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Proving superintegrability in β-deformed eigenvalue models
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Abstract

In this note we provide proofs of various expressions for expectation values of symmetric
polynomials in β-deformed eigenvalue models with quadratic, linear, and logarithmic
potentials. The relations we derive are also referred to as superintegrability. Our work
completes proofs of superintegrability statements conjectured earlier in literature.
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1 Introduction

In this note we prove the superintegrability property of the β-deformed eigenvalue models.
Superintegrability is the statement that certain quantities in an integrable system can be com-
puted explicitly, in consequence of some extra properties in addition to those that guarantee
integrability. A prototype example of such a feature is the existence of closed orbits, described
by elementary functions, in the motion in the potential rn for n = −1 and n = 2, due to an
extra conservation law. Recently the superintegrability has been analyzed in much detail in
matrix models, where these extra conditions take form of the string equation and Virasoro
constraints. One manifestation of superintegrability in this context is the statement that ex-
pectation values of various symmetric functions can be explicitly expressed also in terms of
analogous symmetric functions evaluated with appropriate arguments [1–8]. As symmetric
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functions in this context can be identified with appropriate characters, such relations are often
presented schematically as 〈character〉 ∼ character.

Let us summarize our results, and also recent developments concerning superintegrability,
in more detail. While several classes of matrix models have been analyzed in this context in
literature, in this note we focus on the following β-deformed eigenvalue model

Zβ(V ; pk)
def
=

∫

� N
∏

i=1

dzi

�

[∆(z)]2β exp

�

−
N
∑

i=1

V (zi)

�

exp

�

β

∞
∑

k=1

pk

k

N
∑

i=1

zk
i

�

, (1)

where ∆(z) =
∏

1≤i< j≤N (zi − z j) is the Vandermonde factor, and we consider two classes of
potentials V (z). The first one is the gaussian potential with a linear term

V (z) =
a2

2
z2 + a1z , (2)

for which we prove the following superintegrability statement, i.e. an explicit expression for
the expectation values of Jack polynomials Pλ




Pλ(z1, . . . , zN )
�

=
Pλ{N}Pλ{β−1(a2δk,2 − a1δk,1)}

Pλ{a2β−1δk,1}
. (3)

We explain details of the notation in the following sections. This statement was conjectured
and verified for |λ| ≤ 9 in [4]. In [7] an outline of a proof was provided in the purely quadratic
case a1 = 0, based on the use of W -operators and their actions on a family of symmetric
functions pertinent to the model. However some of its crucial steps were only conjectured. In
this note we fill in these gaps and provide a complete proof of (3).1

Furthermore, we also consider a model with a linear and logarithmic terms in the potential

V (z) = −a1z + ν log z , (4)

and following a similar strategy we prove that




Pλ(z1, . . . , zN )
�

=
Pλ{N}Pλ{N + β−1ν+ β−1 − 1}

Pλ{a1β−1δk,1}
. (5)

This superintegrability statement was conjectured and verified for |λ| ≤ 9 in [4], and proven
in a purely linear case (i.e. for ν= 0) in [8].

To sum up, in this note we generalize previous superintegrability statements for the β-
deformed eigenvalue models and provide their complete proofs.

Let us also briefly summarize our work from a broader perspective. In general, our re-
sults provide explicit expressions for certain matrix model expectation values. One of the first
prominent results of this type is the computation of the Euler characteristics of the moduli
space of curves by Harer and Zagier [10], which can be interpreted in terms of enumeration of
chord diagrams, or as an explicit computation of the expectation values 〈Tr M n〉 in the gaus-
sian matrix model that involves integration over matrices M . The matrix model interpretation
of this calculation was further elucidated by Itzykson and Zuber [11]. The gaussian model
considered in those works corresponds to β = 1 and pk = 0 in (1), with the potential (2) with
a1 = 0.

More recently, following [1, 2], expectation values of various symmetric polynomials and
the phenomenon referred to as superintegrability started to be analyzed more systematically.

1In the last stage of our work a similar proof, albeit only in a purely quadratic case, was presented in [9].
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The results for expectation values of Schur polynomials in the actual hermitian matrix model
were subsequently generalized to the β-deformed eigenvalue ensembles, as we mentioned
above [4, 7, 8]. Further deformation that involves two parameters, commonly denoted q and
t, and corresponding superintegrability statement analogous to (3), however involving Mac-
donald polynomials, were conjectured in [3,4]. For a review of these developments and some
recent results see [5,6]. The methods of the proof that we discuss in this paper do not imme-
diately generalize to the (q, t)-deformed case, therefore we leave it for future consideration.

We also stress that superintegrability is important not only as a property of matrix models,
but also in view of their applications in other contexts. On one hand, eigenvalue ensembles
and deformations mentioned above arise in gauge theories with extended supersymmetry, in
particular in localization of 3-dimensional N = 2 theories [4] or in theories with Nekrasov
deformation in four dimensions [12, 13]. On the other hand, they arise in the context of
knot invariants [14]. All these relations provide an additional important motivation to derive
explicit expressions for expectation values of various symmetric functions.

This paper is organized as follows. In section 2 we provide a proof of superintegrability
for the β-deformed gaussian model with purely quadratic potential. In section 3 we gener-
alize this proof to the case of a gaussian potential with a linear term. In section 4 we prove
superintegrability for a model with a potential with a linear and logarithmic terms.

2 Gaussian model

Partition functions of our interest, presented already in (1), involve a potential V (z) and are
given by

Zβ(V ; pk)
def
=

∫

� N
∏

i=1

dzi

�

[∆(z)]2β exp

�

−
N
∑

i=1

V (zi)

�

exp

�

β

∞
∑

k=1

pk

k

N
∑

i=1

zk
i

�

, (6)

where ∆(z) =
∏

1≤i< j≤N (zi − z j) is the Vandermonde factor. As is a common practice, pk do
double duty of coupling constants in the action, while also denoting power sum polynomials in
terms of which various other symmetric functions are expanded. To start with, in this section
we consider the purely gaussian potential

V (z) =
a2

2
z2 . (7)

It follows from the invariance of the partition function under the transformation
zi → zi + εzn+1

i , n ≥ −1,∀i ∈ {1, . . . , N}, that the partition function satisfies the Virasoro
constraints:

LnZβ = 0, n≥ −1 , (8)

where the Virasoro operators Ln, n≥ −1, satisfy [Ln,Lm] = (n−m)Ln+m. Explicitly,

Ln = −
a2(n+ 2)
β

∂

∂ pn+2
+ Ln , (9)
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where Ln’s are the potential-independent part of the Virasoro operators:

L−1 = βp1N +
∞
∑

k=1

kpk+1
∂

∂ pk
,

L0 = βN2 + (1− β)N +
∞
∑

k=1

kpk
∂

∂ pk
,

Ln>0 =
∞
∑

k=1

(n+ k)pk
∂

∂ pn+k
+ 2Nn

∂

∂ pn
+

+
1
β

n−1
∑

k=1

k(n− k)
∂ 2

∂ pk∂ pn−k
+

1− β
β

n(n+ 1)
∂

∂ pn
.

(10)

It follows a fortiori that

−a−1
2 β

∞
∑

n=1

pnLn−2Zβ
def
=
�

D− a−1
2 W−2

�

Zβ = 0 , (11)

where we have defined D def
=
∑∞

n=1 npn
∂
∂ pn

and

W−2
def
=β2N p2

1 + β
2N2p2 + (1− β)βN p2

+
∞
∑

k,l=1

�

β(k+ l − 2)pkpl
∂

∂ pk+l−2
+ klpk+l+2

∂ 2

∂ pk∂ pl

�

+
∞
∑

k=1

�

2βNkpk+2
∂

∂ pk
+ (1− β)k(k+ 1)pk+2

∂

∂ pk

�

.

(12)

It can be verified that [D, W−2] = 2W−2. The partition function (6) can be then written as

Zβ = eW−2/2a2 · 1 . (13)

Our goal is to evaluate the right-hand side above. It turns out that the Jack polynomials
constitute a natural basis of special functions to describe the action of W−2.

We denote Jack polynomials in the so-called P normalization as Pλ. This notation is stan-
dard in literature on symmetric polynomials, see e.g. [15]. These are precisely the ones de-
noted as Jλ in recent works on superintegrability [7,8]. However, the reader should note that
in the literature on symmetric functions, Jλ is used for Jack polynomials in the so-called J
normalization, also known as the integral form of Jack polynomials. The latter ones are rarely
used in this work.

When a symmetric function, Pλ for instance, is written in terms of the basic variables, we
will denote its arguments within parentheses: Pλ(z1, . . . , zN ). More often, we will need to
write them in terms of the power sum polynomials pk =

∑N
i=1 zk

i , in which case we will denote
them as Pλ{pk}. In particular, Pλ{ f (k)} is a short-hand for Pλ{pk = f (k)}.

Jack polynomials are known to be eigenfunctions of the following operators [16]:

D =
∞
∑

k=1

kpk
∂

∂ pk
,

H = 1
2

∞
∑

k,l=1

�

β(k+ l)pkpl
∂

∂ pk+l
+ klpk+l

∂ 2

∂ pk∂ pl

�

+
1− β

2

∞
∑

k=1

k(k− 1)pk
∂

∂ pk
,

(14)
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so that
DPλ = |λ|Pλ ,

HPλ = c(β)
λ

Pλ ,
(15)

where |λ|=
∑

i λi is the number of boxes in the partition λ and

c(β)
λ
=

∑

(i, j)∈λ

( j − 1− β(i − 1)) = n(λ′)− βn(λ) . (16)

To our knowledge, the earliest version of this result appears as Theorem 3.1 in [17] (whose
author, R. P. Stanley, attributes it to I. G. Macdonald), but the operator is presented in terms
of the basic variables rather than the power sum polynomials.

Also, note that the operator H defined above differs from a similar operator defined in [8]
and [16] by a shift of D. This makes the eigenvalues of the resulting operator more natural,
while also simplifying the expression (17) for W−2 given below.

A crucial step in the proof is determining the action of W−2 on Jack polynomials. In [8],
W−2 was presented in terms of H when β = 1, which lets us almost immediately read off the
action of W−2 on the Schur polynomials. Following a similar strategy for an indeterminate β ,
one finds

W−2 =
1
4
[H, [H, p2]] + Nβ [H, p2]

+ N2β2p2 −
1
4
(1− β + β2)p2 −

β(1− β)
4

p2
1 .

(17)

We will also need the following Pieri rule for Jack polynomials (see Theorem 6.3 of [18],
and [19] for additional explanations and examples):

P(1r )Pµ =
∑

λ

cλ
µ,(1r )Pλ , (18)

where the coefficients cλ
µ,(1r ) are known and to which we will return later. For now, we simply

note that the sum on the right runs over partitions λ such that λ− µ is a vertical r-strip (i.e.
a skew diagram consisting of r boxes, no two of which are in the same row). We also note
that P(1r ) = s(1r ) = er , where s and e are the Schur and elementary symmetric polynomials
respectively.

There is a similar Pieri rule for Jack polynomials indexed by row partitions (see Proposition
5.3 and Theorem 6.1 in [17]), given in terms of the Jλ:

Jr Jµ =
∑

λ

gλµ,r

jλ
Jλ , (19)

where now the sum runs over partitions λ such that λ− µ is a horizontal r-strip (i.e. a skew
diagram consisting of r boxes, no two of which are in the same column). The constants gλµ,r
and jλ are known, but we will not need to use them.

In particular, for r = 1, the diagrams λ on the right are those obtained by adding one
box to µ. Multiplying two factors of P1 = p1 with Pµ therefore gives a sum over all parti-
tions where two boxes are added to µ without any constraint. For r = 2, multiplying with
P(1,1) = (p2

1 − p2)/2 gives a sum over partitions, where the two additional squares cannot
be in the same row. Consequently, expanding p2Pµ over Jack polynomials gives a sum over
partitions where two boxes are added to µ without any constraint. One may therefore write

p2Pµ =
∑

λ=µ+�+�

CµλPλ . (20)

5

https://scipost.org
https://scipost.org/SciPostPhys.13.3.069


SciPost Phys. 13, 069 (2022)

One may also write
p2

1 Pµ =
∑

λ=µ+�+�

AµλCµλPλ . (21)

Using this notation and (17), the action of W−2 on a Jack polynomial is:

W−2Pµ =
∑

λ=µ+�1+�2

�

( j1 − 1+ β(N − i1 + 1))( j2 − 1+ β(N − i2 + 1))

+
1
4
( j2 − j1 + β(i1 − i2))

2 −
1
4
(1− β + β2)

−
β(1− β)

4
Aµλ

�

CµλPλ ,

(22)

where (i1, j1) and (i2, j2) are coordinates of boxes �1 and �2 respectively. We observe that
the first line on the right-hand side corresponds precisely to the expression in eqn. (35) of [7]
(noting that they count rows and columns starting from 0, while we begin counting from 1).
We now show, by computing Aµλ, that the terms in the second and third rows cancel.

Observe that

Aµλ =
〈Pλ, p2

1 Pµ〉
〈Pλ, p2Pµ〉

, (23)

where 〈·, ·〉 denotes the Jack scalar product. The constraint in the summation in (18) tells
us that 〈Pµ+ , P(1,1)Pµ〉 = 0, implying that Aµ,µ+ = 1. Likewise, (19) tells us that
〈J
µ+

, J2Jµ〉= 0. Using J2 = p2
1 + β

−1p2 we see that

−β =
〈J
µ+

, p2
1Jµ〉

〈J
µ+

, p2Jµ〉
=
〈P
µ+

, p2
1 Pµ〉

〈P
µ+

, p2Pµ〉
= A

µ,µ+
. (24)

More generally, one can write

Aµλ =
〈Pλ, p2

1 Pµ〉
〈Pλ , p2Pµ〉

=
1

1− 2
〈Pλ,P(1,1)Pµ〉
〈Pλ,P2

1 Pµ〉

. (25)

We consider now the case where the two boxes are staggered, i.e. added to neither the same
row nor the same column. The above expression can be related to the coefficients appearing
in the Pieri rule (18) as

〈Pλ, P2
1 Pµ〉

〈Pλ, P(1,1)Pµ〉
=

∑

σ=µ+� cλσ,1cσµ,1

cλ
µ,(1,1)

=
cµ+�1+�2
µ+�2,1 cµ+�2

µ,1 + cµ+�1+�2
µ+�1,1 cµ+�1

µ,1

cµ+�1+�2
µ,(1,1)

. (26)

The sum over σ in the middle expression consists of two terms, corresponding to the order in
which the two boxes are added to reach the same final shape λ = µ+�1 +�2. Without loss
of generality, we may label the box to the left as box 1 (�1 = (i1, j1)) and the one to the right
as box 2 (�2 = (i2, j2)), so that i1 > i2 and j1 < j2.

We now need the explicit form of the coefficients:

cλ
µ,(1r ) =

∏

s∈X (λ/µ)

hλ∗ (s)h
∗
µ(s)

hµ∗ (s)h∗λ(s)
, (27)

where X (λ/µ) is the set of boxes (i, j) ∈ µ such that µi = λi and µ j < λ j . For example, in the
figure below, µ= (7,5, 3,3, 1,1), and the yellow squares are the ones that have been added to
obtain various λ’s, while the blue squares constitute the set X (λ/µ). Note how on adding two
boxes together, as in the last figure, we get one blue box less than the union of the set of blue
boxes when only one box is added at a time.
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1

2

2

1

Furthermore, in (27), h∗
λ
(s) and hλ∗ (s) are respectively the upper and lower hook lengths of

the box s:
h∗λ(s) = β

−1(aλ(s) + 1) + lλ(s) ,

hλ∗ (s) = β
−1aλ(s) + lλ(s) + 1 ,

(28)

where aλ(i, j) = λi − j is the arm length and lλ(i, j) = λ′j − i is the leg length of (i, j) ∈ λ. (A
useful mnemonic is that in the definition of the lower hook length of a given box, the box itself
is treated as part of the leg, going downwards.) For example, the yellow square in the diagram
below has coordinates (i, j) = (2,3), with aλ = 4, lλ = 2, h∗

λ
= 5β−1 + 2, and hλ∗ = 4β−1 + 3.

Consider now the first term of (26), where the box on the right (�2) is added first:

t1(�1,�2)
def
=

cµ+�1+�2
µ+�2,1 cµ+�2

µ,1

cµ+�1+�2
µ,(1,1)

. (29)

Due to the product form of (27), one can expect a lot of cancellations in the above expression.
However, exactly one factor survives: the contribution to cµ+�1+�2

µ+�2,1 due to the box (i2, j1),
which does not appear in the denominator. Therefore

t1(�1,�2) =
hµ+�1+�2
∗ (i2, j1)h∗µ+�2

(i2, j1)

hµ+�2
∗ (i2, j1)h∗µ+�1+�2

(i2, j1)

=

�

β−1( j2 − j1) + i1 − i2 + 1
� �

β−1( j2 − j1 + 1) + i1 − i2 − 1
�

[β−1( j2 − j1 + 1) + i1 − i2] [β−1( j2 − j1) + i1 − i2]
.

(30)

(It helps to note that i1 = µ′j1 + 1, j1 = µi1 + 1, i2 = µ′j2 + 1, and j2 = µi2 + 1.) In the second
term of (26), where the left box (�1) is added first

t2(�1,�2)
def
=

cµ+�1+�2
µ+�1,1 cµ+�1

µ,1

cµ+�1+�2
µ,(1,1)

, (31)
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one has similar cancellations, leaving a contribution to cµ+�1
µ,1 due to the box (i2, j1):

t2(�1,�2) =
hµ+�1
∗ (i2, j1)h∗µ(i2, j1)

hµ∗ (i2, j1)h∗µ+�1
(i2, j1)

=

�

β−1( j2 − j1 − 1) + i1 − i2 + 1
� �

β−1( j2 − j1) + i1 − i2 − 1
�

[β−1( j2 − j1) + i1 − i2] [β−1( j2 − j1 − 1) + i1 − i2]
.

(32)

We digress momentarily to point out that t1(�1,�2) = t2(�2,�1). This is not a priori obvious
because the labels 1 and 2 were assigned based on the relative positions of the boxes, and
indeed the intermediate expressions in terms of the hook lengths h∗ and h∗ are not manifestly
equal under this exchange.

We now have the expression for Aµλ:

Aµλ =
β − 1+ ( j2 − j1 + β(i1 − i2 + 1))( j2 − j1 + β(i1 − i2 − 1))

β(1− β)
. (33)

While we derived this with the assumption that λ − µ was neither a row nor a column,
we see that these two cases are also captured by this expression, as can be seen by setting
i1 = i2, j2 − j1 = 1 or j1 = j2, i1 − i2 = 1 for a row or a column respectively. This is therefore
the general expression.

It is now straightforward to see that

β(1− β)Aµλ = ( j2 − j1 + β(i1 − i2))
2 − (1− β + β2) , (34)

thus proving

W−2Pµ =
∑

λ=µ+�1+�2

( j1 − 1+ β(N − i1 + 1))( j2 − 1+ β(N − i2 + 1))CµλPλ . (35)

To calculate (13), we need to act with W−2 multiple times on Pφ = 1, which can now be
done using (35):

(W−2)
n · 1=

∑

λ=λ(2n)

� ∏

(i, j)∈λ(2n)

( j − 1+ β(N − i + 1))

×
∑

λ(2)...λ(2n−2)

Cφλ(2)Cλ(2)λ(4) . . . Cλ(2n−2)λ(2n)Pλ
�

,
(36)

where λ(2m) is obtained by adding 2 boxes successively m-times starting from the initial empty
partition φ, so that |λ(2m)| = 2m. The rest of the proof consists of writing the product over
the cells in the first line, and the sum of products of C ’s in the second line, in terms of Jack
polynomials Pλ{pk} evaluated at special values of the power sum polynomials pk.

We begin with the C ’s. The Cauchy identity for Jack polynomials reads

exp

�

β

∞
∑

k=1

pk p̄k

k

�

=
∑

λ

Pλ{pk}Pλ{p̄k}
〈Pλ, Pλ〉

. (37)

Setting p̄k = a2β
−1δk,2 we see that

exp
ha2p2

2

i

=
∑

λ

Pλ · Pλ{a2β
−1δk,2}

〈Pλ, Pλ〉
. (38)
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On the other hand, directly by the definition of Cµλ in (20), we see that

exp
ha2p2

2

i

=
∑

n≥0

an
2 Pλ(2n)

2nn!

∑

λ(2)...λ(2n−2)

Cφλ(2)Cλ(2)λ(4) . . . Cλ(2n−2)λ(2n) . (39)

The above expressions together give

∑

λ(2)...λ(2n−2);λ(2n)=λ

Cφλ(2)Cλ(2)λ(4) . . . Cλ(2n−2)λ(2n) =
2|λ|/2(|λ|/2)!

a|λ|/22

Pλ{a2β
−1δk,2}

〈Pλ, Pλ〉
. (40)

For the first line of (36), we turn to [15]. By eqn. (10.20) in this reference

Pλ{N}=
∏

(i, j)∈λ

β−1( j − 1) + N − i + 1
hλ∗ (i, j)

, (41)

while eqns. (10.22) and (10.29) tell us that

Pλ{δk,1}=
∏

(i, j)∈λ

1
hλ∗ (i, j)

. (42)

Putting these together, we can write

∏

(i, j)∈λ

( j − 1+ β(N − i + 1)) =
Pλ{N}

Pλ{β−1δk,1}
. (43)

We now have all the ingredients to write (13) entirely in terms of Jack polynomials:

Zβ(pk) = eW−2/2a2 · 1=
∑

λ

Pλ{pk}
〈Pλ, Pλ〉

Pλ{N}Pλ{a2β
−1δk,2}

Pλ{a2β−1δk,1}
. (44)

(Note that Pλ{xδk,2} = x |λ|/2Pλ{δk,2} and Pλ{xδk,1} = x |λ|Pλ{δk,1}.) On the other hand,
again by the Cauchy identity (37), one can expand the partition function (6) as

Zβ(V ; pk) =
∑

λ

Pλ{pk}
〈Pλ, Pλ〉

〈Pλ(z1, . . . , zN )〉 , (45)

regardless of the potential in question. The orthogonality of the Jack polynomials gives us the
desired result




Pλ(z1, . . . , zN )
�

=
Pλ{N}Pλ{a2β

−1δk,2}
Pλ{a2β−1δk,1}

. (46)

3 Gaussian model with a linear term

We now consider a slightly more general potential

V (z) =
a2

2
z2 + a1z , (47)

and denote the corresponding partition function (6) as Zβ(a2, a1; pk). The Virasoro operators
annihilating the partition function are modified to

Ln = −
a2(n+ 2)
β

∂

∂ pn+2
−

a1(n+ 1)
β

∂

∂ pn+1
− a1Nδn,−1 + Ln, n≥ −1 , (48)
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where Ln’s are given in (10). The Virasoro constraints now imply the single equation
�

D−
W−2

a2
+

a1 L−1

a2

�

Zβ(a2, a1; pk) = 0 , (49)

where W−2 is the same as in (12), and [D, L−1] = L−1. A crucial observation is that
[W−2, L−1] = 0. The partition function can now be written as

Zβ(a2, a1; pk) = exp
�

W−2

2a2
−

a1 L−1

a2

�

· 1= eW−2/2a2 · e−a1 L−1/a2 · 1 . (50)

We now follow a similar strategy as in the previous section: we work out the action of L−1 on
Jack polynomials. This, as we have seen, is facilitated by writing it in terms of the operator
H, defined in (14), which has the Jack polynomials as its eigenfunctions:

L−1 = [H, p1] + βN p1 . (51)

Analogously to (20), let us define constants Bµλ as coefficients in the expansion

p1Pµ =
∑

λ=µ+�

BµλPλ . (52)

These constants are of course known due to (27), but we will not need their explicit expression,
just as in the case of Cµλ in the previous section. Using (51) and (52) we get:

L−1Pµ =
∑

λ=µ+�

( j − 1+ β(N − i + 1))BµλPλ , (53)

where (i, j) are coordinates of the additional box �.
On expanding the exponentials in the right-most side of (50), one has to deal with terms

of the type

(W−2)
n(L−1)

m · 1=
∑

λ=λ(2n+m)

� ∏

(i, j)∈λ(2n+m)

( j − 1+ β(N − i + 1))

×
∑

λ(1)...λ(m)

Bφλ(1)Bλ(1)λ(2) . . . Bλ(m−1)λ(m)

×
∑

λ(m+2)...λ(m+2n−2)

Cλ(m)λ(m+2) . . . Cλ(m+2n−2)λ(m+2n)Pλ(m+2n)

�

.

(54)

Setting p̄k = a2β
−1δk,2 − a1β

−1δk,1 in the Cauchy identity (37), we see that

exp
ha2p2

2
− a1p1

i

=
∑

λ

Pλ · Pλ{β−1(a2δk,2 − a1δk,1)}
〈Pλ, Pλ〉

. (55)

On the other hand, by definition of Bµλ and Cµλ

exp
ha2p2

2
− a1p1

i

=
∑

n,m≥0

�

Pλ(m+2n)
(a2/2)

n (−a1)m

n!m!

∑

λ(1)...λ(m)

Bφλ(1)Bλ(1)λ(2) . . . Bλ(m−1)λ(m)

×
∑

λ(m+2)...λ(m+2n−2)

Cλ(m)λ(m+2) . . . Cλ(m+2n−2)λ(m+2n)

�

.
(56)

The above two equations together imply, for λ= λ(m+2n),

Pλ{β−1(a2δk,2 − a1δk,1)}
〈Pλ, Pλ〉

=
(a2/2)

n (−a1)m

n!m!

∑

λ(1)...λ(m)

Bφλ(1)Bλ(1)λ(2) . . . Bλ(m−1)λ(m)

×
∑

λ(m+2)...λ(m+2n−2)

Cλ(m)λ(m+2) . . . Cλ(m+2n−2)λ(m+2n) .
(57)
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Summing (54) over n and m with appropriate coefficients, while also recalling (43), we can
finally write

Zβ(a2, a1; pk) = eW−2/2a2 · e−a1 L−1/a2 · 1

=
∑

λ

Pλ{pk}
〈Pλ, Pλ〉

Pλ{N}Pλ{β−1(a2δk,2 − a1δk,1)}
Pλ{a2β−1δk,1}

.
(58)

Using (45), we get the desired result for the correlators




Pλ(z1, . . . , zN )
�

=
Pλ{N}Pλ{β−1(a2δk,2 − a1δk,1)}

Pλ{a2β−1δk,1}
. (59)

This relation was conjectured and verified for |λ| ≤ 9 in [4], and here we provided its complete
proof.

4 Linear and logarithmic potential

Finally, following an analogous strategy, we consider the eigenvalue model (6) with a potential
with a linear and logarithmic terms. Superintegrability property of a linear theory V (z) = z of
N×N complex matrices was proven in [8]. We generalize that proof and include a determinant
factor in the action, which can be also interpreted as an extra logarithmic term in the potential:

Zβ
def
=

∫ ∞

0

� N
∏

i=1

dzi

�

[∆(z)]2β
� N
∏

i=1

zνi

�

e−a1
∑N

i=1 zi exp

�

β

∞
∑

k=1

pk

k

N
∑

i=1

zk
i

�

. (60)

This integral can be viewed as the β-deformation of the (anti-)Wishart model over the space
of complex matrices of size N1×N2, with N =min(N1, N2) and ν= |N1−N2|, see e.g. chapter
13 of [20].

The Virasoro operators that annihilate the above partition function are given by

Ln = −
a1(n+ 1)
β

∂

∂ pn+1
− a1Nδn,−1 + ν

�

n
β

∂

∂ pn
+ Nδn,0

�

+ Ln, n≥ −1 . (61)

The single constraint in this case is (D− a−1
1 W−1)Zβ = 0, so that Zβ = eW−1/a1 · 1, where

W−1
def
=βN(ν+ βN + 1− β)p1

+
∞
∑

k,l=1

�

β(k+ l − 1)pkpl
∂

∂ pk+l−1
+ klpk+l+1

∂ 2

∂ pk∂ pl

�

+
∞
∑

k=1

(k− 1)(ν+ 2βN + k− kβ)pk
∂

∂ pk−1
,

(62)

which can be written as

W−1 =[H, [H, p1]] + (1− β + ν+ βN) [H, p1]

+ βN(ν+ βN + 1− β)p1 .
(63)

This lets us write

W−1Pµ =
∑

λ=µ+�

�

( j − 1+ β(N − i + 1))

×
�

j − 1+ β((N + β−1ν+ β−1 − 1)− i + 1)
�

BµλPλ
�

,
(64)
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where (i, j) are coordinates of �. Once again, expanding eW−1/a1 ·1, we find terms of the type

W n
−1 · 1=

∑

λ=λ(n)

� ∏

(i, j)∈λ(n)
( j − 1+ β(N − i + 1))

×
∏

(i, j)∈λ(n)

�

j − 1+ β((N + β−1ν+ β−1 − 1)− i + 1)
�

×
∑

λ(1)...λ(n−1)

Bφλ(1)Bλ(1)λ(2) . . . Bλ(n−1)λ(n)Pλ(n)
�

.

(65)

Expanding ep1 in two ways, as demonstrated in the previous two sections, gives

∑

λ(1)...λ(n−1);λ(n)=λ

Bφλ(1)Bλ(1)λ(2) . . . Bλ(n−1)λ(n) =
Pλ{β−1δk,1}
〈Pλ, Pλ〉

, (66)

while the products in the first and second lines of (65) can be evaluated using (43). Altogether,
we find

Zβ = eW−1/a1 · 1=
∑

λ

Pλ{pk}
〈Pλ, Pλ〉

Pλ{N}Pλ{N + β−1ν+ β−1 − 1}
Pλ{a1β−1δk,1}

, (67)

so that, in this theory, the correlators are




Pλ(z1, . . . , zN )
�

=
Pλ{N}Pλ{N + β−1ν+ β−1 − 1}

Pλ{a1β−1δk,1}
. (68)

This relation was conjectured and verified for |λ| ≤ 9 in [4], and here we provided its complete
proof. In particular, when β = 1, for a complex linear model

∫

d2Ze−TrZ Z†
, where Z is of size

N1 × N2, one finds




sλ(Z Z†)
�

=
sλ{N1}sλ{N2}

sλ{δk,1}
. (69)
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