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Abstract

We develop crossing symmetric dispersion relations for describing 2-2 scattering of iden-
tical external particles carrying spin. This enables us to import techniques from Geomet-
ric Function Theory and study two sided bounds on low energy Wilson coefficients. We
consider scattering of photons, gravitons in weakly coupled effective field theories. We
provide general expressions for the locality/null constraints. Consideration of the posi-
tivity of the absorptive part leads to an interesting connection with the recently conjec-
tured weak low spin dominance. We also construct the crossing symmetric amplitudes
and locality constraints for the massive neutral Majorana fermions and parity violating
photon and graviton theories. The techniques developed in this paper will be useful for
considering numerical S-matrix bootstrap in the future.
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1 Introduction

In the context of EFTs, it is important to put bounds on the theory space [1–3]. In recent times,
there has been an increase in interest in establishing two-sided bounds on ratios of parameters
in front of higher-dimensional operators in the EFT lagrangians. Recent work in this direction
include [4–20]. Starting from the original attempts to constrain scalar EFTs, research has been
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extended to external particles carrying spin [7, 21, 22]. It is thus of interest and importance
to know which ratios can be bounded and what the mathematical reasons for the existence of
such bounds are.

The standard attempts to put bounds on EFT coefficients begin with a fixed-t dispersion
relation. Then imposing crossing symmetry leads to constraints, dubbed null constraints [5,
23]. These null constraints lead to two-sided bounds on Wilson coefficients. In [24, 25] a
different consideration was put forth, which makes use of powerful techniques and theorems
in an area of mathematics called Geometric Function Theory (GFT) [26, 27]. The starting
point in this approach makes use of a crossing symmetric dispersion relation (CSDR) [28–30].
In this approach, crossing symmetry is manifest at the outset. However, the penalty paid is
the loss of locality, leading to the “locality constraints" [29,30]. These locality constraints are
essentially a linear combination of the null constraints in the fixed-t approach [30].

The main advantage of using the CSDR is that instead of the usual Mandelstam variables
(s, t, u) it is more natural to use a different dispersion variable z and a parameter a, which is
held fixed. The amplitude for identical scalars then has unobvious and interesting properties
in terms of the function in the complex z plane. As shown in [25], for a suitable range of the
parameter a, for pion scattering, the amplitude is, in the parlance used in Geometric Function
Theory, typically real. In other words, in this range of a, it satisfies the condition

Imf (z)Imz > 0 , (1)

inside the unit disk |z| < 1, which in turn imposes the Bieberbach-Rogosinski (BR) two-sided
bounds on the Taylor expansion coefficients of f (z). In terms of Wilson coefficients, an argu-
ment based on the Markov brothers’ inequality, as shown in [25], leads to two-sided bounds
on the ratios of Wilson coefficients. It is known that there is a connection between typically
real functions in geometric function theory (GFT) and quantum field theory (QFT) dating back
to [31–35]. However, it has not been used extensively in the study of scattering amplitudes.

In this paper, we will extend the CSDR for identical, neutral external particles carrying
spin. Our formalism is general, although for concreteness, we will focus on the 2-2 scattering
of photons and gravitons, as well as neutral Majorana fermions. In the photon and graviton
cases, we will be able to identify combinations of helicity amplitudes whose Taylor expansion
coefficients are two-sided bounded using GFT arguments. We will be able to write down
a general expression for the locality constraints. Our formalism paves the way for a future
systematic study of the S-matrix bootstrap for the 2-2 scattering of identical particles with
spin. The crossing symmetric dispersion relation of a scalar amplitude M0(s1, s2) takes the
following form,

M0(s1, s2) = α0 +
1
π

∫ ∞

M2

ds′1
s′1
A(s′1, s+2 (s

′
1, a))H(s′1; s1, s2, s3) , (2)

where A(s′1, s+2 (s
′
1, a)), called the absorptive part, is the s- channel discontinu-

ity and H(s′1; s1, s2, s3) is a manifestly crossing symmetric kernel. The parameter
a = (s1s2s3)/(s1s2 + s2s3 + s3s1) ≡ y/x is kept fixed writing this dispersion relation and s+2
is one of the two roots obtained from this equation on using s1 + s2 + s3 = 0. For a massive
theory with a gap, as for pion scattering, the dispersive integral starts at 8m2/3, where m is
the mass of the pion. In this case s1 = s − 4m2/3, s2 = t − 4m2/3, s3 = u− 4m2/3 with s, t, u
being the usual Mandelstam variables. For EFTs, the lower limit starts at some cut-off M2 and
all external particles are considered massless. The absorptive part can be expanded in partial
waves involving Gegenbauer polynomials. Then Taylor expanding around a = 0 leads to the
conclusion that for each partial wave, there are in principle any arbitrary power of a, and
hence of x = s1s2 + s2s3 + s3s1 which are absent for a local theory. On demanding that such
powers responsible for non-local terms cancel, leads to what we call the “locality" constraints.
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The range of the parameter a is crucial in this story. For theories with a gap, as for pion
scattering, axiomatic arguments can be used to finding this range of a [24]. However, when
describing EFTs [4–6,23], these axiomatic arguments do not work. In this paper, taking a leaf
out of [5], we will make use of the locality constraints and linear programming, and establish
the range of a where the absorptive part of the amplitude is positive. This is crucial since, in
our approach, it is vital that this range of a satisfies −amin < a < amax with both ends non-zero
to have two-sided bounds. One surprising conclusion that will emerge from our analysis is that
this range is related to the weak Low Spin Dominance (wLSD) conjecture made in [36]. Our
findings lead to the conclusion that a few low-lying spins control the sign of the absorptive
part. For non-unitary theories, generically, the imaginary part of the partial wave coefficient
(often referred to as the spectral function) is not of a definite sign. However, if it is known
that the spectral functions for some low-lying spins are positive, it is possible then to have
two-sided bounds in a local but non-unitary theory using wLSD.

We will focus on light-by-light scattering and graviton scattering in weakly coupled EFTs
[6, 36, 37] and derive two-sided bounds. We consider the linearly independent helicity am-
plitudes, Tλ3λ4

λ1λ2
(s1, s2, s3), for 2-2 scattering (λ1λ2 → λ3λ4) of graviton, photon and massive

Majorana fermions in four spacetime dimensions. Here λi are helicity labels and these take
values − j and + j for massless particle with spin j while there are 2 j+1 independent helicities
for a massive particle with spin j. Generically these helicity amplitudes mix among themselves
under crossing,

Tλ3λ4
λ1λ2
(s1, s2, s3)→

∑

i jkl

Ci jkl T
λkλl
λiλ j
(Ps1

, Ps2
, Ps3
) , (3)

where (Ps1
, Ps2

, Ps3
) represents some permutation of (s1, s2, s3). Using representation theory of

S3 (the permutation group relevant for Mandelstam invariants), we construct a basis of cross-
ing symmetric amplitudes, F(s1, s2, s3)1, using the helicity amplitudes Tλ3λ4

λ1λ2
(s1, s2, s3). These

crossing symmetric helicity amplitudes transform as a singlet under S3,

F(s1, s2, s3) = F(s2, s1, s3) = F(s3, s2, s1) . (4)

Our construction can be generalised to other spacetime dimensions in a straightforward man-
ner, although for this paper, we will focus on d = 4. We then write down locality constraints
associated with the crossing symmetric amplitudes Fλ3λ4

λ1λ2
(s1, s2, s3). Explicit formulae for a

subclass of the amplitudes in closed form can be found. Our method allows us to write the
locality constraints for all the crossing symmetric amplitudes. To be precise, we consider the
following crossing symmetric amplitudes for the photon case2,

Fγ1 (s1, s2, s3) = T2(s1, s2, s3), Fγ2 (s1, s2, s3) = T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3) , (5)

where the helicity amplitudes Ti are defined in (15). These amplitudes have the low energy
EFT expansion

Fγ,i(s1, s2) =
∑

p,q

W i
p,q x p yq . (6)

The locality constraints for the amplitude Fγ2 (s1, s2, s3)+ x1Fγ1 (s1, s2, s3) =
∑

p,qW
(x1)
p,q x p yq

for x1 ∈ [−1,1], are
W(x1)

p,q = 0, ∀ p < 0.

1We don’t put any helicity labels for crossing symmetric amplitudes since they are often combinations of ampli-
tudes with different helicity labels (22).

2The relevant amplitudes for graviton are a bit subtle and will be dealt with in section 6, and we will just quote
the results here.
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We present the explicit expressions for W(x1)
p,q using CSDR in the main text (eqn (116))

and from those we obtain positivity conditions called PBγC (eqn (119)). We also show that
the dispersive part of the amplitude can be written as a Typically Real function leading to
bounds on the range of the variable a. In general, for massless theories the lower bound on
a = amin is zero [25], which only leads to one-sided bounds. We observe that the Wigner-d
functions, d`m,n(

p

ξ(s1, a)), are positive for all spins when its argument ξ(s1, a) is greater than
1. Adding a suitable linear combination of the locality constraints, we can show the positivity
of the absorptive part arises even when ξ(s1, a) < 1. This translates to −amin < a < amax .
This is indicative of the dominance of low spin partial waves in EFTs and is called Low spin
dominance (LSD). This behaviour was observed for gravitons in [2, 7]. In this paper, we will
show how this naturally emerges out of our analysis using the locality constraints. We will
show that the lower range of a tells us about which spins dominate in the determination of
the positivity of the absorptive part for −amin < a < amax . We demonstrate the same for the
case of type-II string amplitude in appendix G.

After showing that the amplitude is typically-real for a range of a ∈ [−amin, amax], we can

directly find two sided bounds on the ratio of Wilson coefficients wp,q =
Wp,q
W1,0

from GFT. Below
we show examples of bounds found for scattering of scalars, photons and gravitons in Table
1. The detailed list of bounds for photon and graviton scattering are summarised in Table 3
and 4.

Table 1: Example of two sided bounds we have found for scalars, photons and gravi-
tons using GFT.

Theory EFT amplitudes Range of a and LSD w01 bound

Scalar F(s1, s2, s3) =W1,0 x +W01 y + · · · −0.1933M2 < ascalar < 2M2

3
−3

2M2 < w0,1 <
5.1733

M2

(Spin-2 dominance)

Photon F2(s1, s2, s3) = 2g2 x − 3g3 y + · · · −0.1355M2 < aγ < 2M2

3
−4.902

M2 <
g3+x1

f3
3

g2+x1 f2
< 1

M2

F1(s1, s2, s3) = 2 f2 x − f3 y + · · · (Spin-3 dominance) where x1 ∈ [−1, 1]

Graviton F̃h
2 = 2x f0,0 + 3y f1,0 + · · · −0.1933M2 < ah < 2M2

3

( Spin-2 dominance) − 1
M2 <

f1,0
f0,0
< 3.44

M2

Apart from the conceptual clarity that the GFT techniques enable us with, are there any
technical advantages using our approach? We wish to point out a couple of obvious ones. First,
unlike the fixed-t methods where one uses SDPB techniques and hence needs to worry about
convergence in the spin, the dispersive variable as well as the number of null constraints, in
our approach, once the range of a has been determined, one only needs to check for conver-
gence in the number of BR inequalities we use. Second, we can write simple codes directly in
Mathematica to study bounds. However, there are also some disadvantages. The main one is
that while we do obtain two-sided bounds quite easily, these are not necessarily the sharpest
ones possible since we do not make use of all the locality constraints. It is not clear to us if
there is a way to get optimum bounds3 using purely GFT techniques.

The paper is organised as follows. In section 2, we describe the construction of fully cross-
ing symmetric amplitude. Through multiple subsections of section 3, we describe the key for-
mulas like CSDR, locality constraints, typical realness of the amplitude and then we introduce
BR bounds as well. We also discuss in section 3 how low spin dominance emerges out of our
analysis, taking into account the locality constraints. Through section 4,5, 6 we describe the
bounds obtained for scalars, photons and gravitons respectively. We end our discussion with
concluding remarks in section 7. Several technical details are relegated to multiple appendices
at the end.

3A bound will be considered optimum if there is a consistent S-matrix saturating it.
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2 Crossing symmetric amplitudes

In this section, we present a general construction for crossing symmetric amplitudes follow-
ing [38]. Let us begin with a short review of scattering amplitudes of identical particles as
irreducible representations (irreps) of S3 [39, 40]. Consider the scattering of four identical
particles (massive or massless, with or without spin) in d = 4. The momenta of the particles
satisfy,

p2
i = −m2 ,

4
∑

i=1

pµi = 0 , (7)

where m is mass of each particle. We use the mostly positive convention and define Mandel-
stam variables,

s := −(p1 + p2)
2 = −(p3 + p4)

2 = 2m2 − 2p1.p2 = 2m2 − 2p3.p4 ,

t := −(p1 + p3)
2 = −(p2 + p4)

2 = 2m2 − 2p1.p3 = 2m2 − 2p2.p4 ,

u := −(p1 + p4)
2 = −(p2 + p3)

2 = 2m2 − 2p1.p4 = 2m2 − 2p2.p3 .

(8)

Due to momentum conservation we have s+ t+u= 4m2. For identical bosonic particles, the S-
matrix is to be thought of as the function of Mandelstam invariants (and polarizations), which
is S4 invariant, the symmetry group of permutations of four particles. In the present context,
S4 acts on the momenta and the helicities of the particles. We usually impose the S4 invariance
in two steps. Recall that that Z2×Z2 is the normal subgroup of S4 and the remnant symmetry
is S4
Z2×Z2

= S3. Action of Z2×Z2 on four objects (1,2, 3,4) is the simultaneous exchange of two
particles- (12)(34), (13)(24) and (14)(23) while S3 is the permutation of three objects (1,2, 3).
Since the Mandelstam invariants s, t and u are invariant under the Z2 × Z2, we first impose
Z2 ×Z2 invariance, which leaves the Mandelstam invariants unchanged and we are left with
the remnant S3 symmetry which acts on (s, t, u). Note that helicities (or equivalently tensor
structures in higher dimensions) may not be Z2 ×Z2 invariant, and we might need to impose
Z2×Z2 invariance. However, for most of the non-crossing symmetric helicity amplitudes that
we consider in this work, the Z2 × Z2 symmetry has already been taken care of [41]. The S-
matrix, which is invariant under the Z2×Z2 invariance, is often referred to as “Quasi-invariant"
S-matrix. The “Quasi-invariant" S-matrix can be decomposed into irreps of S3 and the crossing
equations are relations between the orbits of S3.

To simplify the discussion, unless otherwise mentioned, we will work with the following
shifted Mandelstam variables,

s1 = s−
4m2

3
, s2 = t −

4m2

3
, s3 = u−

4m2

3
, (9)

such that, s1 + s2 + s3 = 0. With the aid of the representation theory of S3, which we review
in appendix A, one can write the most general Quasi-invariant S-matrix, therefore, takes the
form [38]

F(s1, s2, s3) = f (s1, s2, s3) + (2s1 − s2 − s3)g1(s1, s2, s3) + (s2 − s3)g2(s1, s2, s3)

+(2s2
1 − s2

2 − s2
3)h1(s1, s2, s3) + (s

2
2 − s2

3)h2(s1, s2, s3)

+(s1 − s2)(s2 − s3)(s3 − s1) j(s1, s2, s3) , (10)

where f (s1, s2, s3), j(s1, s2, s3), gi(s1, s2, s3) and hi(s1, s2, s3) are crossing symmetric amplitudes.
We can decompose F(s1, s2, s3) into irreps of S3,

F(s1, s2, s3) = fSym(s1, s2, s3) + fAnti−sym(s1, s2, s3) + fMixed+(s1, s2, s3) + fMixed−(s1, s2, s3) . (11)
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From eqn (A.8) and (11), we have the following set of equations

fSym(s1, s2, s3) = f (s1, s2, s3) ,

fAnti−sym(s1, s2, s3) = (s1 − s2)(s2 − s3)(s3 − s1) j(s1, s2, s3) ,

fMixed+(s1, s2, s3) = (2s1 − s2 − s3)g1(s1, s2, s3) + (2s2
1 − s2

2 − s2
3)h1(s1, s2, s3) ,

fMixed−(s1, s2, s3) = (s2 − s3)g2(s1, s2, s3) + (s
2
2 − s2

3)h2(s1, s2, s3) . (12)

This can be inverted to give the required crossing symmetric basis [38].

f (s1, s2, s3) = fSym(s1, s2, s3) ,

j(s1, s2, s3) =
fAnti−sym(s1, s2, s3)

(s1 − s2)(s2 − s3)(s3 − s1)
,

g1(s1, s2, s3) =
fMixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− fMixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
,

h1(s1, s2, s3) =
fMixed+(s3, s1, s2)(s3 + s2 − 2s1)− fMixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
,

g2(s1, s2, s3) =
fMixed−(s3, s1, s2)(s2

2 − s2
3)− fMixed−(s1, s2, s3)(s2

1 − s2
2)

(s1 − s2)(s2 − s3)(s3 − s1)
,

h2(s1, s2, s3) =
fMixed−(s1, s2, s3)(s1 − s2)− fMixed−(s3, s1, s2)(s2 − s3)

(s1 − s2)(s2 − s3)(s3 − s1)
. (13)

The following additional comments are in order:

• Given a Quasi-invariant S-matrix the algorithm to construct the crossing symmetric basis,
therefore, is straightforward. We construct the irreps { fSym, fAnti−sym, fMixed±} following
(A.8) and use (13) to construct the crossing symmetric basis4.

• The basis elements do not have any spurious poles at si = s j and are analytic functions
of s1, s2, s3, which can be easily checked by plugging (A.8) into (13).

• The basis in eq.(13) is not unique since the last two equations of (12) are two 2 equa-
tions for 4 unknowns {gi(s1, s2, s3), hi(s1, s2, s3)}i=1,2. One can use any permutation of
the arguments of fMixed± to get a system of full rank. We have used the permutations
si → si+1mod(3) on fMixed± as these are best suited for our purposes5.

• If F(s1, s2, s3) is symmetric or anti-symmetric then only f (s1, s2, s3) and j(s1, s2, s3) are
non zero respectively. Furthermore F(s1, s2, s3) is t − u symmetric then only
{ f (s1, s2, s3), g1(s1, s2, s3), h1(s1, s2, s3)} are nonzero.

2.1 Photons and Gravitons

In this sub-section, we apply the formalism developed in the previous section to the case of
parity even photon and graviton amplitudes. We will work with helicity amplitudes and show
that they transform in irreps of S3. Subsequently, we construct the crossing symmetric am-
plitudes from them using (13). As a consequence of the C PT theorem and the fact that we
will be considering particles on which charge conjugation acts trivially, our helicity amplitudes
are PT invariant. We will consider the sub-cases whether parity is preserved or not. We will
follow the notations and conventions of [41].

4See also [42,43] for similar considerations for the massive pion case.
5In [38] the permutation s1 → s3 was used. We warn the reader referring to [38] that there is a minor typo in

the analog of (10) where the sign of the j(s1, s2, s3) term is wrong.
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2.1.1 P invariant theories

Massless photon and graviton theories in d = 4 are characterised by their helicities which can
take values (±1) for photons and (±2) for gravitons respectively. This tells us that there are
possibly 16 helicity amplitudes. Since the particles are identical, the helicity amplitudes enjoy
a Z2 ×Z2 symmetry.

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = Tλ4,λ3
λ2,λ1

(s1, s2, s3) , Tλ3,λ4
λ1,λ2

(s1, s2, s3) = T−λ2,−λ1
−λ4,−λ3

(s1, s2, s3),

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = T−λ3,−λ4
−λ1,−λ2

(s1, s2, s3) . (14)

Additionally, since we are looking at parity invariant theories, we have the following con-
straints from parity, time-reversal respectively,

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = η∗1η
∗
2η3η4(−1) j1+ j2+ j3+ j4(−1)λ1−λ2−λ3+λ4 Tλ1,λ2

λ3,λ4
(s1, s2, s3) ,

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = ε∗1ε
∗
2ε3ε4Tλ1,λ2

λ3,λ4
(s1, s2, s3) , (15)

where |ηi|2 = |εi|2 = 1. Note that for scattering of four identical photons and gravitons, we
have η∗1η

∗
2η3η4 = (|η|2)2 = 1 trivially. These conditions reduce the number of independent

parity preserving helicity amplitudes which are given by [41]6

T1(s1, s2, s3) = T++++ (s1, s2, s3) , T2(s1, s2, s3) = T−−++ (s1, s2, s3) , T3(s1, s2, s3) = T+−+− (s1, s2, s3)

T4(s1, s2, s3) = T−++− (s1, s2, s3) , T5(s1, s2, s3) = T+−++ (s1, s2, s3) .
(16)

These linearly independent set of five amplitudes are the basis of Quasi-invariant S-matrices
defined in the previous section. They transform in irreps of S3 which we determine from the
following crossing equation [37,41].

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = ε
′
23T−λ2,λ4

λ1,−λ3
(s2, s1, s3),

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = ε
′
24Tλ3,−λ2

λ1,−λ4
(s3, s2, s1) ,

(17)

where ε′23 and ε′24 are arbitrary phases which were left unfixed from the general considerations
of crossing symmetry using which (17) were derived. We will fix them in this section using
constraints from consistency of crossing equations and comparing against explicit helicity am-
plitudes in literature. Note that (17) differs from the equivalent equation of [41] (eqns 2.81
and 2.82). This is due to the fact that we assume the following assignment for the Wigner-d
angles

α1 = 0, α2 = π, α3 = 0, α4 = π ,

β1 = 0, β2 = π, β3 = 0, β4 = π ,

in contrast with eqns 2.78 and 2.79 of [41]. Using (17), we can determine the crossing matrices
to be,

C p
st = ε

′
23











0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1











, C p
su = ε

′
24











0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1











. (18)

6Note that due to (15), the amplitudes T2 and T5 enjoy the additional symmetry

T−−++ (s1, s2, s3) = T++−− (s1, s2, s3) , T+−++ (s1, s2, s3) = T+++− (s1, s2, s3) .
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At this stage we have two undetermined phases ε′23 and ε′24. In order to determine the
t − u crossing relation we use the following relation for identical scattering particles [41],

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = (−1)λ2−λ1+λ4−λ3 Tλ3,λ4
λ2,λ1

(s1, s3, s2) ,

Tλ3,λ4
λ1,λ2

(s1, s2, s3) = (−1)−λ2+λ1+λ4−λ3 Tλ4,λ3
λ1,λ2

(s1, s3, s2) .
(19)

We can independently try to derive the C p
tu crossing matrix by using the following composition

for the generators of S3.

C p
tu = C p

st C
p
suC p

st , C p
tu = ε

′2
23ε

′
24











1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1











, (20)

to conclude ε24′ = 1 while the phase ε′23 is undetermined. We can try to fix ε′23 in the following
way. We can compare against a known amplitude to check the phase. To be precise let us
compare against the explicit helicity amplitudes computed in the Euler-Heisenberg EFT, from
the last equality in eqn 2.9 of [44] and tree level graviton amplitude from eqn 17 of [36], we
see ε′23 = 1 for both photons and graviton amplitudes7. For convenience we write down the
crossing matrices finally

C p
st =











0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1











, C p
su =











0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1











. (21)

One can immediately see from these crossing matrices that T2(s1, s2, s3) and T5(s1, s2, s3) are
crossing symmetric by themselves while it takes a little bit more effort to see that
(T1(s1, s2, s3), T3(s1, s2, s3), T4(s1, s2, s3)) transforms in a 3S = 1S+2M (a reducible representa-
tion of dimension 3). To see that T2(s1, s2, s3) and T5(s1, s2, s3) are crossing symmetric, note
that under (s1, s2) and (s1, s3) they map to themselves and since the other orbits of S3 are gen-
erated by products of this transposition, all the orbits will map to themselves. However, to
systematise the procedure we explain in detail the case of photons. Using the projector (A.2)
we see that

P1S
(T2(s1, s2, s3)) = T2(s1, s2, s3) ,

P1S
(T5(s1, s2, s3)) = T5(s1, s2, s3) ,

P1S
(T1(s1, s2, s3)) = P1S

(T3(s1, s2, s3)) = P1S
(T4(s1, s2, s3)) ,

=
(T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3))

3
,

P1A
(Ti(s1, s2, s3)) = 0 .

This tells us that the triplet (T1(s1, s2, s3), T3(s1, s2, s3), T4(s1, s2, s3)) has a 1S part while
T2(s1, s2, s3) and T5(s1, s2, s3) are crossing symmetric by themselves. We now want to check

7Note the difference in convention in defining helicity amplitudes, Aus,λ3 ,λ4
λ1 ,λ2

= Athem,λ3 ,λ4 ,−λ1 ,−λ2 .
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whether there is a 2M also in (T1(s1, s2, s3), T3(s1, s2, s3), T4(s1, s2, s3)). From (A.4), we get,

P(1)2M+
(T1(s1, s2, s3)) = −2P(1)2M+

(T3(s1, s2, s3)) = −2P(1)2M+
(T4(s1, s2, s3))

=
(2T1(s1, s2, s3)− T3(s1, s2, s3)− T4(s1, s2, s3))

3
,

P(2)2M+
(T1(s1, s2, s3)) = −2P(2)2M+

(T3(s1, s2, s3)) = −2P(2)2M+
(T4(s1, s2, s3))

=
(2T3(s1, s2, s3)− T1(s1, s2, s3)− T4(s1, s2, s3))

3
.

Therefore, we identify our crossing symmetric matrix by substituting the following sets of
solutions in (13),

f α,1
Sym(s1, s2, s3) = T2(s1, s2, s3) ,

f α,2
Sym(s1, s2, s3) = T5(s1, s2, s3) ,

f α,3
Sym(s1, s2, s3) =

T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3)
3

,

f αMixed+(s1, s2, s3) =
(2T1(s1, s2, s3)− T3(s1, s2, s3)− T4(s1, s2, s3))

3
,

where, α ≡ γ, h for photons and gravitons respectively. Explicitly written out, the crossing
symmetric photon and graviton S-matrices are,

Fα1 (s1, s2, s3) = T2(s1, s2, s3) , (22)

Fα2 (s1, s2, s3) = T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3) , (23)

Fα3 (s1, s2, s3) = T5(s1, s2, s3) , (24)

Fα4 (s1, s2, s3) =
f αMixed+(s3, s1, s2)(s3 + s2 − 2s1)− f αMixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (25)

Fα5 (s1, s2, s3) =
f αMixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− f αMixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
. (26)

2.1.2 P violating theories

In this subsubsection we consider Parity violating (and hence Time-reversal violating theories)
theories where we do not impose the condition (15). As a result, the independent helicity
amplitudes are,

T1(s1, s2, s3) = T++++ (s1, s2, s3) , T2(s1, s2, s3) = T−−++ (s1, s2, s3) , T3(s1, s2, s3) = T+−+− (s1, s2, s3) ,

T4(s1, s2, s3) = T−++− (s1, s2, s3) , T5(s1, s2, s3) = T+−++ (s1, s2, s3) , T ′2(s1, s2, s3) = T++−− (s1, s2, s3) ,

T ′5(s1, s2, s3) = T+++− (s1, s2, s3) .
(27)
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The crossing matrices are modified to

C pv
st =



















0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















, C pv
su =



















0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















. (28)

The new objects we need to consider are T ′2 and T ′5, which are crossing symmetric by them-
sleves.

P1S
(T ′2(s1, s2, s3)) = T ′2(s1, s2, s3) ,

P1S
(T ′5(s1, s2, s3)) = T ′5(s1, s2, s3) .

Therefore we identify our crossing symmetric matrix by substituting the following sets of so-
lutions in (13),

f̃ α,1
Sym(s1, s2, s3) = T2(s1, s2, s3) ,

f̃ α,2
Sym(s1, s2, s3) = T5(s1, s2, s3) ,

f̃ α,3
Sym(s1, s2, s3) =

T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3)
3

,

f̃ α,4
Sym(s1, s2, s3) = T ′2(s1, s2, s3) ,

f̃ α,5
Sym(s1, s2, s3) = T ′5(s1, s2, s3) ,

f̃ αMixed+(s1, s2, s3) =
(2T1(s1, s2, s3)− T3(s1, s2, s3)− T4(s1, s2, s3))

3
, (29)

where, α ≡ γ, g for photons and gravitons respectively. Explicitly written out, the crossing
symmetric photon and graviton s-matrices are,

F̃α1 (s1, s2, s3) = T2(s1, s2, s3) , (30)

F̃α2 (s1, s2, s3) = T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3) , (31)

F̃α3 (s1, s2, s3) = T5(s1, s2, s3) , (32)

F̃α4 (s1, s2, s3) =
f αMixed+(s3, s1, s2)(s3 + s2 − 2s1)− f αMixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (33)

F̃α5 (s1, s2, s3) =
f αMixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− f αMixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (34)

F̃α6 (s1, s2, s3) = T ′2(s1, s2, s3) , (35)

F̃α7 (s1, s2, s3) = T ′5(s1, s2, s3) . (36)

We note that the crossing equations are consistent with the photon module classification done
in [45]. In [45], it was found that there is one parity even module transforming in a 3, two
parity even 1S module and two parity odd 1S module. It is satisfying to see that the degrees
of freedom encoded in crossing in the two different approaches nicely match.
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2.2 Massive Majorana fermions

Let us now consider the scattering amplitude of four massive Majorana fermions in parity
conserving theory. The five independent helicity structures are the following

Φ1(s1, s2, s3) = T++++ (s1, s2, s3) , Φ2(s1, s2, s3) = T−−++ (s1, s2, s3) , Φ3(s1, s2, s3) = T+−+− (s1, s2, s3) ,

Φ4(s1, s2, s3) = T−++− (s1, s2, s3) , Φ5(s1, s2, s3) = T+−++ (s1, s2, s3) .
(37)

Further one can separate out the kinematical singularities and branch cuts to define the im-
proved amplitudes HI(s1, s2, s3) such that [41],

φI(s1, s2, s3) =
5
∑

J=1

M−1
I J HJ (s1, s2, s3) , (38)

where M matrix is defined as follows,

M =





















4

s1−
8m2

3

−4

s1−
8m2

3

2(1−
s2+4m2/3
s3+4m2/3

)

s1−8m2/3

2(1−
s3+4m2/3
s2+4m2/3

)

s1−8m2/3

2(s1+16m2/3)(s2−s3)

m(s1−8m2/3)
p
(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)

0 0 2
s3+4m2/3

−2
s2+4m2/3

− 8mp
(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)

0 0 2
s3+4m2/3

−2
s2+4m2/3

− 2s

m
p
(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)

0 0 2
s3+4m2/3

2
s2+4m2/3

0

− 4
s1+4m2/3

− 4
s1+4m2/3

2
s3+4m2/3

+ 4
s1+4m2/3

2
s2+4m2/3

+ 4
s1+4m2/3

2(s2−s3)

m
p
(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)





















.

(39)
Crossing symmetry is imposed by the following two crossing matrices,

C̃ f
st =













−1
4 −1 3

2 1 −1
4

−1
4

1
2 0 1

2
1
4

1
4 0 1

2 0 1
4

1
4

1
2 0 1

2 −1
4

−1
4 1 3

2 −1 −1
4













, C̃ f
su =













−1
4 1 −3

2 1 −1
4

1
4

1
2 0 −1

2 −1
4

−1
4 0 1

2 0 −1
4

1
4 −1

2 0 1
2 −1

4
−1

4 −1 −3
2 −1 −1

4













. (40)

The analysis for massive fermions is a bit more involved. Using the projectors defined in (A.2),
we find

P1S
(H1(s1, s2, s3)) = P1S

(H4(s1, s2, s3)) = P1S
(H5(s1, s2, s3))

=
(H1(s1, s2, s3) + 4H4(s1, s2, s3)−H5(s1, s2, s3))

6
,

P1S
(H2(s1, s2, s3)) = P1S

(H3(s1, s2, s3)) = 0 ,

P1A
(Hi(s1, s2, s3)) = 0 .

(41)

This implies that the we have an irrep that transforms in an 1S and none in 1A. We now use
the projector for the mixed symmetry to evaluate

P(1)2M+
(H1(s1, s2, s3)) =

1
6
(5H1(s1, s2, s3)− 4H4(s1, s2, s3) +H5(s1, s2, s3)) ,

P(2)2M+
(H1(s1, s2, s3)) =

1
12
(−5H1(s1, s2, s3) + 12H2(s1, s2, s3)− 18H3(s1, s2, s3) + 4H4(s1, s2, s3)

−H5(s1, s2, s3)) ,

P(1)2M+
(H4(s1, s2, s3)) =

1
6
(−H1(s1, s2, s3) + 2H4(s1, s2, s3) +H5(s1, s2, s3)) ,

P(2)2M+
(H4(s1, s2, s3)) =

1
12
(H1(s1, s2, s3)− 6H2(s1, s2, s3)− 2H4(s1, s2, s3)−H5(s1, s2, s3)) .

(42)
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Rest of the 2M+/− projections are either zero or a linear combinations of these. Hence the
independent data that can be used in (13) are,

f ψSym(s1, s2, s3) =
(H1(s1, s2, s3) + 4H4(s1, s2, s3)−H5(s1, s2, s3))

6
,

f ψ,1
Mixed+(s1, s2, s3) =

1
6
(5H1(s1, s2, s3)− 4H4(s1, s2, s3) +H5(s1, s2, s3)) ,

f ψ,2
Mixed+(s1, s2, s3) =

1
6
(−H1(s1, s2, s3) + 2H4(s1, s2, s3) +H5(s1, s2, s3)) . (43)

Explicitly written out, the crossing symmetric fermion S-matrices are,:

Ψ1(s1, s2, s3) = (H1(s1, s2, s3) + 4H4(s1, s2, s3)−H5(s1, s2, s3)) , (44)

Ψ2(s1, s2, s3) =
f ψ,1
Mixed+(s3, s1, s2)(s3 + s2 − 2s1)− f ψ,1

Mixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (45)

Ψ3(s1, s2, s3) =
f ψ,1
Mixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− f ψ,1
Mixed+(s3, s1, s2)(s2

2 + s2
3 − 2s2

1)

3(s1 − s2)(s2 − s3)(s3 − s1)
. (46)

Ψ4(s1, s2, s3) =
f ψ,2
Mixed+(s3, s1, s2)(s3 + s2 − 2s1)− f ψ,2

Mixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (47)

Ψ5(s1, s2, s3) =
f ψ,2
Mixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− f ψ,2
Mixed+(s3, s1, s2)(s2

2 + s2
3 − 2s2

1)

3(s1 − s2)(s2 − s3)(s3 − s1)
. (48)

3 Crossing symmetric dispersion relation: Overview

In the previous section, we constructed various fully crossing symmetric amplitudes, i.e., am-
plitudes invariant under S3, the group of permutations of (s1, s2, s3). Now, we will discuss a
manifestly crossing symmetric dispersive representation for such an amplitude. Such a repre-
sentation was first derived in [28]. Recently, this representation was explored in [29] in the
context of EFT bootstrap. In this section, we will review this dispersion relation and its multi-
faceted consequences, which were explored recently in [25,29,43]8 for scalar amplitudes. We
will present the discussion in such a fashion which generalizes naturally to helicity amplitudes
that we will be considering in the present work for dealing with spinning particles.

Let us consider a S3-invariant ‘amplitude’ associated9 with scattering of identical particles
M(s, t, u), with s+t+u= 4m2 = µ, m being the mass of the scattering particles. The amplitude
is known/assumed to satisfy the following two crucial properties.

I. We assume that the amplitude is analytic in some domain10 D ⊂ C2, which includes
the physical domains of all the three channels. For massive theories, such domains (e.g.
enlarged Martin domain [47]) have been established rigorously from axiomatic field the-
ory considerations. For massless theories, even though such domains are not established
within the rigorous framework of axiomatic field theory, they can be argued physically
in general. Thus we will assume the existence of such domains, to begin with.

8See also [30,46] for crossing symmetric/ Anti-Symmetric kernels in context of CFT bootstrap.
9There can be multiple such amplitudes associated with a given scattering when the particles have extra quan-

tum numbers such as spin, isospin e.t.c
10We are considering both s and t as complex variables.

13

https://scipost.org
https://scipost.org/SciPostPhys.13.3.051


SciPost Phys. 13, 051 (2022)

II. The amplitude is Regge bounded in all the three channels. While for massive theories
this is established rigorously from axiomatic field theory, for massless theories this is a
working assumption which we will make. Thus, for example, fixed t Regge-boundedness
reads

M(s, t) = o(s2) for |s| →∞ , t fixed , (s, t) ∈D . (49)

This is equivalent to the amplitude admitting a twice subtracted fixed-transfer (for example,
fixed-t) dispersive representation.

3.1 Massive amplitudes

In order to write a manifestly crossing symmetric dispersion relation, one first
introduces a certain parametrisation [28, 29] for the Mandelstam variables
{s1 = s−µ/3, s2 = t −µ/3, s3 = u−µ/3}:

sk(a, z) = a

�

1−
(z − zk)3

z3 − 1

�

, a ∈ R , k = 1,2, 3. (50)

Here {zk} are the cube-roots of unity. z̃ := z3, a are crossing symmetric variables. We also
introduce the following crossing symmetric combinations, x := −(s1s2+ s2s3+ s3s1) =

−27a2z3

(z3−1)2 ,

y := −(s1s2s3) =
−27a3z3

(z3−1)2 such that a = y/x . With these parametrizations, as shown by [28],
one can write the following dispersive representation of the amplitude M with a manifestly
crossing-symmetric kernel:

M(s1, s2) = α0 +
1
π

∫ ∞

M2

ds′1
s′1
A
�

s′1; s(+)2

�

s′1, a
�

�

H
�

s′1; s1, s2, s3

�

, (51)

where A (s1; s2) is the s-channel discontinuity, s(+)2

�

s′1, a
�

= − s′1
2

�

1−
�

s′1+3a
s′1−a

�1/2�

and the ker-

nel is given by

H
�

s′1; s1, s2, s3

�

=

�

s1
�

s′1 − s1

� +
s2

�

s′1 − s2

� +
s3

�

s′1 − s3

�

�

=
27a2(3a− 2s′1)

(−27a3 + 27a2s′1 + s3
1

�

−27a2

x

�

)
. (52)

3.2 Massless theories: EFT amplitudes

For massless theories, we will consider crossing-symmetric dispersion relation for the ampli-
tudes in the sense of effective field theories (EFT) as detailed below. One can write the fol-
lowing (twice subtracted) fixed t dispersion relation for a massless amplitude [5]

M(s, t)
s(s+ t)

=

∫ ∞

−∞

ds′

π(s′ − s)
Im
�M(s′, t)

s′(s′ + t)

�

, (t < 0, , s /∈ R) , (53)

where the subtraction points are chosen to be s = 0 and s = −t, t < 0. Now, the amplitude
can be divided into two parts, the high energy amplitude Mhigh and the low energy ampli-
tudeMlow. The high energy amplitudeMhigh admits an ‘effective (fixed-transfer) dispersion
relation’ with two subtractions. For example, the fixed t effective dispersion relation is of the
form

Mhigh(s, t)

s(s+ t)
=

∫ ∞

M2

ds′

π

�

1
s′ − s

+
1

s′ + s+ t

�

Im

�Mhigh(s′, t)

s′(s′ + t)

�

. (54)
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Here M2 is some UV cut-off such that the physics beyond this scale is unknown a-priori to
us. The low energy amplitudeMlow is to be understood in the sense of effective field theory
amplitude. The dispersion relation for the full amplitudeM, (53), relatesMhigh to this EFT
amplitude.

Now, the amplitudes are all crossing symmetric. Therefore, we can write a crossing-
symmetric dispersion relation forMhigh [29] similar to (56)

Mhigh(s1, s2) = α0 +
1
π

∫ ∞

M2

ds′1
s′1
Ahigh

�

s′1; s(+)2

�

s′1, a
�

�

H
�

s′1; s1, s2, s3

�

, (55)

with the kernel as in (52) and Ahigh being the absorptive part of the high energy amplitude
Mhigh.

In summary, we can write the crossing-symmetric dispersive representation for the ampli-
tude ( in the sense of EFT when required ) as

M(s1, s2) = α0 +
1
π

∫ ∞

Λ0

ds′1
s′1
A
�

s′1; s(+)2

�

s′1, a
�

�

H
�

s′1; s1, s2, s3

�

, (56)

where Λ0 = 2µ/3 for massive theories and Λ0 = M2 (the UV cut-off) for massless amplitudes
and the partial wave decomposition reads

A
�

s′1; s(+)2

�

s′1, a
�

�

= Φ(s1)
∞
∑

J=0

(2J + 2α) aJ (s1)C
( d−3

2 )
J

�
Æ

ξ(s1, a)
�

, (57)

where ξ(s1, a) = ξ0 + 4ξ0

�

a
s1−a

�

and ξ0 =
s2
1

(s1−Λ0)2
for massive theories while ξ0 = 1 for

massless theories and a`(s1) is the spectral density which is defined as the imaginary part of
the partial wave amplitude.

3.3 Wilson coefficients and locality constraints

In this section we outline two central ingredients needed for our bounds. Let us first review the
case of massive scalar EFTs. The crossing symmetric amplitude, pole subtracted if required, ad-
mits a crossing symmetric double power series can be expanded in terms of crossing-symmetric
variables x := −(s1s2 + s2s3 + s3s1), y := −(s1s2s3):

M(s1, s2) =
∞
∑

p,q=0

Wp,q x p yq . (58)

This is equivalent to a low-energy (EFT) expansion for the amplitude. The coefficients {Wp,q}
are themselves or related to the Wilson coefficients appearing in the effective Lagrangian of
a theory. Thus, these coefficients parametrize the space of EFTs. These coefficients can be
obtained from the amplitude via the inversion formula [29]

Wn−m,m =

∫ ∞

Λ0

ds1

2πs2n+m+1
1

Φ(s1)
∞
∑

J=0

(2J + 2α) aJ (s1)B(J)n,m(s1) , (59)

with

BJ
n,m(s1) = 2

m
∑

j=0

(−1)1− j+mp( j)J (ξ0) (4ξ0)
j (3 j −m− 2n)Γ (n− j)

j!(m− j)!Γ (n−m+ 1)
, ξ0 :=

s2
1

(s1 − 2µ/3)2
. (60)
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Here {aJ} are the spectral functions which appear as coefficients in partial wave expansion of
the absorptive parts A. The functions {p( j)J (ξ0)} are derivatives of Gegenbauer polynomials

C (α)J for scalars

p( j)J (ξ0) :=
∂ jC (α)J (

p
z)

∂ z j

�

�

�

�

�

z=ξ0

. (61)

The inversion formula leads to two kinds of constraints that play central role in our sub-
sequent analysis. Let us briefly review these. For more details, the readers are encouraged to
look into [29,30].

Locality constraints

The first type of constraint that we will consider is related to the locality. In any local theory, a
crossing symmetric amplitude admits a low energy expansion of the form (58). In particular,
there should not be any negative power of x . However, this is not manifest at the level of the
crossing symmetric dispersion relation since (59) is valid for both n≤ m and n> m, the latter
leading to the negative power of x . As explained in [29,30] this is the price one has to pay for
making crossing symmetry manifest. Fixed-transfer dispersion relations are manifestly local,
but crossing symmetry has to be imposed as an additional constraint, whereas in the crossing
symmetric dispersion relation, by making crossing symmetry manifest, the locality is lost and
has to be imposed. The equivalence of these two approaches was argued in [30].

Thus one needs to impose locality by demanding

Wn−m,m = 0 , for n< m . (62)

This gives rise to an infinite number of constraints on the partial wave coefficients {aJ} known
as locality constraints, which are, in general, linear combinations of the null constraints [5].
In principle, solving these infinite number of constraints can drastically restrict the space of
allowed theories. However, even solving a finite number of such constraints give valuable
information that we will see later.

Massless spinning particles

For massless spinning particles, the decomposition of the amplitude into partial waves remains
more or less unchanged with the technical difference because instead of Gegenbauer polynomi-
als, we have Wigner-d functions in the expansion. From section 2, we know how to construct
the crossing symmetric amplitudes given the linearly independent basis of helicity amplitudes
for various massless and massive spinning particles. The crossing symmetric decomposition
(56) is therefore modified to be,

Mspin(s1, s2) = α0 +
1
π

∫ ∞

Λ0

ds′1
s′1
Aspin

�

s′1; s(+)2

�

s′1, a
�

�

H
�

s′1; s1, s2, s3

�

. (63)

If the crossing symmetric amplitude is given by
∑

i βi Ti , where Ti denote linearly independent
helicity amplitudes and βi are some numbers,

Aspin
�

s1; s(+)2 (s1, a)
�

=
∑

i

βi Φ(s1)
∞
∑

J=0

(2J + 2α) ai
J (s1) fi(d

J
m,n(

Æ

ξ(s1, a))) , (64)

where fi(dJ
m,n(

p

ξ(s1, a))) denote the particular linear combinations of Wigner-d functions
that appear for ith helicity amplitude and ai

J (s1) now denotes the imaginary part of the partial
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waves of the particular helicity amplitude Ti = Tλ3,λ4
λ1,λ2

�

s1; s(+)2 (s1, a)
�

. In our conventions, a
helicity amplitude Ti admits the following Wigner-d matrix decomposition,

fi

�

dJ
m,n(

Æ

ξ(s1, a))
�

= dJ
λ1−λ2,λ3−λ4

(
Æ

ξ(s1, a)) , J ≥ |λ1 −λ2| . (65)

The restriction over the spin has been explained in Appendix C. Consequently, the inversion
formula gets modified to,

Wspin
n−m,m =

∫ ∞

Λ0

ds1

2πs2n+m+1
1

Φ(s1)
∑

i

βi

∞
∑

J=0

(2J + 2α) ai
J (s1) B̂(J),in,m (s1) , (66)

with

B̂J ,i
n,m(s1) = 2

m
∑

j=0

(−1)1− j+mp( j),iJ (1) (4) j (3 j −m− 2n)Γ (n− j)

j!(m− j)!Γ (n−m+ 1)
,

p( j),iJ (1) :=
∂ j fi

�

dJ
m,n(
p

z)
�

∂ z j

�

�

�

�

�

�

z=1

. (67)

The locality constraints are now modified to be,

Wspin
n−m,m = 0 , for n< m . (68)

3.4 PBC constraints

In order to get bounds, we would like to show that the expression on the RHS of (59) (and also
(66)) or a linear combination of them must be of definite sign. We identify the main characters
of this analysis.

• Unitarity translates to positivity conditions on the spectral functions {aJ} as reviewed in
appendix C.

• We have ξ0 ≥ 1 for the entire range of s1 integration in the inversion formula while
ξ0 = 1 identically for massless scalars ((60)). The functions p( j)J (ξ0) are positive due to
the fact that the Gegenbauer polynomials, and its derivatives, are positive for arguments
larger than unity.

From these conditions, explicitly it follows11

Wn,0 ≥ 0 . (69)

More generally, this positivity property does not hold because B(J)n,m(s1) (see (59)) control the
sign of any term in J -expansion of the inversion formula. In that case one can ask whether
taking suitable linear combinations of B(J)n,m(s1)s can restore the positivity. The answer turns
out to be yes and one obtains [29]

m
∑

r=0

χ(r,m)n (Λ2
0)Wn−r,r ≥ 0 ,

0≤Wn,0 ≤
Wn−1,0

(Λ0)2
, n≥ 2 . (70)

11These conditions can also be shown to arise from the TRU inequalities discussed next, on Taylor expanding
those conditions around a = 0 [29].
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The coefficient functions {χ(r,m)n (Λ2
0)} satisfy the recursion relation:

χ(m,m)
n (Λ2

0) = 1 , χ(r,m)n (Λ2
0) =

m
∑

j=r+1

(−1) j+r+1χ( j,m)n (Λ2
0)

U
(α)
n, j,r(Λ

2
0)

U
(α)
n,r,r(Λ2

0)
, (71)

with

U
(α)
n,m,k(s1) =

m
∑

k=0

p

16ξ0
k
(α)k(m+ 2n− 3 j)Γ (n− j)Γ (2 j − k)

sm+2n
1 Γ (k) j!(m− j)!( j − k)!(n−m)!

. (72)

The conditions (70) are the so-called Positivity conditions. In short we will call them PBC .

Massless spinning particles

For massless spinning particles, the conditions for positivity are modified as follows.

• Recall that based on the construction outlined in 2, our crossing symmetric amplitudes
are linear combination of helicity amplitudes. The spectral functions, therefore, need to
appear in the right combinations amenable to positivity constraints. Unlike the scalar
case, spectral functions of all the helicity amplitudes do not obey positivity conditions
but instead are constrained by unitarity considerations in a way that certain specific
linear combinations are positive (See appendix C for details). In subsequent sections,
we will see how it is achieved in our crossing symmetric amplitudes.

• For helicity amplitudes, we obtain Wigner-d functions in the partial wave decomposition
with the precise form given by (64) and (65). One can check that for the relevant
helicity amplitude basis we have, and the linear combination in which they appear for
our crossing symmetric amplitudes, relevant linear combinations of Wigner-d function
and its derivatives are positive for ξ0 = 1.

Considering these points, just like the scalar case, we would like to construct a linear
combination of W spin

n−m,m, which is positive. It will turn out that the scalar ansatz suffices for the
cases we consider. The structural reason which allows us to do this will also become clear as
we work out the relevant examples in subsections 5.1 and 6.1.

3.5 Typically-realness and Low Spin Dominance: TRU

The crossing-symmetric dispersive representation (56) uncovers an interesting connection be-
tween scattering amplitudes and the mathematical discipline of geometric function theory
(GFT) [25]. In particular, the crossing symmetric dispersive representation (56) can be cast
into what is known as Robertson integral which enables one to establish typical realness prop-
erties of the amplitude in the variable z̃ ≡ z3 for a certain range of a. This further enables the
application of GFT techniques to bound the coefficients {Wn,m}.

3.5.1 Typically real functions:

A function f : C→ C is defined to be typically real on a domain D ∈ C containing segments
of real axis, if it is real on these segments and satisfies

Im [ f (z)] Im[z]≥ 0 , Im[z] 6= 0, z ∈D . (73)
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For our analysis, we will be interested in a particular class of typically real functions known as
TR. A function f (z) ∈ T M is analytic and typically real in the unit disc ∆ := {z ∈ C : |z| < 1}
and admits Taylor series of the form

f (z) = z +
∞
∑

n=2

cnzn . (74)

The coefficients {cn} are real which follows from the definition. Such functions can be repre-
sented by Stieltjes integrals known as Robertson integrals. A function f (z) regular in∆ belongs
to the class TR if and only if it can be represented as the Robertson integral

f (z) =

∫ 1

−1

dµ(ξ)
z

1− 2ξz + z2
, (75)

where µ(ξ) is a non-decreasing function on ξ ∈ [−1,1] and satisfying µ(1)−µ(−1) = 1.

3.5.2 Robertson form of dispersion integral

Let us now chalk out how to establish typical realness property of the amplitude [25]. Defining

ξ := 1+
27a2

2(s′1)3
(a− s′1) , dµ(ξ) :=

A(ξ, s2(ξ, a)) dξ
∫ 1
−1 dξA(ξ, s2(ξ, a))

, (76)

one can formally cast the dispersion integral into

ÝM(z̃, a) :=
M(z̃, a)−α0

2
π

∫ 1
−1 dξA(ξ, s2(ξ, a))

=

∫ 1

−1

dµ(ξ)
z̃

1− 2ξz̃ + z̃2
, (77)

which is of the Robertson form (75). But this is not enough. We need to establish analyticity
property of ÝM(z̃, a) in z̃ and the desired non-decreasing property of µ(ξ) over ξ ∈ [−1,1].

1. The non-decreasing property of µ(ξ) over ξ ∈ [−1, 1] follows so longA is non-negative.
To see this, consider

µ(ξ1)−µ(ξ2) =

∫ ξ1

ξ2

dµ(ξ) . (78)

It readily follows from (76) that so long A is non-negative, µ(ξ1) ≥ µ(ξ2) for ξ1 ≥ ξ2.
Non-negativity of the absorptive part A depends on the values of the free parameter a.
Usually there exists a real interval a ∈ Ip where A is non-negative.

2. One further needs to investigate the analyticity of the amplitude inside the unit disc
|z̃|< 1. The z̃ analyticity properties are controlled by that of the Robertson kernel

z̃
1− 2ξz̃ + z̃2

. (79)

It turns out that kernel is analytic inside the unit disc |z̃| < 1 for a particular range of a
which gives another interval Ia.

Finally, collecting everything, we have that the amplitude ÝM(z̃, a) admits the Roberston rep-
resentation for

a ∈ Ip ∩ Ia , (80)

and therefore,
ÝM(z̃, a) ∈ TR , ∀ a ∈ Ip ∩ I a . (81)
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Let us illustrate the analysis for the case of EFTs of scalar massless particles, in which case
one finds [25] that

Ia =

�

−
M2

3
,0

�

∪
�

0,
2M2

3

�

. (82)

Next, we need to find the interval Ip. We can demand a very strong constraint that each term
in the partial wave decomposition (57) be positive. The Gegenbauer polynomial functions

are positive for cosθ =
r

s1+3a
s1−a ≥ 1. This leads to the constraint a ∈ (0, M2] with the upper

limit coming from the fact that a < s1 for real cosθ . Therefore we find that the amplitude is
typically real for

0≤ ascalar ≤
2M2

3
. (83)

Note that here we have imposed a kinematic condition- all the Gegenbauer polynomials are
positive. We are not considering the fact that depending on the relative ratio of aJ (s), we can
have cosθ < 1, but the overall sum still remain positive. This would need us to consider the
dynamical implications of the locality constraints on aJ (s), which we do in the next section
and will lower the bound on a from 0.

3.5.3 Positivity and Low-Spin Dominance(LSD): Massless scalar EFT

The analysis we have presented so far only requires positivity of the absorptive part as a whole
i.e A(s′1, s+2 (s

′
1, a)) ≥ 0. We imposed the positivity of each term in (57), spin by spin, which

of course, guarantees the positivity of the total absorptive part. In particular, in this way of
imposing positivity we demanded the positivity of Gegenbauer polynomials C (α)J (

Æ

ξ(s′1, a)),
which led to the constraint

Æ

ξ(s′1, a) > 1 in the previous subsection, and the positivity of
the partial wave amplitudes aJ following from the unitarity. However, this is a rather weak
condition on the partial wave amplitudes. The dynamical consequence of locality captured by
the locality constraints (62) has not been considered. It is quite natural to expect that locality
constraints result in relative magnitudes of the partial amplitudes such that the positivity ofA
can still be satisfied for

Æ

ξ(s′1, a)< 1.
Let us illustrate this with the case of massless scalar EFT. We begin with the dispersion

relation (56) and add
Nc := −

∑

n<m
m≥2

cn,mWn−m,ma2n+m−3 y . (84)

Here {cn,m} are arbitrary weights. Using (59), we obtain

M(si , a) + Nc = α0 +

∫ ∞

M2

ds′1
πs′1

∑

J≥0
J even

(2J + 1)aJ (s
′
1)×



C
( d−3

2 )
J (

q

ξ(s′1, a))−
∑

n<m
m≥2

cn,mB̂J
n,m

a2n+mH(a; si)
2(s′1)2n+mH(s′1, si)



H(s′1, si) ,

(85)

where
p

ξ = 1+
2s+2
s′1
=
s

s′1+3a
s′1−a and we have used the fact that H(a; si) = −

y
a3 . We also have

the following crucial difference from the massive scalar EFT expression in (60)

B̂J
n,m = 2

m
∑

J=0

(−1)1−J+mp(J)J (1) (4)
J (3J −m− 2n)Γ (n− J)

J!(m− J)!Γ (n−m+ 1)
, (86)
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i.e ξ0 = 1. The locality constraints (62) ensure that Nc = 0. Thus adding this to M(si , a)
does not change the amplitude. But now we can analyze the consequence of the locality
constraints inside the dispersive representation. In fact, we now have the equivalent dispersive
representation

M(si , a) = α0 +
1
π

∫ ∞

M2

ds′1
s′1
AL(s

′
1, a)H(s′1, si) , (87)

with

AL(s
′
1, a) :=

∑

J≥0
J even

(2J +1)aJ (s
′
1)



C
( d−3

2 )
J (

q

ξ(s′1, a))−
∑

n<m
m≥2

cn,mB̂J
n,m

a2n+mH(a; si)
2(s′1)2n+mH(s′1, si)



 . (88)

Let us call AL local absorptive part. For the purpose of our analysis, we now impose the local
positivity condition as

AL(s
′
1, a)≥ 0 , ∀ s′1 ≥ M2. (89)

This condition will result into a new range of validity for a. Let us analyze below how this
range can be found out. It is worth emphasizing that this condition is equivalent to the usual
positivity condition A(s′1, a)≥ 0 when restricted to the to the subspace Nc = 0 in the space of
partial wave amplitudes {aJ}.

Since we will eventually study the Wilson coefficient expansion as a Laurent series about
x , y = 0, we analyze AL(s′1, a) in a low energy expansion about x = 0. In order to do so, we

can replace s′1→ a ξ
2+3
ξ2−1 in AL , (88), and write it as an expansion about x = 0. Using

H(a; si)
H(s′1; si)

=
(ξ2 + 3)3

(ξ2 − 9)(ξ2 − 1)2
+O(x) (90)

into (88), to leading order in x , the local positivity requirement becomes

AL(s
′
1, a) :=

∑

J≥0
J even

(2J + 1)aJ (s
′
1)



C
( d−3

2 )
J (

q

ξ(s′1, a))−
∑

n<m
m≥2

cn,mB̂J
n,m

(ξ2 − 1)2n+m−2

2(ξ2 − 9)(ξ2 + 3)2n+m−3



≥ 0 .
(91)

Observe that this leading contribution does not depend explicitly on a and is purely a function12

of ξ. We can then sum over n, m to 2n+m ≤ k, and find the smallest solution ξmin such that
0 < ξmin < ξ < 1 for which we can find a set of cn,m’s such that (89) is satisfied. We can in
turn use this value to determine an the new range of a corresponding to the local positivity
condition,

√

√

√
s′1 + 3a

s′1 − a
> ξmin =⇒

(ξmin)2 − 1
(ξmin)2 + 3

M2 ≤ a . (92)

Since, 0 < ξmin < 1 the lower bound is stronger than 0 < a but also weaker than
−M2

3 < a. We can now combine this with (82) to have

(ξmin)2 − 1
(ξmin)2 + 3

M2 ≤ a ≤
2M2

3
. (93)

12 We note that it seems like the denominator has a pole at ξ = 3, but this value is never attained since, from
the analyticity requirement of M, a < 2M2

3 , we have ξ2 < 3.
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The above exercise leads us to ξmin = 0.593 for the scalar EFT when we consider all locality
constraints up to k = 2113 This gives the following:

Scalar :− 0.1933M2 < ascalar <
2M2

3
. (94)

Note that the lower bound of a has been modified from the case where we demanded the
positivity of each partial wave without considering the locality constraints. From a physical
perspective, the dynamical constraints of UV consistency on scalar IR EFT are responsible for
lowering the bound on a from the previous subsection.

Our findings are also indicative of the well-known phenomenon of low spin dominance
(LSD), i.e. the higher spin partial wave amplitudes are suppressed. To be precise, we can
calculate the ξmin in an alternative way.

• Consider (85) without the locality constraints, and instead, we truncate the sum over
spin to some J = Jc try to find ξmin demanding this finite sum be positive. This means
we assume that the sign of the absorptive part in (85) does not change beyond a certain
critical spin J = Jc because of the smallness of aJ>Jc

(s1). Therefore truncating the partial
wave sum and doing the positivity analysis is justified. Formally, the positivity condition
for the truncated expression reads

Jc
∑

J=0
J even

(2J + 1)aJ (s
′
1)C

( d−3
2 )

J (
q

ξ(s′1, a))> 0 , ∀ ξ > ξmin, s′1 > M2. (95)

We are also assuming that for aJ 6= 0 at least for one J ∈ {0,2, 4, · · · , Jc}.

• Therefore, we look for the smallest simultaneous root ξJc
of the set

§

C
( d−3

2 )
J

�q

ξ(s′1, a)
�

�

�

� J ∈ {0,2, 4, · · · , Jc}
ª

,

such that
C
( d−3

2 )
J

�q

ξ(s′1, a)
�

> 0 , ∀ ξ > ξJc
, J ∈ {0, 2,4, · · · , Jc}. (96)

For a given Jc , this ξJc
is the ξmin that we considered before. In particular, we have that

ξJc
→ 1 as Jc →∞, which is expected. Therefore, for the truncated set we consider,

1 ≥ ξ > ξJc
ensures that the LHS is positive since we have assumed that the sign of the

absorptive part doesn’t change after Jc .

• Combining this with PBC , this constrains the range of a to

(ξ(Jc))2 − 1
(ξ(Jc))2 + 3

M2 ≤ a ≤
2M2

3
. (97)

The first few values after rationalising to agree with 2 significant digits are:

Jc Scalar

2 −0.2M2 < a < 2M2

3

3 −0.69M2 < a < 2M2

3

4 −0.034M2 < a < 2M2

3
13In order to obtain this numerical coefficient, we have used linear programming in Mathematica with 1700

digits of precision to find solutions to the system of inequalities (91) for k ≤ 21 while varying ξ in steps of 0.048
from ξmin = 0.59329 to ξmax = 2.99 and spin J from J = 0 to Jmax = 56. The value of ξmin is determined by the
lowest value of ξ for which the system of inequalities (91) have a solution such that not all cn,m = 0 & cn,m > −∞.
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• We can see that the argument with locality constraints combined with the above analysis
clearly indicates Spin-2 dominance for the scalar case. More precisely, we input locality
constraints in estimating the range of a in first part of this subsection (i.e in the analysis
leading up to (94)). Locality constraints can also be interpreted as constraints on allowed
aJ (s) for scalar EFTs. Thus the range of a, after including the locality constraints (i.e.,
considering the allowed space of scalar theories), approximately coincides with the range
that we get from a completely different analysis without using the null constraints and
assuming that higher scalar partial waves do not change the sign of the absorptive part
after spin 2 (see 1st entry of the table above). This implies that UV consistency of scalar
EFTs leads to spin 2 dominance.

3.5.4 Massive scalars

For a massive theory we can repeat the analysis of the previous subsection. We shall consider
the case of the massive scalar with mass m and µ= 4m2. This was already considered in [25]
where it was argued that the range of a was −M2

3 < a < 2M2

3 and bounds were obtained for
various Wilson coefficients. We revisit this using our new method using the locality constraints.

The key changes are in the relation between ξ and s
′

1, a which is given by ξ= ξ0

√

√ s′1+3a

s′1−a
with

ξ0 =
s
′
1

s′1−µ
> 1 and the locality constraints (60):

BJ ,i
n,m(s1) = 2

m
∑

j=0

(−1)1− j+mp( j,i)J (ξ0) (4ξ0)
j (3 j −m− 2n)Γ (n− j)

j!(m− j)!Γ (n−m+ 1)
. (98)

It can be easily checked that this gives

a2n+mH(a; si)
(s′1)2n+mH(s′1; si)

=
(ξ2 − ξ2

0)

(ξ2 − 9ξ2
0)(ξ2 + 3ξ2

0)
+ o(x) .

Proceeding with the analysis it turns out that there are no solutions for any ξ < 1. However
since ξ = 1 was used to obtain the previous range of a namely −M2

3 < a < 2M2

3 these do not
give us a stronger range of a. Thus, we conclude that

there is no low spin dominance for the massive case.

This justifies the results in [25] and highlights a key difference between the massive and mass-
less cases. We have carried out explicit checks using the pion S-matrices from the S-matrix
bootstrap [48–50] which verifies this claim.

3.6 Bieberbach-Rogosinski bounds

We can expand eM(z̃, a) about z̃ = 0 by expanding the kernel H(s1, z̃)

H(s1, z̃) =
27a2z̃(2s1 − 3a)

27a3z̃ − 27a2z̃s1 − (z̃ − 1)2s3
1

=
∞
∑

n=0

βn(a, s1)z̃
n . (99)

Comparing this with the low energy expansion of the amplitude

eM0(z̃, a) =
∞
∑

p,q=0

Wp,q x p yq =
∞
∑

n=0

a2nαn(a)z̃
n ,
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after rewriting in-terms of z̃ using x = −−27a3z̃
(1−z̃)2 and y = −−27a2z̃

(1−z̃)2 gives:

a2nαn(a) =
1
π

∫ ∞

M2

ds′1
s′1
A(s′1; s+2 (s

′
1, a))βn(a, s′1) ,

with αp(a) =
p
∑

n=0

n
∑

m=0

Wn−m,ma2n+m−2p(−27)n
Γ (n+ p)

Γ (2n)(p− n)!
, p ≥ 1 . (100)

In particular we have W0,0 = α0 and a2α1(a) =
1
π

∫∞
M2

ds′1
s′1
A(s′1; s+2 (s

′
1, a))β1(a, s′1) . Note that

since β1(a, s1) =
27a2

s3
1
(3a− 2s1) and a < 2M2

3 <
2s1
3 we have β1 < 0. Thus,

α1(a)< 0 . (101)

We can apply the Bieberbach-Rogosinski inequalities on the coefficients of any typically-real
function f (z) = z + a2z2 + a3z3 · · · inside the unit disk following [25]:

−κn ≤
αn(a)a2n

α1(a)a2
≤ n , (102)

with

κn = n for even n , κn =
sin n ϑn

sinϑn
for odd n , (103)

where ϑn is the smallest solution of tan nϑ = n tanϑ located in (πn , 3π
2n ) for n > 3 and κ3 = 1,

to constrain the Wilson coefficients in a low-energy expansion of the amplitude. We call these
conditions (102) collectively as TRU .

3.7 Summary of algorithm

In this section, we summarise our algorithm. The central characters of the story are the Wil-
son Coefficients, the partial wave decomposition of the amplitude and the crossing symmetric
kernel. Firstly, unitarity of the partial wave amplitude decomposition and positivity of the
spherical harmonics and their derivatives for unphysical region of scattering, translate to posi-
tivity relations of the Wilson coefficients ( also known as the PBC conditions [25]). To be more
precise, unitarity demands that the imaginary part of the partial wave coefficients is positive.
The Gegenbauer polynomials (or the relevant linear combination of the Wigner-d functions
for the spinning case) or its derivatives which appear in the partial wave expansion of the am-
plitude are positive in the unphysical region of scattering (cosθ > 1). The Wilson coefficients
themselves however might contain positive or negative sum of both the manifestly positive
quantities. The PBC conditions are then linear combination of the Wilson coefficient expres-
sions such that it is manifestly positive. Secondly, the fact that the amplitude is typically real
for a range of the parameter a then allows us to systematically obtain two-sided bounds on
the Wilson coefficients (also known as the TRU conditions [25]). This is because the typically
real amplitude, as an expansion in z̃, has Bieberbach-Rogosinski bounds on the expansion co-
efficients [25]. Thirdly, we use locality, which modifies the lower range of a as obtained from
cosθ > 1 and TRU . In the following sections, we systematically implement this algorithm
to first review bounds on the scalar and then obtain the same for graviton and photon EFTs.
These steps are summarised in the flow chart below:
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Figure 1: The above flowchart shows the steps involved in the GFT approach.

4 Scalar bounds

We now present the applications of formalism developed in the previous sections for various
EFTs starting with the massless scalar case. The massive scalar was already addressed in [25].
Recall that the low energy EFT expansion of the amplitude takes the following form in terms
of crossing-symmetric variables x , y

F(s1, s2, s3) =
∑

p,q=0

Wp,q x p yq .

Starting with the dispersion relation given by (56) and (57) we can systematically derive
the positivity bounds. We linearise the steps in the following manner, which will serve as a
guideline for us when evaluating EFTs with spinning particles.

• Unitarity implies that in the dispersion relation, the spectral functions aJ are positive.

• From the positivity of the Gegenbauer polynomials in the dispersion relation and the
typical realness of the amplitude, we have the following range for a (94),

−0.1933M2 < ascalar <
2M2

3
.

From (70), (71) and (72), we get positivity conditions on linear combinations 14 of wp,q =
Wp,q
W1,0

.
These set of conditions have been referred to in literature [25] as PBC conditions. Since the
amplitude is typically real, we also obtain Bieberbach Rogosinski bounds on wp,q from (102)
(also known in literature as TRU). The algorithm will generically follow [25] and we refer the

14This is well defined as W1,0 > 0 as argued in (118).
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interested reader to the details there. We begin by first noting that (101) implies

α1(a) = −27a2(1+ a w01)≤ 0 , ∀− 0.1933M2 < a <
2M2

3
,

=⇒
−3

2M2
≤ w01 ≤

5.1733
M2

. (104)

We note that this precisely agrees with the result in [5] when we account for the difference in
the definitions of x due to the conventions. We have used x = −s1s2−s2s3−s3s1 while [5] used
s2
1+ s2

2+ s2
3 which gives w01 =

− g̃3
2 (since s1+ s2+ s3 = 0) which translates to −10.34< g̃3 < 3.

In the second step, we solve for the set of inequalities derived from (70), (71), (72) and
(102) upto a certain value of n = nmax . Note that the conditions derived from (102) are a
dependent. In order to efficiently solve the inequalities, we discretize the variable a over the
range specified in (94) in steps of δa and then solve for the resulting larger set of inequalities.
We present our results for nmax = 5 and δa = 1

101 in the table below. We shall follow the
convention of [25] namely M2 = 8

3 and re-write the results of [5] in this convention for ease
of comparison.

Table 2: A comparison of the values obtained using our results up to n= 5 and SDPB
in [5].We used the locality constraints and the techniques of [5] adapted using linear
programming to generate the SDPB values quoted above. These are identical to the
ones quoted in [5]. The exact agreement between these values is a consequence of
the fact that the locality and null constraints are equivalent as observed in [30].

wp,q =
Wp,q
W1,0

(TRU + PBC)min SDPBmin (TRU + PBC)max SDPBmax

w01 −0.5625 −0.5625 1.939 1.939
w11 −0.1318 −0.1318 0.219 0.216
w02 −0.1533 −0.1268 0.063 0.0296
w20 0 0 0.140625 0.140625
w21 −0.02595 −0.02595 0.0513 0.023
w12 −0.061 −0.02789 0.0275 0.0111
w30 0 0 0.01977 0.01977
w03 −0.011 −0.00156 0.017 0.0071
w31 −0.0047 −0.0047 0.0022 0.0022
w40 0 0 0.00278 0.00278
w50 0 0 0.00039 0.00039

We note that we get an excellent agreement with [5]. In [25] a comparison was done with
the massive case and the results of [5], where it was noted that some of the results TRU were
stronger. However, since [5] considered only the massless case, so the above is more appro-
priate comparison as the results show. We attribute the discrepancy in the w02, w21, w12, w03
values to the following:
We have not completely solved the Locality constraints Nc but we have implicitly assumed
that they are zero when we consider a low energy expansion (104). However, each Wilson
coefficient actually involves an infinite sum of locality constraints for instance

α1(a) = −27a2W1,0

�

(1+ aw01) +
∞
∑

n=1

w−n,n+1 an−1

�

. (105)

So strictly speaking, what we have are bounds on these combinations and not the wp,q ’s them-
selves. In practice, however one would have expected that since we obtained the range of a
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by using some of the locality constraints, this should have resolved the issue. However, we
remind the reader that to get the bounds listed in the table we used PBc conditions in addition
to the TRU ’s. The PBc ’s are linear conditions in the wp,q ’s which are independent of a.

5 Photon bounds

In this section, we will constrain parity preserving photon EFTs. To be precise, let us consider
the following crossing symmetric helicity amplitudes from (22) and (23). This set up applies
almost identically to the graviton case also so we present here the general amplitude that we
will be considering for later use.

Mα(s1, s2, s3) = Fα2 (s1, s2, s3) + x Fα1 (s1, s2, s3)

= (Tα1 (s1, s2, s3) + Tα3 (s1, s2, s3) + Tα4 (s1, s2, s3)) + x1Tα2 (s1, s2, s3) , (106)

where x1 ∈ [−1,1] and α = γ, h for photons and gravitons respectively. The partial wave
expansion of this amplitude is given by,

(Fα2 (s1, s2) + x Fα1 (s1, s2)) =
∑

J=0,2,4,···
16π(2J + 1)(ρ1,α

J + xρ2,α
J )d

J
0,0(θ )+

∑

J=2,4,···
16π(2J + 1)ρ3,α

J (d
J
2,2(θ ) + dJ

2,−2(θ )) +
∑

J=3,5,···
16π(2J + 1)ρ3,α

J (d
J
2,2(θ )− dJ

2,−2(θ )) .

(107)
dJ

m,m′ is the Wigner d-matrix defined in appendix (D). From the positivity of the spectral func-
tions in these cases( see appendix (C.1)), the reader can understand that this combination is
positive15- since ρ1,α

J ±ρ2,α
J ≥ 0 we have

ρ
1,α
J + x1ρ

2,α
J =

(1+ x1)
2

(ρ1,α
J +ρ2,α

J )
︸ ︷︷ ︸

≥0

+
(1− x1)

2
(ρ1,α

J −ρ2,α
J )

︸ ︷︷ ︸

≥0

≥ 0 , (108)

while ρ3,α
J ≥ 0 from the analysis in appendix (C.1). The crossing symmetric dispersion relation

for the photon amplitude is given by,

(Fγ2 (s1, s2) + x Fγ1 (s1, s2)) = α
γ
0 +

1
π

∫ ∞

M2

ds1

s′1
Aγ
�

s′1; s(+)2

�

s′1, a
�

�

H
�

s′1; s1, s2, s3

�

,

(109)

where H
�

s′1; s1, s2, s3

�

is defined in (52) and the partial wave decomposition reads

Aγ
�

s′1; s(+)2

�

s′1, a
�

�

=
∑

J=0,2,4,···
16π(2J + 1)(ρ1,γ

J + x1ρ
2,γ
J )d

J
0,0(θ )

+
∑

J=2,4,···
16π(2J + 1)ρ3,γ

J (d
J
2,2(θ ) + dJ

2,−2(θ ))

+
∑

J=3,5,···
16π(2J + 1)ρ3,γ

J (d
J
2,2(θ )− dJ

2,−2(θ )) , (110)

where cos2 θ = ξ(s′1, a) = 1+ 4
�

a
s′1−a

�

. Note that due to the fact that we have written down

crossing symmetric combination of helicity amplitudes, the crossing symmetric dispersion re-
lation is essentially of the same structure as the scalar one. In writing the dispersion relations

15We leave the analysis of F4, F5 which have denominators involving si for later analysis. For F3 since unitarity
does not fix the sign of ρα,5

J our methods are not applicable.
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(56) and (107), we have used (64) and (65). The low energy EFT expansion of the amplitude
reads,

Fγ1 (s1, s2) =
∑

p,q

W1
p,q x p yq , Fγ2 (s1 , s2) =

∑

p,q

W2
p,q x p yq . (111)

For our analysis, we will be considering the most general Euler-Heisenberg type EFT for the
photon

L= −1
4

FµνFµν + a1

�

FµνFµν
�2
+ a2(Fµν F̃µν)2 + · · · (112)

obtained starting with a UV complete theory such as QED and integrating out the other massive
particles in the theory such as say the electron. To compare against the corresponding low
energy EFT expansion coefficients of [22] we can rewrite our EFT expansion in the form (see
(F.1)),

F2(s1, s2, s3) = 2g2 x − 3g3 y + 2(g4,1 + 2g4,2)x
2 + · · · , (113)

F1(s1, s2, s3) = 2 f2 x − f3 y + 4 f4 x2 + · · · , (114)

where the Wilson coefficients can be related to the EFT couplings such as a1 =
f2+g2

16 , a2 =
f2−g2

16
etc.

5.1 Wilson coefficients and Locality constraints: PBγC
The local low energy expansion of the amplitude (106) can be written as

Fγ2 (s1, s2) + x1Fγ1 (s1, s2) =
∞
∑

p,q=0

W(x)p,q x p yq =
∞
∑

p,q=0

W(x)p,q x p+qaq , (115)

where we have used a = y/x andW(x)p,q =W2
p,q+x1W1

p,q. Just like in the scalar case, we would
like to expand both the sides of the dispersion relation (109) to derive an expression for the
locality constraints- recall that by incorporating crossing symmetry we have compromised on
locality which serves as constraints in our formalism. In order to do so, we expand the kernel
(52) and the partial wave Wigner-d functions in (109) about a = 0 and compare powers on
both sides. Note that for a = 0, the Wigner-d functions are Taylor expanded about ξ0 = 1
(since the argument of the Wigner-d functions are ξ(s1, a) = 1+ 4

�

a
s1−a

�

). We obtain,

W(x1)
n−m,m =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)a(1)J (s1)GJ ,1

n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=2,4,···
(2J + 1)a(2)J (s1)ĜJ ,2

n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=3,5,7,···
(2J + 1)a(3)J (s1)ĜJ ,3

n,m ,

ĜJ ,i
n,m = 2

m
∑

j=0

(−1)1− j+mq( j,i)J (1) (4) j (3 j −m− 2n)Γ (n− j)

j!(m− j)!Γ (n−m+ 1)
, (116)

where a(1)J = ρ
1,γ
J + xρ2,γ

J , a(2)J = a(3)J = ρ
3,γ
J and q( j,i)J (1) = ∂ j f (i)(

p
ξ)

∂ ξ j

�

�

�

�

ξ=ξ0=1
, with

f (1) = dJ
0,0, f (2) = dJ

2,2 + dJ
2,−2, f (3) = dJ

2,2 − dJ
2,−2. For convenience, in order to compute
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the partial derivatives q( j,i)J (1), we use the representation of the Wigner-d functions in terms
of Hypergeometric functions, given in (D.1). The locality constraints for this case are therefore
given by

W(x1)
n−m,m = 0 ∀n< m . (117)

We would also like to construct the spinning equivalent of PBC as done for scalars. To this
end, we note that spectral functions a(i)J ≥ 0 by unitarity and {dJ

0,0(θ ), dJ
m,m(θ ) ± dJ

m,−m(θ )}
are positive for all J whenever cosine of the argument is bigger than or equal to 1 (see D) i.e.,
q( j,i)J (1)> 0 for all J , j = 0,1, 2, · · · and i = 1,2, 3. In particular we have

W(x1)
n,0 =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)a(1)J (s1)q

(0,1)
J (1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=2,4,···
(2J + 1)a(2)J (s1)q

(0,2)
J (1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=3,5,7,···
(2J + 1)a(3)J (s1)q

(0,3)
J (1)≥ 0 . (118)

More generally in (116) the sign of any term in J expansion is controlled by GJ ,i
n,m(s1)

alone. We can thus take linear combinations of various W(x)p,q ’s which is a positive sum of
{dJ

0,0(θ ), dJ
m,m(θ ) ± dJ

m,−m(θ )} and their derivatives and hence is manifestly positive. This
gives us the Positivity conditions:

m
∑

r=0

χ(r,m)n (M2)W(x)n−r,r ≥ 0 , 0≤W(x)n,0 ≤
1

(M2)2
W x

n−1,0 , n≥ 2 . (119)

The χ(r,m)n (M2) satisfy the recursion relation:

χ(m,m)
n (M2) = 1 ,

χ(r,m)n (M2) =
m
∑

j=r+1

(−1) j+r+1χ( j,m)n

Un, j,r(M2)

Un,r,r(M2)
, (120)

with Un,m,k = −
4kΓ( 1

2 (2k+1))(3k−m−2n)Γ (n−k)s1−m−2n
4F3( k

2+
1
2 , k

2 ,k−m,k−m
3 −

2n
3 +1;k+1,k−n+1,k−m

3 −
2n
3 ;4)p

πΓ (k+1)Γ (−k+m+1)Γ (−m+n+1) .

We call the conditions (119) collectively as PBγC
16. We note here that the positivity condi-

tions PBγC in this case are identical to the ones for massive scalar in [25,29]. This is simply a
consequence of the fact that (116) is the sum of three scalar like terms each of which has an
identical structure except for the functions q( j,i)J (1) in GJ ,i

n,m(s1). Since we do not use the explicit

form of the function q( j,i)J (1) anywhere in the argument above but just the fact that its positive,
the result simply follows. Note that these positive combinations are certainly not unique and
one can definitely find different linear combinations which may result in a stronger constraint
however we will not pursue that here.

5.2 Typical Realness and Low Spin Dominance: TRγU
In this section, we try to get a range of a using positivity of the amplitude coupled with locality
constraints and typical realness of the amplitude. The analysis for typical realness is straight-
forward. From, section 3.5 and the discussion regarding the Robertson form of the integral
(see the discussion around (82)), the limit of a is given by,

16We have used the closed form expression for Un,m,k in [29].
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�

a ∈
�

−
M2

3
,0

�

∪
�

0,
2M2

3

��

∩
�

a ∀ A(s1, ; s(+)2 (s1, a)≥ 0
�

.

We can assume the positivity of the absorptive part as a whole i.e A(s′1, s+2 (s
′
1, a))≥ 0 in (109)

which gives us the range of a as a ∈ (0, 2M2

3 ] . This is obtained by considering the positivity of
each term in the spin sum which of course guarantees the positivity of the full absorptive part
though it maybe too strong (similar to the massless scalar case). A more careful analysis re-
quires us to use the locality constraints Nγc = −

∑

n<m
m≥2

cn,mW x1
n−m,ma2n+m−3 y to it with arbitrary

weights cn,m’s (117).

M(si , a) + Nc =
∫ ∞

M2

ds1

2πs1

∑

J=0,2,4,···
(2J + 1)a(1)J (s1)



 f (1)J (ξ)−
∑

n<m
m≥2

cn,mĜJ ,1
n,m

a2n+mH(a; si)
(s′1)2n+mH(s′1, si)



H(s′1, si) (121)

+

∫ ∞

M2

ds1

2πs1

∑

J=2,4,···
(2J + 1)a(2)J (s1)



 f (2)J (ξ)−
∑

n<m
m≥2

cn,mĜJ ,2
n,m

a2n+mH(a; si)
(s′1)2n+mH(s′1, si)



H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=3,5,7,···
(2J + 1)a(3)J (s1)



 f (3)J (ξ)−
∑

n<m
m≥2

cn,mĜJ ,3
n,m

a2n+mH(a; si)
(s′1)2n+mH(s′1, si)



H(s′1, si) ≥ 0 ,

where ĜJ ,i
n,m has been defined in (116). Note that this is similar to the equation we had for

the scalar case and therefore the analysis is also similar. The algorithm is very similar with
the only difference is that the ξmin is determined by the maximum lower bound obtained by
considering the positivity of three different classes of inequalities- the coefficients of a(i)J for
i = 1, 2,3. This exercise, outlined in detail in subsubsection 3.5.3, leads us to ξγmin = 0.723 for
the photon EFT when we consider all locality constraints up to 2n+m ≤ 12 and Jmax ≤ 20.

Using the relation
ξ2

min−1

ξ2
min+3

M2 < a < M2 and (121), we obtain,

Photon :− 0.1355M2 < aγ <
2M2

3
.

(122)

Similar to the scalar case, for the photon also we discover the phenomenon of Low Spin Dom-
inance (LSD). Consider the set of equations (121) without the locality constraints but with a
maximal spin cut-off J = Jc . If we assume that the absorptive part is unaffected by the con-
tributions from partial waves after J > Jc , the positivity of this finite sum of partial waves
leads us to an independent derivation of ξγmin. It suffices to choose the largest root ξγ(J) ≤ 1
of the set of polynomials {dJ

0,0, dJ
2,2 ± dJ

2,−2} for a fixed J ≤ Jc to ensure the positivity of the
corresponding term in (107). We observe the following table.

Jc Photon

2 −0.2M2 < aγ < 2M2

3

3 −0.143M2 < aγ < 2M2

3

4 −0.069M2 < aγ < 2M2

3

We can see that the argument with Locality constraints combined with the above clearly in-
dicates spin-3 dominance for the photon case. Therefore for this range of a, we can impose
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the Bieberbach Rogosinski bounds of subsection 3.6 on the Wilson coefficientsW(x1)
n−m,m -these

constraints are called TRγU . In the next section we present the bounds obtained from PBγC ,
TRγU and the corresponding range of a (122).

5.3 Bounds

We now apply our formalism to bound Wilson coefficients in the Euler-Heisenberg type EFT
for the photon. Recall that the low energy EFT expansion has the form,

L= −1
4

FµνFµν + a1

�

FµνFµν
�2
+ a2(Fµν F̃µν)2 + · · · . (123)

For such an EFT, we have the following crossing symmetric S-matrices (see appendix F) ,

F1(s1, s2, s3) =2 f2 x − f3 y + 4 f4 x2 − 2 f5 x y + f6,1 y2 + 8 f6,2 x3 + · · ·

F2(s1, s2, s3) =2g2 x − 3g3 y + 2(g41 + 2g42)x
2 + (−5g5,1 − 3g5,2)x y+

3
�

g6,1 − g6,2 + g6,3

�

y2 + 2g6,1 x3 + · · · ,

(124)

where the Wilson coefficients can be related to the EFT couplings such as a1 =
f2+g2

16 , a2 =
f2−g2

16
etc. We begin by listing out the PBγc and TRγU conditions for n = 3 (see (102), (119) and
(122)). The PBγc conditions are,

9w(x1)
20

4M4
+

3w(x1)
11

2M2
+w(x1)

02 ≥ 0,
5w(x1)

20

2M2
+w(x1)

11 ≥ 0, 0≤ w(x1)
20 ≤

1
M4

,

8w(x1)
03 + 3(4w(x1)

12 + 6w(x1)
21 + 9w(x1)

30 )≥ 0, 4w(x1)
12 + 14w(x1)

21 + 33w(x1)
30 ≥ 0 ,

2w(x1)
21 + 7w(x1)

30 ≥ 0, 0≤ w(x1)
30 ≤ w(x1)

20 , (125)

while the TRγU conditions are,

− 2≤
a(2w(x1)

01 − 27a(a(aw(x1)
02 +w(x1)

11 ) +w(x1)
20 )) + 2w(x1)

10

aw(x1)
01 + 1

≤ 2 ,

− 1≤
3

aw(x1)
01 + 1

×

�

a(9a(a(a(27a(a(w(x1)
03 a+w(x1)

12 ) +w(x1)
21 )− 4w(x1)

02 + 27w(x1)
30 − 4w(x1)

11 )− 4w(x1)
20 ) +w(x1)

01 ) + 1
�

≤ 3 ,
(126)

where as before we have used the notation
W(x1)

p,q

W(x1)
1,0

= w(x1)
pq and the range of a has been specified

in (122). The coefficients w(x1)
i j are related to the EFT expansion as follows ,

w(x1)
01 =

−3g3 − x1 f3
2g2 + 2x1 f2

, w(x1)
02 =

3(g6,1 − g6,2 + g6,3) + x1 f6,1

2g2 + 2x1 f2
,

w(x1)
20 =

2(g4,1 + 2g4,2) + x14 f4
2g2 + 2x1 f2

, w(x1)
11 =

(−5g5,1 − 3g5,2)− x12 f5
2g2 + 2x1 f2

, (127)

where,W(x1)
1,0 = 2g2+2x1 f2. Before solving these constraints and getting bounds, we want to

point some salient features of our inequalities. The positivity ofW1,0 (118) gives us:

g2 + x1 f2 ≥ 0 . (128)
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In particular this translates to g2± f2 ≥ 0 in other words a1, a2 ≥ 0. After expanding F2+ x1F1
in z̃, a we can use relation (101) which translates to the following:

−27a2(−2g2 − 2x1 f2 + 3ag3 + ax1 f3)< 0 .

Firstly we note that if f2 = ±g2 then, since the above relation has to hold for all x1 ∈ [−1,1]
and all −5M2

37 < a < 2M2

3 , we get f3 = ±3g3, the reasoning is as follows. Suppose f2 = ±g2
then by looking at x1 = ∓1 we get

a(3g3 ∓ f3)> 0, ∀−
5M2

37
< a <

2M2

3
,

which gives us the result. In particular for the f2 = g2 case we note that if we truncate to 6-
derivatives there is no difference between the massless scalar case and this one since F1 = F2.
This gives us

−3.44
M2

<
f3
f2
<

1
M2

. (129)

Secondly if g2 + x1 f2 6= 0 then from (129) we have

−4.902
M2

<
g3 + x1

f3
3

g2 + x1 f2
<

1
M2

. (130)

These can be compared with the results in table 1 in [22] and we can see that there is decent
agreement. We can in fact use the above relations to get region plots as shown in the figure
below. We have benchmarked where different theories lie in this allowed space of EFT’s. These
regions can also be compared with the ones in figure 1 in [22] and we note that our method
gives a rectangular region for the left figure whereas the right figure is identical.

Figure 2: The allowed regions in the
�

g3
g2

, f3
f2

�

vs f2
g2

space with
scalar,axion,graviton,QED,scalar QED, W± sector benchmarked.

Furthermore, whenever we have f2 = kg2 with k ∈ [0,1] we can see the space of allowed
theories as in this case by choosing a suitable x1 one can make g2 + x1 f2 = 0. The plot is
shown below.
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g3 /g2

f 3
/g
2

Figure 3: The space of allowed regions in the
�

f3
f2

, g3
f2

�

for f2 = kg2 with
k = 0,0.25.0.5, 1 corresponding to blue, purple,yellow,green and red respectively.

By working out the n= 3 PBγC and TRγU conditions explicitly we obtain the following values

for w(x1)
pq listed in table 3. A comparative plot for the the first few higher derivative coefficients

is given in figure 4. As before in the Wilson coefficients wx1
pq, the region f2 = ±g2 is special

and must be treated with caution. From (125), it immediately follows that consistency of the
equations for all x1 ∈ [−1,1], enforces the relations of the form fi = k

∑

j gi, j for i, J > 2
whenever f2 = ±kg2.

Table 3: A list of bounds obtained using our results TRU up to n= 3 in the normali-
sation M2 = 1.

w(x1)
p,q =

W(x1)
p,q

W(x1)
1,0

(TRU + PBC)min (TRU + PBC)max

w(x1)
01 −1.5 7.353

w(x1)
20 0 1

w(x1)
02 −11.029 4.368

w(x1)
11 −2.5 6.353

w(x1)
03 −18.479 64.601

w(x1)
12 −84.255 15.980

w(x1)
21 −3.5 28.1121

w(x1)
30 0 1

In the above table w(x1)
20 corresponds to

g4,1+2g4,2
g2

and its range is exactly the one obtained
in [22], we also have bounds on 10 derivative terms which were not given in [22].
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w
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(a) Allowed regions in (w02, w01) space.

0 2 4 6

-2

0

2

4

6

w01

w
11

(b) Allowed regions in (w11, w01) space.

Figure 4: Plots for (w11 and w02) vs w01 for TRγU upto n= 3 .

6 Graviton bounds

In this section we will be considering parity preserving graviton amplitudes. We would like to
consider the same combination of amplitudes as in the photon case since unitarity guarantees
the positivity of these combinations. However, the low energy expansion of
Fh

2 (s1, s2, s3) =
∑

i=1,3,4 Ti(s1, s2, s3) starts only at 8-derivatives (the first regular term is the
one from R4) which translates to the low energy expansion in z̃ starting from z̃2 order. Such a
function cannot be typically real as can be seen using the following simple argument. Suppose
we have a typically-real function f (z) which has a Taylor expansion f (z) = z2 + a3z3 + · · ·
around the origin. In a small neighbourhood of z = 0 the leading term is the dominant one
and we have ℑ f (z)ℑz > 0 =⇒ r2 sin2θ sinθ > 0 for all z = reIθ and θ ∈ (0,π)∪(π, 2π), this
however is not possible as sin 2θ changes sign in the upper/lower half plane but sinθ does
not. Thus our hypothesis that f (z) is typically real is incorrect.

Thus our methods will not directly apply to these combinations. For our purposes we will
considering the modified combination:

Mh(s1, s2, s3) = F̃h
2 (s1, s2, s3)

=

�

Th
1 (s1, s2, s3)

s2
1

+
Th

3 (s1, s2, s3)

s2
3

+
Th

4 (s1, s2, s3)

s2
2

�

. (131)

As can be readily checked the above combination F̃h
2 (s1, s2, s3) does not have any additional

low energy spurious poles, is fully crossing symmetric and obeys the same o(s2) Regge growth
we demand for Fh

i (s1, s2, s3). Thus F̃h
2 (s1, s2, s3) also satisfies the crossing symmetric dispersion

(56) 17.
Furthermore it has the low energy expansion given by

F̃h
2 (s1, s2, s3) =W( f )1,0 x +W( f )0,1 y +W( f )1,1 x y +W( f )2,0 x2 + · · · . (132)

17We have verified that this is indeed true for all the 4-graviton string amplitudes for details see B.
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We can also consider Fh
1 (s1, s2, s3) which18 has an expansion

Fh
1 (s1, s2, s3) =W(g)0,1 y +W(g)1,1 x y +W(g)2,0 x2 + · · · . (133)

We shall not explore this case in the current work. When we write the above expansions we
have a low-energy gravitational EFT in mind

L= −2
κ2

p

−gR+ 8
βR3

κ3
R3 + 2

βR4

κ4
C2 +

2β̃R4

κ4
C̃2 + · · · , (134)

where R is the Ricci scalar, κ2 = 32πG and C = RµνκλRµνκλ, C̃ = 1
2Rµναβεγδ

αβ
Rγδµν and the

metric gµν = ηµν + hµν is given in-terms of the gravitational field hµν. We subtract out the
poles corresponding to the R and R3 terms and look at the low energy expansion of the rest
of the amplitude. The Wilson coefficients of the low-energy expansion of the amplitudes are
related to the parameters in the gravitational EFT Lagrangian such as

W( f )1,0 =
βR4 + β̃R4

κ4
. (135)

6.1 Wilson coefficients and Locality constraints: PBh
C

The local low energy expansion of the amplitude (131) can be written as

F̃h
2 (s1, s2) =

∞
∑

p,q=0

W( f )p,q x p yq =
∞
∑

p,q=0

W( f )p,q x p+qaq , (136)

where we have used a = y/x andW(h)0,0 = 0. We can solve for theW(h)p,q by expanding around
a = 0 and comparing powers of x , a. We obtain,

W( f )n−m,m =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)ã(1)J (s1)KJ ,1

n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=4,6,···
(2J + 1)ã(2)J (s1)K̂J ,2

n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=5,7,···
(2J + 1)ã(3)J (s1)K̂J ,3

n,m ,

K̂J ,i
n,m = 2

m
∑

j=0

(−1)1− j+mq( j,i)J (1) (4) j (3 j −m− 2n)Γ (n− j)

j!(m− j)!Γ (n−m+ 1)
, (137)

where ã(1)J =
ρ

1,h
J

s2
1

, ã(2)J = ã(3)J =
ρ

3,h
J

s2
1

and q( j,i)J (1) = ∂ j f (i)(
p
ξ)

∂ ξ j

�

�

�

�

ξ=ξ0=1
, with

f (1) = dJ
0,0, f (2) =

dJ
4,4

�

cos−1
�p
ξ
��

(1+
p
ξ)2

+
dJ

4,−4

�

cos−1
�p
ξ
��

(1−
p
ξ)2

, f (3) =
dJ

4,4

�

cos−1
�p
ξ
��

(1+
p
ξ)2

−
dJ

4,−4

�

cos−1
�p
ξ
��

(1−
p
ξ)2

.

A key difference between the scalar/photon case and the graviton case we are considering now is
that the combinations f (i) are no longer positive even for ξ > 1.

18As for the photon case we could have considered F̃h
2 (s1, s2, s3)+x1Fh

1 (s1, s2, s3) for x1 ∈ [−1,1]however this leads
to a spectral coefficient ρ1

s1′2 +ρ2 which doesn’t seem to have a fixed sign from unitarity alone ρ1 ≥ 0,ρ1 ±ρ2 ≥ 0.
We shall use a different method to bound Fh

1 (s1, s2, s3).
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However for ξ = 1 we can check that f (i) = 1 and since the spectral functions ã(i)J ≥ 0 by

unitarity namely a(i)J ≥ 0 so this in particular implies

W(h)n,0 =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)ã(1)J (s1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=4,6,···
(2J + 1)ã(2)J (s1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=5,7,···
(2J + 1)ã(3)J (s1)≥ 0 . (138)

We can see straightforwardly that the above implies

0≤W( f )n,0 ≤
1

M4
W( f )n−1,0 .

As alluded to before, the non-positivity of f (i) in (137) implies the sign of any term in J
expansion is no longer controlled by KJ ,i

n,m(s1) alone. So this makes obtaining a closed form

for PBh
C much harder in this case. We can however do this case by case. For n= 2 these read:

9w( f )20

4M4
+

3w( f )11

2M2
+w( f )02 ≥ 0,

5w( f )20

2M2
+w( f )11 ≥ 0, 0≤ w( f )20 ≤

1
M4

,

(139)

where w( f )p,q =
W( f )

p,q

W( f )
1,0

. As before the locality constraints for this case are therefore given by

W( f )n−m,m = 0 ∀n< m . (140)

6.2 Typically-Realness and Low spin dominance: TRh
U

In this section we try to get a range of a using positivity of the amplitude coupled with locality
constraints and typically-realness of the amplitude. The analysis in this case has key differences
due to the non-positivity of the f (i)

�p

ξ
�

even for ξ > 1. We know the typically-realness of
the amplitude followed from two crucial ingredients namely the regularity of the kernel inside
the unit disk and the positivity of the absorptive part. The former remains unchanged the
latter however crucially needs the locality constraints to justify now, since ξ > 1 is no longer
sufficient to guarantee positivity.

�

a ∈
�

−
M2

3
,0

�

∪
�

0,
2M2

3

��

∩
�

a ∀ A(s1, ; s(+)2 (s1, a)≥ 0
�

LSD
.

We can proceed with the LSD analysis as before by including the locality constraints
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Nh
c = −

∑

n<m
m≥2

cn,mW( f )n−m,ma2n+m−3 y to it with arbitrary weights cn,m’s (140).

M(si , a) + Nc =
∫ ∞

M2

ds1

2πs1

∑

J=0,2,4,···
(2J + 1)ã(1)J (s1)



 f (1)J (ξ)−
∑

n<m
m≥2

cn,mK̂J ,1
n,m

a2n+mH(a; si)
(s′1)2n+mH(s′1, si)



H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=4,6,···
(2J + 1)ã(2)J (s1)



 f (2)J (ξ)−
∑

n<m
m≥2

cn,mK̂J ,2
n,m

a2n+mH(a; si)
(s′1)2n+mH(s′1, si)



H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=5,7,···
(2J + 1)ã(3)J (s1)



 f (3)J (ξ)−
∑

n<m
m≥2

cn,mK̂J ,3
n,m

a2n+mH(a; si)
(s′1)2n+mH(s′1, si)



H(s′1, si) ≥ 0 ,

(141)
where K̂J ,i

n,m has been defined in (137). As before ξmin is determined by the maximum lower
bound obtained by considering the positivity of three different classes of inequalities namely
corresponding to the coefficients of ã(i)J for i = 1, 2,3. We can also determine ξmax now
which is determined by the minimum upper bound obtained by considering the positivity of
the same three classes of inequalities. This exercise leads us to ξh

min = 0.593 and ξh
max = 3 for

the graviton EFT when we consider all locality constraints up to 2n+m ≤ 12 and Jmax ≤ 20.

Using the relation
ξ2

min−1

ξ2
min+3

M2 < a <
ξ2

max−1
ξ2

max+3 M2 and (141), we obtain,

Graviton :− 0.1933M2 < ah <
2M2

3
. (142)

We would now like to show that this is indicative of Spin-2 dominance for the graviton case.

Since in the set of polynomials {dJ
0,0,

dJ
4,4(cos−1 x)
(1+x)2 ±

dJ
4,−4(cos−1 x)
(1−x)2 } the latter two elements do not

have straightforward positivity properties for general J . The identification of the critical spin
Jc is more complicated and needs more detailed consideration in this case. A key difference
between the scalar/photon cases and the graviton case we are looking at now is that both
the upper and lower bound of a can change. Let us recall how that happens- the condition
TRU tells us that the allowed range of ξ ∈ [0, 3]. The overlap of this region with the positive
part of the absorptive part gave us the required range of ξ to be used in our analysis. In the
analogous exercise for the photons and scalars, we had truncated the partial wave sum to a
finite cut-off in spin and so then the range of ξ was determined by what range for which these
polynomials were positive. We had determined the lower range of ξ to be given by the largest
root of the Wigner-d combinations that appear with respective spectral coefficients- this was
usually such that ξmin < 1. The upper range of ξ was automatically determined by the TRU
conditions since the relevant Wigner-d matrices were manifestly positive for ξ > 1— in other
words there were no restrictions on the upper limit of ξ from the Wigner-d polynomials. The
story for gravitons remains the same for the lower bound for ξ, but we note the following
changes for the upper bound.

To illustrate this point, notice that the Wigner-d combination

f (3) =
dJ

4,4

�

cos−1
�p
ξ
��

(1+
p
ξ)2

−
dJ

4,−4

�

cos−1
�p
ξ
��

(1−
p
ξ)2

is not always positive for ξ > 1 for J ≥ 9. There-

fore if we assume Jc = 9, the upper limit for ξ (and hence a) also changes along with the
lower limit. As an example we present shortening of the positive regions for f (3) for J = 9, 11
in figure 5. We present the allowed range of a as a function of Jc in the form of a table below.
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Jc Graviton

2 −0.2M2 < ah < 2M2

3

4 −0.069M2 < ah < 2M2

3

6 −0.034M2 < ah < 2M2

3

9 −0.014M2 < ah < 19641M2

140000

We can see the spin-2 dominance clearly for the graviton case from the above table. We have
also illustrated this for the case of the type-II string amplitude in appendix(G).Note that the
locality constraints play an important role in maintaining the positivity of the amplitude despite
the Wigner-d combination f (3) not having nice positivity properties. This is not a surprise since
the locality constraints encode the details of the theory and put constraints on allowed spectral
densities that appear in each sector. It would be interesting to explore the detailed implications
of locality constraints in future.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-20

-15

-10

-5

5

(a) Positive ξ regions for f (3) for J = 9 marked in red.

0.2 0.4 0.6 0.8 1.0

-15

-10

-5

(b) Positive ξ regions for f (3) for J = 11 marked in red.

Figure 5: A comparative plot of changing regions of positivity in ξ with spin for f (3).

Therefore for this range of a in (142), we can impose the Bieberbach-Rogosinski bounds
of subsection 3.6 on the Wilson coefficientsW( f )n−m,m —these constraints are called TR f

U .

6.3 Bounds

In this section we put the bounds on the low energy EFT expansion which is parametrized by,

F̃h
2 =

2x f0,0 + 3y f1,0 + 2x2 f2,0 + x y
�

2 f3,1 − f3,0

�

+ y2
�

−3 f4,0 − 3 f4,1 + 9 f4,2

�

+ 2x3 f4,0 + · · · ,
(143)

where in terms of parametrization of [7],

Th
3 (s1, s2, s3) = s4

3





∞
∑

i=0

f2i,is
i
2si

1 +
∞
∑

i=1

b i
2 c
∑

j=0

fi, j(s
i− j
2 s j

1 + si− j
1 s j

2)



 . (144)

We have explicitly,

w( f )1,0 = 2 f0,0, w( f )0,1 = 3 f1,0, w( f )2,0 = 2 f2,0, w( f )1,1 =
�

2 f3,1 − f3,0

�

,

w( f )0,2 =
�

−3 f4,0 − 3 f4,1 + 9 f4,2

�

, w( f )3,0 = 2 f4,0 .
(145)

38

https://scipost.org
https://scipost.org/SciPostPhys.13.3.051


SciPost Phys. 13, 051 (2022)

We demonstrated in the previous subsection that due to positivity and typical realness of
the amplitudes, we can put two sided bounds on Wilson coefficients. Using (101) we have,

−1.5≤ w f
01 ≤ 5.17331 , (146)

where w f
01 =

w( f )0,1

w( f )1,0

, which implies −1≤ f1,0
f0,0
≤ 3.44.

Figure 6: A line plot to show the allowed range of f1,0 vs f0,0 with scalar, fermion,
photon, gravitino, graviton, super string, Heterotic string and bosonic string sector
benchmarked.

The above figure is the crossing symmetric analogue of figure 8 in [7]. For n= 2 TRh
U and

PBh
C , we obtain table 4 (in units of M2 = 1),

Table 4: A list of graviton bounds obtained using our results TRU up to n = 2 in the
normalisation M2 = 1.

w f
pq =

w( f )p,q

w( f )1,0

(TRU + PBC)min (TRU + PBC)max

w f
01 −1.5 5.1733

w f
02 −7.7600 3.8273

w f
20 0 1

w f
11 −2.5 4.1734

We note that terms such as f2,1 or f1,1 vanish when we consider fully crossing symmetric
combinations as these are proportional to s1+s2+s3 = 0 thus we will not be able to bound these
using the current combinations19we are looking at. However, using our method, we can bound
coefficients like

f1,0
f0,0

for which no non-trivial bounds were found using the fixed-t dispersion
relation, to the best of our knowledge. The region carved out by the Wilson coefficients with
their respective data points for various theories is given. The data has been obtained from [7].

19However by looking at F4(s1, s2, s3) and F5(s1, s2, s3) these terms do appear so we can bound them in principle.
We do not attempt to do this in our current work.
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Figure 7: The allowed regions in the (w11, w02) vs w01 space with scalar, fermion,
photon, gravitino, graviton, superstring, Heterotic string and bosonic string sector
benchmarked.

7 Discussion

In this paper, we set up a crossing symmetric dispersion relation for external particles car-
rying spin. Given a basis of amplitudes, which transform under crossing, we give a general
prescription to construct crossing symmetric amplitudes relevant for CSDR from them. We
demonstrated this construction explicitly for massless photons, gravitons and massive Majo-
rana fermion helicity amplitudes in d = 4. We then use the CSDR for certain photons and
graviton crossing symmetric amplitudes and put bounds on low energy Wilson coefficients.
Our analysis suggested that the positivity of the absorptive part is dominated by partial waves
of low-lying spins—we found indications of spin-3 LSD for photons and spin-2 for gravitons
(see [2,7]). Using the typically-realness property of the amplitude, the Wilson coefficients sat-
isfied the Bieberbach-Rogosinski (BR) bounds. We supplemented the BR bounds using certain
additional positivity conditions to get tighter bounds in some cases. The photon bounds are
in good agreement with existing results in literature. We dealt with the graviton amplitude
separately since the low energy EFT expansion starts from the eighth order in derivatives for
the crossing symmetric amplitude we consider. In order for the low energy expansion to be
typically real, we considered a modified amplitude which then had the requisite properties.
Similar to the photon case, we wrote down the locality constraints in closed form and analysed
certain bounds. One would like to tackle several problems, some of which we outline below.

• Compared to the fixed-t dispersion relation, the non-linear unitarity constraints aris-
ing from the crossing symmetric dispersion relation is mathematically different. In the
analysis of the recently resurrected (numerical) S-matrix bootstrap, e.g., [48, 51], the
starting point is a crossing symmetric basis that captures some of the known analytic
properties of the amplitude. The crossing symmetric dispersion relation gives a system-
atic crossing symmetric starting point where the parametrisation of the amplitude now
is in terms of the absorptive partial wave amplitudes. We envisage some simplification
arising from this, since instead of a two variable parametrisation, one now can focus on
a one variable one. It will be very important to examine this systematically in the near
future.

• Since our approach enables us to write down the locality/null constraints in a closed
form, it will be interesting to attempt a systematic derivation of the stronger version of
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the low spin dominance conjectured in [7].

• We have not attempted to use the non-linear constraints arising from Toeplitz determi-
nants [25]. This should further constrain the space of EFTs.

• We hope for a consolidated treatment of graviton positivity conditions PBh
C in the future.

The main reason for the failure of scalar PBC ansatz stems from the fact that the p j,is
are not explicitly positive for all spins.

• In this work we considered the most natural combinations of helicity amplitudes which
are simple and suffice to illustrate our method. There are other combinations which we
can consider. We list below a couple of them:

F4&F5 : We can consider Fα3 (s1, s2, s3), Fα4 (s1, s2, s3) and Fα5 (s1, s2, s3). In particular note
that for the photon case we have not been able to put constraints on g4,1 and g4,2 sep-
arately. This is an artifact of the construction of Fγ1 and Fγ2 , where the coefficients g4,1
and g4,2 appear only in the combination g4,1 + 2g4,2. However in the low energy ex-
pansion of Fα4 and Fα5 the coefficients g4,1 and g4,2 do appear separately see appendix
(F).Thus considering these combinations will help us bound these coefficients. For the
photon a preliminary analysis assuming spin-3 dominance shows that both Fα4 (s1, s2, s3)
and Fα5 (s1, s2, s3) have suitable ranges of a for which their absorptive parts are positive
namely

F4 :−
M2

5
< a <

M2

2
,

F5 :−
M2

5
< a < 0 .

Fh
1 : For gravitons we can consider the combination

Fh
1 (s1, s2, s3) + Fh

2 (s1, s2, s3) + F̃h
2 (s1, s2, s3) ,

to bound the Wilson coefficients appearing in Fh
1 (s1, s2, s3) (see (133)).

Parity violating amplitudes: As spelt out in the appendix C.14 (see below (C.18)),
the spectral functions for the parity violating amplitudes do not seem to obey definite
positivity conditions and some non-linear constraints of the kind dealt in [7] might be
useful.

We leave a more careful analysis and GFT bounds from these combinations for future
forays.

• We considered helicity amplitudes for spinning particles in our analysis. There are other
formulations for handling spinning amplitudes as well. One such is transversity am-
plitudes [52]. In transversity formalism, the spin is quantised normal to the plane of
scattering. In this formalism, the crossing equations are diagonalised. This, however,
comes at the price that the unitarity is now straightforward. However, one can still work
the unitarity exploiting the relation between the transversity amplitude and the helicity
amplitude, the former being a linear combination of the latter. The unitarity consider-
ation, along with fixed transfer dispersion relations, was employed to obtain positivity
bounds for transversity amplitudes for EFTs in [53]. However, it is not clear how to
translate these positivity bounds to constraints on EFT parameters like Wilson coeffi-
cients. Therefore, it is worth investigating how these positivity bounds can be used to
constrain the EFT parametric space. Further, it will be interesting to consider applying
the crossing-symmetric dispersive techniques to these transversity amplitudes.
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• It should be possible to extend our analysis to Mellin amplitudes for CFTs building on
[30]. This would be relevant for studying EFT bounds in AdS space.

• An important assumption of our work is that we are only analysing low energy effective
field theories at the tree level. This is justifiable for EFTs having weakly coupled UV
completion. Even in this situation, it will be interesting to know how these bounds
get modified, including massless loops [54]. This is beyond the scope of our present
framework since we expand our low energy effective amplitude around s, t = 0. In
crossing symmetric dispersion relation, it is not natural to expand in this forward limit.
So our set-up might be better suited to address this issue, and we leave this exciting
possibility for future exploration.
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A Representation theory of S3: A crash course

In this appendix, we present a short self contained review of S3 representations following [39].
We can represent the three irreps of S3 by the following young diagrams.

1S = 1A = 2M = , (A.1)

where 1S is the one dimensional totally symmetric representation, 1A is the one dimensional
totally anti-symmetric representation and 2M is the mixed symmetry two dimensional repre-
sentation. Given an representation of S3, we can easily decompose it to the irreducible sub
spaces of 1S, 1A and 2M representations using the respective projectors. Denoting the genera-
tors for S3 by P12 and P23 (where Pi j denotes interchange of particles in i and j th position in
a set (123) ), the projectors for the totally symmetric and anti-symmetric subspaces are given
by

P1S
=
(1+ P12 + P23 + P13 + P23P12 + P12P23)

6
,

P1A
=
(1− P12 − P23 − P13 + P23P12 + P12P23)

6
, (A.2)

where P13 = P23P12P23. The formulae (A.2) make it clear that complete symmetrization and
anti symmetrization lead to projection onto the 1S and 1A subspace, respectively, while the
part that transforms in the 2M representation is annihilated by both the symmetric and anti-
symmetric projectors. The group theory for the action of S3 on the Mandelstam invariants is
given by the left action of S3 on itself. The 6left generated by the left action of S3 onto itself
can be decomposed as.

6left = 1S + 2.2M + 1A. (A.3)

Note the appearance of two 2M subspaces, which differ from one another because they
have different Z2 charges. The explicit projectors for these two (two-dimensional) sub-spaces
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can be constructed as follows. The projectors for the two-dimensional subspace of positive Z2
charge are

P(1)2M+
=

1+ P23

2
−
(1+ P12 + P23 + P13 + P23P12 + P12P23)

6
,

P(2)2M+
=

P23P12 + P13

2
−
(1+ P12 + P23 + P13 + P23P12 + P12P23)

6
.

(A.4)

Note that the above two projectors are respectively symmetric under the action of Z2 generator
P23 and P13 and hence having a positive Z2 charge. We note that the projector P(1)2M+

projects to

a subspace which is symmetric under P23 while P(2)2M+
projects to a subspace which is symmetric

under P12. The projectors for the two dimensional subspace for the negative Z2 charge (anti-
symmetric under P23 and P13 respectively) are

P(1)2M−
=

1− P23

2
−
(1− P12 − P23 − P13 + P23P12 + P12P23)

6
, (A.5)

P(2)2M−
=

P23P12 − P13

2
−
(1− P12 − P23 − P13 + P23P12 + P12P23)

6
. (A.6)

(A.7)

To explicitly see the formalism in action, consider an arbitrary function of the Mandelstam
invariants F(s, t, u). The various irreducible subspaces are given by20

fSym(s, t, u) =
1
6
(F(s, t, u) + F(t, s, u) + F(s, u, t) + F(u, t, s) + F(t, u, s) + F(u, s, t)) ,

fAnti−sym(s, t, u) =
1
6
(F(s, t, u)− F(t, s, u)− F(s, u, t)− F(u, t, s) + F(t, u, s) + F(u, s, t)) ,

fMixed+(s, t, u) =
1
6
(2F(s, t, u)− F(t, s, u)− F(u, s, t) + 2F(s, u, t)− F(u, t, s)− F(t, u, s)) ,

fMixed−(s, t, u) =
1
6
(2F(s, t, u)− F(t, s, u)− F(u, s, t)− 2F(s, u, t) + F(u, t, s) + F(t, u, s)) .

(A.8)

We can easily write down examples of such functions built out of polynomials of mandelstam
invariants [39,45,55].

fSym(s, t, u) = (s2 + t2 + u2)m(stu)n ,

fAnti−sym(s, t, u) = (s2 t − t2s− s2u+ su2 − u2 t + t2u) fSym(s, t, u) ,

fMixed+(s, t, u) = {(2s− t − u) fSym(s, t, u), (2s2 − t2 − u2) fSym(s, t, u)} ,

fMixed+(s, t, u) = {(s− u) fSym(s, t, u), (s2 − u2) fSym(s, t, u)} . (A.9)

B Massless amplitudes: Examples

We expect that the combinations FI also obey (56) since they satisfy all the necessary condi-
tions. We can do some sanity checks by considering a couple of examples. In particular we
look at F4, F5 since FI for I = 1,2, 3 the dispersion relation (56) is identical to the scalar case

20We note that fMixed+(s, t, u)+ fMixed+(t, u, s)+ fMixed+(u, s, t) = fMixed−(s, t, u)+ fMixed−(t, u, s)+ fMixed−(u, s, t) = 0
denoting that they form two dimensional subspaces.
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considered in [29].

We first consider the Photon amplitude in superstring theory with a kinematic pre-factor being
stripped off for appropriate Regge growth namely:

T1(s1, s2, s3) =
Γ
�−s2

2

�

Γ
�−s3

2

�

Γ[1+ s1
2 ]

,

T3(s1, s2, s3) =
Γ
�−s1

2

�

Γ
�−s2

2

�

Γ[1+ s3
2 ]

,

T4(s1, s2, s3) =
Γ
�−s1

2

�

Γ
�−s3

2

�

Γ[1+ s2
2 ]

. (B.1)

We can construct (25),(26) from the above, we need to subtract out the massless poles and
this is done by multipliying F4 as defined in (25) by an s1s2s3 factor. We can then check if (56)
is satisfied by comparing the exact answer with the result obtained from (56) by computing
the absorbtive part. Since (B.1) has infinitely many poles at s′1 = k with k = 2, 4, · · · , and
each pole p contributes a −πδ(s′1 − p) factor in the absorbtive part thus (56) reduces to an
infinite sum over all the poles k, k ∈ 2Z+ which we call GI . We can then compare the results
by truncating this sum to some kmax (say kmax = 100) and the results are shown in first row
of the plots below.

Figure 8: A comparison of the crossing symmetric dispersion for the Photon and
Graviton cases which are shown in the first and second rows respectively. We have
indicated the regions where F4, F5 differ from their dispersive analogues G4, G5 by
less than 10% in green.

We can also consider the Graviton amplitude from superstring theory (again with appropriate
kinematic pre-factors stripped off )

T1(s1, s2, s3) =
Γ [−s1] Γ [−s2] Γ [−s3]
Γ [1+s1] Γ [1+s2] Γ [1+s3]

�

1− s2s3
s1+1

�

,

T3(s1, s2, s3) =
Γ [−s1] Γ [−s2] Γ [−s3]
Γ [1+s1] Γ [1+s2] Γ [1+s3]

�

1− s1s2
s3+1

�

,

T4(s1, s2, s3) =
Γ [−s1] Γ [−s2] Γ [−s3]
Γ [1+s1] Γ [1+s2] Γ [1+s3]

�

1− s1s3
s2+1

�

. (B.2)
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To remove the massless poles, we now need to multiply F5 as defined in (26) by the factor
s1s2s3, and we can follow the same procedure as the photon case with the only change being
that we now have poles at s′1 = k with k ∈ Z+.
The results are shown in the second row of the figure above. We note that since (56) was
written down assuming o(s2

1) behaviour for large |s1| and fixed s2, examining the growth of
FI restricts s2 to a region where we should trust the results, e.g., F4 in the photon case has
a growth ss2

1 for large s1 which implies we can strictly expect an agreement for only s2 < 2,
though we have considered a bigger region in the figure we see that there is an excellent
agreement between the dispersion relation and the exact answer.
We have also verified that the crossing symmetric combination in eqn.(131) namely

F̃h
2 (s1, s2, s3) =

�

Th
1 (s1, s2, s3)

s2
1

+
Th

3 (s1, s2, s3)

s2
3

+
Th

4 (s1, s2, s3)

s2
2

�

,

for tree-level 4-graviton scattering amplitudes in superstring, Heterotic string and bosonic
string theories all obey that the crossing symmetric dispersion relation after subtracting out
the massless poles.

C Unitarity constraints

In this section we review the unitarity constraints on partial wave amplitudes following [37,
41]. Unitarity constraints can be summarized as positivity of norm of a state 〈ψ|ψ〉 ≥ 0. If
we have multiple states (say of number N), this translates to positive semi-definiteness of a
N ×N hermitian matrix. In order to see the relation of this statement in context of S-matrices,
consider the incoming and outgoing particles as decomposed into irreps of the poincare group.
To be more precise (eq (2.21) of [41]),

|κ1,κ2〉=
∫

d4p
(2π)4

θ (p0)θ (−p2)
∑

i, j

∑

J ,λ

|c, ~p; J ,λ;λi ,λ j〉〈c, ~p; J ,λ;λi ,λ j|κ1,κ2〉. (C.1)

|κ1,κ2〉 is generic 2−particle momentum state

|κ1,κ2〉 := |m1, ~p1; j1,λ1〉 ⊗ |m2, ~p2; j2,λ2〉 , (C.2)

where ~pi , mi are corresponding 3−momentum, mass respectively, pµi piµ = −m2
i . ji ,λi are spin

and helicity respectively. For massive particles helicity takes 2 ji + 1 values,
λi ∈ {− ji ,− ji + 1, . . . , j − 1, j}, mi 6= 0, while for massless particles it takes two values,
λi = ± ji , mi = 0. The Poincare 2−particle irreps {|c, ~p; J ,λ;λi ,λ j〉} are states of definite total
momenta and total angular momenta, ~p being the total 3−momentum and J being the total an-
gular momentum with λ corresponding 3−component taking 2J + 1 values,
λ ∈ {−J ,−J + 1, . . . , J − 1, J}. In particular,




c, ~p; J ,λ;λi ,λ j

�

�κ1,κ2

�

∝ (2π)4δ4(pµ − pµ1 − pµ2 ). (C.3)

Further, these states are normalized by



c′, ~p′; J ′,λ′;λ′1,λ′2
�

� c, ~p; J ,λ;λ1,λ2

�

= (2π)4δ4(p′µ − pµ) δl ′ lδλ′λδλ′1λ1
δλ′2λ2

. (C.4)

For our purpose, we will work in CoM frame. Thus the states of interest to us are
{|c, ~0; J ,λ;λ1,λ2〉}. Under the action of parity operator P , these states transform as (C.5)

P |c, ~0; J ,λ;λ1,λ2〉= η1η2(−1)J− j1+ j2 |c, ~0; J ,λ;−λ1,−λ2〉 . (C.5)
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Here η1 and η2 are pure phases, also called intrinsic parity associated with the particle, obey
the constraint η2

i = ±1 (with the negative sign only possible for fermions).
For identical particles we need to take care of the exchange symmetry. This prompts us to

define the following states which we will use in our subsequent analysis

|c, ~0; J ,λ;λ1,λ2〉id =
1
2

�

|c, ~0; J ,λ;λ1,λ2〉+ (−1)J+λ1−λ2 |c, ~0; J ,λ;λ1,λ2〉
�

. (C.6)

We also note the relation between the 2-particle reducible state |κ1,κ2〉COM in the COM
frame and |c, ~0; J ,λ;λ1,λ2〉id. This is essential in determining the range of J for the irreducible
2-particle reps. Following [41] we can define the 2-particle reducible state in COM frame as
product of eigenstates of the Jz operator.

|κ1,κ2〉COM ≡ |(~p,θ ,φ) ;λ1,λ2〉 ≡ |m1, ~p; j1,λ1〉 ⊗ |m2,−~p; j2,λ2〉 , (C.7)

where Jz = Lz + j1z + j2z (Lz is the orbital angulam momentum, j i
z are the intrinsic spins). In

the COM frame, therefore, (C.1) can be expressed as follows (see (C.18) of [41]),

|(~p,θ ,φ) ;λ1,λ2〉id =
p

2
∑

J

J
∑

λ=−J

CJ (~p)e
iφ(λ1+λ2−λ)d(l)

λλ12
(θ ) |c, 0; J ,λ;λ1,λ2〉id .(C.8)

The sum over J is not unbounded and can be fixed as follows. Let us consider the case where
the ~p is aligned along the z-axis (i.e θ = φ = 0). The LHS is an eigenstate of Jz = λ1−λ2, since
the orbital angular momentum is zero and the projection of intrinsic spin onto the direction
of momenta now becomes the helicity itself. The RHS sum over λ therefore must be therefore
over only those states for which λ= λ1 −λ2, and hence J ≥ |λ1 −λ2|.

|(~p, 0, 0) ;λ1,λ2〉id =
p

2
∞
∑

J=|λ1−λ2|

CJ (~p) |c, 0; J ,λ= |λ1 −λ2|;λ1,λ2〉id . (C.9)

We can now apply the rotation matrix on both sides to bring it to the form (C.8). Note that
the rotation matrix does not change the Casimir J2 (and hence the J sum).

|(~p,θ ,φ) ;λ1,λ2〉id =
p

2
∞
∑

J=|λ1−λ2|

J
∑

λ=−J

CJ (~p)e
iφ(λ1+λ2−λ)d(l)

λλ12
(θ ) |c, 0; J ,λ;λ1,λ2〉id . (C.10)

To summarise, the additional symmetry due to the identical nature of 2 particle states decides
even or odd spins (or both) appear in the partial wave expansion. The cut-off for the spin is
decided by the helicities of the constituent states.

Corresponding to the incoming and the outgoing states, therefore, we can write down a
basis of irreducible 2 particle states for each spin l that appears in the decomposition (C.1).
Generically they are denoted as,

|1〉in = |c, ~p; J ,λ; j1, j2〉in , |1〉out = |c, ~p; J ,λ; j3, j4〉out ,

|2〉in = |c, ~p; J ,λ; j1 − 1, j2〉in , |2〉out = |c, ~p; J ,λ; j3 − 1, j4〉out ,

.

.

|Nin〉in = |c, ~p; J ,λ;− j1,− j2〉in , |Nout〉out = |c, ~p; J ,λ;− j3,− j4〉out .

(C.11)
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Imposing the positivity constraints of hermitian matrix, therefore, translates to positivity of
the following matrix (eq 2.118 of [41])

HJ (s)× (2π)4δ4δJ ′Jδλ′λ =

�

in〈a′|b〉in in〈a′|b〉out

out〈a′|b〉in out〈a′|b〉out

�

, (C.12)

where s = −p2. Using the normalisation conditions (C.4), and

out




c′, ~p′; J ′,λ′;λ′1,λ′2
�

� c, ~p; J ,λ;λ1,λ2

�

in = (2π)
4δ4(p′µ − pµ) δJ ′Jδλ′λ SJ

λ′1,λ′2
λ1,λ2
(s) , (C.13)

where S`
λ′1,λ′2
λ1,λ2
(s) = (δλ′1λ1

δλ′2λ2
+(−1)J−(λ

′
1−λ

′
2)δλ′2λ1

δλ′1λ2
)+ iT`

λ′1,λ′2
λ1,λ2
(s) is the partial amplitude

with spin J , we get,

�

δa′b S`
∗
a′b

S`a′b δa′b

�

� 0 . (C.14)

C.1 Massless bosons: Photons and gravitons

The two particle irreducible states can be labelled by the helicities (λi = ±m with m= 1, 2 for
photons and gravitons respectively ) as

|c, ~p; J ,λ;λ1,λ2〉 ≡ |λ1,λ2〉 ,

|1〉 =
1
p

2
(|++〉+ | − −〉) , J = 0, 2,4, · · · ,

|2〉 =
p

2 (|+−〉) , J = 2m, 2m+ 1,2m+ 2,2m+ 3, · · · ,

|3〉 =
1
p

2
(|++〉 − | −−〉) , J = 0, 2,4, · · · .

We note that the states |1〉 and |3〉 only contain even spin. This is evident from the symmetry of
the states ( see (C.6)) and the discussion around (C.10). In the following subsections, we try
to impose the unitarity conditions assuming parity invariance and non-invariance respectively.
For gravitons λi = ±2, so spins will change as |λ1 −λ2|.

C.1.1 Parity invariant theories

We note that the parity of these states: states |1〉 and |2〉 are parity even states while |3〉 is a
parity odd state. This is due to the following21

P |++〉= |−−〉, P |−−〉= |++〉, P |+−〉= (−1)J |−+〉= (−1)J (−1)J−2|+−〉= |+−〉 . (C.15)

We are now in a position to evaluate the matrix (C.14) for the set of states (C.15). Furthermore,
we assume parity invariance which implies that the states of definite parity do not mix. The
following conditions are obtained for the parity even sector.

21We work in the convention ηi = 1 for photons.
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�

in〈1′|1〉in in〈1′|1〉out

out〈1′|1〉in out〈1′|1〉out

�

� 0 , J = 0 ,

,

�

in〈2′|2〉in in〈2′|2〉out

out〈2′|2〉in out〈2′|2〉out

�

� 0 , J = 2m+ 1,2m+ 3, . . . ,

,







in〈1′|1〉in in〈1′|2〉in in〈1′|1〉out in〈1′|2〉out

in〈2′|1〉in in〈2′|2〉in in〈2′|1〉out in〈2′|2〉out

out〈1′|1〉in out〈1′|2〉in out〈1′|1〉out out〈1′|2〉out

out〈2′|1〉in out〈2′|2〉in out〈2′|1〉out out〈2′|2〉out






� 0 , J = 2m, 2m+ 2, . . . ,

and for the parity odd sector,
�

in〈3′|3〉in in〈3′|3〉out

out〈3′|3〉in out〈3′|3〉out

�

� 0 , J = 0,2, 4, . . . .

Let us work out one of the conditions in detail: 1st matrix of (C.16) gives us the following

�

1 1− i
�

T`
∗ −−
++ + T`

∗ ++
++

�

1+ i
�

T`
−−
++ + T`

++
++

�

1

�

� 0 , J = 0 . ,

Noting that the trace is positive trivially, the condition of positivity translates to the determinant
of the matrix being positive:

2 Im(T J=0
1 + T J=0

2 )≥ |T J=0
1 + T J=0

2 |2 ≥ 0 . (C.16)

Similarly, 2nd matrix of (C.16) and (C.16) gives us the following

ImT J
3 ≥ |T

J
3 |

2 ≥ 0 , J = 2m+ 1,2m+ 3, . . . ,

2Im(T J
1 − T J

2 )≥ |T
J
1 − T J

2 |
2 ≥ 0 , J = 0,2, 4, . . . . (C.17)

Now let us consider the conditions coming from the third matrix in (C.16). We find that
analysing the 2× 2 principal minors is sufficient for our purposes and we obtain,

ImT J
3 ≥ |T

J
3 |

2 ≥ 0 , J = 2m, 2m+ 2, . . . ,

2Im(T J
1 + T J

2 )≥ |T
J
1 + T J

2 |
2 ≥ 0 , J = 2, 4, . . . ,

1≥ 4|T J
5 |

2 ≥ 0 , J = 2m, 2m+ 2, . . . .

48

https://scipost.org
https://scipost.org/SciPostPhys.13.3.051


SciPost Phys. 13, 051 (2022)

C.1.2 Parity violating theories

For this case, the assumption that parity even and odd states do not mix no longer holds true.
This leads to the modification of the unitarity equations,







in〈1′|1〉in in〈1′|3〉in in〈1′|1〉out in〈1′|3〉out

in〈3′|1〉in in〈3′|3〉in in〈3′|1〉out in〈3′|3〉out

out〈1′|1〉in out〈1′|3〉in out〈1′|1〉out out〈1′|3〉out

out〈3′|1〉in out〈3′|3〉in out〈3′|1〉out out〈3′|3〉out






� 0 , J = 0

,

�

in〈2′|2〉in in〈2′|2〉out

out〈2′|2〉in out〈2′|2〉out

�

� 0 , J = 2m+ 1,2m+ 3, . . .

,















in〈1′|1〉in in〈1′|2〉in in〈1′|3〉in in〈1′|1〉out in〈1′|2〉out in〈1′|3〉out

in〈2′|1〉in in〈2′|2〉in in〈2′|3〉in in〈2′|1〉out in〈2′|2〉out in〈2′|3〉out

in〈3′|1〉in in〈3′|2〉in in〈3′|3〉in in〈3′|1〉out in〈3′|2〉out in〈3′|3〉out

out〈1′|1〉in out〈1′|2〉in out〈1′|3〉in out〈1′|1〉out out〈1′|2〉out out〈1′|3〉out

out〈2′|1〉in out〈2′|2〉in out〈2′|3〉in out〈2′|1〉out out〈2′|2〉out out〈2′|3〉out

out〈3′|1〉in out〈3′|2〉in out〈3′|3〉in out〈3′|1〉out out〈3′|2〉out out〈3′|3〉out















� 0,

J = 2, 4,6 · · · .

(C.18)

The analysis of these matrices is tedious and we find the following constraints

ImT J
3 ≥ |T

J
3 |

2 ≥ 0 , J = 2m, 2m+ 1 . . . ,

2Im(T J
1 +

1
2
(T J

2 + T ′J2 ))≥ |T
J
1 +

1
2
(T J

2 + T ′J2 )|
2 ≥ 0 , J = 0, 2,4,6, . . . ,

2Im(T J
1 −

1
2
(T J

2 + T ′J2 ))≥ |T
J
1 −

1
2
(T J

2 + T ′J2 )|
2 ≥ 0 , J = 0, 2,4,6, . . . ,

|T J
2 − T ′J2 |

2 ≤ 4 , J = 0,1, 2, . . . ,

|T J
5 − T ′J5 | ≤ 1 , J = 2m, 2m+ 1, . . . ,

|T J
5 + T ′J5 | ≤ 1 J = 2m, 2m+ 1, . . . .

(C.19)

From the last three conditions listed above, it seems that linear unitarity analysis doesn’t fix the
sign of ρJ

2 −ρ
′J
2 ,ρJ

5 ±ρ
′J
5 and perhaps a more thorough investigation is required [7]. Hence,

in this work, we do not attempt to bound the parity violating amplitudes.

C.2 Massive Majorana fermions

The unitarity conditions for massive Majorana fermions were spelt out in [41]. Let us quickly
review them for completeness. Recalling the fermion amplitudes {Φi} defined in (37), the
corresponding partial amplitudes are denoted as {ΦJ

i }. Then, following the similar arguements
as in the previous subsection, one arrives at the unitarity conditions as follows:

1.
�

1 1− i
�

Φ0∗
1 (s)−Φ

0∗
2 (s)

�

1+ i
�

Φ0
1(s)−Φ

0
2(s)

�

1

�

� 0 . (C.20)

The positivity of the determinant of the matrix then gives

2 Im.
�

Φ0
1(s)−Φ

0
2(s)

�

≥
�

�Φ0
1(s)−Φ

0
2(s)

�

�

2
. (C.21)
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2.
�

1 1− i
�

ΦJ∗
1 (s) +Φ

J∗
2 (s)

�

1+ i
�

ΦJ
1(s) +Φ

J
2(s)

�

1

�

� 0 , J ≥ 0 (even), (C.22)

implying

2 Im.
�

ΦJ
1(s) +Φ

J
2(s)

�

≥
�

�ΦJ
1(s) +Φ

J
2(s)

�

�

2
, J ≥ 0 (even) . (C.23)

3.
�

1 1− 2iΦJ∗
3

1+ 2iΦJ
3 1

�

� 0 , J ≥ 1 (odd), (C.24)

with straightforward consequence

Im.ΦJ
3(s)≥ |Φ

J
3(s)|

2 ≥ 0 J ≥ 1 (odd) . (C.25)

4.
�

I2×2 S
J†
2×2

SJ2×2 I2×2

�

� 0 , J = 2, 4,6, . . . , (C.26)

with

I2×2 :=

�

1 0
0 1

�

, SJ2×2(s) :=

�

1+ i
�

ΦJ
1(s)−Φ

J
2(s)

�

2iΦJ∗
5

2iΦJ
5(s) 1+ 2iΦJ

3(s)

�

. (C.27)

We get,

Det[SJ2×2(s)]≥ 0 .

D Representations of Wigner-d functions

In this appendix, we give some convenient representations of the Wigner-d functions that we
used in the main text for computational ease. For the photons we use,

dJ
0,0

�

cos−1
q

ξ(s′1, a)
�

= 2F1

�

−J , J + 1; 1;
1
2

�

1−
p

ξ
�

�

,

dJ
2,2

�

cos−1
q

ξ(s′1, a)
�

=
1

24

�

6
�
p

ξ+ 1
�2

2F1

�

2− J , J + 3;1;
1
2

�

1−
p

ξ
�

�

,

dJ
2,−2

�

cos−1
q

ξ(s′1, a)
�

=

�

1−
p

ξ
�2
Γ (J + 3) 2F1

�

2− J , J + 3;5; 1
2

�

1−
p

ξ
��

96Γ (J − 1)
,

dJ
4,4

�

cos−1
q

ξ(s′1, a)
�

=
1

16
(
p

ξ+ 1)4 2F1

�

4− J , J + 5;1;
1−

p

ξ

2

�

,

dJ
4,−4

�

cos−1
q

ξ(s′1, a)
�

=
(1−

p

ξ)4Γ (J + 5) 2F1

�

4− J , J + 5;9;
1−
p
ξ

2

�

645120Γ (J − 3)
. (D.1)
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E Massive Majorana fermions: Locality constraints

We would like to use our techniques to constrain the EFTs involving Majorana fermions. How-
ever, in this work we will only spell out the locality constraints and leave a careful analysis for
future work. Now we will list the locality constraint for the amplitude listed in (44). Let us
assume a low energy EFT expansion of the form

Ψ1(s1, s2, s3) =
∑

n,m

Wψ
p,q x p yq . (E.1)

The partial wave decomposition reads,

(Ψ1(s1, s2)) = α
ψ
0 +

1
π

∫ ∞

M2

ds1

s′1
Aψ

�

s′1; s(+)2

�

s′1, a
�

�

H
�

s′1; s1, s2, s3

�

,

(E.2)

where H
�

s′1; s1, s2, s3

�

is defined in (52) and the partial wave decomposition reads

Aψ
�

s′1; s(+)2

�

s′1, a
�

�

=
∑

J=0,2,4,···
16π(2J + 1)ρ1,ψ

J dJ
0,0(θ )+

∑

J=1,2,3,···
64π(2J + 1)(−1)J+1ρ

3,ψ
J dJ

1,−1(θ )−
∑

J=0,2,4,···
16π(2J + 1)ρ5,ψ

J dJ
0,1(θ ) ,

(E.3)

where (cosθ )2 = ξ(s′1, a) = ξ0 + 4ξ0

�

a
s′1−a

�

and ξ0 =
s2
1

s1−M2 while ρi,ψ
J are the respective

spectral functions which appear as coefficients in partial wave expansion of the absorptive
parts Aψ. We have also used that ρ4,ψ

J = (−1)J+1ρ
3,ψ
J [41]. The coefficients Wψ

p,q can be
obtained from the amplitude via the inversion formula [29]

Wψ
n−m,m =

∫ ∞

M2

ds1

2πs2n+m+1
1

16π

 

∑

J=0,2,4···
(2J + 1)ρ1,ψ

J (s1)	(1,J)
n,m (s1)

+
∑

J=1,2,3···
(2J + 1)ρ3,ψ

J (s1)	(3,J)
n,m (s1)

∑

J=0,2,4···
(2J + 1)ρ5,ψ

J (s1)	(5,J)
n,m (s1)

!

,

(E.4)

with

	(i,J)n,m (s1) = 2
m
∑

j=0

(−1)1− j+mr(i, j)J (ξ0) (4ξ0)
j (3 j −m− 2n)Γ (n− j)

j!(m− j)!Γ (n−m+ 1)
, ξ0 :=

s2
1

(s1 − 2µ/3)2
.

(E.5)
The functions {p( j)J (ξ0)} are derivatives of respective Wigner-d functions

r(1, j)
J (ξ0) :=

∂ jdJ
0,0(
p

z)

∂ z j

�

�

�

�

�

z=ξ0

, r(3, j)
J (ξ0) := (−1)J+1

∂ jdJ
1,−1(
p

z)

∂ z j

�

�

�

�

�

z=ξ0

r(5, j)
J (ξ0) :=

∂ jdJ
0,1(
p

z)

∂ z j

�

�

�

�

�

z=ξ0

. (E.6)

The locality constraints then are simply,

Wψ
n−m,m = 0 , ∀ n< m . (E.7)
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F EFT expansion of the crossing basis elements

In this section, we give the low energy EFT expansion for the crossing basis elements (13) for
some special cases used in the main text. For the photon case, we have the following:

F1(s1, s2, s3) = 2 f2 x − f3 y + 4 f4 x2 − 2 f5 x y + f6,1 y2 + 8 f6,2 x3 + · · · ,
F2(s1, s2, s3) = 2g2 x − 3g3 y + 2(g41 + 2g42)x

2 + (−5g5,1 − 3g5,2)x y

+ 3
�

g6,1 − g6,2 + g6,3

�

y2 + 2g6,1 x3 + · · · ,

F3(s1, s2, s3) = 2h2 x − h3 y + 4h4 x2 − 2h5 x y + h6,1 y2 + 8h6,2 x3 + · · · ,

F4(s1, s2, s3) =
1
3
(g2 + (g41 + 2g42)x + (g5,2 − g5,1)y + g6,1 x2 + · · · ) ,

F5(s1, s2, s3) =
1
3
(g3 x − g4,1 y + g5,1 x2 − (2g6,1 + g6,2)x y) + · · · . (F.1)

As alluded to in the main text in the discussion below eq.(13) if an amplitude is t − u sym-
metric then the crossing basis has only 3 elements { f (s1, s2, s3), g1(s1, s2, s3), h1(s1, s2, s3)} and
F2, F4, F5 above correspond to these for the t − u symmetric amplitude, T1(s1, s2, s3), while
F1 and F3 correspond to the fully crossing symmetric helicity amplitudes T2(s1, s2, s3) and
T5(s1, s2, s3) respectively

T1(s1, s2, s3) = g2s2
1 + g3s3

1 + s4
1 g4,1 +

�

s2
1

�

(s2
1 + s2

2 + s2
3)g4,2 + s5

1 g5,1

+g5,2

�

s2
2s3 + s2s2

3

�

(s2 + s3)
2 + s6

1 g6,1 + g6,2

��

s3
2s3 + s2s3

3

�

(s2 + s3)
2
�

+g6,3

��

s2
2s2

3

�

(s2 + s3)
2
�

,

T2(s1, s2, s3) = f2(s
2
1 + s2

2 + s2
3) + f3(s1s2s3) + f4(s

2
1 + s2

2 + s2
3)

2 + f5(s
2
1 + s2

2 + s2
3)(s1s2s3)

+ f6,1(s1s2s3)
2 f6,2(s

2
1 + s2

2 + s2
3)

3 ,

T5(s1, s2, s3) = h2(s
2
1 + s2

2 + s2
3) + h3(s1s2s3) + h4(s

2
1 + s2

2 + s2
3)

2 + h5(s
2
1 + s2

2 + s2
3)(s1s2s3)

+h6,1(s1s2s3)
2h6,2(s

2
1 + s2

2 + s2
3)

3 . (F.2)

For the parity violating case we have two additional elements corresponding to the crossing
symmetric amplitudes T2′ and T5′ . We note that Fi for i = 1, 2,3 are the same ones considered
in [22], in this paper additionally we also use F4 and F5.

G Low spin dominance and Graviton scattering in String theory

In this appendix, we will show that the range of a that we had obtained from our Locality
constraint analysis in subsection 6.2, is satisfied for type II string theory amplitude. For con-
venience, we write the explicit amplitude

T1 =
s3
1

�

Γ(1− αs1
2 )Γ(1−

αs2
2 )Γ(1−

αs3
2 )

Γ( s1α
2 +1)Γ( s2α

2 +1)Γ( s3α
2 +1) − 1

�

s2s3
,

T3 =
s3
3

�

Γ(1− αs1
2 )Γ(1−

αs2
2 )Γ(1−

αs3
2 )

Γ( s1α
2 +1)Γ( s2α

2 +1)Γ( s3α
2 +1) − 1

�

s1s2
,

T4 =
s3
2

�

Γ(1− αs1
2 )Γ(1−

αs2
2 )Γ(1−

αs3
2 )

Γ( s1α
2 +1)Γ( s2α

2 +1)Γ( s3α
2 +1) − 1

�

s1s3
. (G.1)

Note that we have subtracted out the massless graviton pole. We obtain the aJ
i (s1) by consid-

ering the string amplitude as an infinite sum over poles at s1 =
2(n+1)
α′ . We want to verify that
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the constraints (141) are satisfied for our range of a: −0.1933M2 ≤ a ≤ 2
3 M2. To be precise,

we want to verify,

M(si , a) =
∫ ∞

M2

ds1

2πs1

∑

J=0,2,4,···
(2J + 1)ã(1)J (s1) f

(1)
J (ξ)H(s

′
1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=4,6,···
(2J + 1)ã(2)J (s1) f

(2)
J (ξ)H(s

′
1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=5,7,···
(2J + 1)ã(3)J (s1) f

(3)
J (ξ)H(s

′
1, si) ≥ 0,

=MJ≤2(si , a) +MJ>2(si , a)≥ 0 , (G.2)

for the range of a which is where MJ≤2(si , a) ≥ 0. This is what we called weak LSD in the
main text.
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Figure 9: M̃J (si , a) vs J for various values of a.

We consider, where ã(i)J (s1) =
a(i)J (s1)

s2
1

and f (i)J (ξ) relevant for spin 2 have been defined around

eq (137).Note that we have dropped the null constraints since a physical amplitude satis-
fies that by default. We have found that the positivity condition is satisfied for our range
“a". We present our analysis in the figure 9 above for different values of a. The plots show

M̃J (si , a) = MJ (si ,a)
MJ≤2(si ,a)

as a function of J for various values of a. We note that firstly, as adver-

tised, our amplitude is positive for this region of a since M̃J (si , a) > −1. Secondly, we note
that the maximal contribution to the amplitude occurs between spins 2 and 4 which is consis-
tent with our observation that our analysis in subsection 6.2, indicated a spin 2 dominance.
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[20] S. Caron-Huot, D. Mazáč, L. Rastelli and D. Simmons-Duffin, AdS bulk locality from sharp
CFT bounds, J. High Energy Phys. 11, 164 (2021), doi:10.1007/JHEP11(2021)164.

[21] C. de Rham, S. Melville, A. J. Tolley and S.-Y. Zhou, UV complete me: Pos-
itivity bounds for particles with spin, J. High Energy Phys. 03, 011 (2018),
doi:10.1007/JHEP03(2018)011.

54

https://scipost.org
https://scipost.org/SciPostPhys.13.3.051
https://doi.org/10.1007/JHEP05(2021)280
https://doi.org/10.1007/jhep07(2021)110
https://doi.org/10.1088/1751-8121/ac0e51
https://doi.org/10.1103/PhysRevD.103.125020
https://doi.org/10.1007/JHEP05(2021)098
https://doi.org/10.1007/JHEP03(2022)063
https://doi.org/10.1007/JHEP02(2022)167
https://doi.org/10.1007/JHEP12(2021)115
https://doi.org/10.1103/PhysRevLett.128.051602
https://doi.org/10.1007/JHEP03(2022)159
https://doi.org/10.1007/JHEP03(2022)025
https://doi.org/10.1007/JHEP05(2022)154
https://doi.org/10.1007/JHEP10(2021)126
https://doi.org/10.1007/JHEP01(2022)176
https://doi.org/10.1103/PhysRevLett.128.131102
https://doi.org/10.1007/JHEP11(2021)164
https://doi.org/10.1007/JHEP03(2018)011


SciPost Phys. 13, 051 (2022)

[22] J. Henriksson, B. McPeak, F. Russo and A. Vichi, Rigorous bounds on light-by-light scatter-
ing, J. High Energy Phys. 06, 158 (2022), doi:10.1007/JHEP06(2022)158.

[23] A. J. Tolley, Z.-Y. Wang and S.-Y. Zhou, New positivity bounds from full crossing symmetry,
J. High Energy Phys. 05, 255 (2021), doi:10.1007/JHEP05(2021)255.

[24] P. Haldar, A. Sinha and A. Zahed, Quantum field theory and the Bieberbach conjecture,
SciPost Phys. 11, 002 (2021), doi:10.21468/SciPostPhys.11.1.002.

[25] P. Raman and A. Sinha, QFT, EFT and GFT, J. High Energy Phys. 12, 203 (2021),
doi:10.1007/JHEP12(2021)203.

[26] G. Goluzin, Geometric theory of functions of a complex variable, American Mathematical
Society, Providence, Rhode Island, US, ISBN 9780821815762 (1969).

[27] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, CRC Press,
Boca Raton, Florida, US, ISBN 9780429213731 (2003), doi:10.1201/9780203911624.

[28] G. Auberson and N. N. Khuri, Rigorous parametric dispersion representation with three-
channel symmetry, Phys. Rev. D 6, 2953 (1972), doi:10.1103/PhysRevD.6.2953.

[29] A. Sinha and A. Zahed, Crossing symmetric dispersion relations in quantum field theories,
Phys. Rev. Lett. 126, 181601 (2021), doi:10.1103/PhysRevLett.126.181601.

[30] R. Gopakumar, A. Sinha and A. Zahed, Crossing symmetric dispersion relations for Mellin
amplitudes, Phys. Rev. Lett. 126, 211602 (2021), doi:10.1103/PhysRevLett.126.211602.

[31] E. P. Wigner, On a class of analytic functions from the quantum theory of collisions, Ann.
Math. 53, 36 (1951).

[32] E. P. Wigner and L. Eisenbud, Higher angular momenta and long range interaction in res-
onance reactions, Phys. Rev. 72, 29 (1947), doi:10.1103/PhysRev.72.29.

[33] R. Mickesn, Mathematical properties of the vaccuum polarization functions, Lett. Math.
Phys. 2, 343 (1978), doi:10.1007/BF00400158.

[34] Y. S. Jin and A. Martin, Number of subtractions in fixed-transfer dispersion relations, Phys.
Rev. 135, B1375 (1964), doi:10.1103/PhysRev.135.B1375.

[35] Y. S. Jin and A. Martin, Connection between the asymptotic behavior and the sign of
the discontinuity in one-dimensional dispersion relations, Phys. Rev. 135, B1369 (1964),
doi:10.1103/PhysRev.135.B1369.

[36] Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living Rev. Relativ.
5, 5 (2002), doi:10.12942/lrr-2002-5.

[37] J. Henriksson, B. McPeak, F. Russo and A. Vichi, Rigorous bounds on light-by-light scatter-
ing, J. High Energy Phys. 06, 158 (2022), doi:10.1007/JHEP06(2022)158.

[38] R. Roskies, Crossing restrictions on ππ partial waves, Nuov Cim. A 65, 467 (1970),
doi:10.1007/BF02824912.

[39] S. Dutta Chowdhury, A. Gadde, T. Gopalka, I. Halder, L. Janagal and S. Minwalla, Clas-
sifying and constraining local four photon and four graviton S-matrices, J. High Energy
Phys. 02, 114 (2020), doi:10.1007/JHEP02(2020)114.

55

https://scipost.org
https://scipost.org/SciPostPhys.13.3.051
https://doi.org/10.1007/JHEP06(2022)158
https://doi.org/10.1007/JHEP05(2021)255
https://doi.org/10.21468/SciPostPhys.11.1.002
https://doi.org/10.1007/JHEP12(2021)203
https://doi.org/10.1201/9780203911624
https://doi.org/10.1103/PhysRevD.6.2953
https://doi.org/10.1103/PhysRevLett.126.181601
https://doi.org/10.1103/PhysRevLett.126.211602
https://doi.org/10.1103/PhysRev.72.29
https://doi.org/10.1007/BF00400158
https://doi.org/10.1103/PhysRev.135.B1375
https://doi.org/10.1103/PhysRev.135.B1369
https://doi.org/10.12942/lrr-2002-5
https://doi.org/10.1007/JHEP06(2022)158
https://doi.org/10.1007/BF02824912
https://doi.org/10.1007/JHEP02(2020)114


SciPost Phys. 13, 051 (2022)

[40] B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their par-
tition functions, J. High Energy Phys. 10, 199 (2017), doi:10.1007/JHEP10(2017)199.

[41] A. Hebbar, D. Karateev and J. Penedones, Spinning S-matrix Bootstrap in 4d, J. High
Energy Phys. 60 (2022), doi:10.1007/JHEP01(2022)060.

[42] G. Mahoux, S. M. Roy and G. Wanders, Physical pion-pion partial-wave equations based
on three channel crossing symmetry, Nucl. Phys. B 70, 297 (1974), doi:10.1016/0550-
3213(74)90480-5.

[43] A. Zahed, Positivity and geometric function theory constraints on pion scattering, J. High
Energy Phys. 12, 036 (2021), doi:10.1007/JHEP12(2021)036.

[44] L. Alberte, C. de Rham, S. Jaitly and A. J. Tolley, QED positivity bounds, Phys. Rev. D 103,
125020 (2021), doi:10.1103/PhysRevD.103.125020.

[45] S. Dutta Chowdhury and A. Gadde, Classification of four-point local gluon S-matrices, J.
High Energy Phys. 01, 104 (2021), doi:10.1007/JHEP01(2021)104.

[46] A. Kaviraj, Crossing antisymmetric Polyakov blocks + dispersion relation, J. High Energy
Phys. 01, 005 (2022), doi:10.1007/JHEP01(2022)005.

[47] A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by
unitarity-I, Nuov Cim. A 42, 930 (1966), doi:10.1007/BF02720568.

[48] A. L. Guerrieri, J. Penedones and P. Vieira, Bootstrapping QCD using pion scattering am-
plitudes, Phys. Rev. Lett. 122, 241604 (2019), doi:10.1103/PhysRevLett.122.241604.

[49] A. Bose, A. Sinha and S. Tiwari, Selection rules for the S-matrix bootstrap, SciPost Phys.
10, 122 (2021), doi:10.21468/SciPostPhys.10.5.122.

[50] A. Bose, P. Haldar, A. Sinha, P. Sinha and S. Tiwari, Relative entropy in scattering and the
S-matrix bootstrap, SciPost Phys. 9, 081 (2020), doi:10.21468/SciPostPhys.9.5.081.

[51] A. Guerrieri, J. Penedones and P. Vieira, Where is string theory in the space of scattering am-
plitudes?, Phys. Rev. Lett. 127, 081601 (2021), doi:10.1103/PhysRevLett.127.081601.

[52] A. Kotanski, Diagonalization of helicity-crossing matrices, Acta Phys. Polonica, (1966).

[53] C. de Rham, S. Melville, A. J. Tolley and S.-Y. Zhou, UV complete me: Pos-
itivity bounds for particles with spin, J. High Energy Phys. 03, 011 (2018),
doi:10.1007/JHEP03(2018)011.

[54] B. Bellazzini, J. E. Miró, R. Rattazzi, M. Riembau and F. Riva, Positive moments for scatter-
ing amplitudes, Phys. Rev. D 104, 036006 (2021), doi:10.1103/PhysRevD.104.036006.

[55] S. D. Chowdhury and K. Ghosh, Bulk locality for scalars and fermions with global symme-
try, arXiv:2107.06266.

56

https://scipost.org
https://scipost.org/SciPostPhys.13.3.051
https://doi.org/10.1007/JHEP10(2017)199
https://doi.org/10.1007/JHEP01(2022)060
https://doi.org/10.1016/0550-3213(74)90480-5
https://doi.org/10.1016/0550-3213(74)90480-5
https://doi.org/10.1007/JHEP12(2021)036
https://doi.org/10.1103/PhysRevD.103.125020
https://doi.org/10.1007/JHEP01(2021)104
https://doi.org/10.1007/JHEP01(2022)005
https://doi.org/10.1007/BF02720568
https://doi.org/10.1103/PhysRevLett.122.241604
https://doi.org/10.21468/SciPostPhys.10.5.122
https://doi.org/10.21468/SciPostPhys.9.5.081
https://doi.org/10.1103/PhysRevLett.127.081601
https://doi.org/10.1007/JHEP03(2018)011
https://doi.org/10.1103/PhysRevD.104.036006
https://arxiv.org/abs/2107.06266

	Introduction
	Crossing symmetric amplitudes
	Photons and Gravitons
	P invariant theories
	P violating theories

	Massive Majorana fermions

	Crossing symmetric dispersion relation: Overview
	Massive amplitudes
	Massless theories: EFT amplitudes
	Wilson coefficients and locality constraints
	PBC constraints
	Typically-realness and Low Spin Dominance: TRU
	Typically real functions:
	Robertson form of dispersion integral
	 Positivity and Low-Spin Dominance(LSD): Massless scalar EFT 
	Massive scalars

	Bieberbach-Rogosinski bounds
	Summary of algorithm

	Scalar bounds
	Photon bounds
	Wilson coefficients and Locality constraints: PBC
	Typical Realness and Low Spin Dominance: TRU
	Bounds

	Graviton bounds
	Wilson coefficients and Locality constraints: PBCh
	Typically-Realness and Low spin dominance: TRUh
	Bounds

	Discussion
	Representation theory of S3: A crash course
	Massless amplitudes: Examples
	Unitarity constraints
	Massless bosons: Photons and gravitons
	 Parity invariant theories
	Parity violating theories

	Massive Majorana fermions

	Representations of Wigner-d functions
	 Massive Majorana fermions: Locality constraints
	EFT expansion of the crossing basis elements
	Low spin dominance and Graviton scattering in String theory
	References

