z2) , (166)

where ev2 ∈ H2 (BSO(3),Z2) is the characteristic class capturing obstruction of lifting SO(3)M
bundles to SU(2)M bundles, and Bock is the Bockstein associated to the above short exact
sequence.
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For m= 2n− 2, the corresponding geometry is

(n+ 1)m+m
m+2

(n− 1)m

··
·

36

12

24

e

h

h

e

h

h

e

e

Nm

Nm−1

··
·

N1

M

ym-xm f
xm -xm−1 , ym−1 -ym

f , f
x2 -x1 , y1 -y2

f , f

fe

2e

e

e

e

2

2

f -x i -yi

f

nm+2 he

m

f

(167)

Ni ,M describe the sp(m)⊕ su(2) flavor symmetry of T. Thus, ZF ' (Z/2Z)M × (Z/2Z)N .
For n = 2k, we find that E ' Z4 × Z2 generated by

�1
2 , 0, 1

2 , 0, · · · , 1
2 , 0, 1

2 , 1
4 , 3

4 , 0, 1
�

∈ ZG × ZF ' (R/Z)n+1 × (Z/2Z)M × (Z/2Z)N and
�

0, 1
2 , 0, 1

2 , · · · , 0, 1
2 , 0, 1, 1

�

∈ ZG × ZF . From this we see that O ' Z2 generated by
�

0, 0, · · · , 0, 1
2 , 1

2 , 0, 0
�

∈ ZG × ZF which is identified with the 1-form symmetry group OT ' Z2
of T. We have Z = ZF . Thus, the 0-form flavor symmetry group is

FT =
Sp(m)N
ZN

2

× SO(3)M , (168)

where ZN
2 is the center of Sp(m)N . The projection of E onto ZG is E ′ ' Z4 ×Z2 generated by

�1
2 , 0, 1

2 , 0, · · · , 1
2 , 0, 1

2 , 1
4 , 3

4

�

∈ ZG and
�

0, 1
2 , 0, 1

2 , · · · , 0, 1
2 , 0

�

∈ ZG , implying that the projection
map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4 ×Z2→ ZN
2 ×Z

N ,M
2 → 0 , (169)

where ZN ,M
2 is the diagonal combination of the centers of Sp(m)N and SU(2)M . The non-trivial

part of the above short exact sequence is

0→ Z2→ Z4→ ZN
2 → 0 . (170)

Thus, we learn that OT and FT form a non-trivial 2-group with the Postnikov class being

Bock(ev2) ∈ H3

�

B

�

Sp(m)N
ZN

2

× SO(3)M

�

,Z2

�

, (171)

where ev2 ∈ H2
�

B
h

Sp(m)N
ZN

2
× SO(3)M

i

,Z2

�

is the characteristic class capturing obstruction of

lifting Sp(m)N
ZN

2
×SO(3)M bundles to SU(2)M×Sp(m)N

ZN ,M
2

bundles, and Bock is the Bockstein associated

to the above short exact sequence (170). It can be argued that the Postnikov class is non-
trivial as follows. We can write ev2 = v2 + w2 where v2 captures the obstruction of lifting
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PSp(m)N ×SO(3)M bundles to Sp(m)N ×SO(3)M bundles and w2 captures the obstruction of
lifting PSp(m)N×SO(3)M bundles to PSp(m)N×SU(2)M bundles. It is known, for m= 4k−2,
that Bock acting on v2 and w2 leads to two non-trivial elements Bock(v2) and Bock(w2) such
that Bock(v2) 6= Bock(w2). Thus Bock(ev2) is non-trivial.

On the other hand, for n= 2k+ 1, we find that E ' Z4 ×Z2 generated by
�

0,
1
2

, 0,
1
2

, · · · , 0,
1
2

,
1
4

,
3
4

, 1,1
�

∈ ZG × ZF ' (R/Z)n+1 × (Z/2Z)M × (Z/2Z)N (172)

and
�1

2 , 0, 1
2 , 0, · · · , 1

2 , 0, 0, 1
�

∈ ZG × ZF . From this we see that O ' Z2 generated by
�

0,0, · · · , 0, 1
2 , 1

2 , 0, 0
�

∈ ZG × ZF which is identified with the 1-form symmetry group OT ' Z2
of T. We have Z = ZF . Thus, the 0-form flavor symmetry group is

FT =
Sp(m)N
ZN

2

× SO(3)M , (173)

where ZN
2 is the center of Sp(m)N . The projection of E onto ZG is E ′ ' Z4 ×Z2 generated by

�

0, 1
2 , 0, 1

2 , · · · , 0, 1
2 , 1

4 , 3
4

�

∈ ZG and
�1

2 , 0, 1
2 , 0, · · · , 1

2 , 0
�

∈ ZG , implying that the projection map
is injective. The short exact sequence (13) becomes

0→ Z2→ Z4 ×Z2→ ZN
2 ×Z

M
2 → 0 , (174)

where ZM
2 is the center of SU(2)M . The non-trivial part of the above short exact sequence is

0→ Z2→ Z4→ ZM
2 → 0 . (175)

Thus, we learn that OT and FT form a non-trivial 2-group with the Postnikov class being

Bock(ev2) ∈ H3

�

B

�

Sp(m)N
ZN

2

× SO(3)M

�

,Z2

�

, (176)

where ev2 ∈ H2
�

B
h

Sp(m)N
ZN

2
× SO(3)M

i

,Z2

�

is the characteristic class capturing obstruction of

lifting Sp(m)N
ZN

2
× SO(3)M bundles to Sp(m)N

ZN
2
× SU(2)M bundles, and Bock is the Bockstein asso-

ciated to the above short exact sequence (175).

Spin(2n+ 1) +mF ; 0≤ m≤ 2n− 4 : Consider the 5d SCFT T which is the UV completion
of 5d Spin(2n + 1) gauge theory having 0 ≤ m ≤ 2n − 4 hypers in vector irrep. The non-
abelian part of the flavor symmetry is fT = sp(m) which is perturbative. This theory has
1-form symmetry group OT ' Z2. The analysis of section 2.2.3 implies that

FT = Sp(m) (177)

and that there is no 2-group structure between OT and FT.

Spin(2n+ 2) +mF ; 0≤ m≤ 2n− 3 : Consider the 5d SCFT T which is the UV completion
of 5d Spin(2n + 2) gauge theory having 0 ≤ m ≤ 2n − 3 hypers in vector irrep. The non-
abelian part of the flavor symmetry is fT = sp(m) which is perturbative. This theory has
1-form symmetry group OT ' Z2.

Let us now apply the analysis of section 2.2.3. For m odd, we find that the 0-form symmetry
group is

FT = Sp(m) (178)

and that there is no 2-group structure between OT and FT.
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For m even and n odd, we find that the 0-form symmetry group is

FT = PSp(m) (179)

and there is no 2-group structure between OT and FT.
For m even and n even, we find that the 0-form symmetry group is

FT = PSp(m) (180)

and there is a potential 2-group structure between OT and FT whose Postnikov class is

Bock(ev2) ∈ H3 (BPSp(m),Z2) , (181)

where ev2 ∈ H2 (BPSp(m),Z2) is the characteristic class capturing obstruction of lifting PSp(m)
bundles to Sp(m) bundles, and Bock is the Bockstein associated to the short exact sequence

0→ Z2→ Z4→ Z2→ 0 . (182)

For m= 4k+2, the Postnikov class is non-trivial [54] and hence we have a non-trivial 2-group
structure. For m = 4k, we do not know if the Postnikov class is non-trivial. If it is, then the
2-group is non-trivial.

4.2 Rank 1

SU(2)0 : Consider the 5d SCFT T which is the UV completion of 5d pure SU(2) gauge theory
with vanishing discrete theta angle. The corresponding geometry is

N 12
f e

(183)

N describes an su(2) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z4 gen-
erated by

�1
4 , 1

�

∈ ZG × ZF ' R/Z × Z/2Z. From this, we compute O ' Z2 generated by
�1

2 , 0
�

∈ ZG × ZF which is identified with the 1-form symmetry group OT of T. We also have
Z ' Z2 generated by 1 ∈ ZF . Thus, the 0-form flavor symmetry group FT of T is

FT = SO(3) . (184)

The short exact sequence (13) becomes

0→ Z2→ Z4→ Z2→ 0 . (185)

The projection of E onto ZG is E ′ ' Z4 generated by 1
4 ∈ ZG ' R/Z, implying that the projection

map is injective. Thus, following the arguments of section 2.1, we find that FT and OT form
a non-trivial 2-group with the Postnikov class being

Bock(bv2) ∈ H3(BSO(3),Z2) , (186)

where bv2 ∈ H2(BSO(3),Z2) is the characteristic class capturing obstruction of lifting
FT = SO(3) bundles to SU(2) bundles, and Bock is the Bockstein corresponding to the above
short exact sequence (185).
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4.3 Rank 2

SU(3)6 : Consider the 5d SCFT T which is the UV completion of 5d pure SU(3) gauge theory
with CS level 6. The corresponding geometry is

17 21
h+ 2 f

N2

f -x1-x2, x1-x2

f , f

e

2

e

x2

(187)

N describes an su(2) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z3 generated
by
�1

3 , 2
3 , 0

�

∈ ZG× ZF ' (R/Z)2×Z/2Z. The 1-form symmetry group OT of T is OT ' E ' Z3.
This implies that Z = 0 and thus the 0-form flavor symmetry group FT of T is

FT = SU(2) . (188)

The projection of E onto ZG is E ′ ' Z3 generated by
�1

3 , 2
3

�

∈ ZG ' (R/Z)2, implying that the
projection map is injective. Thus, following the arguments of section 2.1, we find that T does
not admit a non-trivial 2-group structure since the extension of Z by O is trivial.

Sp(2)0 + 2Λ2 : Consider the 5d SCFT T which is the UV completion of 5d Sp(2) gauge the-
ory having 2 hypers in 2-index antisymmetric irrep and vanishing discrete theta angle. The
corresponding geometry is

22
1

16

e

2h+2 f -2
∑

x i

N1+1
3

N2

N1

x1 y

x2 -x1

f

e-x2

f

2e-x-y

e

e

e

f , f

f -x-y, x-y

(189)

Ni describe an sp(3) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z2 generated
by
�1

2 , 0, 0
�

∈ ZG × ZF ' (R/Z)2 ×Z/2Z. The 1-form symmetry group O of T is O ' E ' Z2.
This implies that Z = 0 and thus the 0-form flavor symmetry group FT of T is

FT = Sp(3) . (190)

The projection of E onto ZG is E ′ ' Z2 generated by
�1

2 , 0
�

∈ ZG ' (R/Z)2, implying that the
projection map is injective. Thus, following the arguments of section 2.1, we find that T does
not admit a non-trivial 2-group structure since the extension of Z by O is trivial.
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4.4 Rank 3

SU(4)4 +Λ2 : Consider the 5d SCFT T which is the UV completion of 5d SU(4) gauge theory
having a hyper in 2-index antisymmetric irrep and CS level 4. The corresponding geometry is

31
7

23

11
2

f -x

f -x

h-x

h+ f

e

e
N1

2

x

e

f -x

f

x

x N1

e

e

(191)

Ni describe the su(3) flavor symmetry of T. Thus, ZF ' Z/3Z. We find that E ' Z3 × Z2
generated by

�

0, 2
3 , 1

3 , 1
�

∈ ZG × ZF ' (R/Z)3 ×Z/3Z and
�1

2 , 0, 1
2 , 0

�

∈ ZG × ZF . From this we
see that O ' Z2 is the Z2 subfactor of E , which is identified with the 1-form symmetry group
OT ' Z2 of T. We have Z ' Z3 generated by 1 ∈ ZF . Thus, the 0-form flavor symmetry group
is

FT = PSU(3) . (192)

The projection of E onto ZG is E ′ ' Z3 × Z2 generated by
�

0, 2
3 , 1

3

�

∈ ZG and
�1

2 , 0, 1
2

�

∈ ZG ,
implying that the projection map is injective. The short exact sequence (13) becomes

0→ Z3→ Z3 ×Z2→ Z2→ 0 , (193)

which splits, and hence T does not admit a non-trivial 2-group structure.

SU(4)0 +Λ2 : Consider the 5d SCFT T which is the UV completion of 5d SU(4) gauge theory
having a hyper in 2-index antisymmetric irrep and CS level 0. This theory has 1-form symme-
try group OT = Z2. The non-abelian part of the flavor symmetry of T is su(2) which is the
symmetry rotating the Λ2 hyper in the SU(4) gauge theory description. Thus, we can apply
the analysis of section 2.2.3, using which we find that the 0-form flavor symmetry group of T
is

FT = SU(2) (194)

and that there is no 2-group between OT and FT.

SU(4)2 +Λ2 : Consider the 5d SCFT T which is the UV completion of 5d SU(4) gauge theory
having a hyper in 2-index antisymmetric irrep and CS level 2. This theory has 1-form symme-
try group OT = Z2. The non-abelian part of the flavor symmetry of T is su(2) which is the
symmetry rotating the Λ2 hyper in the SU(4) gauge theory description. Thus, we can apply
the analysis of section 2.2.3, using which we find that the 0-form flavor symmetry group of T
is

FT = SO(3) (195)

and there is a 2-group structure between OT and FT whose Postnikov class is

Bock(ev2) ∈ H3 (BSO(3),Z2) , (196)

where ev2 ∈ H2 (BSO(3),Z2) is the characteristic class capturing obstruction of lifting SO(3)
bundles to SU(2) bundles, and Bock is the Bockstein associated to the short exact sequence

0→ Z2→ Z4→ Z2→ 0 . (197)

49

https://scipost.org
https://scipost.org/SciPostPhys.13.2.024


SciPost Phys. 13, 024 (2022)

SU(4)4 + 2Λ2 : Consider 5d SCFT T which is the UV completion of 5d SU(4) gauge theory
having 2 hypers in 2-index antisymmetric irrep and CS level 4. The corresponding geometry
is

12+2
0

22

38

f -x i

e

e

e

h+
2 f

f

2

N1

N2

N3

x 1
-x

2
, y

2
-y

1

e-x1-x2f

x2-y2

f

e

e

e

2e

f ,
f

2

-yi

(198)

Ni describe an so(7) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z4 generated
by
�3

4 , 1
2 , 1

4 , 1
�

∈ ZG × ZF ' (R/Z)3 × Z/2Z. From this we see that O ' Z2 generated by
�1

2 , 0, 1
2 , 0

�

∈ ZG × ZF which is identified with the 1-form symmetry group OT ' Z2 of T. We
have Z ' Z2 generated by 1 ∈ ZF . Thus, the 0-form flavor symmetry group FT of T is

FT = SO(7) . (199)

The projection of E onto ZG is E ′ ' Z4 generated by
�3

4 , 1
2 , 1

4

�

∈ ZG implying that the projection
map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4→ Z2→ 0 . (200)

Thus, we learn that OT ' Z2 and FT = SO(7) form a non-trivial 2-group with the Postnikov
class being

Bock(ev2) ∈ H3 (BSO(7),Z2) , (201)

where ev2 ∈ H2 (BSO(7),Z2) is the characteristic class capturing obstruction of lifting SO(7)
bundles to Spin(7) bundles, and Bock is the Bockstein associated to the above short exact
sequence. Note that the Postnikov class is trivial since ev2 is the second Stiefel-Whitney class
w2 and then Bock(ev2) is the third Stiefel-Whitney class w3.

SU(4)0 + 2Λ2 : Consider 5d SCFT T which is the UV completion of 5d SU(4) gauge theory
having 2 hypers in 2-index antisymmetric irrep and CS level 0. The corresponding geometry
is

12+2
4

22

34

f -x i

e

e

h

h

f

2 N
M2

M1

x 1
-x

2
, y

2
-y

1

f

x2-y2

f
e

e

2e

f ,
f

2

-yi

(202)

Mi describe an sp(2) flavor symmetry of T and N describes an su(2) flavor symmetry of T.
Thus, ZF ' (Z/2Z)N × (Z/2Z)M . We find that E ' Z4 × Z2 generated by
�3

4 , 1
2 , 3

4 , 1, 0
�

∈ ZG×ZF ' (R/Z)3×(Z/2Z)N×(Z/2Z)M and
�

0, 0, 1
2 , 1, 1

�

∈ ZG×ZF . From this
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we see that O ' Z2 generated by
�1

2 , 0, 1
2 , 0, 0

�

∈ ZG × ZF which is identified with the 1-form
symmetry group OT ' Z2 of T. We have Z = ZF . Thus, the 0-form flavor symmetry group FT

of T is

FT =
Sp(2)M
Z2

× SO(3)N . (203)

The projection of E onto ZG is E ′ ' Z4 × Z2 generated by
�3

4 , 1
2 , 3

4

�

∈ ZG and
�

0,0, 1
2

�

∈ ZG ,
implying that the projection map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4 ×Z2→ ZN
2 ×Z

N ,M
2 → 0 , (204)

where ZN
2 is the center of SU(2)N , and ZN ,M

2 is the diagonal combination of the centers of
SU(2)N and Sp(2)M . The non-trivial part of the above short exact sequence is

0→ Z2→ Z4→ ZN
2 → 0 . (205)

Thus, we learn that OT and FT form a potentially non-trivial 2-group with the Postnikov class
being

Bock(ev2) ∈ H3
�

B
�

Sp(2)M
Z2

× SO(3)N

�

,Z2

�

, (206)

where ev2 ∈ H2
�

B
�

Sp(2)M
Z2
× SO(3)N

�

,Z2

�

is the characteristic class capturing obstruction of

lifting Sp(2)M
Z2
×SO(3)N bundles to SU(2)N×Sp(2)M

ZN ,M
2

bundles, and Bock is the Bockstein associated

to the above short exact sequence (205). The 2-group is non-trivial if the Postnikov class
Bock(ev2) is a non-trivial element of H3

�

B
�

Sp(2)M
Z2
× SO(3)N

�

,Z2

�

.

SU(4)2 + 2Λ2 : Consider 5d SCFT T which is the UV completion of 5d SU(4) gauge theory
having 2 hypers in 2-index antisymmetric irrep and CS level 2. This theory has 1-form sym-
metry group OT = Z2. The non-abelian part of the flavor symmetry of T is sp(2) which is the
symmetry rotating the two Λ2 hypers in the SU(4) gauge theory description. Thus, we can
apply the analysis of section 2.2.3, using which we find that the 0-form flavor symmetry group
of T is

FT = Sp(2) (207)

and that there is no 2-group between OT and FT.

SU(4)0 + 3Λ2 : Consider the 5d SCFTTwhich is the UV completion of 5d SU(4) gauge theory
having 3 hypers in 2-index antisymmetric irrep and vanishing CS level. The corresponding
geometry is
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e
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∑
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e
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∑
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f

x3 -x2

x1

2e-
∑

x i

e

e

e
f

x2

x 1-
x 2

f

N1

e

e

e-x3

f

(208)
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Ni describe an sp(4) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z2 × Z2
generated by

�1
2 , 0, 0, 1

�

∈ ZG × ZF ' (R/Z)3 ×Z/2Z and
�

0,0, 1
2 , 1

�

∈ ZG × ZF . From this we
compute that O ' Z2 generated by

�1
2 , 0, 1

2 , 0
�

∈ ZG × ZF which is identified with the 1-form
symmetry group OT ' Z2 of T. We also have Z ' Z2 generated by 1 ∈ ZF . Thus the 0-form
flavor symmetry group FT of T is

FT =
Sp(4)
Z2

. (209)

The projection of E onto ZG is E ′ ' Z2 × Z2 generated by
�1

2 , 0, 0
�

∈ ZG and
�

0, 0, 1
2

�

∈ ZG ,
implying that the projection map is injective. The short exact sequence (13) becomes

0→ Z2→ Z2 ×Z2→ Z2→ 0 , (210)

which splits, and hence T does not admit a non-trivial 2-group structure.

SU(4)2 + 3Λ2 : Consider the 5d SCFTTwhich is the UV completion of 5d SU(4) gauge theory
having 3 hypers in 2-index antisymmetric irrep and CS level 2. The corresponding geometry
is

10

23
1

34

e

h-
∑

x i

e

h+2 f -
∑

x i

N2
3

N2

N1

f f -x1-x2

x2-x1

f

x3 -x2

x1

2e-
∑

x i

e

e

e
f

x2

x 1-
x 2

f

M2

e

x2
2f , f

f -x1-x2, x1-x2 (211)

Ni describe an sp(3) flavor symmetry of T and M describes an su(2) flavor symmetry
of T. Thus, ZF ' (Z/2Z)N × (Z/2Z)M . We find that E ' Z4 generated by
�1

4 , 1
2 , 3

4 , 1, 0
�

∈ ZG × ZF ' (R/Z)3 × (Z/2Z)N × (Z/2Z)M . From this we compute that O ' Z2

generated by
�1

2 , 0, 1
2 , 0, 0

�

∈ ZG × ZF which is identified with the 1-form symmetry group
OT ' Z2 of T. We also have Z ' Z2 generated by (1,0) ∈ ZF . Thus the 0-form flavor symme-
try group FT of T is

FT =
Sp(3)
Z2

× SU(2) . (212)

The projection of E onto ZG is E ′ ' Z4 generated by
�1

4 , 1
2 , 3

4

�

∈ ZG , implying that the projection
map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4→ Z2→ 0 . (213)

Thus, the 1-form symmetry group OT ' Z2 and Sp(3)/Z2 part of 0-form symmetry group FT

form a potentially non-trivial 2-group with the Postnikov class being

Bock(ev2) ∈ H3
�

B
Sp(3)
Z2

,Z2

�

, (214)

where ev2 ∈ H2
�

B Sp(3)
Z2

,Z2

�

is the characteristic class capturing obstruction of lifting Sp(3)/Z2

bundles to Sp(3) bundles, and Bock is the Bockstein associated to the above short exact se-
quence. The 2-group is non-trivial if the Postnikov class Bock(ev2) is a non-trivial element of
H3
�

B Sp(3)
Z2

,Z2

�

.
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Note that this 2-group is perturbative in the sense that it is already visible at the level of
the SU(4)2+ 3Λ2 gauge theory. The instantonic non-perturbative part of the flavor symmetry
group is SU(2) and does not contribute to the 2-group structure.

SU(4)4 + 3Λ2 : Consider the 5d SCFT T which is the UV completion of 5d SU(4) gauge
theory having 3 hypers in 2-index antisymmetric irrep and CS level 4. It is known that this
theory has a 1-form symmetry group OT ' Z2 and 0-form flavor symmetry algebra f4. Since
F4 does not have center, the 0-form flavor symmetry group FT must be

FT = F4 . (215)

Furthermore, there cannot be a non-trivial 2-group structure between FT and OT.

Spin(7) + 3F : Consider the 5d SCFT T which is the UV completion of 5d Spin(7) gauge
theory having 3 hypers in vector irrep. The corresponding geometry is

33+3
6

1224

e-
∑

x i -
∑

yi

e h

2h

M
f

e

N1
3

N2

N1

x 2
-x

1
, y

2
-y

1

f -x3, f -y3f -x , x

x 3-x 2, y3-y2

f , f

2e-x

e

e

e

f ,
f

2

2

3

x i

yi

2

(216)

Ni describe an sp(3) flavor symmetry of T and M describes an su(2) flavor symmetry
of T. Thus, ZF ' (Z/2Z)N × (Z/2Z)M . We find that E ' Z4 generated by
�1

2 , 1
2 , 1

4 , 0, 1
�

∈ ZG × ZF ' (R/Z)3 × (Z/2Z)N × (Z/2Z)M . From this we compute that O ' Z2

generated by
�

0, 0, 1
2 , 0, 0

�

∈ ZG × ZF which is identified with the 1-form symmetry group
OT ' Z2 of T. We also have Z ' Z2 generated by (0,1) ∈ ZF . Thus the 0-form flavor symme-
try group FT of T is

FT = Sp(3)× SO(3) . (217)

The projection of E onto ZG is E ′ ' Z4 generated by
�1

2 , 1
2 , 1

4

�

∈ ZG , implying that the projection
map is injective. The short exact sequence (13) becomes

0→ Z2→ Z4→ Z2→ 0 . (218)

Thus, the 1-form symmetry group OT ' Z2 and SO(3) part of 0-form symmetry group FT form
a non-trivial 2-group with the Postnikov class being

Bock(ev2) ∈ H3 (BSO(3),Z2) , (219)

where ev2 ∈ H2 (BSO(3),Z2) is the characteristic class capturing obstruction of lifting SO(3)
bundles to SU(2) bundles, and Bock is the Bockstein associated to the above short exact se-
quence.
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Spin(7) + nF ; 0≤ n≤ 4; n 6= 3 : For these cases, the non-abelian part of the 0-form symme-
try algebra is sp(n) and it is purely perturbative. So we can follow the analysis of section 2.2.3.
The center Z2 of the simply connected group Sp(n) associated to the non-abelian part of flavor
algebra acts non-trivially on the perturbative matter. Thus, we must have

FT = Sp(n) . (220)

The 1-form symmetry group of T is OT ' Z2. These facts imply that we must have
E = O ' Z2 ' E ′ and Z = 0. Thus, following section 2.1, there is no non-trivial 2-group
structure between FT and OT.

4.5 Rank 5

SU(6) 15
2
+ 1

2Λ
3 : Consider the 5d SCFT T which is the UV completion of 5d SU(6) gauge

theory having a half-hyper in 3-index antisymmetric irrep and CS level 15
2 . The corresponding

geometry is

24

38

410

512 x6-x9, x7-x10, x8-x11, f -x3-x12, x3-x12

f -x2-x3

e

h

e

e

N12
5 f

13
0

f

5 f
x4 -x6 , x5 -x7 , f -x3 -x8 , x3 -x8 , x12 -x11

x1 -x4 , f -x2 -x5 , x2 -x5 , x8 -x7 , x11 -x10

5 f
f -x

1 -x
2 , x

2 -x
1 , x

5 -x
4 , x

7 -x
6 , x

10 -x
9

5 f

x
1 , x

4 , x
6 , x

9

e+ f - ∑
x
i , e-x

1 , e-x
2 , e-x

3

h

h+ f

e

e+ f

x2-x1

f

x 3-
x 2

f
5

4
5

5

5

(221)

N describes an su(2) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z3 generated
by
�2

3 , 1
3 , 0, 2

3 , 1
3 , 0

�

∈ ZG × ZF ' (R/Z)5 × Z/2Z. From this we see that O = E ' Z3 which is
identified with the 1-form symmetry group OT ' Z3 of T. We have Z = 0, and thus the 0-form
flavor symmetry group FT of T is

FT = SU(2) . (222)

The projection of E onto ZG is E ′ ' Z3 generated by
�2

3 , 1
3 , 0, 2

3 , 1
3

�

∈ ZG , implying that the pro-
jection map is injective. Thus, following section 2.1, there is no non-trivial 2-group structure
between FT and OT.

SU(6)3 +Λ3 : Consider the 5d SCFT T which is the UV completion of 5d SU(6) gauge theory
having a full hyper in 3-index antisymmetric irrep and CS level 3. The corresponding geometry
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is

44

32

22
2

12

x1-x3,

e

h-
∑

x i

e

e

N

54
8

f , f

h

h+2 f

e

e-x1-x2

x3, x4

x1, x2

f -x1-x4, f -x2-x3

f , f

2
2

x2-x4

2

h-
∑

x i

f

(223)

N describes an su(2) flavor symmetry of T. Thus, ZF ' Z/2Z. We find that E ' Z3 × Z2
generated by

�1
3 , 2

3 , 0, 1
3 , 2

3 , 0
�

∈ ZG×ZF ' (R/Z)5×Z/2Z and
�

0, 0, 1
2 , 0, 1

2 , 1
�

∈ ZG×ZF . From
this we see that O ' Z3 is the first subfactor in E , which is identified with the 1-form symmetry
group OT ' Z3 of T. We have Z ' Z2 generated by 1 ∈ ZF . Thus, non-abelian part of the
0-form flavor symmetry group FT of T is

FT = SO(3) . (224)

The projection of E onto ZG is E ′ ' Z3 × Z2 generated by
�1

3 , 2
3 , 0, 1

3 , 2
3

�

∈ ZG and
�

0, 0, 1
2 , 0, 1

2

�

∈ ZG , implying that the projection map is injective. The short exact sequence
(13) becomes

0→ Z3→ Z3 ×Z2→ Z2→ 0 , (225)

which splits, and hence T does not admit a non-trivial 2-group structure.

SU(6)6 +Λ3 : Consider the 5d SCFT T which is the UV completion of 5d SU(6) gauge theory
having a full hyper in 3-index antisymmetric irrep and CS level 6. We have OT ' Z3 and

FT = G2 , (226)

which has trivial center. Thus, there can be no 2-group structure between OT and FT.

SU(6) 3
2
+ 3

2Λ
3 : Consider the 5d SCFT T which is the UV completion of 5d SU(6) gauge

theory having 3 half-hypers in 3-index antisymmetric irrep and CS level 3
2 . The corresponding
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geometry is
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f -y, f -y,
f -x , f -x

4

f -x1, f -y1,

x1, f -x1,
x2-x1, f -x1-x2

f , f
2

x1-x2, y1-y2

f , f

(227)
N and M describe su(2)⊕su(2) flavor symmetry of T. Thus, ZF ' (Z/2Z)N×(Z/2Z)M . We find
that E ' Z3 × Z2 generated by

�1
3 , 2

3 , 0, 1
3 , 2

3 , 0, 0
�

∈ ZG × ZF ' (R/Z)5 × (Z/2Z)N × (Z/2Z)M
and (0, 0,0, 0,0, 0,1) ∈ ZG×ZF . From this we see that O ' Z3 is the first subfactor in E , which
is identified with the 1-form symmetry group OT ' Z3 of T. We have Z ' Z2 generated by
(0, 1) ∈ ZF . Thus the 0-form flavor symmetry group FT of T is

FT = SU(2)N × SO(3)M , (228)

where SO(3)M is the flavor symmetry rotating the 3 half-hypers, and SU(2)N is the instantonic
symmetry. The projection of E onto ZG is E ′ ' Z3 generated by

�1
3 , 2

3 , 0, 1
3 , 2

3

�

∈ ZG , implying
that the projection map is not injective. However, let us define E1 ' Z3 to be the first subfactor
of E and E2 ' Z2 to be the second subfactor of E . Then O ⊆ E1 and the elements of E2 are of
the form (0,∗) ∈ ZG × ZF . Also, the projection of E1 onto ZG is E ′1 = E ′ ' Z3, implying that
the projection map E1→ E ′1 is injective. Now, following section 2.1, we learn that T does not
admit a non-trivial 2-group structure.

4.6 Rank 6

Spin(12) + 2S : Consider the 5d SCFT T which is the UV completion of 5d Spin(12) gauge
theory having 2 hypers in spinor irrep. The corresponding geometry is

34+4
2 44

114

24
e-
∑

x i h

h+4 f

e

e h 62

h

e
4 4

56

f
f , f , f , f

f -x i -yi
x1-y2, x2-y1,

x3-y4, x4-y3

N
e fe

M P

4 4

x1-x4, y2-y3,
x3-x2, y4-y1

4 f 4 f

x1-x3, y2-y4,
x4-x2, y3-y1

h

(229)
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M, N,P describe three su(2) flavor symmetries ofT. Thus, ZF ' (Z/2Z)M×(Z/2Z)N×(Z/2Z)P .
We find that E ' Z4×Z2×Z2 generated by

�3
4 , 1

2 , 1
4 , 0, 1

2 , 1
4 , 0, 1, 0

�

∈ ZG×ZF ' (R/Z)6×(Z/2Z)M
×(Z/2Z)N × (Z/2Z)P ,

�1
2 , 0, 1

2 , 0, 1
2 , 0, 1, 0, 0

�

∈ ZG × ZF and (0,0, 0,0, 0,0, 1,0, 1) ∈ ZG × ZF .
From this we see that O ' Z2 generated by

�1
2 , 0, 1

2 , 0, 0, 1
2 , 0, 0, 0

�

∈ ZG×ZF which is identified
with the 1-form symmetry group OT ' Z2 of T. We have Z ' Z3

2 generated by (1, 0,0) ∈ ZF ,
(0, 1,0) ∈ ZF and (0, 0,1) ∈ ZF . Thus, non-abelian part of the 0-form flavor symmetry group
FT of T is

FT = SO(3)M × SO(3)N × SO(3)P . (230)

Here SO(3)M , SO(3)P can be seen perturbatively, but SO(3)N is instantonic. The projection
of E onto ZG is not injective, but we can define E1 ' Z4 ×Z2 as the subgroup of E generated
by its first two subfactors, and E2 ' Z2 as the subgroup of E generated by its third subfactor.
Then O ⊆ E1, the elements of E2 are of the form (0,∗) ∈ ZG× ZF , and the projection of E1 onto
ZG is E ′1 ' Z4×Z2 generated by

�3
4 , 1

2 , 1
4 , 0, 1

2 , 1
4

�

∈ ZG and
�1

2 , 0, 1
2 , 0, 1

2 , 0
�

∈ ZG , implying that
the projection map E1→ E ′1 is injective. The short exact sequence (22) becomes

0→ Z2→ Z4 ×Z2→ Z2 ×Z2→ 0 , (231)

whose non-trivial part is only

0→ Z2→ Z4→ Z2→ 0 , (232)

where the first Z2 is the 1-form symmetry, the Z4 is a sub-factor of E and the second Z2 is
(Z/2Z)N . Thus, we learn that OT and FT form a non-trivial 2-group with the Postnikov class
being

Bock(ev2) ∈ H3 (B[SO(3)M × SO(3)N × SO(3)P],Z2) , (233)

where ev2 ∈ H2 (B[SO(3)M × SO(3)N × SO(3)P],Z2) is the characteristic class capturing ob-
struction of lifting SO(3)M×SO(3)N ×SO(3)P bundles to SO(3)M×SU(2)N ×SO(3)P bundles,
and Bock is the Bockstein associated to the above short exact sequence (232).

5 Conclusions and Outlook

In this paper, we explored 2-group symmetries and global form of 0-form symmetry groups in
5d SCFTs and related 5d SQFTs obtained by mass deforming the 5d SCFTs. Our analysis used
information about the Coulomb branch of vacua of these theories which can be read from M-
theory geometric constructions of these theories. Central to this analysis is the identification
of the structure group, which is the maximal group acting faithfully on the particle spectrum.

As a concrete application of our method, we explicitly studied 2-group symmetries and
global form of 0-form symmetry groups in a large class of 5d SCFTs which admit a mass defor-
mation such that the low-energy theory after the mass deformation becomes some 5d N = 1
gauge theory with a simply connected gauge group G based on a simple Lie algebra g. Such
theories were geometrically classified in [43] using the description in M-theory on Calabi-Yau,
retaining only the information about the surface geometry. Since we are interested in 2-group
symmetries, we only study the sub-class of theories (in the above class of theories) that have in
addition a 1-form symmetry, which again is encoded in the geometry of the surfaces [20,21].
We collect our results in table 1 where some of the 2-groups are unconfirmed since we do not
know an argument to show that the associated Postnikov class is non-trivial. It would be very
interesting to determine whether these Postnikov classes are non-trivial.

Our method determines the global form of 0-form symmetry group of any 5d SCFT/SQFT
irrespective of whether or not the theory admits a 1-form symmetry. This was exemplified by
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studying the global form of the 0-form symmetry group of rank 1 Seiberg theories which have
eN f +1 0-form symmetry algebra. We found that for N f 6= 1, the 0-form symmetry group is
the maximally center-quotiented form of the group ENF+1/ZENF+1

. We also explain how this is
consistent with the ray indices for these theories [19] which contains representations carrying
non-trivial charges under the flavor center ZENF+1

.
It would also be interesting to find the connection to the work in [55], where global symme-

tries of the ENF+1 theories in 3d were computed, in particular the connection with the groups
(E1)1 therein and the 5d global symmetries.

For the E1 theory, we also discuss the anomaly discussed in [18], and propose that it most
likely lifts to an anomaly of the 2group symmetry, but we leave the determination of the 2-
group anomaly to future work. We also propose a mechanism for matching the anomaly of [18]
on the Higgs branch of vacua of the E1 SCFT. The proposal involves a coupling between the
Higgs branch sigma model capturing the 0-form symmetry and a 5d Z2 gauge theory capturing
the 1-form symmetry on the Higgs branch.

Another question that arose in the context of global flavor symmetries is the superconfor-
mal index in the case of non-simply connected gauge groups, such as SO(3). We have argued
using the results of [53] that the index for SU(2)0 and SO(3)0 should agree 31. It would be
interesting to provide more physical arguments explaining the matching of the two indices.
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A Geometric Computations

A.1 Background Material

In this paper, we discuss non-compact Calabi-Yau threefolds which carry intersecting compact
and non-compact Kahler surfaces. We represent the intersection properties of these surfaces
in terms of graphs whose nodes represent different surfaces and edges represent various in-

31One might think this is intuitively obvious since the index only counts local operators and so should be insen-
sitive to the choice of line operators. However, there can be twisted sectors giving rise to additional local operators
after gauging the 1-form symmetry. One such source is provided by local operators living at the ends of the topo-
logical defect dual to the Pontryagin square P(B) of the 1-form symmetry background B in the SU(2)0 SCFT. Such
operators do not contribute to the SU(2)0 index. But they become genuine local operators (i.e. not attached to
any higher-dimensional defect) in the SO(3)0 SCFT upon gauging the 1-form symmetry, and hence contribute to
SO(3)0 index. Such operators might carry representations under the flavor su(2) algebra that are not carried by
the genuine local operators in the SU(2)0 SCFT.
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tersections between the surfaces. A node of the form

mb
n (234)

denotes a surface obtained by taking a Hirzebruch surface of degree32 n and performing b
blowups on it33. The variable m is a label used to distinguish different surfaces, when one has
multiple surfaces. It denotes that the surface (234) is the m-th surface in the geometry and
the surface (234) is also denoted as Sm. On the other hand, a node of the form34

Nb
m or Mb

m or Pb
m (235)

denotes a P1 fibered non-compact surface carrying b blowups and m is a label differentiating
different non-compact surfaces in the geometry. The P1 fiber of any surface D of type (234)
or (235) is denoted as f and has the intersection properties

f ·D f = 0

f ·D x = 0

f ·D KD = −2

, (236)

where KD is dual of the canonical class of D, x is any blowup out of the b blowups and ·D
denotes intersection number inside the surface D. For Hirzebruch surface D of type (234) we
denote the base P1 as e which satisfies

e ·D f = 1

e ·D x = 0

e ·D e = −n

e ·D KD = n− 2

. (237)

For a Hirzebruch surface we also define a curve h := e + nf . For a blowup x on a surface D,
we have

x ·D x = −1

x ·D KD = −1 .
(238)

For two different blowups x i , x j on a surface D, we have

x i ·D x j = 0 (239)

For a non-compact surface D of type (235), we denote by ne +
∑

i ni x i a section of the P1

fibration which has the following intersection properties with other curves in D

�

ne+
b
∑

i=1

ni x i

�

·D f = n

�

ne+
b
∑

i=1

ni x i

�

·D x j = −n j .

(240)

The blowups b are often divided as b = b1 + b2 + b3 + b4 and the corresponding surfaces
represented as

mb1+b2+b3+b4
n or Nb1+b2+b3+b4

m or Mb1+b2+b3+b4
m or Pb1+b2+b3+b4

m (241)

32We allow n to become negative for ease in providing a uniform description in some cases.
33It should be noted that the blowups are in general non-generic.
34Unlike m which is a number, N, M and P are just letters.
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Then, the b1 blowups are labeled as x i for i = 1, · · · , b1, the b2 blowups are labeled as yi for
i = 1, · · · , b2, the b3 blowups are labeled as zi for i = 1, · · · , b3, and the b4 blowups are labeled
as wi for i = 1, · · · , b4.

∑

x i represents the sum of all the b1 blowups etc.
An edge between two nodes D1 and D2 of the form

D1 D2
C12 C21

(242)

describes an intersection between D1 and D2 such that the intersection locus when seen from
the point of view of divisor D1 describes a curve C12 inside D1, and when seen from the point
of view of divisor D2 describes a curve C21 inside D2. We also say that the edge describes a
“gluing” of D1 and D2 such that C12 ∈ D1 is glued to C21 ∈ D2. Extending this terminology, C12
and C21 are also referred to as “gluing curves”. An edge between two nodes D1 and D2 of the
form

D1 D2
C12,1, C12,2, · · · , C12,m C21,1, C21,2, · · · , C21,mm

(243)

describes m number of intersections between D1 and D2. The i-th intersection is described
by gluing C12,i ∈ D1 to C21,i ∈ D2. We also define “total gluing curves” C12 and C21 in this
situation as

C12 :=
m
∑

i=1

C12,i

C21 :=
m
∑

i=1

C21,i

. (244)

Finally, an edge of the form

D1

C1,1, C1,2, · · · , C1,m

C ′1,1, C ′1,2, · · · , C ′1,m

m

(245)

describes m number of self-intersections of D. The i-th self-intersection is described by gluing
C1,i ∈ D1 to C ′1,i ∈ D1. We also define “total self-gluing curve” C1 as

C1 :=
m
∑

i=1

�

C1,i + C ′1,i

�

. (246)

An intersection number between a surface D2 and a compact curve C living in a different
surface D1 is computed as

D2 · C = C12 ·D1
C , (247)

where C12 is the total gluing curve defined in (244). On the other hand, an intersection number
between a surface D1 and a compact curve C living in the same surface D1 is computed as

D1 · C = (K1 + C1) ·D1
C , (248)

where K1 is the dual of canonical class of D1 and C1 is the total self-gluing curve defined in
(246).

In the computations of section 4, each compact surface D corresponds to a U(1)D gauge
group. The charge qD(C) of matter content associated to M2-brane wrapping a compact curve
C under the U(1)D gauge group is computed as

qD(C) = −D · C . (249)

In addition to these charges, we also need flavor center charges of C which are discussed in
next subsection.
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A.2 Center Symmetry from Geometry

Some particular configurations of intersecting P1 fibered surfaces can be associated to non-
abelian gauge or flavor algebras, depending on whether the surfaces are compact or non-
compact [9, 48]. If the surfaces are compact, and the associated algebra is a gauge algebra
g, then the encoding of the center symmetry of the simply connected group G associated to g

was discussed in [21]. A straightforward extension of their analysis can be used to describe
the encoding of the center symmetry of the simply connected group F associated to a flavor
algebra f if the surfaces are non-compact, which is needed for the analysis of this paper.

For f= su(n), the geometric configuration is

N1 N2
e e · · · Nn−1

e e

(250)

and the charge q f (C) under the center Zn of F = SU(n) of a compact curve C can be computed
as

q f (C) = −

� n−1
∑

i=1

iNi

�

· C (mod n) . (251)

For f= so(2n+ 1), the geometric configuration is

N1 N2
e e · · · Nn−1

e e Nn
2e e

(252)

and the charge q f (C) under the center Z2 of F = Spin(2n+ 1) of a compact curve C can be
computed as

q f (C) = −Nn · C (mod 2) . (253)

For f= sp(n), the geometric configuration is

N1 N2
e e · · · Nn−1

e e Nn
2ee

(254)

and the charge q f (C) under the center Z2 of F = Sp(n) of a compact curve C can be computed
as

q f (C) = −

� n
∑

i=1

1− (−1)i

2
Ni

�

· C (mod 2) . (255)

For f= so(4n+ 2), the geometric configuration is

N1 N2
e e · · · N2n−1

e e N2n+1
ee

N2n

e

e

(256)

and the charge q f (C) under the center Z4 of F = Spin(4n+ 2) of a compact curve C can be
computed as

q f (C) = −

� 2n−1
∑

i=1

�

1− (−1)i
�

Ni + 3Nn−1 +Nn

�

· C (mod 4) . (257)
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For f= so(4n), the geometric configuration is

N1 N2
e e · · · N2n−2

e e N2n−1
ee

N2n

e

e

(258)

The charge qC
f (C) under the subgroup ZC

2 of the center ZS
2 ×Z

C
2 of F = Spin(4n) of a compact

curve C can be computed as

qC
f (C) = −

� 2n−1
∑

i=1

1− (−1)i

2
Ni

�

· C (mod 2) (259)

and the charge qS
f (C) under the subgroup ZS

2 of the center ZS
2 × Z

C
2 of F = Spin(4n) of a

compact curve C can be computed as

qS
f (C) = −

� 2n−2
∑

i=1

1− (−1)i

2
Ni +N2n

�

· C (mod 2) . (260)

For f= e6, the geometric configuration is

N1 N2
e e N3 N4

e e N5
ee

N6

e

e

e e

(261)

and the charge q f (C) under the center Z3 of F = E6 of a compact curve C can be computed as

q f (C) = −

� 5
∑

i=1

iNi

�

· C (mod 3) . (262)

For f= e7, the geometric configuration is

N2 N3
e e N4 N5

e e N6
ee

N7

e

e

e eN1
e e

(263)
and the charge q f (C) under the center Z2 of F = E7 of a compact curve C can be computed as

q f (C) = −
�

N1 +N3 +N7

�

· C (mod 2) . (264)

A.3 Flavor Center Charges of Instantons

If one has a geometry which can describe non-abelian gauge theory with simple gauge algebra
in the IR, then every compact surface is P1 fibered and all the (total) gluing curves involve the
e curve. The charges of matter content associated to all the compact curves in the geometry
can be accounted by accounting the charges of matter content associated to all P1 fibers f , all
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blowups x i , and a single e curve living in one of the compact surfaces [21]. The fibers f account
for contributions of gauge bosons, the blowups x i account for contributions of hypermultiplet
content of the gauge theory and the single e curve accounts for the contribution of a massive
instanton BPS particle. The contributions of gauge bosons and hypermultiplets can be easily
computed from the gauge theory data and one does not need geometry to determine it (even
though one can, but it is a harder computation than gauge theory). However, the contribution
of instanton requires non-perturbative understanding of the 5d gauge theory which is much
easier to deduce from the geometry rather than the gauge theory. The charge of instanton
under the center of the gauge group was determined in [21] for all 5d gauge theories with
simple gauge algebra that can arise in the IR of 5d SCFTs. Here we extend their analysis to
determine the charge of instanton under the center of each simply connected group associated
to each flavor symmetry algebra that can arise for such 5d gauge theories. It should be noted
that we only discuss flavor symmetry algebras visible at the level of gauge theory and not their
possible enhancements. The results of this sub-appendix are also collected in section 2.2.3.

First of all, if we have n hypers in a complex representation R of the the gauge group G,
then the instanton associated to G has a trivial charge under the center of the simply connected
group SU(n) associated to the su(n) flavor symmetry algebra rotating the n hypers. This is
because the n hypers then form a single full hypermultiplet transforming in representation R⊗F
of G × SU(n), and according to the arguments presented in [21], the instanton of G cannot
be charged under the center Zn of SU(n). Non-trivial charge for instanton arises only if the
hypers are charged in a real representation of G. We now go over the geometric realization of
all such possible cases one-by-one and determine how the instanton is charged. We pick the
geometries from [10].

Consider the gauge theory Spin(2n + 1) with m hypers in vector representation F . The
associated geometry can be represented as

1m
2n−5 22n−7

e h · · · (n− 2)1
e h (n− 1)1

e e n6
2h e

N1 N2
e e · · · Nm−1

e e Nn
m

2e-
∑

x ie

f -x1

x1

x
1 -x

2

f

xm−2
-xm−1

f

x m
−1

-x m

f

f f f

2

f , f

x
2 -x

1

x n−
2
-x

n−
3

x n−
1
-x n−

2

xn-xn−1, f -xn-xn−1

(265)
We can choose the instanton to be the curve e in S1, which has to satisfy the consistency
condition that its charge under the gauge center is as claimed in section 2.2.3. In this case,
using (253) (or rather its compact analogue), we see that the gauge center charge of the
chosen instanton is indeed 0 (mod 2), as required. Using (255), we see that its flavor center
charge is m (mod 2) under the Z2 center of the Sp(m) simply connected group associated to
the sp(m) flavor symmetry algebra rotating the m hypers. But the gauge center charge of a
vector hyper is 0 (mod 2) and its flavor center charge is 1 (mod 2). So, by redefining the
instanton contribution by combining it with the vector contribution, we can always choose the
instanton to have both gauge and flavor center charges to be 0 (mod 2). Said another way, we
could choose the instanton to be the curve e−

∑

x i in S1, which also has gauge center charge
0 (mod 2), as required, and its flavor center is computed using (255) to also be 0 (mod 2).

Now, consider the gauge theory Spin(2n + 2) with m hypers in vector representation F .

63

https://scipost.org
https://scipost.org/SciPostPhys.13.2.024


SciPost Phys. 13, 024 (2022)

The associated geometry can be represented as

1m
2n−4 22n−6

e h · · · (n− 2)2
e h (n− 1)0

e e n2
e e

N1 N2
e e · · · Nm−1

e e Nn
m

2e-
∑

x ie

f -x1

x1

x
1 -x

2

f

xm−2
-xm−1

f

x m
−1

-x m

f

f f f f

x
2 -x

1

x n−
2
-x

n−
3

x n−
1
-x n−

2

x n-x n−1
(n+ 1)2

e

e

f -xn-xn−1

f

(266)
We can choose the instanton to be the curve e in S1, which satisfies the consistency condition
that its charge under the gauge center is as claimed in section 2.2.3, i.e. 0 (mod 2). Using
(255), we see that its flavor center charge is m (mod 2), which is the final answer appearing
in section 2.2.3. Notice that in this case we cannot use the vector hyper to neutralize the
instanton’s flavor center charge since the vector hyper carries a non-trivial gauge center charge
but the instanton is required to carry trivial gauge center charge.

Now, consider the gauge theory SU(4)k with m hypers in 2-index antisymmetric irrep Λ2.
The associated geometry can be represented as

2m
k 3k−2

e

N1 N2
e e · · · Nm−1

e e
N2

m
2e-
∑

x ie

f -x1

x1

x
1 -x

2

f

xm−2
-xm−1

f

x m
−1

-x m

f

e

x 2-x 1

12+k

h

f -x2-x1

f

h

f

(267)
We can choose the instanton to be the curve e in S1, which satisfies the consistency condition
that its charge under the gauge center is as claimed in section 2.2.3. Using (255), we see that
its flavor center charge is m (mod 2), which is the final answer appearing in section 2.2.3.

Now, consider the gauge theory Sp(n) with m hypers in fundamental representation F .
The associated geometry can be represented as

Nn
1 N2

e e · · · Nm−3
e e Nm−2

e e Nm−1
e e

1m−2n−2 2m−2n
h e · · · (n− 1)m−6

h e
nm−1

1
2h-
∑

x ih

f -x1

x1

x
1 -x

2

f

xn−2
-xn−1

f

x n−
1
-x n

f

f
f f f

x
2 -x

1

x
m
−

2 -x
m
−

3 x m−
1
-x m−

2

x m−
1-

x m−
2 Nm

e

e

f -xm−1-xm−2

f

(268)
We can choose the instanton to be the curve e− 1−(−1)n

2 x1 in S1, which satisfies the consistency
condition that its charge under the gauge center is trivial, which is as required by section 2.2.3.
We see that its flavor center charge is the same as that of a spinor/cospinor irrep of so(2m)
symmetry rotating the m hypers, which is the final answer appearing in section 2.2.3, where
we have chosen an outer-automorphism frame of so(2m) such that the flavor center charge of
instanton always coincides with the flavor center charge of a spinor irrep of so(2m).

Now, consider the gauge theory Sp(n) with m hypers in 2-index antisymmetric irrep Λ2.
Since the hypers have trivial charge under gauge center and a non-trivial charge 1 (mod 2)
under the flavor center, we can always choose an instanton which has a trivial charge under
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the flavor center (and the charge under gauge center is determined by the discrete theta angle
of Sp(n) as discussed in section 2.2.3). The same argument can also be applied to F4 and G2
gauge theories carrying m hypers in 27 and 7 dimensional representations respectively.

Now, consider the gauge theory Sp(3) with a half-hyper in 3-index antisymmetric irrep
Λ3 and 2m+ 1 half-hypers in fundamental representation F . The associated geometry can be
represented as

N3
1 N2

e e · · · Nm−2
e e Nm−1

e e Nm
2e e

1m−10 2m−8
h e

3m+1
1

2h-
∑

x ih+2 f

f -x1

x1

x
1 -x

2

f
f

x2-x3
f

f f f , f

x
2 -x

1

x
m
−

2 -x
m
−

3 x m−
1
-x m−

2

xm-xm−1, f -xm-xm−1

2

2

xm-y1, f -xm-y1
f , f

(269)

We can choose the instanton to be the curve e − x1 in S1, which satisfies the consistency
condition that its charge under the gauge center is trivial, which is as required by section
2.2.3. We see that its flavor center charge is 1 (mod 2) under the Z2 center of the Spin(2m+1)
simply connected group associated to the so(2m + 1) flavor symmetry algebra rotating the
2m+ 1 half-hypers, which is the final answer appearing in section 2.2.3.

Now, consider the gauge theory Spin(7) with m hypers in spinor irrep S. The associated
geometry can be represented as

2m
1 36−m

2h-
∑

x i

N1 N2
e e · · · Nm−1

e e
N2

m
2e-
∑

x ie

f -x1

x1

x
1 -x

2

f

xm−2
-xm−1

f

x m
−1

-x m

f

e

x 2-x 1

11

e

f -x2-x1

f

e

f

(270)
We can choose the instanton to be the curve e in S1, which satisfies the consistency condition
that its charge under the gauge center is trivial, which is as required by section 2.2.3. We see
that its flavor center charge is m (mod 2) under the Z2 center of the Sp(m) simply connected
group associated to the sp(m) flavor symmetry algebra rotating the m hypers, which is the
final answer appearing in section 2.2.3.

Now, consider the gauge theory Spin(9) with m hypers in spinor irrep S. The associated
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geometry can be represented as

3m+m
1 46−2m

2h-
∑

x i -
∑

yi

N1 N2
e e · · · Nm−1

e e Nm
2ee

f -x1 -y1

f

x
1 -x

2 , y
1 -y

2

f , f

xm−2
-xm−1,

f , f

xm−1-xm,

f , f

x i -yi

21

f

e

2

ym−2-ym−1

2

ym−1-ym

2

12m+3

h+m−2
2 f -

∑

x i

e

e

h+mf

m

(271)

for m even, and as

3m+m
0 46−2m

2e+ f -
∑

x i -
∑

yi

N1 N2
e e · · · Nm−1

e e Nm
2ee

f -x1 -y1

f

x
1 -x

2 , y
1 -y

2

f , f

xm−2
-xm−1,

f , f

xm−1-xm,

f , f

x i -yi

21

f

e

2

ym−2-ym−1

2

ym−1-ym

2

12m+3

e+m−1
2 f -

∑

x i

e

e

h+mf

m

(272)

for m odd. The m intersections between S1 and S3 are such that x i − yi ∈ S3 is glued to a
copy of f ∈ S1 for all i = 1, · · · , m. We can choose the instanton to be the curve e in S1, which
satisfies the consistency condition that its charge under the gauge center is trivial, which is
as required by section 2.2.3. We see that its flavor center charge is 0 (mod 2) under the Z2
center of the Sp(m) simply connected group associated to the sp(m) flavor symmetry algebra
rotating the m hypers, which is the final answer appearing in section 2.2.3.

Now, consider the gauge theory Spin(11) with 2 hypers in spinor irrep S. The associated
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geometry can be represented as

34+4
1 41

113

23
e-
∑

x i h+ f

h+4 f

e

e h

56

2h

e
4 4

f
f , f , f , f

f -x i -yi
x1-y2, x2-y1,

x3-y4, x4-y3

M P

4 4

x1-x4, y2-y3,
x3-x2, y4-y1

f , f , f , f f , f , f , f

x1-x3, y2-y4,
x4-x2, y3-y1

(273)

We can choose the instanton to be the curve e in S1, which satisfies the consistency condition
that its charge under the gauge center is trivial, which is as required by section 2.2.3. We see
that its flavor center charge is also trivial, which is the final answer appearing in section 2.2.3.

Now, consider the gauge theory Spin(11) with 3 half-hypers in spinor irrep S. The associ-
ated geometry can be represented as

31+1
1 2355 41

0
h+ f -x-y e2e+ f -xe e e-x

12+2+2
9

h+3 f

e-x2-y2

2
3

f -x , f f , x , y

f -z1-z2,

x1-y1, x2-y2, z1-z2

x2, y2
z2, f -x1-x2

3

f , f , f

x-yf

M4+44

x i

yi (274)

along with the following extra gluing rules:

• x1, x1, y1, y1, z2, f − z2, f − z2− x2, z2− x2, z1, f − z1, f − z1− y2, z1− y2 in S1 are glued
to x2, y2, x1, y1, f − x3, f − y3, f , f , f − x4, f − y4, f , f in M.

• f − y, f − y, f − x , f − x in S3 are glued to x3, y3, x4, y4 in M.

• f − x , x , x , f − x in S4 are glued to f − x3, f − y3, f − x2, f − y2 in M.

• f , f , f , f in S5 are glued to x2 − x1, y2 − y1, x3 − x4, y3 − y4 in M.

We can choose the instanton to be the curve e in S1, which satisfies the consistency condition
that its charge under the gauge center is trivial, which is as required by section 2.2.3. We see
that its flavor center charge is also trivial, which is the final answer appearing in section 2.2.3.

Now, consider the gauge theory Spin(12) with 2 hypers in a spinor irrep S. The associated
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geometry can be represented as

34+4
2 40

110

20
h-
∑

x i e

e+4 f

e

e e

510

e+4 f

e
4 4

f
f , f , f , f

f -x i -yi
x1-y2, x2-y1,

x3-y4, x4-y3

M P

4 4

x1-x4, y2-y3,
x3-x2, y4-y1

f , f , f , f f , f , f , f

x1-x3, y2-y4,
x4-x2, y3-y1

62
e e

(275)

We can choose the instanton to be the curve e in S1, which satisfies the consistency condition
that its charge under the gauge center is trivial, which is as required by section 2.2.3. We see
that its flavor center charge is also trivial, which is the final answer appearing in section 2.2.3.

Now, consider the gauge theory Spin(12) with 3 half-hypers in a spinor irrep S. The asso-
ciated geometry can be represented as

33+3
2 43

112

24
e-
∑

x i

e

h+3 f

e

e h

51

h

e
3 3

65

f
f , f , f

f -x i -yi
x1-y2, x2-y1,

x3-y3

M

h

8

h

x1-x3, x3-x2,
y2-y3, y3-y1,

8 f

x1-x3, x3-x2,
y2-y3, y3-y1

(276)

We can choose the instanton to be the curve e in S5, which satisfies the consistency condition
that its charge under the gauge center ZS

2 is trivial but its charge under the gauge center ZC
2 is

non-trivial, which is as required by section 2.2.3. We see that its flavor center charge is trivial,
which is the final answer appearing in section 2.2.3.

Finally, consider the gauge theory SU(6) 1
2+l with 3 half-hypers in 3-index antisymmetric
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irrep Λ3. The associated geometry can be represented as

3l−1 4l+314−l 24
l−6

h+ f ee-
∑

x ie h+3 f -x2-x3-x4 e

52
l+7

h+ f

e

x3, x4-x2 f

f -x1-x2

x1-x2

x2, f

f

x2-x1
f

N6+66

x i

yi

2

(277)

along with the following extra gluing rules:

• f , f , f , f , f , f in S1 are glued to x4 − x5, y4 − y5, x6 − x7, x8 − x9, y6 − y7, y8 − y9 in N.

• x3, f −x3, x2, x2, x1, x1, x4−x3, f −x4−x3 in S2 are glued to f −x4, f −y4, x7, y7, x9, y9, f , f in
N.

• f , f , f , f in S3 are glued to x5 − x7, x4 − x6, y5 − y7, y4 − y6 in N.

• f , f , f , f in S4 are glued to x7 − x9, x6 − x8, y7 − y9, y6 − y8 in N.

• f − x1, x1, f − x2, x2, x1, f − x1, x2, f − x2 in S5 is glued to
f − x6, f − x5, f − x7, f − x4, f − y6, f − y5, f − y7, f − y4 in N.

We can choose the instanton to be the curve e in S1, which satisfies the consistency condition
that its charge under the gauge center is as required by section 2.2.3. We see that its flavor
center charge is trivial, which is the final answer appearing in section 2.2.3.

B Fractionalization of Instanton Number and Mixed ’t Hooft
Anomalies of 5d Gauge Theories

In this appendix we review the details of coupling a gauge theory to background fields for the
1-form symmetry. The consequence of this operation is that the instanton density factional-
izes, potentially leading to anomalies. In 5d gauge theories with a 1-form symmetry this is
indeed the case. When the instanton number becomes fractional, a generic 5d gauge theory
potentially has two types of ’t Hooft anomalies. The first one is a mixed anomaly between the
instanton U(1)I , whose current is JI =

1
8π2 ∗ Tr(F ∧ F), and the 1-form symmetry correspond-

ing to the center of the simply connected gauge group Z(G). This is due to the 5d coupling
between the instanton density and the background gauge connection for U(1)I , [18]. The
second anomaly is a 1-form symmetry ’t Hooft anomaly, which is only present when the 5d
bare Chern-Simons coupling is non-trivial [24]. In the second part of this appendix we will
review how and when these anomalies arise.

Let us first discuss the case when O = Z(G). Activating a background 2-form B for the
1-form symmetry has a non-trivial effect on the instanton density,

I4 =
1

8π2
Tr(F ∧ F) . (278)
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Table 2: Coefficients of the fractional instanton density for non-trivial background
B. For Spin(4N) we have two contributions given by P(B(L) + B(R)) and B(L) ∪ B(R),
respectively.

G Z(G) αG

SU(N) ZN
N−1
2N

Sp(N) Z2
N
4

Spin(2N + 1) Z2
1
2

Spin(4N + 2) Z4
2N+1

8

Spin(4N) Z2 ×Z2

�N
4 , 1

2

�

E6 Z3
2
3

E7 Z2
3
4

If B is trivial, then we sum over G bundles which have the property that the instanton number
∮

M4⊂M5

I4 ∈ Z , (279)

where M4 is any 4-cycle inside M5. If instead we activate a non-trivial B, then we sum over
G/Z(G) bundles instead of G bundles so that

B = w2(G/Z(G)) ∈ H2(M5, Z(G)) , (280)

where w2 ∈ H2(G/Z(G), Z(G)) is the characteristic class capturing the obstruction of lifting a
G/Z(G) bundle to a G bundle. In this case, the instanton number can take fractional values
with the fractional part captured by the following expression for G 6= Spin(4N)

I4 = αGP(B) mod Z , (281)

where P(B) is the Pontryagin square35 of B and αG is a coefficient tabulated in table 2 [56].
For G = Spin(4N), the center 1-form symmetry Z(G) = ZL

2 × Z
R
2 has two Z2 factors. Let us

choose a basis for Z(G) such that under ZL
2 , spinor has charge 1 and cospinor has charge 0,

and under ZR
2, spinor has charge 0 and cospinor has charge 1. Let us denote the background

fields for the two Z2 factors as BL and BR. Then, we have

I4 =
N
4
P(BL + BR) +

1
2

BL ∪ BR mod Z . (282)

Now let us consider the case when the 1-form symmetry is broken to a subgroup O = Zk
of Z(G). For G 6= Spin(4N), we can write Z(G) = Zn, and then k must divide n. A background
B′ for G/O can be related to a background B for G/Z(G) as

B =
n
k

B′ (283)

modifying the fractionalization (281) of the instanton number to

I4 =
n2αG

k2
P(B′) mod Z . (284)

35When B is valued in Zn for odd n, we define P(B) = B ∪ B and its periods take integer values modulo n. For
even n, P(B) has periods which (on a spin manifold) take even integer values modulo 2n.
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For G = Spin(4N), the possible subgroups are ZL
2 , ZR

2, and the diagonal Z2 ,→ ZL
2 ×Z

R
2. Then

O = ZL
2 : I4 =

N
4
P(BL) mod Z

O = ZR
2 : I4 =

N
4
P(BR) mod Z

O = Z2 : I4 =
1
2

B′ ∪ B′ =
1
2
P(B′) mod Z ,

(285)

where in the final case we consider the diagonal Z2, where BL = BR = B′.
The Pontryagin square can also be presented in a continuous version, [1, 57–60]. For

SU(N) this is done by extending it to U(N), whose connection is A′. The 1-form symmetry
background ZN is specified by a pair (B, C), where C is the U(1) gauge field of U(N), and the
pair satisfies NB = dC . The fields transform under the 1-form symmetry as follows

A′→ A′ +λIN ,

C → C + Nλ ,

B→ B + dλ ,

(286)

where IN is N × N identity matrix, λ is a U(1) connection. The invariant field strength reads

F → F ′ − B IN . (287)

The instanton density36, which is invariant under (286), is

1
2Tr(F ∧ F)→ 1

2Tr(F ′ ∧ F ′)− 1
N Tr(F ′)∧ dC + 1

2N dC ∧ dC . (288)

Taking into account the constraint Tr(F ′) = dC , and expressing everything in terms of the
second Chern class,

1
2Tr(F ′ ∧ F ′) = 1

2 c1(F
′)2 − c2(F

′) , (289)

we have that
1
2Tr(F ∧ F)→ c2(F

′)− N−1
2N dC ∧ dC , (290)

where dC have integer periods. The second term on the right hand side is the continuum
version of the Pontryagin square term previously introduced. Matter fields can break the 1-
form symmetry to a subgroup thereof. In the SU(N) case this can be broken to Zk, where
N
k = q ∈ Z. Expression (283) with n= N implies that

NB′ = dC ′, (291)

where dC ′ has also integer period. Finally dC ′ is related to dC by using NB = dC and (283)
with n= N ,

N
k

dC ′ = dC . (292)

We can now see that with (290) is modified for O = Zk ⊂ ZN as follows,

1
2Tr(F ∧ F)→ c2(F

′)− N−1
2N

�

N
k

�2

dC ′ ∧ dC ′ , (293)

which is consistent with the general expression (284). For the other simply connected groups,
G, a similar procedure can be implemented by embedding a maximal subgroup

∏

i SU(ni) ⊂ G,
and by activating certain 1-form symmetry backgrounds for the subgroup factors, as described
in [56].

36In order to avoid carrying around factors of 2π, we implement the following redefinition F
2π → F . This will

allow to us to avoid the factors of 2π in the periodicities as well.
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B.1 Anomalies of 5d Gauge Theories

There are two type of ’t Hooft anomaly of 5d gauge theories. The first one is a mixed ’t Hooft
anomaly between the instanton symmetry and the 1-form symmetry. The second is a 1-form
symmetry cubic ’t Hooft anomaly, which is present only in the case G = SU(N), with bare
Chern-Simons coupling κ 6= 0.

It was proposed in [18] that the fractionalization of the instanton number in the pres-
ence of a non-trivial 1-form symmetry background B leads to an anomaly under large gauge
transformations of U(1)I . Correspondingly, the large gauge transformations take the form

AI → AI + aI (294)

with
∮

γ⊂M5

aI ∈ Z (295)

for γ an arbitrary 1-cycle in M5. Then the coupling

SIR[AI] ⊃ AI ∧ I4 , (296)

leads to the following phase ambiguity of the partition function,

Z[AI , B]→ Z[AI , B]exp

�

2πi
n2αG

k2

∫

M5

aI ∪P(B)

�

(297)

for G 6= Spin(4N). The above phase ambiguity is valued in Zq if

n2αG

k2
=

p
q

. (298)

The anomaly theory A6[AI , B] associated to the above phase ambiguity is then

Amix
6 [AI , B]IR = 2πi

n2αG

k2

∫

Y6

FI ∪P(B) , (299)

where Y6 is a 6-manifold such that ∂ Y6 = M5. The connection AI lifts to a connection on Y6
and FI is its field strength.

For G = Spin(4N) and O = Z(G) = ZL
2 ×Z

R
2, the phase ambiguity is

Z[AI , B]→ Z[AI , B]exp

�

2πi

∫

M5

aI ∪
�

N
4
P(BL + BR) +

1
2

BL ∪ BR

�

�

, (300)

which is Z2 valued. For the case of G = Spin(4N) and O = ZL
2 ×Z

R
2, the anomaly theory can

be written as

Amix
6 [AI , B]IR = 2πi

∫

Y6

FI ∪
�

N
4
P(BL + BR) +

1
2

BL ∪ BR

�

. (301)

The second ’t Hooft anomaly was proposed in [24], and it involves only the one for sym-
metry. This anomaly appears by activating the 1-form symmetry, O = Zk, background B and
substituting (287) into the bare Chern-Simons coupling, by also using the fact that

κCS5(A) = 2π
κ

6

∫

Y6

Tr(F3) , (302)
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where M6 is a six-dimensional space which bounds M5 where the 5d theory lives.
For even κ the anomaly theory is

A6[B]IR = 2πi
κN(N − 1)(N − 2)

6

∫

Y6

B3 , (303)

where
∮

B ∈ Zk . For odd κ the anomaly theory is

A6[B, Ac]IR = 2πi
κN(N − 1)(N − 2)

6

∫

Y6

B3 + 2πi
N(N − 1)

2

∫

M6

B2dAc , (304)

where Ac is a spinc connection suche that dA= 1
2 w2(T M5). This is due to the fact that for κ

odd the κCS5 is not an integer on general M5. To better understand this anomaly we should
actually analyse the B3 in the integral. In fact, in the continuum limit we have that kB = dC ,
for an auxiliary pure gauge U(1) connection, C , as introduced in (286). The anomaly then
reads,

A6[B]IR = 2πi
κN(N − 1)(N − 2)

6k2

∫

M6

dC3 , (305)

where dC is the frst Chern class of a complex line bundle associated with the auxiliary U(1).
The integral

∫

M6
dC3 ∈ 6Z on spin manifold and

∫

M6
dC3 ∈ 3Z on non-spin manifold [46,49].
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