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Abstract

Chiral three-spin interactions can suppress long-range magnetic order and stabilize
quantum spin liquid states in frustrated lattices. We study a spin-1/2 model on the
kagome lattice involving a staggered three-spin interaction Jχ in addition to Heisenberg
exchange couplings J1 on nearest-neighbor bonds and Jd across the diagonals of the
hexagons. We explore the phase diagram using a combination of a classical approach,
parton mean-field theory, and variational Monte Carlo methods. We obtain a variety of
noncoplanar magnetic orders, including a phase that interpolates between cuboc-1 and
cuboc-2 states. In the regime of dominant Jχ , we find a classically disordered region
and argue that it may harbor a gapless chiral spin liquid with a spinon Fermi surface.
Our results show that the competition between the staggered three-spin interaction and
Heisenberg exchange interactions gives rise to unusual ground states of spin systems.
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1 Introduction

In quantum magnets, the combination of competing exchange interactions and geometric
frustration can lead to unconventional magnetic states [1]. One example is the emergence
of noncoplanar spin structures in the Heisenberg model on the kagome lattice with further-
neighbor interactions [2]. Besides the spontaneous magnetization, noncoplanar phases are
distinguished by a scalar spin chirality [3]. In the extreme case, quantum fluctuations can
melt the long-range magnetic order, giving rise to quantum spin liquids (QSLs) [4–6]. In chi-
ral spin liquids (CSLs) [7–13], the ground state preserves the spin-rotation symmetry of the
Hamiltonian, but supports a finite scalar spin chirality if reflection and time reversal symme-
tries are spontaneously or explicitly broken.

Chiral three-spin interactions provide a route to stabilizing CSL ground states [14–20].
Microscopically, this type of interaction arises in Mott insulators with a magnetic flux through
triangular plaquettes, and their ratio to exchange interactions can be enhanced in the vicinity of
the Mott transition [14,21]. In principle, the regime of strong three-spin interactions could be
reached by Floquet engineering with circularly polarized light [22–24]. On the kagome lattice,
a model with dominant three-spin interactions driving a uniform scalar spin chirality harbors
the Kalmeyer-Laughlin CSL [10, 14], a gapped topological phase with anyonic excitations.
On the other hand, three-spin interactions that induce a staggered scalar spin chirality favor
gapless CSLs [25–27], which are striking examples of non-Fermi liquids with Fermi surfaces
of fractionalized excitations.

In this work we investigate a spin-1/2 model on the kagome lattice which includes stag-
gered three-spin interaction Jχ as well as frustrated Heisenberg exchange interactions. Specifi-
cally, we consider exchange couplings J1 on nearest-neighbor bonds and Jd on bonds across the
diagonals of the hexagons. Our motivation for studying this model is that an antiferromagnetic
Jd is the dominant interaction in the spin model for kapellasite [28–32], with ferromagnetic J1
as the next-leading interaction. In this case, the system is expected to develop a noncoplanar
magnetic order known as the cuboc-2 state [32, 33]. On the other hand, based on numerical
results and analytical arguments, a gapless CSL with a line Fermi surface has been proposed
as the ground state of the model with chiral interactions only [27]. An important question
pertains to the stability of this CSL with respect to magnetic order. Equivalently, from the per-
spective of the magnetic phases, one may ask how the chiral interaction destabilizes the cuboc
order for a sufficiently large Jχ . Besides addressing the stability of the gapless CSL within
our numerical methods, our goal is to investigate the magnetic phases that appear when the
exchange couplings and the chiral three-spin interaction become of the same order.

We start by mapping out the classical phase diagram of the model. Coming from the limit
of dominant Jd > 0, we find that varying J1 in the presence of a finite Jχ leads to a continuous
transition to a noncoplanar phase that smoothly interpolates between the cuboc-2 and cuboc-
1 states. This intermediate phase, which we call the AFMd phase, contains a variant of the
octahedral state [2] as a special point at which the staggered spin chirality in the triangles
of the kagome lattice is maximized. In our case, we observe antiferromagnetic chains in the
diagonals of the hexagons of the kagome lattice, instead of the ferromagnetic chains in the
original octahedral state, but the positions of the Bragg peaks in the spin structure factor are
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Figure 1: Schematic representation of the kagome model with Heisenberg exchange
interactions J1 and Jd and chiral three-spin interaction Jχ . The staggered chirality
is represented by the arrows inside the triangles. The reflection axes σ and σ′ are
indicated by blue solid lines.

the same. In the regime where Jχ dominates, we observe a classically disordered region,
compatible with the appearance of a QSL phase. To test this idea, we work out a parton mean-
field theory [5, 6] of a U(1) CSL with a line Fermi surface. In contrast with previous work
which considered Majorana fermions [27], here we construct variational wave functions using
a parton representation with Abrikosov fermions, employing an ansatz classified in Ref. [9]. We
compute the energy of the trial wave function using variational Monte Carlo (VMC) methods
and compare it with the energy of competing classical states. In addition, we test the stability
of the proposed CSL against order-inducing perturbations within the VMC approach. We find
that the gapless CSL persists in a sizeable region in the phase diagram around the pure-Jχ
point studied in Ref. [27].

The paper is organized as follows. In section 2, we present the J1-Jd -Jχ model on the
kagome lattice. In section 3, we explore the classical phase diagram and find novel ordered
phases for both signs of Jd . Section 4 is devoted to the parton mean-field ansatz and the
analysis of the spinon spectrum. In section 5, we show our VMC results and the phase diagram
obtained by analyzing perturbations to the CSL variational wave function. We summarize our
results in section 6. Finally, appendix A has some considerations about the nature of the
classical degeneracy for the J1-Jd -Jχ model, whereas appendix B contains some details of the
derivation of the mean-field Hamiltonian for the three-spin interaction.

2 Model and symmetries

We consider an SU(2)-symmetric spin-1/2 model on the kagome lattice described by the Hamil-
tonian

H = H0 +Hχ , (1)

where

H0 =
∑

i j

Ji jSi · S j , (2)

Hχ = Jχ
∑

i jk∈Í
Si ·

�

S j × Sk

�

− Jχ
∑

i jk∈Ï
Si ·

�

S j × Sk

�

. (3)
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Figure 2: Classical phase diagram for the model in Eq. (1) on the kagome lattice with
Jχ = 1 setting the energy scale. We have five semiclassical ordered states: cuboc-2,
AFMd, FM (ferromagnetic), FM-stripe, and FMd. Black dashed lines indicate first-
order phase transitions. The solid line between the cuboc-2 and the AFMd phases
indicates a continuous transition. A classically disordered region, in red, is present
around the point J1 = Jd = 0.

The nonzero exchange couplings in H0 are Ji j = J1 for nearest-neighbor bonds and Ji j = Jd
for bonds across the diagonals of the hexagons, see Fig. 1. In Eq. (3), the sites i, j, k belong
to an up-pointing (Í) or down-pointing (Ï) triangle and are oriented counterclockwise. The
relative minus sign between the two terms in Eq. (3) induces a staggered scalar spin chirality.
Without loss of generality, hereafter we set Jχ > 0.

Besides breaking time-reversal symmetry, the chiral three-spin interaction lowers the point
group symmetry of the Hamiltonian in comparison with the Heisenberg model on the kagome
lattice. The rotational symmetry around the centers of the hexagons is reduced from sixfold
to threefold. In addition, we can define reflections about two independent axes, indicated by
σ and σ′ in Fig. 1. The staggered chirality pattern breaks the reflection symmetry generated
by σ′, but preserves σ.

Let us highlight two important limits of the model. For Jd > 0 and Jd � Jχ , |J1|, the
Hamiltonian describes three sets of weakly coupled antiferromagnetic spin-1/2 chains rotated
by 120◦ with respect to each other [26,32]. The low-energy physics of critical spin-1/2 chains
is described by the SU(2)1 Wess-Zumino-Witten (WZW) model [34]. However, the fixed-point
of decoupled spin chains, J1 = Jχ = 0, is unstable against weak interchain couplings, and an
arbitrarily small J1 < 0 drives the system to the cuboc-2 phase [32]. In the limit Jd = J1 = 0
and Jχ > 0, there is compelling numerical evidence [25,27] that the ground state corresponds
to a gapless CSL with a line Fermi surface protected by reflection symmetry σ [9]. A signature
of this gapless CSL is that spin correlations decay with distance r as a power law ∼ r−2 in the
directions perpendicular to the Fermi surface lines [26].
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Figure 3: Classical spin configurations (left) and corresponding structure factor
(right) for the phases in Fig. 2 with Jχ = 1. The magnetic unit cell is marked by
the blue shaded region. (a) cuboc-2; (b) AFMd (J1 = −0.05, Jd = 0.3); (c) FM; (d)
FM-stripe (J1 = −0.13, Jd = −0.16); (e) FMd (J1 = −0.02, Jd = −0.3); (f) classi-
cally disordered region. The color scale on the right is arbitrary. All snapshots show
a small portion of a L = 12 lattice. The inner (outer) hexagon in the structure factor
represents the original (extended) Brillouin Zone of the kagome lattice. In addition,
the darker (lighter) the dot, the stronger (weaker) the relative intensity of the Bragg
peaks located at this position. The FM-stripe is stabilized in one of three equivalent
configurations distinguished by a 2π/3 rotation. The state shown in (f) is only one
of the many possible states inside the disordered region.

3 Classical phase diagram

To study the ordered phases for the model in Eq. (1), we start from the classical limit, and
treat the spins as classical vectors of size S. Our main goal is to identify novel phases stabi-
lized by the chiral interaction Jχ . Because the chiral term contains a three-spin interaction, we
cannot employ the usual Luttinger-Tisza method [35]. Instead, we numerically minimize Eq.
(1) using a gradient descent algorithm. Given a spin Si , we anti-align it with respect to the
gradient of the Hamiltonian: Sm+1

i = (1− γ)Sm
i −γ∇iH

�

Sm
i

�

, with the step size 0≤ γ≤ 1 and
∇iH = ∂H/∂ Si [36]. We consider Ncf ∈ [100,200] distinct initial random spin configurations,
and we sweep over the lattice locally minimizing each spin. We stop the algorithm when the
overall change in the spin configuration after the m-th iteration is smaller than a given toler-
ance, which we typically set to 10−10. Our ground state is given by the spin configuration with
the lowest energy in the final set. This procedure is realized on a kagome lattice with periodic
boundary conditions and system size N = 3× L× L (see Sec. 4 for further details of the direct
and reciprocal lattices). Specifically, we consider L ∈ [6,20] to investigate possible ordered
phases with distinct magnetic unit cells. For a given classical ground state spin configuration,
we compute its Fourier transform Sk = N−1/2

∑

j e−ik·r j S j , where r j is the position of site j

and k is a wave vector. The static spin structure factor is given by S (k) = Sk · S−k = |Sk|
2.

The order parameter is then given by m2 = S (Q)/N , where Q is the ordering wave vector,
corresponding to the location of the Bragg peaks in S (k).

Our procedure works as follows. For a fixed set
�

J1, Jd , Jχ
�

, we find the ground state
spin configuration and its structure factor for a given system size N . We vary the parameters
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Figure 4: Order parameter squared (normalized with respect to its value in the cuboc-
2 state) as a function of J1, indicating the continuous transition between the cuboc-2
and AFMd phases for Jχ = 1 and Jd = 0.2. This is true for all Jd > 0 where the
cuboc phases are stable. The red (light-blue) curve shows the normalized Bragg peak
intensity at the cuboc-2(1) ordering wave vectors. At the point J1 = 0, an octahedral
state maximizing the staggered chirality emerges. The phase transition to the cuboc-
1 is slower and takes place in the vicinity of J1 = 1 (not shown). Inset: structure
factor for the cuboc-1 phase.

identifying phase transitions by sudden changes in S (k) and peaks in −∂ 2E0/∂ J2
1,d , where

E0 is the classical ground state energy. We repeat this procedure for different system sizes
to accommodate commensurate spiral orders. Figure 2 shows the classical phase diagram
obtained within this formalism. In addition to the previously reported cuboc-2 [Fig. 3(a)]
and FM phases [Fig. 3(c)] [2, 37], we find three other magnetically ordered phases: AFMd
[Fig. 3(b)], FM-stripe [Fig. 3(d)], and FMd [Fig. 3(e)]. These three phases display a net
nonzero staggered chirality on the corner-sharing triangles of the kagome lattice, indicating
that they are stabilized by Jχ . We encounter no incommensurate spiral orders, but uncover
the existence of an extended classically disordered region for dominant Jχ , where no sign of
magnetic order is detected, Fig. 3(f).

The AFMd state, Fig. 3(b), is characterized by three antiferromagnetic spin chains running
along the diagonals of the hexagons in the kagome lattice, with the relative orientation among
the chains controlled by J1 and Jχ . For fixed Jχ , the AFMd phase interpolates between the
cuboc-1 and cuboc-2 phases as we vary J1, Fig. 4. Because these three phases display the
same magnetic unit cell, by varying J1 we smoothly modify the relative intensity of the Bragg
peaks, leading to a continuous phase transition as the peaks corresponding to one of the cuboc
phases vanish. For J1 = 0, all Bragg peaks have the same intensity. This point corresponds to
a variant of the octahedral state [2], for which the classical scalar staggered spin chirality is
maximized.1

A large and negative J1 favors the FM state with fully polarized spins, Fig. 3(c). As we
reduce the absolute value of J1, a new phase appears, the FM-stripe, Fig. 3(d). In this state,
ferromagnetic spin chains appear along a single diagonal in the hexagons, with the spins in the
other two diagonals displaying a small angle between them. Importantly, this phase possesses
a finite spin chirality in the triangles, indicating an energetic trade-off between J1 and Jχ . By
symmetry, there are two other equivalent spin configurations, with the ferromagnetic chains

1The continuous evolution of the AFMd phase in real space can be found in the supplemental material at
https://github.com/joaosds/suppl_noncoplanar for fixed Jχ = 1 and Jd > 0 while J1 is varied.
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running along one of the other two diagonals. As in the AFMd case, the relative intensity of
the Bragg peaks varies with J1.

If one starts from the limit J1 = 0, a negative Jd favors ferromagnetic chains along the
diagonals of the hexagons. This gives rise to the FMd phase, Fig. 3(e), in analogy to the AFMd.
The magnetic unit cell, however, contains 48 spins as opposed to the 12 spins in the AFMd,
and the relative intensity of the Bragg peaks also depends on J1. We find that the transitions
between the FM and FM-stripe and FM-stripe and FMd are discontinuous. We leave a more
detailed characterization of the magnetically ordered phases for future work.

Finally, we address the classically disordered region. In all its extent, the static spin struc-
ture factor shows neither Bragg peaks nor sharp features, and its weight is distributed over
the entire Brillouin zone, Fig. 3(f). A classically disordered region is tied to the presence of
massively degenerate states and usually occurs at isolated points in the phase diagram, for
instance at the boundaries between two ordered phases. Its extended nature in the present
problem may be traced back to the frustrating nature of the kagome lattice. In fact, the clas-
sical model at the pure chiral point with J1 = Jd = 0 is known to have an extensive ground
state degeneracy which is not completely lifted by J1 6= 0 [38]. We elaborate on this point in
appendix A. Although quantum fluctuations may lift the massive degeneracy via the order-by-
disorder mechanism [38–41], the presence of an extended classically disordered region in the
regime Jχ � |J1|, |Jd | is a promising sign that a CSL might be stable for S = 1/2, as indicated
by numerical results for the pure chiral model [27].

4 Parton mean-field theory for gapless chiral spin liquid

As discussed in Sec. 3, the classical phase diagram features a disordered region that may
support a QSL ground state for S = 1/2. To describe this state, we employ a parton construc-
tion in which we fractionalize the spin operator into fermionic spinons, also called Abrikosov
fermions [6,42].

Our choice of fermionic spinons is motivated by the suggestion of a gapless CSL for the
model with staggered scalar spin chirality [25–27]. The projective symmetry group classifica-
tion of U(1) chiral spin liquids with fermionic partons on the kagome lattice can be found in
Ref. [9]. In the following, we focus on a specific ansatz that is compatible with all symmetries
of the Hamiltonian and reproduces a line Fermi surface in the spinon spectrum, as expected
for the model with J1 = Jd = 0. This choice can be justified a posteriori since we will show
that it generates a competitive variational wave function, whose energy is lower than that of
the magnetically ordered states. Since in the following we restrict the number of mean-field
parameters and do not explore all possible Ansätze, we cannot rule out the possibility of a
better ansatz which yields an even lower energy.

We introduce charge-neutral spin-1/2 fermions fiα, with α =↑,↓, which satisfy the algebra
{ fiα, f †

jβ}= δi jδαβ , { fiα, f jβ}= 0 . The spin operator at site i is written as

Sa
i =

1
2

∑

αβ

f †
iα(σ

a)αβ fiβ , (4)

where σa are Pauli matrices. Following the standard parton mean-field decoupling of the
Heisenberg interactions in Eq. (1) [42] , we obtain

HMF
0 = −

∑

α,i j

Ji j

2

�

ξ ji f †
iα f jα + h.c.

�

+
∑

i j

Ji j

2

�

�ξi j

�

�

2
, (5)

with ξi j =
∑

α〈 f
†
iα f jα〉 a mean-field parameter that specifies the QSL ansatz. This description

leads to a U(1) gauge redundancy [43]. In order to recover physical states, we must impose
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Figure 5: (a) Mean-field ansatz on the kagome lattice. Sites are labeled by the corre-
sponding sublattice index s ∈ {1, 2,3}, see Eq. (9). The arrows on the solid lines indi-
cate the bond direction in which ξi j = iξ1. Likewise, ξi j = iξd in the direction indi-
cated by the arrow on the dashed line. The red arrow represents the nearest-neighbor
vector δ1/2. (b) Three-dimensional plot of the spinon dispersion for κd/κ1 = 1.2.
(c) Density plot of the dispersion relations for the lower band ε1(k) (left) and the
middle band ε2(k) (right). The dashed lines represent the spinon Fermi surface for
the middle band.

the single-occupancy constraint locally
∑

α

niα =
∑

α

f †
iα fiα = 1, ∀ i . (6)

The three-spin interaction in Eq. (2) can also be decoupled into fermion bilinears using the
same mean-field parameters [44]. For instance, the contribution from the up-pointing triangles
takes the form (see appendix B)

HMF
χ =

3iJχ
16

∑

i jk∈Í

∑

α

�

−ξikξk jξ ji + ξk jξ ji f †
iα fkα + ξikξk j f †

jα fiα + ξ jiξik f †
kα f jα − h.c.

�

. (7)

On the kagome lattice, we denote by fsα(R) the annihilation operator for a fermion with
spin α on sublattice s ∈ {1, 2,3} of the unit cell at position R. As our ansatz, we consider a
U(1) CSL given by a staggered flux phase classified as No. 11 in Table IX of Ref. [9], where
we set the second-neighbor exchange coupling J2 = 0. The unit cell is defined as an up-
pointing triangle, see Fig. 5(a). The lattice vectors are δ1 = (1,0),δ2 = (−1/2,

p
3/2), and

δ3 = (−1/2,−
p

3/2). Using translational invariance, we introduce the notation

ξ(s, s′;v) =
∑

α




f †
sα(R+ v) fs′α(R)

�

. (8)

The mean-field amplitudes are taken as imaginary numbers,

ξ(s+ 1, s;0) = −ξ(s+ 1, s;−δs−1) = iξ1 , (9)

ξ(s, s;δs) = −iξd , (10)

so that ξ(s, s′;v) = ξ∗(s′, s;−v) with s + 3 ≡ s. Here ξ1 and ξd are real order parameters.
The gauge flux Φ4 through an up-pointing triangle is defined by ξ(3,2;0)ξ(2, 1;0)ξ(1,3;0)
= −ξ3

1 = |ξ1|
3 eiΦ4 . Thus, Φ4 = −

π
2 sgn(ξ1). The three-spin interaction with Jχ > 0 selects

negative chirality on up-pointing triangles, which corresponds to ξ1 > 0. We can also char-
acterize the ansatz by the flux through a trapezoid with the longer base along a Jd bond, see
Fig. 5(a). We obtain zero flux if ξ1 and ξd have the same sign and π flux otherwise.
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0 0 0

Figure 6: Spinon dispersion for the lower and upper bands, ε1(k) and ε3(k), along
the Γ -K direction, for different values of the ratio κd/κ1. For κd/κ1 < 2, the bands
are gapped at the K and K′ points. At the critical value κd/κ1 = 2, the bands cross
the Fermi level at the K and K′ points, forming Fermi pockets for κd/κ1 > 2.

We can diagonalize the mean-field Hamiltonian by taking the Fourier transform of the
fermion operators:

fsα(R) =

√

√ 3
N

∑

k

eik·(R+as) fsα(k) , (11)

where a1 = 0, a2 = δ3/2 and a3 = −δ2/2 are the relative positions within the unit cell and N
is the total number of sites. The mean-field Hamiltonian takes the form

HMF =
∑

α

∑

k

ψ†
kαH(k)ψkα + NJ1ξ

2
1 +

NJdξ
2
d

2
+

NJχξ
3
1

2
, (12)

with the spinor ψkα = ( f1α(k), f2α(k), f3α(k))T . The Bloch Hamiltonian H(k) is given by

H(k) = −





κd sin(k1) κ1 sin(k3/2) κ1 sin(k2/2)
κ1 sin(k3/2) κd sin(k2) κ1 sin(k1/2)
κ1 sin(k2/2) κ1 sin(k1/2) κd sin(k3)



 , (13)

where ki = k · δi and we define the effective hopping amplitudes κ1 =
3
8 Jχξ

2
1 − J1ξ1 and

κd = Jdξd . For Jχ > 0 and J1 < 0, we have κ1 > 0. For Jd > 0, the sign of κd depends
on ξd , which is related to the gauge flux on trapezoids. Diagonalizing H(k), we obtain the
dispersion relations ελ(k), where λ = 1, 2,3 is a band index. Due to particle-hole symmetry,
ελ(k) = −ε4−λ(−k), the chemical potential must be set to µ = 0 to satisfy the half-filling
condition

∑

α〈 f
†
iα fiα〉= 1. The mean-field ground state |ΨMF〉 is identified with a Fermi sea in

which all negative-energy single-particle states are occupied.
Figure 5(b) shows the spectrum for κ1 > 0 and κd/κ1 = 1.2, which is representative of

the parameter regime 0 < κd < 2κ1. In this case, the lower and upper bands exhibit a Dirac
cone at the Γ point of the Brillouin zone. The middle band shows gapless lines along the Γ -
M directions, see Fig. 5(c). The Fermi surface lines are robust against variations of the ratio
κd/κ1 and their location is fixed by the reflection symmetryσ. However, as we increase κd/κ1,
the energy gap for the lower and upper bands at the K and K′ points decreases. Precisely at
the critical value κd/κ1 = 2, these bands cross the Fermi level with a quadratic dispersion at
the K and K′ points, as represented in Fig. 6. The crossing of the Fermi level and subsequent
formation of Fermi pockets around K and K′ for κd/κ1 > 2 signals a nesting instability [45] of
our CSL at large κd . We have also looked at the spectrum for κd < 0. In this case, a possible
instability of the CSL is indicated by a flattening of the middle band around κd/κ1 = −1. For
either sign of κd , the instabilities at large |κd | can be associated with the regime of dominant Jd
interaction, where we expect the gapless CSL to be replaced by the ordered phases discussed
in Sec. 3. This analysis shows that the range of mean-field parameters where we may consider
a CSL wave function must be restricted to −1< κd/κ1 < 2.
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5 Variational Monte Carlo results

With the CSL ansatz at hand, we can construct a free fermion wave function that is invariant
under the symmetries of the system once the single-site occupancy, Eq. (6), is enforced. How-
ever, the ansatz tells us nothing about the energy of these wave functions. To obtain reliable
energy estimates, we carry out a variational analysis based on the projection of the mean-field
wave function in the region −1< κd/κ1 < 2. Specifically, we enforce the constraint in Eq. (6)
considering a Gutzwiller projection

P̂G =
∏

i

�

ni↑ − ni↓
�2

. (14)

To compare the energy of our CSL state to that of the ordered states discussed in Sec. 2,
we rewrite Eq. (12) as

H̃MF =
∑

α,i j

κi j f †
iα f jα + h

∑

i

Mi · Si . (15)

Besides the oriented hopping structure encoded in κi j , as discussed in Sec. 4, we include a
Zeeman term. Here h controls the strength of the Zeeman coupling, and Mi is a classical spin
configuration corresponding to one of the ordered states in Fig. 2. It suffices to consider h≥ 0.
The vector Mi effectively acts as a staggered magnetic field and magnetic order can be induced
on top of the CSL state if h 6= 0 variationally [46, 47]. In this situation, the spinon spectrum
is gapped and we interpret the resulting state as adiabatically connected to a conventional
magnetically ordered one.

We performed VMC simulations [48] and measured the ground state energy, E = 〈Ψ|H|Ψ〉,
with H given in Eq. (1) and

|Ψ〉= P̂G|Ψ̃MF〉 . (16)

Here, |Ψ̃MF〉 is the ground state of Eq. (15) at half-filling, with the Gutzwiller projector P̂G
given by Eq. (14). In general, including local correlations in our variational wave function –
for instance adding Jastrow factors or optimizing the classical angles – will reduce the energy
of the ordered states further. We refrain to do so here to limit the number of variational
parameters and to explore in detail the phase diagram. Even with this simplification, we have
a flexible ansatz containing energetically competitive magnetic states in addition to the CSL.

In the VMC simulations, we randomly place each spinon spin flavor on N/2 sites of our lat-
tice. Our VMC moves consist of exchanging a random pair of sites of distinct spin flavors. The
exchanges are accepted or rejected according to the Metropolis-Hastings algorithm [49]. The
probability of each configuration is proportional to the square of the wave function. A number
N of exchanges attempts define a VMC sweep. After Nwarm ∼ 104 sweeps for thermalization,
we calculate our observables considering further Nmeas ∼ 104 sweeps. We take κd and h as our
variational parameters, setting κ1 = 1 as an inconsequential energy scale. Besides the state
discussed in Sec. 4, we also considered an ansatz with π/2-flux on the trapezoids. This extra
case corresponds to ansatz No. 9 in Table IX of Ref. [9]. In contrast with the state discussed
in Sec. 4, ansatz No. 9 allows for a more general shape of the Fermi surface. We find its
energy not to be competitive and we refrain from discussing it further. We consider periodic
boundary conditions for H and work with systems sizes up to L = 14. To mitigate finite-size
effects, we implement mixed boundary conditions for H̃MF [50, 51]. Specifically, we consider
periodic boundary conditions along the δ1 direction and antiperiodic boundary conditions in
the δ2 direction.

The VMC result for the CSL limit (h = 0) is shown in Fig. 7 as a function of κd . For large
|κd |, our ansatz recovers the energy of the antiferromagnetic Heisenberg chain in the limit
Jd � Jχ , |J1| [52]. As we discussed in Sec. 2, we expect the CSL to be unstable in this limit.
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Figure 7: Variational energy E = 〈Ψ|H|Ψ〉 as a function of κd for h = 0 obtained via
VMC. We calculate the expectation values of all three terms in Eq. (1): chiral term
(black curve), Heisenberg J1 (green curve) and Jd (purple curve) terms. For com-
parison, we show the exact ground state energy of the antiferromagnetic Heisenberg
chain (orange line). The vertical dashed lines indicate the region of stability for the
CSL ansatz as discussed in Sec. 4. We considered L = 12 and error bars are smaller
than the symbol markers.

Inside the stability range of the CSL ansatz, −1< κd < 2, we observe that the minimum value
of the energy occurs for κd ≈ −0.1. The energy, per spin, of the CSL state is then given by

ECSL/N = −0.392 (1) J1 − 0.015 (1) Jd − 0.131 (1) Jχ , (17)

in the limit Jχ � |Jd |, |J1|. An alternative competitive ansatz for the CSL comes from a parton
construction in terms of Majorana fermions [25]. We find that the energy of this state is the
same as the one in Eq. (17) as long as one does not include a BCS-like p-wave pairing in
|Ψ̃MF〉. For the sake of simplicity, we did not pursue this possibility.

We are now in position to explore the stability of the CSL with respect to the magnetically
ordered phases present in Fig. 2. In our variational language, we say that a given ordered
state is selected if the energy is minimized for h 6= 0. To complement the characterization of
the ordered phases, we compute the square of the sublattice magnetization m

m2 = lim
|i− j|→∞

〈Si · S j〉 . (18)

This observable estimates the spin-spin correlation at the maximum distance for two spins
belonging to the same magnetic sublattice and gives the square of the staggered magnetization.
We then have m = 0 in the CSL and m > 0 in the corresponding magnetically ordered phase.
In Fig. 8 we show the phase transition between the CSL and the AFMd phase as we vary Jd
for J1 = −0.01. The finite size-scaling allows us to estimate the transition taking place at
Jd = 0.08(2), showing that the CSL is stable around the classically disordered region. Notice
that in the ordered phase we have m < S due to the quantum fluctuations captured by our
variational calculation.

In practice, we construct our phase diagram mainly considering a fixed system size
(L = 12) due to the complex nature of the ordered phases present. Since the classical spin
configurations of the AFMd, FMd and FM-stripe phases depend on J1, but not on Jd , we com-
pare the energy of the different phases by fixing J1 and varying Jd in the VMC simulation. For
a given J1, we then extract the classical spin configuration Mi . These spins act as a rigid stag-
gered field on top of the spin-liquid phase. The sole variational parameter is h. The resulting
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Figure 8: Finite-size scaling for the magnetic order parameter as a function of 1/L
for J1 = −0.01, Jχ = 1, and several values of Jd . Inset: Extrapolation of m2 to the
thermodynamic limit. m2 = (>)0 corresponds to the CSL (AFMd) phase. The colored
region indicates the numerical uncertainty in the location of the phase transition.

Figure 9: Phase diagram of the model in Eq. (1) on the kagome lattice obtained
via VMC for Jχ = 1 and S = 1/2. We focus on the region around the chiral spin
liquid (CSL) phase. The classical representation of the magnetically ordered phases
is shown in Fig. 3.
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phase diagram for S = 1/2, in the vicinity of the CSL, is displayed in Fig. 9. The error bars
in Fig. 9 come mainly from the presence of magnetization plateaus, due to finite size effects,
which hamper a precise determination of the phase boundaries. Overall, the CSL is expanded
with respect to the classically disordered region, towards both the AFMd and FM-stripe phases,
strongly suggesting the selection of a CSL by a dominant Jχ .

The position of the transition between the magnetically ordered phases is also altered.
Quantum fluctuations reduce the width of the FM-stripe phase with respect to the FMd phase,
in the vicinity of the CSL where |Jd |> |J1|. The FMd phase has three coupled FM chains along
the diagonal of the hexagons [Fig. 3(e)], as opposed to a single FM chain in the FM-stripe
[Fig. 3(d)], which could explain its relative stability despite the larger magnetic unit cell.

6 Discussion

We investigated the rich phase diagram that stems from the competition between staggered
three-spin interactions and frustrated Heisenberg interactions on the extended kagome lat-
tice. In the regime of dominant three-spin interactions, our results support the existence of
the gapless chiral spin liquid phase identified in Refs. [25, 27]. The classically disordered re-
gion that we observed in this regime is consistent with the analysis of trial wave functions by
variational Monte Carlo, which shows that the chiral spin liquid state has lower energy and is
stable against order-inducing perturbations.

Increasing the strength of the Heisenberg interactions, we found several noncoplanar mag-
netic states beyond the previously reported cuboc phases. The AFMd and FMd phases can be
pictured as coupled spin chains with Néel or ferromagnetic order, respectively, running along
the diagonals of the hexagons in the kagome lattice. The angle between the magnetization
in different sets of crossing chains varies continuously with the nearest-neighbor exchange
coupling, and the cuboc-1, cuboc-2, and octahedral states can be viewed as particular limits
of the AFMd phase. We found a continuous transition from the AFMd phase to the cuboc-2
phase which is manifested in the relative intensity of Bragg peaks in the spin structure factor.
This continuous transition is reminiscent of the transition from canted antiferromagnetism to
the fully polarized state driven by an external magnetic field [53], but here it is driven by a
compromise between the frustrating exchange couplings and the three-spin interaction. In ad-
dition, we identified an FM-stripe phase at intermediate couplings. This phase breaks the C3
lattice rotational symmetry as the spins select one out of the three diagonals of the hexagons
to form ferromagnetically ordered spin chains.

As an extension of this work, it would be interesting to further characterize the novel
magnetic phases, in particular by investigating the effects of thermal and quantum fluctuations
[38]. Another important question pertains to the nature of the quantum phase transitions from
the gapless chiral spin liquid to the magnetically ordered phases. For the topological chiral spin
liquid with uniform scalar spin chirality, numerical evidence indicates that exotic continuous
transitions may take place as a result of quantum melting of the noncoplanar order [18]. In
contrast, transitions from the gapless chiral spin liquid with staggered spin chirality remain
largely unexplored.

A Classical ground state degeneracy near the chiral point

In section 3 we encountered an extended disordered region in the classical model with dom-
inant three-spin interactions. Generically, a classically disordered phase can be connected to
classically degenerate states and often appears at the boundaries between two ordered phases.
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Figure 10: (a) Example of a three-color triaxial state. The directions A, B, and C form
an orthogonal basis. (b) Variant of the octahedral phase with AFM chains along the
diagonals of the hexagons. The axis are illustrative and not unique. The unit cell is
represented by the parallelograms.

Its extended nature in the present problem may be traced back to the frustrated geometry of
the kagome lattice combined with the effects of the three-spin interaction.

The extensive degeneracy of the classical J1-Jχ model was discussed in Ref. [38] for J1 > 0
and both uniform and staggered chirality. Let us take the pure chiral model, J1 = Jd = 0, as
our reference point. The energy of the staggered chiral interaction is minimized imposing that
the spins in the up (down) triangles form a right (left)-handed orthogonal basis. An important
subset of theses states are the triaxial states [38], shown in Fig. 10 (a), in which each spin is
collinear with one of three directions represented by three colors. Triaxial states in the pure
chiral model have an extensive degeneracy which scales as 2N/6 and is associated with local
Z2 degrees of freedom. The latter is reminiscent of the degeneracy of coplanar states for the
antiferromagnetic Heisenberg model on the kagome lattice [54]. In the presence of nonzero
J1, the triaxial states can be generalized by considering three directions which are no longer
orthogonal. In terms of the angle θ that the spins form with the space diagonal, the energy for
a single triangle is E(θ ) = 3

4[J1S2(1+3 cos2θ )−
p

3JχS3 sinθ sin2θ]. For J1 < 0, the angle θ0

that minimizes the energy decreases with |J1| until we reach the critical value J1c = −S/
p

3.
For J1 < J1c , we obtain θ0 = 0, corresponding to the ferromagnetic state. On the other hand,
for J1 > J1c the classical ground state remains massively degenerate because one can construct
a subextensive set of states which are degenerate with a given three-color state, as explained
in Ref. [38].

The construction of classically degenerate ground states for the J1-Jχ model does not hold
once we add the exchange coupling Jd . In fact, starting from the pure chiral point, a small
Jd > 0 has an immediate impact: it selects triaxial states with AFM chains along the diagonals
of the hexagons, shown in Fig. 10(b). This state minimizes both the Jχ and Jd terms. As a
result, the extensive ground state degeneracy is lifted at first order in Jd > 0 and we enter
the AFMd phase, see Fig. 2. The situation for Jd < 0 is distinct because FM chains running
along the diagonals of the hexagons are incompatible with triaxial states. Within the set of
triaxial states, those in which spins across the diagonals point in perpendicular directions, as
in Fig. 10(a), have lower energy than the AFMd state in Fig. 10(b). However, the criterion
of triaxial states with orthogonal spins across the diagonals still leaves an extensive residual
degeneracy due to the Z2 degrees of freedom. On the other hand, in the states obtained by the
gradient descent minimization algorithm for small Jd < 0, such as the one illustrated in Fig.
3(f), the spins within the same unit cell remain approximately orthogonal to each other, but
the directions of the axes vary in an apparently disordered fashion between different unit cells.
Thus, they are not obviously related to triaxial states. While we have not been able to identify
the local transformations that may connect these ground states, our numerical results strongly
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Figure 11: Ground state energy per site for the classically ordered phases: FMd,
AFMd and FM-stripe for J1 ≈ −0.02 and Jχ = 1. The energy of the triaxial state
corresponds to minimizing the chiral term. The energy coming from the gradient
descent (GD) minimization, Sec. 3, is also shown for comparison. Same color code
as in Fig. 2.

suggest that a massive classical ground state degeneracy persists in the regime of small J1 and
Jd < 0 up to some critical values beyond which the system enters the FMd or FM-stripe ordered
phases.

We can make this argument more quantitative by calculating the classical ground-state
energy per site. In Fig. 11 we show the energy for the AFMd, FMd, FM-stripe, and triaxial
states—the latter for the pure chiral point—comparing them with the energy of the gradient
descent minimization algorithm. In accordance with our qualitative analysis, for Jd > 0 the
AFMd order is immediately selected out of the set of triaxial states. For Jd < 0, on the other
hand, the ground state energy remains close to the energy of the triaxial state, and the FMd
state is reached only at Jd ≈ −0.15. Moreover, the energy difference between the FMd and
FM-stripe phases is rather small in this region. In the interval −0.15 ® Jd < 0, the structure
factor displays no Bragg peaks and we interpret this disordered region as partially inheriting
the extensive ground state degeneracy of the triaxial state.

B Mean-field decoupling of the three-spin interaction

Using the parton representation in Eq. (4), we rewrite the three-spin interaction on a single
up-pointing triangle as

Hi jk = JχSi · (S j × Sk)

=
Jχ
8
εabc(σ

a)α1β1
(σb)α2β2

(σc)α3β3
f †
iα1

fiβ1
f †

jα2
f jβ2

f †
kα3

fkβ3

=
iJχ
4

�

f †
i↑ fi↑ f †

j↑ f j↓ f †
k↓ fk↑ − f †

i↑ fi↑ f †
j↓ f j↑ f †

k↑ fk↓ + (cyclic perm. i jk) + (↑↔↓)
�

=
iJχ
4

�

f †
i↑ fk↑ f †

k↓ f j↓ f †
j↑ fi↑ − f †

i↑ f j↑ f †
j↓ fk↓ f †

k↑ fi↑ + (cyclic perm. i jk) + (↑↔↓)
�

. (19)
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There are in total 12 terms in the last line of Eq. (19). In the mean-field approximation, we
take f †

i↑ f j↑ =
1
2ξi j + δ̂i j,↑, where δ̂i j,↑ is the fluctuation. Thus,

Hi jk =
iJχ
4

�

�

ξik

2
+ δ̂ik,↑

�

�

ξk j

2
+ δ̂k j,↓

��

ξ ji

2
+ δ̂ ji,↑

�

−
�

ξi j

2
+ δ̂i j,↑

��

ξ jk

2
+ δ̂ jk,↓

�

�

ξki

2
+ δ̂ki,↑

�

+ (cyclic perm. i jk) + (↑↔↓)
�

≈
iJχ
16

�

−ξikξk jξ ji + ξk jξ ji f †
i↑ fk↑ + ξikξk j f †

j↑ fi↑ + ξ jiξik f †
k↓ f j↓ + ξkiξ jkξi j

−ξ jkξi j f †
k↑ f j↑ − ξkiξ jk f †

i↑ f j↑ − ξi jξki f †
j↓ fk↓ + (cyclic perm. i jk) + (↑↔↓)

�

=
3iJχ
16

∑

α

�

−ξikξk jξ ji + ξk jξ ji f †
iα fkα + ξikξk j f †

jα fiα + ξ jiξik f †
kα f jα − h.c.

�

. (20)

If i jk are oriented counterclockwise as in Fig. 5, we substitute ξik = ξk j = ξ ji = −iξ1 and
obtain

Hi jk =
3Jχξ

3
1

4
−

3iJχξ
2
1

16

∑

α

�

f †
iα fkα + f †

jα fiα + f †
kα f jα − h.c.

�

. (21)

We also have to take into account the down-pointing triangles, which contribute with hopping
outside the unit cell. To count the energy per site, we note that each site belongs to two
triangles and the energy of each triangle has to be divided by three sites. At the end, the total
mean-field Hamiltonian has the form given in Eqs. (12) and (13).
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