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Abstract

The Onsager algebra is one of the cornerstones of exactly solvable models in statistical
mechanics. Starting from the generalised Clifford algebra, we demonstrate its relations
to the graph Temperley–Lieb algebra, and a generalisation of the Onsager algebra. We
present a series of quantum lattice models as representations of the generalised Clifford
algebra, possessing the structure of a special type of the generalised Onsager algebra [1].
The integrability of those models is presented, analogous to the free fermionic eight-
vertex model. We also mention further extensions of the models and physical properties
related to the generalised Onsager algebras, hinting at a general framework that includes
families of quantum lattice models possessing the structure of the generalised Onsager
algebras.
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1 Introduction

Exactly solvable models [2–4] play an important role in statistical mechanics, providing us with
the possibility to obtain analytical and mathematically rigorous results that are scarce when
the physical systems are interacting. One of the first examples of exactly solvable models is the
Onsager’s solution to the two-dimensional classical Ising model [5] in 1944. Onsager used the
Onsager algebra to obtain the partition function of the two-dimensional classical Ising model in
the absence of the magnetic field. Since then, the Onsager algebra has become a useful tool to
study many classical statistical mechanical and quantum lattice models, such as the chiral Potts
model [6,7] and the ZN -symmetric spin chain [8,9]. In addition, the Onsager algebra is closely
related to quantum integrability [10] and Kramers–Wannier duality [11–13], offering many
facets on understanding exactly solvable models to us. More recently, the Onsager algebra
has been conjectured to be present in a series of quantum integrable systems at root of unity
values of anisotropy [14–16], e.g. the spin-1/2 quantum XXZ model at root of unity with
quasi-periodic boundary conditions 1, hinting at an intriguing relation to the representation
theory of quantum groups. The Onsager algebra is also closely related to quantum many-
body scars [17], a subset of the eigenstates of non-integrable quantum systems that have non-
trivial out-of-equilibrium behaviour. The Onsager algebra can be used to solve the dynamics
of interacting quantum systems [18] as well.

From the mathematical perspective, the Onsager algebra is an infinite-dimensional Lie
algebra [19], which is a fixed-point subalgebra of the sl2 loop algebra [15, 20]. Recently the
alternating presentation and its central extension of the Onsager algebra has been studied
in [21, 22]. The close relation between the Onsager algebra and the classical Yang–Baxter
algebras has been investigated in [23]. There are few ways to extend the Onsager algebra.
One is to consider the q-deformation of the model, the q-Onsager algebra [24–26], a coideal
subalgebra of affine Uq(ŝl2), with connections to the quantum XXZ model with open boundary
conditions. The alternating presentation and its central extension of the q-Onsager algebra can
be found in [27,28]. Meanwhile, one can consider a generalisation of the Onsager algebra as
a Lie subalgebra of certain Kac-Moody algebra that satisfies Dolan–Grady-like relations. One
of the first attempts is the so-called “sln Onsager algebra” [29], i.e. a Lie subalgebra of the
affine Lie algebra A(1)n−1. Results for other generalisations can be found in [30], even in the
presence of the q-deformation [25, 31]. Recently, a systematic construction of this type of
generalisations was presented in [1], dubbed “generalised Onsager algebras”, classifying all
the Lie subalgebras of different Kac–Moody algebras with Dolan–Grady-like relations. In the
meantime, the Yang–Baxter algebra presentation of the generalised Onsager algebras has been
studied in [23,32]. The result of [1] serves as a motivation for this article, where we try to find
physically relevant models that consists of parts as the representation of a certain generalised

1For certain roots of unity, e.g. q = exp(iπ/2) for spin 1/2 or q = exp(iπ/3) for spin 1, the Onsager algebra
can be found explicitly for the spin-1/2 XXZ model or the spin-1 Zamolodchikov–Fateev model [14], where the
Onsager generators consist of local operators. When we are at other roots of unity, the Onsager generators are
expected to have quasi-local density [15].
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Onsager algebra. Indeed, we discover an elegant connection between the generalised Clifford
algebra, defined in Section 2, and one type of the generalised Onsager algebras, defined in [1],
which possesses a representation related to the Fendley model [33–36], a model of medium-
range spin interactions having free fermionic spectra with open boundary conditions. We show
that the Fendley model with periodic boundary condition (i.e. interacting) can be expressed
in terms of operators satisfying the generalised Onsager algebra, and is integrable, where we
present a different approach compared to the one in [33], analogous to the free fermionic
eight-vertex model.

The outline of the article is as follows. We introduce the generalised Clifford algebra, the
key figure of this article, and its relation to the graph Temperley-Lieb algebra and generalised
Onsager algebra. We present the physically relevant representations of the generalised Clifford
algebra, including the transverse field Ising model and free fermionic eight-vertex model. Most
importantly, the Fendley model consists of operators that belong to a representation of the
generalised Clifford algebra as well as a special type of the generalised Onsager algebra, which
is the first quantum lattice model associated with the generalised Onsager algebra to the best of
our knowledge. Since the Onsager algebra implies integrability of the model, we proceed with
presenting the integrability of the Fendley model motivated by recent works on medium-range
quantum integrable models [37,38]. Eventually, we present the chiral-Potts-like generalisation
of the Fendley model where the generalised Onsager algebra remains, before ending the article
with conclusions and outlook.

2 Relations among three algebras

We start with defining the generalised Clifford algebra (GCA) [34,35,39,40], whose represen-
tation plays a crucial roles in the following.

The generalised Clifford algebra GC(r, N) is a unital associative algebra over the complex
numbers with generators h1, h2, · · · , hN satisfying

h2
j = id , h jh j+m = −h j+mh j , 1≤ m≤ r ,

h jh j+n = h j+nh j n≥ r + 1, 1≤ j ≤ N ,
(1)

with “periodic boundary conditions” hN+k ≡ hk, k ≥ 1. When r = 1, it becomes the usual
Clifford algebra. As illustrated in Fig. 1, for GC(2,6),

h1h5 = −h5h1 , h1h4 = h4h1, (2)

etc.
There are many known representations of the GCA that are relevant to exactly solvable

models. The most renowned one is the transverse field Ising model (TFIM) as a representation
of GC(1, N). The explicit constructions are given in Section 3.1.

We move on to the “periodic graph Temperley–Lieb (TL) algebra” GTL(β , r, N) [41]. As
demonstrated below, we obtain a quotient of the algebra GTL(

p
2, r, N) from the GCA. It is de-

fined as the unital associative algebra over the complex numbers with generators e1, e2, · · · eN ,
satisfying

e2
j = βe j , e je j±me j = e j , 1≤ m≤ r ,

e je j+n = e j+ne j n≥ r + 1, 1≤ j ≤ N ,
(3)

with eN+k ≡ ek, k ≥ 1.
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Figure 1: An illustration of the relations between the generators h j for the algebra
GC(2, 6). Each dot corresponds to a generator, and if they are connected via a solid
line, they anticommute among each other. If they are not connected, they mutually
commute.

Remark. The algebra GTL(β , 1, N) is very similar to the periodic (affine) Temperley-Lieb
algebra [42], which is a quotient of the affine Hecke algebra [43]. However, the main differ-
ence here is that we do not require the existence of the element g from the periodic TL algebra,
such that

ge j g
−1 = e j+1 . (4)

Usually we can define an operator G for the physical relevent representations of GTL(β , r, N)
that satisfies the relation (4), in the form of right translational operator. However, it is a bit
complicated to define such an operator for Ising or Potts like models. The existence of g does
not affect the discussions about the relations to the generalised Onsager algebra. Therefore,
we do not require the existence of g in our definition of GTL(β , r, N).

From the algebra GC(r, N), we can construct a map from a quotient of GTL(
p

2, r, N), i.e.
GTL′(

p
2, r, N), to GC(r, N)

e′j →
1
p

2
(id+ h j) , (5)

satisfying (3).
Generators e′j satisfy the following relations in addition to the definition of GTL(

p
2, r, N)

(3),
{e′j , e′j+m}=

p
2(e′j + e′j+m) , 1≤ m≤ r . (6)

For the sake of convenience, we shall use the algebra GTL(
p

2, r, N) and its definition (3)
mainly for the rest of the article.

Finally, we focus on a special type of generalisation of the Onsager algebra GO(r + 1) de-
fined in Definition 2.5 of [1]. The algebra GO(r + 1) is an infinite-dimensional Lie algebra.
Without diving into the full definition, for which we refer the readers to [1], we use the gener-
alised Dolan–Grady presentation of the algebra GO(r + 1) with only (r + 1)-many generators
A(s), 0 ≤ s ≤ r, which are enough to generate the rest of the infinitely many ones. The r + 1
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generators A(s) satisfy the Dolan–Grady relation between any pair of them,
�

A(s),
�

A(s),
�

A(s), A(t)
�

�

�

= 16
�

A(s), A(t)
�

, ∀s, t ∈ {0,1, · · · , r} . (7)

As shown in [1], the algebra GO(r+1) is a fixed-point Lie subalgebra of a Kac–Moody algebra
g with generalised Cartan matrix of dimension (r + 1)













2 −2 −2 · · · −2 −2
−2 2 −2 · · · −2 −2
...

. . .
...

−2 −2 −2 · · · 2 −2
−2 −2 −2 · · · −2 2













. (8)

The mathematical curiosities of the Kac–Moody algebra here are mentioned in Ref. [44], which
is not the main focus of this paper.

When r = 1, we have GO(2), which is the renowned Onsager algebra, which possesses the
Kramers–Wannier duality A(0)↔ A(1) [12],

�

A(0),
�

A(0),
�

A(0), A(1)
�

�

�

= 16
�

A(0), A(1)
�

,
�

A(1),
�

A(1),
�

A(1), A(0)
�

�

�

= 16
�

A(1), A(0)
�

.
(9)

The cases of GO(r + 1) with r ≥ 2 therefore possess a generalised version of the Kramers–
Wannier duality,

A(s)↔ A(t) , ∀s, t ∈ {0,1, 2, · · · , r} , (10)

that leaves the algebra invariant.
There exists a map GO(r+1)→ GC(r, N) with N mod(r+1) = 0 which is injective, where

A(s)→
N/(r+1)
∑

j=1

h(r+1) j−s , s ∈ {0,1, 2, · · · , r} . (11)

Since we also have a map GTL′(
p

2, r, N) → GC(r, N) (5), we obtain a map
GO(r + 1)→ GTL′(

p
2, r, N), i.e.

A(s)→
N/(r+1)
∑

j=1

(
p

2e(r+1) j−s − id) , s ∈ {0,1, 2, · · · , r} . (12)

In this section, we have shown that the algebra GC(r, N) has two homomorphisms, one
to GTL′(

p
2, r, N) and another to GO(r + 1). In the following sections, we will study certain

physically relevant representations of the algebra GC(r, N), which constitute the Fendley model
[33–36].

2.1 Additional commuting operators

The algebra GC(r, N) contains (r+1)(r+2)
2 operators that commute with any two of the genera-

tors A(s) that do not commute with each other. These operators are referred as “U(1)-invariant
Hamiltonian” in the case of GC(1, N) in [14,15], when considering the representation related
to the transverse field Ising model; we will comment on that in Section 3.1.
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Within the algebra GC(r, N) with Nmod(r + 1) = 0, the operator that commutes with A(s)

and A(t), which are defined in (11), is given as

H(s,t) =
i
4

N/(r+1)
∑

j=1

�

h(r+1) j−sh(r+1) j−t + h(r+1) j−th(r+1) j+r+1−s

�

. (13)

We can prove that
�

H(s,t), A(s)
�

=
�

H(s,t), A(t)
�

= 0 , (14)

using the relation (1) repeatedly, even though [A(s), A(t)] 6= 0. This implies that H(s,t) commutes
with all the operators that are generated by A(s) and A(t).

For example, if we consider the case with r = 1, i.e. the Onsager algebra, we have

H(0,1) =
i
2

N
∑

j=1

h jh j+1 , (15)

which commutes with all the infinitely many Onsager generators An according to (A.1).

3 Representations of GC(r, N)

Before we concentrate on the case of the Fendley model, we first review a few well-known
representations of the algebra GC(r, N). Many of the examples, such as transverse field Ising
model and free fermionic eight-vertex models, have been studied previously. Even so, it is
useful to present those examples in terms of the representations of the algebras introduced in
Sec. 2, which helps us understand better the Fendley model.

3.1 Transverse field Ising model

We start with the representation of GC(1, 2L)which is the transverse field Ising model (TFIM).
In this case, we have the map: GC(1,2L)→ End((C2)⊗L),

h2 j−1 7→ hIM
2 j−1 = σ

z
j , h2 j 7→ hIM

2 j = σ
x
j σ

x
j+1, (16)

whereσα are the Pauli matrices andσαj = 1
⊗( j−1)
2 ⊗σα⊗1⊗(L− j)

2 are the local spin-1/2 operators

(with 12 = diag(1, 1) and 1= 1⊗L
2 ). Here the periodic boundary condition reads σαL+1 ≡ σ

α
1 .

It is straightforward to check that hIM
j satisfy the relations of GC(1, 2L) (1). We can define

the quantum Hamiltonian of the TFIM as

HIM(λ) =
L
∑

j=1

�

λhIM
2 j−1 + hIM

2 j

�

=
L
∑

j=1

�

λσz
j +σ

x
j σ

x
j+1

�

. (17)

We can find representations for GTL(
p

2,1, 2L) and GO(2), which are the affine TL algebra
and the Onsager algebra, respectively, in the case of the TFIM using the homomorphisms in
Section 2. Specifically,

e j 7→ eIM
j =

1
p

2

�

1+ hIM
j

�

, (18)

A(0) 7→ A(0)IM =
L
∑

j=1

hIM
2 j−1 =

L
∑

j=1

σz
j , A(1) 7→ A(1)IM =

L
∑

j=1

hIM
2 j =

L
∑

j=1

σx
j σ

x
j+1 . (19)
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The same construction of (16) and its relation to the Onsager algebra have been studied in
[45,46].

The operators A(0)IM and A(1)IM satisfy the Dolan–Grady relation (9) and the duality between
the two operators is the renowned Kramers–Wannier duality. In fact, we can rewrite the TFIM
Hamiltonian in terms of the Onsager generators,

HIM(λ) = λA(0)IM +A(1)IM , (20)

and by using the self-duality we can predict a phase transition happening at λ→ 1 [12,47].
The TFIM is solvable, as it can be mapped into a free fermionic model via the Jordan–

Wigner transformation, and it can be considered as the quantum limit of the two-dimensional
classical Ising model [47–49]. The relation between the algebra GO(1,2L) and generalisations
of the Jordan–Wigner transformation has been discussed in [45, 46, 50]. A different general-
isation of to the cluster XY-models that possess a similar structure of the Onsager algebra is
presented in [51].

The additional conserved operator here is of particular interest. In the case of TFIM, we
have

H(0,1)
IM =

i
2

2L
∑

j=1

hIM
j hIM

j+1 =
L
∑

j=1

1
2

�

σx
j σ

y
j+1 −σ

y
j σ

x
j+1

�

, (21)

which is the spin current of the spin-1/2 XXZ model [52]. With a unitary transformation,
H(0,1)

IM becomes the spin-1/2 XX model, i.e. spin-1/2 XXZ model at root of unity q = i. This
means that spin-1/2 XX model, despite being free fermionic, commutes with all the Onsager
generators, cf. Appendix A. This observation serves as a starting point for the conjecture of
the presence of the Onsager algebra symmetry for the spin-1/2 XXZ model at arbitrary root of
unity [15,16].

In addition to the well-known TFIM, there are a few more physically relevant representa-
tions of the algebra GC(r, N) as we present in the following.

3.2 Free fermionic eight-vertex models

Similar to the TFIM, there exists another free fermionic representation of the algebra GC(1, L).
In this case, we again take into account the vector space (C2)⊗L with the following map:
GC(1, L)→ End((C2)⊗L)

h j 7→ h8V
j, j+1 = σ

α
j σ
β
j+1 =: h8V

j , (22)

where we pick any α 6= β with α,β ∈ {x , y, z}. Different choices of σαj σ
β
j+1 are related by a

unitary transformation. Without loss of generality, we focus on the case

h8V
j = σ

y
j σ

x
j+1 . (23)

We consider the following Hamiltonian,

H8v =
L
∑

j=1

h8V
j =

L
∑

j=1

σ
y
j σ

x
j+1 , (24)

which we shall call (a special case of) the free fermionic eight-vertex model. The reason why
this model is related to the free fermionic eight-vertex model is given in Section 4.1, when
studying the integrability of the model.

We can get a representation of the affine TL algebra and the Onsager algebra by considering
the same construction as before, i.e.

e j 7→ e8V
j =

1
p

2

�

1+ h8V
j

�

, (25)

7

https://scipost.org
https://scipost.org/SciPostPhys.13.3.070


SciPost Phys. 13, 070 (2022)

A(0) 7→ A(0)8V =
L/2
∑

j=1

h8V
2 j−1 =

L/2
∑

j=1

σ
y
2 j−1σ

x
2 j ,

A(1) 7→ A(1)8V =
L/2
∑

j=1

h8V
2 j =

L/2
∑

j=1

σ
y
2 jσ

x
2 j+1 ,

(26)

if the system size L mod 2 = 0. When we consider the corresponding inhomogeneous Hamil-
tonian (essentially the coupling constants are staggered),

H̃8V(λ) = λA(0)8V +A(1)8V , H̃8V(1) = H8V , (27)

we can predict the phase transition at the homogenous limit λ→ 1, again using the self-duality.
The model we consider here can be solved using free fermions by conducting the Jordan–

Wigner transformation too, which we will not expand on the details here. Moreover, this
simple model can be further generalised into more intriguing cases, which are intrinsically
interacting and are related to the generalised version for the affine TL and Onsager algebras.

3.3 Fendley model

With the example of the free fermionic eight-vertex model, we can generalise to the represen-
tation of GC(r, L) with r ≥ 2. We consider the map: GC(r, L)→ End((C2)⊗L),

h j 7→ hFM
j, j+1,··· , j+r = σ

α
j σ
β
j+1 · · ·σ

β
j+r =: hFM

[ j, j+r] . (28)

The following Hamiltonian

HFM(r, {ξm}Lm=1) =
L
∑

j=1

ξmhFM
[ j, j+r] , (29)

which has first been considered in [33] for the r = 2 cases and subsequently in [34,35] for the
more general cases. Hence, we refer to the model as the Fendley model. The Hamiltonians
with the open boundary condition, i.e.

HFM
open(r, {ξm}Lm=1) =

L−r
∑

j=1

ξmhFM
[ j, j+r] (30)

has free fermionic spectra 2 which can be diagonalised using a non-local transformation into
fermionic bilinears. However, the spectra of the Hamiltonians do not satisfy the free fermionic
condition in [53] with the periodic boundary condition. This can be observed from numeri-
cally obtaining the eigenvalues of (29), as shown in Fig. 2. In principle, this do not exclude
the possibility that the spectra cannot be partitioned into subsectors that are free fermionic.
The most notable example is the TFIM with periodic boundary condition, where the spectrum
can be divided into two parts that are free fermionic. In the case of the Fendley model, it is less
clear whether such partition of the spectrum into free fermionic parts exists. Moreover, un-
like the TFIM, the non-local transformation constructed in [33] no longer applies for periodic
boundary. The question whether the Fendley model is intrinsically interacting is postponed to
future investigation.

2What we refer to as “free fermionic spectra” is defined in Eq. (1) of [53].
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Figure 2: The energy spectrum of the homogeneous Fendley model (31) with system
size L = 6. The red numbers above are the degeneracies of the different energy
eigenvalues.

If we choose the coupling to be homogeneous ξm = 1, i.e.

HFM(r) := HFM(r,ξm = 1) =
L
∑

j=1

hFM
[ j, j+r] , (31)

the model is integrable, whose transfer matrices with a three-dimensional auxiliary space have
been constructed in [33] for the case of r = 2. In this article, we instead take a different
approach similar to [37] which has a four-dimensional auxiliary space (tensored space with
two spin-1/2s) when r = 2, revealing a hidden connection to the integrability of the free
fermionic eight-vertex model, presented in Sec. 4.2.

Remark. The transfer matrix in [33] can be applied to the r = 2 Fendley model with
inhomogenous couplings and periodic boundary. However, the method in Sec. 4.2 only works
for the homogenous case (31). Instead, we can add inhomogeneities in the transfer matrix
(64) constructed in Sec. 4.2, which will result in another Hamiltonian with longer-range
interaction.

There is a hidden supersymmetric algebra too, desribed in [33]. The observation is that
there is a “dual representation” for the same algebra GC(L, r),

h j 7→ h̃FM
[ j, j+r] = σ

β
j σ

β
j+1 · · ·σ

β
j+r−1σ

α
j+r , (32)

such that
�

hFM
[ j, j+r], h̃

FM
[k,k+r]

�

= 0 , ∀ j, k ∈ {1, 2, · · · , L} . (33)

These two representations (in the case of the periodic boundary condition) are related via a
Clifford transformation [54], i.e.

CT : σαj 7→ σ
β
j−r · · ·σ

β
j−1σ

α
j σ
β
j+1 · · ·σ

β
j+r , σ

β
j 7→ σ

β
j , (34)

such that
CT : hFM

[ j, j+r] 7→ h̃FM
[ j−r, j] . (35)

The algebraic relations between the two “dual representations” can be found in [33].
This implies that the “dual Hamiltonian”

H̃FM(r) =
L
∑

j=1

h̃FM
[ j, j+r] (36)

commutes with HFM(r). This relation motivates us to consider a more general Hamiltonian

HFM(r,θ ) = cosθ HFM(r) + sinθ H̃FM(r) , 0≤ θ < 2π , (37)

which are conjectured to be integrable too for arbitrary r ∈ Z>0 and 0≤ θ < 2π in Sec. 4.2.
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We can get a representation of the algebra GTL(
p

2, r, L) and the generalised Onsager
algebra GO(r + 1) by considering the same construction as before, i.e.

e j 7→ eFM
[ j, j+r] =

1
p

2

�

1+ hFM
[ j, j+r]

�

, (38)

A(s) 7→ A(s)FM =
L/(r+1)
∑

j=1

hFM
[(r+1) j+s,(r+1) j+s+r] =

L/(r+1)
∑

j=1

σα(r+1) j+sσ
β

(r+1) j+s+1 · · ·σ
β

(r+1)( j+1)+s , (39)

if the system size L mod (r +1) = 0. The generalised Onsager algebra hints at the existence of
phase transitions in the inhomogeneous Fendley model with inhomogeneous couplings varying
with period r + 1, i.e.

HFM
inhomo(r, {ξm}rm=0)

L/(r+1)
∑

j=1

r
∑

s=0

ξsh
FM
[(r+1) j+s,(r+1) j+s+r] . (40)

Taking into account the Kramers–Wannier duality between any two of the generators A(s)FM,
we expect a phase transition when

ξs = ξt ; ξm < ξs, m 6= s, m 6= t , ξn > 0, 0≤ n≤ r , (41)

which is analogous to the phase transition between the ordered and disordered phases in the
TFIM. The case with r = 2 has been demonstrated using different method in [33], cf. Fig. 1
in [33].

Moreover, without losing generality, we choose the representation to be

σα ≡ σ y , σβ ≡ σx , (42)

while the other different choices can be obtained via a unitary transformation. This specific
choice makes the expressions of the R matrices in the integrability part much easier to visualise,
as shown in Sec. 4.2.

4 Integrability

As we have recalled in the previous sections, there are several physically relevant representa-
tions of the algebra GC(L, r), which also imply the existence of representations for algebras
GTL(

p
2, r, L) and GO(r+1). When r = 1, we know that Temperley-Lieb and Onsager algebras

indicate the integrability of certain representations as physical Hamiltonian, such as the trans-
verse field Ising model, the chiral Potts model and the spin-1/2 XXZ model at root of unity as
recently conjectured in [15].

In the following section, we shall start with an overview of how integrability works for
the representation of the free fermionic eight-vertex models with r = 1. Then we proceed
with the integrability of the Fendley model, focusing on the case of r = 2, where an intriguing
observation between the integrable structures of the free fermionic eight-vertex models and
of the Fendley models are made. We also present a conjecture for the generic integer values
of r, where the R matrices are more complicated to construct explicitly.
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4.1 Integrability of the free fermionic eight-vertex model

First of all, we consider the representation in (22) with the Hamiltonian in (24). We can write
down the Lax operator and R matrix as

R8V
a, j(u) = L8V

a, j(u) =
�

1+
sinh(u)

sinh(u+ iπ/2)
h8V

a, j

�

Pa, j , (43)

where the permutation operator

Pa,b =
1
2

�

1+
∑

α=x ,y,z

σαaσ
α
b

�

, (44)

such that Pa,bOa = ObPa,b. This construction of the R matrix can be considered as a reminis-
cence of the baxterization for the braid-monoid algebra [42,55–57], i.e.

R(x)∼ (1+ xe)P , (45)

where e is a representation of the (affine) Temperley-Lieb algebra and x is a certain parametri-
sation of the spectral parameter, which might not guarantee the R matrix is of difference form
3 in this parametrisation. In principle, the parametrisation of the Yang-Baxter relation for the
free fermionic eight-vertex model should be of elliptic type [6,58]. In our case, we consider a
specific case of the free fermionic eight-vertex model, where the trigonometric parametrisation
is sufficient.

The R matrix satisfies the Yang–Baxter relation of difference form, i.e.
R8V(u, v) = R8V(u− v),

R8V
a,b(u− v)R8V

a,c(u)R
8V
b,c(v) = R8V

b,c(v)R
8V
a,c(u)R

8V
a,b(u− v) . (46)

Therefore, we can define the monodromy matrix and transfer matrix as

M8V
a (u) =

L
∏

j=1

L8V
a, j(u) , T8V(u) = traM8V

a (u) . (47)

From the Yang–Baxter relation, the transfer matrices are in involution,
�

T8V(u),T8V(v)
�

= 0 , ∀u, v ∈ C , (48)

indicating the existence of local conserved charges

Q8V
n+1 = i∂ n

u logT8V(u)
�

�

u=0 , (49)

where Q8V
2 = H8V is the Hamiltonian.

If we write down the R matrix explicitly, we have

R8V
m,n(u) =







a1 0 0 d1
0 b1 c1 0
0 c2 b2 0
d2 0 0 a2







m,n

=







1 0 0 − tanh u
0 − tanh u 1 0
0 1 tanh u 0

tanh u 0 0 1







m,n

, (50)

which is a special case of the renowned eight-vertex model with a1 = a2 = c1 = c2 = 1,
b1 = −b2 = d1 = −d2 = tanh u. Moreover, the R matrix satisfies the free-fermion condition [2],

a1a2 + b1 b2 = c1c2 + d1d2 , (51)

3The statement of “the R matrix is of difference form” means that R(u, v) = R(u− v).
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hence a special case of the free fermionic eight-vertex models.
In fact, we can generalise the construction of the integrable structure above to a more

generic free fermionic eight-vertex model. Consider a Hamiltonian as the combination of h8V
j

and its dual h̃8V
j = σ

x
j σ

y
j+1

4, i.e.

H8V(θ ) =
L
∑

j=1

h8V
j (θ ) =

L
∑

j=1

cosθh8V
j + sinθ h̃8V

j . (52)

The model again can be mapped into a free fermionic one using Jordan-Wigner transformation.
However, the construction of the Lax operator would be useful when considering a similar sce-
nario for the Fendley model. For the new Hamiltonian, we propose the following Lax operator

L8V
a, j(z,θ ) =

�

1+
p

2
2

�z − z−1

2

�

h8V
a, j(θ ) +

1
2

�z + z−1

2
− 1

��

h8V
a, j(θ )

�2
�

Pa, j , (53)

where there exists a R matrix that serves as the intertwiner for the Yang–Baxter relation,

R8V
a,b(z, w,θ )L8V

a, j(z,θ )L8V
b, j(w,θ ) = L8V

b, j(w,θ )L8V
a, j(z,θ )R8V

a,b(z, w,θ ) . (54)

The main difference is that now the R matrix is not possible to be brought into a difference
form for θ 6= nπ/2, n ∈ Z. The explicit expression for the R matrix can be found in Appendix
B.

The Lax operator can be cast into

L8V
m,n(z,θ ) =







a′1 0 0 d ′1
0 b′1 c′1 0
0 c′2 b′2 0
d ′2 0 0 a′2







m,n

, (55)

where the coefficients are

a′1 = a′2 =
1
4z

�

(z + 1)2 + (z − 1)2 sin(2θ )
�

,

b′1 = −b′2 =
1

2
p

2iz
(z2 − 1)(cosθ − sinθ ) ,

c′1 = c′2 =
1
4z

�

(z + 1)2 + (z − 1)2 sin(2θ )
�

,

d ′1 = d ′2 =
1

2
p

2iz
(z2 − 1)(cosθ + sinθ ) .

(56)

Here the free fermion condition is satisfied as well

a′1a′2 + b′1 b′2 = c′1c′2 + d ′1d ′2 . (57)

Naturally we can construct the monodromy matrix and the transfer matrix such that

M8V
a (z,θ ) =

L
∏

j=1

L8V
a, j(z,θ ) , T8V(z,θ ) = traM

8V
a (z,θ ) , (58)

such that
�

T8V(z,θ ),T8V(w,θ )
�

= 0 , z, w ∈ C , (59)

with the Hamiltonian (52) as a local conserved charge from the transfer matrix

H8V = i∂z logT8V(z,θ )
�

�

z=1 . (60)
4They satisfy the same relations as (33).
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4.2 Generalisation to r = 2 Fendley model

Similar to the free fermionic eight-vertex model, we construct the Lax operator for the Fendley
model with r = 2, cf. (31). Since we would like the Hamiltonian to be the second conserved
charges beside momentum, which has local density acting on three consecutive sites, it is
natural to consider a four-dimensional auxiliary space (i.e. 2 two-dimensional auxiliary spaces
a and b) following the construction in [37], i.e.

LFM
a,b, j(u) =

�

1+
sinh(u)

sinh(u+ iπ/2)
hFM

a,b, j

�

Pb, jPa, j , (61)

with the local terms of Hamiltonian being hFM
a,b, j = σ

y
aσ

x
bσ

x
j .

Explicitly, we can express the Lax operator using the coefficients of the R matrix of the free
fermionic eight-vertex model (50), i.e.

LFM
a,b, j(u) =























1 0 0 0 0 0 0 − tanh u
0 0 1 0 0 − tanh u 0 0
0 0 0 − tanh u 1 0 0 0
0 − tanh u 0 0 0 0 1 0
0 1 0 0 0 0 tanh u 0
0 0 0 1 tanh u 0 0 0
0 0 tanh u 0 0 1 0 0

tanh u 0 0 0 0 0 0 1























a,b, j

. (62)

Indeed, with the parametrisation of the Lax operator (61), there exists the R matrix that
serves as the intertwiner for the Yang–Baxter relation,

RFM
(a,b)(c,d)(u, v)LFM

a,b, j(u)L
FM
c,d, j(v) = LFM

c,d, j(v)L
FM
a,b, j(u)R

FM
(a,b)(c,d)(u, v) , (63)

where the R matrix acts non-trivially on 2 four-dimensional auxiliary spaces, i.e. a 16×16 ma-
trix. The R matrix is not of difference form, and it can be obtained via solving linear equations
from the Yang–Baxter relation. The result of the R matrix is presented in Appendix C.

With the Yang–Baxter relation, we construct the monodromy matrix and the transfer matrix
by tracing over both auxiliary spaces a and b,

MFM
a,b(u) =

L
∏

j=1

La,b, j(u) , TFM(u) = tra,bMFM
a,b(u) , (64)

such that
�

TFM(u),TFM(v)
�

= 0 , ∀u, v ∈ C . (65)

We can therefore construct conserved charges with local density by taking the logarithmic
derivative of the transfer matrix, the same as in the free fermionic eight-vertex models,

QFM
n+1 = i∂ n

u logTFM(u)
�

�

u=0 , (66)

in particular, the Hamiltonian can be written as

HFM = QFM
2 = i∂ 1

u logTFM(u)
�

�

u=0 . (67)

More interestingly, the density of the higher order charges can be expressed as the Hamilto-
nian’s local terms, e.g.

QFM
3 = i∂ 2

u logTFM(u)
�

�

u=0

= −2i
L
∑

j=1

�

hFM
j hFM

j+1 + hFM
j hFM

j+2

�

+ L .
(68)
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When the system size L mod3 = 0, we define the additional commuting operators for the
generalised Onsager generators the same as (13), i.e.

H(s,t)FM =
i
2

L/3
∑

j=1

hFM
3 j−sh

FM
3 j−t + hFM

3 j−th
FM
3 j+3−s . (69)

In this case, we express the third-order charge as the sum of the additional commuting oper-
ators (while they do not commute among themselves),

QFM
3 = −4(H(0,1)

FM +H(0,2)
FM +H(1,2)

FM ) + L . (70)

Similar to the free fermionic eight-vertex model, the “dual Hamiltonian” for the Fendley
model reads

H̃FM =
L
∑

j=1

h̃FM
[ j, j+r] , h̃FM

[ j, j+r] = σ
x
j σ

x
j+1 · · ·σ

x
j+r−1σ

y
j+r , (71)

with
�

h̃FM
[ j, j+r],h

FM
[k,k+r]

�

= 0, ∀ j, k.

When r = 2, we have h̃[ j, j+2] = σx
j σ

x
j+1σ

y
j+2. We thus conjecture that the total Hamiltonian

HFM(θ ) =
L
∑

j=1

hFM
j (θ ) , hFM

j (θ ) = cosθhFM
j + sinθ h̃FM

j (72)

is integrable too. In fact, imitating the construction of (53), we conjecture the following Lax
operator

LFM
a,b, j(z,θ ) =

�

1+
p

2
2

�z − z−1

2

�

hFM
a,b, j(θ ) +

1
2

�z + z−1

2
− 1

��

hFM
a,b, j(θ )

�2
�

Pb, jPa, j (73)

gives rise the monodromy matrix and the transfer matrix defined as

MFM
a,b(z,θ ) =

L
∏

j=1

LFM
a,b, j(z,θ ) , TFM(z,θ ) = tra,bM

FM
a,b(z,θ ) , (74)

such that
�

TFM(z,θ ),TFM(w,θ )
�

= 0 , z, w ∈ C . (75)

Numerically we have checked for systems with L ≤ 14, where (75) works. Moreover, the
Hamiltonian (72) can be obtained as a local conserved charge from the conjectured transfer
matrix

HFM = i∂z logTFM(z,θ )
�

�

z=1 . (76)

This is guaranteed by the conjecture that the R matrix (intertwiner) exists, satisfying the
Yang–Baxter relation

RFM
(a,b)(c,d)(z, w,θ )LFM

a,b, j(z,θ )LFM
c,d, j(w,θ ) = LFM

c,d, j(w,θ )LFM
a,b, j(z,θ )RFM

(a,b)(c,d)(z, w,θ ) , (77)

and

RFM
(a,b)(c,d)(z, w,θ )RFM

(a,b)(e, f )(z, x ,θ )RFM
(c,d)(e, f )(w, x ,θ ) =

RFM
(a,b)(e, f )(z, x ,θ )RFM

(c,d)(e, f )(w, x ,θ )RFM
(a,b)(c,d)(z, w,θ ) .

(78)

There are a few limits where the R matrix is known, such as θ = nπ
2 , n ∈ Z, cf. Appendix C. In

principle, we would like to obtain the R matrix RFM
(a,b)(c,d)(z, w,θ ) by requiring it to satisfy the
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Yang–Baxter relation (77). However, the procedure is tedious even for symbolic calculation
software on a laptop. We shall leave the exact form of the R matrix to later consideration.

Even though it is cumbersome to get the exact expression for the conjectured R matrix, we
still can write down two simple limits that the conjectured R matrix has to fulfil,

RFM
(a,b)(c,d)(z, 1,θ ) = LFM

a,b,c(z)L
FM
a,b,d(z) , (79)

and
RFM
(a,b)(c,d)(1, w,θ )∝

�

LFM
c,d,b

�−1
(w)

�

LFM
c,d,a

�−1
(w) . (80)

These two limits are analytically checked and indeed they are both fulfilled.
In addition to considering the total Hamiltonian (72), there is another generalisation to the

Fendley model, similar to the apporach to obtain the Q-state chiral Potts model from transverse
field Ising model. By doing so, we keep the generalised Onsager algebra GO(r +1) intact. We
outline the construction in the following section.

5 Generalisation to the chiral-Potts-like cases

Similar to the chiral Potts model as an extension of the TFIM model, while keeping the Onsager
algebra intact, we also extend the Fendley model to its chiral counterparts [34]. In order to
achieve that, we first generalise the algebra GC(r, N) into GC(r, N ,Q), where the generators
h1, h2, · · · , hN satisfy

hQ
j = id , h jh j+m =ωh j+mh j , ω= exp

�

2iπ
Q

�

, 1≤ m≤ r ,

h jh j+n = h j+nh j , n≥ r + 1, 1≤ j ≤ N ,
(81)

with the same periodic boundary condition and Q ∈ Z>0. It is obvious that the algebra
GC(r, N)≡ GC(r, N ,Q = 2).

With some algebraic manipulations, we can find presentations of the “coupled graph
Temperley-Lieb algebra” and the generalised Onsager algebra GO(r + 1) as before. The “cou-
pled graph Temperley-Lieb algebra” is defined as follows:

�

e(k)j

�2
= βe(k)j , e(k)j e(l)j±me(k)j = e(k)j , 1≤ m≤ r, 1≤ k, l ≤Q− 1,

e(k)j e(l)j+n = e(l)j+ne(k)j n≥ r + 1, 1≤ j ≤ N , 1≤ k, l ≤Q− 1

e(k)j e(l)j − 0 , k 6= l, 1≤ k, l ≤Q− 1 .

(82)

The algebra GTL(β , r, N) is a subalgebra of the “coupled graph Temperley-Lieb algebra”, when
fixing e j ≡ e(k)j . When r = 1, it becomes the coupled Temperley-Lieb algebra, which has a

physically relevant representation being the Q-state chiral Potts model [59] with β =
p

N .
Here instead we have

e(k)j =
1
p

Q

Q
∑

a=1

�

ωkh j

�a
, (83)

with ω being the Q-th root of unity as above, satisfying the relations of the “coupled graph
Temperley-Lieb algebra” (82) with β =

p
N .

Moreover, for the generalised Onsager algebra GO(r + 1), we find the following presenta-
tion from GO(r, N ,Q):

A(s) =
2
Q

N/(r+1)
∑

j=1

Q−1
∑

a=1

ha
(r+1) j−s

1−ω−a
, s ∈ {0,1, 2, · · · , r} , (84)
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satisfying the Dolan–Grady relation (9) with N mod (r + 1) = 0. When we choose Q = 2, we
recover the results in the previous sections.

Without delving into the details, we give two representations of the algebras above, one
being the Q-state chiral Potts model, the other being a chiral-Potts-like generalisation of the
Fendley model. The physical properties and other implications are postponed to future inves-
tigations.

5.1 Representations of GC(r, N ,Q)

To begin with, we introduce the clock operators acting on the vector space (CQ)⊗L ,

X j =













0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . .
...

0 0 0 · · · 1
1 0 0 · · · 0













j

, Z j =













1 0 · · · 0 0
0 ω · · · 0 0
...

. . .
...

0 0 · · · ωQ−2 0
0 0 · · · 0 ωQ−1













j

. (85)

The operators satisfy

XQ
j = ZQ

j = 1 , X jZ j =ωZ jX j ,
�

X j ,Xm

�

=
�

Z j ,Zm

�

=
�

X j ,Zm

�

= 0, j 6= m . (86)

When Q = 2, the clock operators become Pauli matrices, X j → σx
j and Z j → σz

j .
Firstly, we consider the representation of the algebra GO(1, 2L,Q), where

h2 j−1 7→ hCP
2 j−1 = Z j , h2 j 7→ hCP

2 j X jX
†
j+1 . (87)

The chiral Potts model is defined as

HCP =
L
∑

j=1

Q−1
∑

a=1



λ

�

hCP
2 j−1

�a

1−ω−a
+

�

hCP
2 j

�a

1−ω−a



= λ
Q
2

A(0)CP +
Q
2

A(1)CP , (88)

with the Onsager generators

A(0) 7→ A(0)CP =
2
Q

L
∑

j=1

Q−1
∑

a=1

�

hCP
2 j−1

�a

1−ω−a
, A(1) 7→ A(1)CP =

2
Q

L
∑

j=1

Q−1
∑

a=1

�

hCP
2 j

�a

1−ω−a
. (89)

It is well-known that the Q-state chiral Potts model consists of the two parts forming a
representation of the Onsager algebra. The relation to the coupled Temperley-Lieb algebra is
similar to the Ising case, and it has been discussed in details in [59].

More interestingly, we can simply generalise the Fendley model in a similar manner. We
consider the following representation of the algebra GC(r, L,Q) acting on the vector space
(CQ)⊗L ,

h j 7→ hCPFM
j = X jX j+1 · · ·X j+r−1Z j+r . (90)

The chiral-Potts-like generalisation of the Fendley model thus can be expressed as

HCPFM =
L
∑

j=1

Q−1
∑

a=1

�

hCPFM
j

�a

1−ω−a
, (91)

which is Hermitian, the same as the chiral Potts model (88).
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Remark. If instead we consider another Hamiltonian with open boundary condition,

H′ =
L−r
∑

j=1

ξ jh
CPFM
j , ξ j ∈ R , (92)

we arrive at a non-Hermitian Hamiltonian with free parafermionic [53] spectra, as discussed
in details in [35]. In the meantime, the chiral-Potts-like generalisation of the Fendley model
(91) is always interacting and Hermitian.

The generalised Onsager algebra GO(r + 1) has a similar representation with
L mod (r + 1) = 0, i.e.

A(s) 7→ A(s)CPFM =
2
Q

L/(r+1)
∑

j=1

Q−1
∑

a=1

�

hCPFM
(r+1) j−s

�a

1−ω−a
, (93)

which leads to the following rewriting of the Hamiltonian (91)

HCPFM =
r
∑

s=0

A(s)CPFM . (94)

We expect the phase diagram and the existence of the “dual Hamiltonian” to be the same
as the Q = 2 case, i.e. the Fendley model discussed previously. However, the phase transitions
are expected to be different from the Fendley model. Since the generalised Onsager algebra
is present in the generalisation too, we expect that the chiral-Potts-like generalisation is also
integrable. Yet the Lax operator and the R matrix are needed to be constructed, which should
be more complex than the ones of the Fendley model. We reserve all those intriguing questions
for the future work.

6 Conclusions and outlooks

In this article, we begin with presenting the generalised Clifford algebra GC(r, N) and its re-
lation to the graph Temperley-Lieb algebra GTL(β , r, N) and the generalised Onsager algebra
GO(r + 1). Then we continue with its representations. Above all, the Fendley model can be
expressed in terms of the operators of the representation of GC(r, N). This reveals the relation
between the Fendley model and the generalised Onsager algebra GO(r + 1), which has gone
undetected previously. The integrability of the Fendley model with the periodic boundary con-
dition is considered next, analogous to the free fermionic eight-vertex model case. We discuss
the chiral-Potts-like generalisation of the Fendley model in the end.

The existence of self-dualities is ubiquitous when we consider the generalised Onsager
algebra, as demonstrated in previous sections. In fact, with the duality itself, we are able
to extract numerous physical properties of the model. This has been well exploited in the
“bond algebra approach” [60–63], where the “bond algebra” refers to the algebra of the local
terms of the Hamiltonian, i.e. the generalised Clifford algebra GO(r, N) in the scope of this
article. Together with the graph theoretical approach to quantum lattice models [36,64], it is
intriguing to combine different methods to discover new “bond algebras” that possess similar
self-duality structures.

Even though we have shown that the Fendley model and its generalisations are closely
related to the generalised Onsager algebra, many intriguing aspects have not been discussed
in the current article. Most notably, we would like to understand how the generalised Onsager
algebra affects the physical properties of the Fendley model and its chiral-Potts-like generali-
sation, e.g. the phase transitions and its complete spectrum. Meanwhile, it is worth investi-
gating the mathematical structure of the R matrix of the Fendley model and its relation to the
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generalised Onsager algebra. The hidden extended supersymmetry algebra shown in [33] is
beyond the scope of the article. The relation between the extended supersymmetry algebra
and the generalised Onsager algebra is missing at the moment. Ultimately, the generalised
Onsager algebra, the quantum integrability and the extended supersymmetry should be com-
prehended under one roof for the Fendley model and the chiral-Potts-like generalisation. The
article should be considered as an appetiser for the more ambitious and intriguing questions
both in theoretical physics and mathematics mentioned above.
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A Onsager algebra

The Onsager algebra is an infinite-dimensional Lie algebra. As shown in [10,13], the Dolan–
Grady relation for only two generators is isomorphic to the Onsager algebra itself (with in-
finitely many generators). We summarise the definition of the Onsager algebra as follows.

Consider the generators {Am, Gn|m, n ∈ Z}, which fulfil the following relations,

[Am, An] = 4Gm−n , [Gm, An] = 2(An+m − An−m) , [Gm, Gn] = 0 . (A.1)

The generators {Am, Gn|m, n ∈ Z} form an infinite-dimensional Lie algebra, i.e. the Onsager
algebra [19]. There is another isomorphism of the Onsager algebra that is particularly useful
when considering certain quantum lattice models, which can be found in [15]. When two of
the generators A(0) := A0 and A(1) := A1 satisfy the Dolan-Grady relation (9), we can construst
all other generators from (A.1) [10].

B The R matrix for the free fermionic eight-vertex models

The R matrix for the Hamiltonian (52) can be written as

R8V
a,b(z, w, q) =







a1 0 0 d1
0 b1 c1 0
0 c2 b2 0
d2 0 0 a2







a,b

, (B.1)
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with q = exp iθ , such that

a1 =a2 = q8(z − 1)2(w− 1)2 + 8iq6(z −w)2 − 2q4(z2(7w2 + 2w− 1)

+ 2z(w2 + 6w+ 1)−w2 + 2w+ 7)− 8iq2(z −w)2 + (z − 1)2(w− 1)2 ,

b1 =− b2 = −4eiπ/4q(q2 − i)
�

z2(1+ q4(w− 1)−w− 2iq2(w+ 1))

−(q2 − i)2z(w2 − 1) +w(1+ q4(w− 1)−w+ 2iq2(w+ 1))
�

,

c1 =c2 = q8(z − 1)2(w− 1)2 − 8iq6(z −w)2 − 2q4(z2(7w2 + 2w− 1)

+ 2z(w2 + 6w+ 1)−w2 + 2w+ 7) + 8iq2(z −w)2 + (z − 1)2(w− 1)2 ,

d1 =− d2 = 4e−iπ/4q(q2 + i)
�

z2(1+ q4(w− 1)−w+ 2iq2(w+ 1))

−(q2 + i)2z(w2 − 1) +w(1+ q4(w− 1)−w− 2iq2(w+ 1))
�

.

(B.2)

The R matrix satisfies the Yang–Baxter relation,

R8V
a,b(z, w, q)R8V

a,c(z, y, q)R8V
b,c(w, y, q) = R8V

b,c(w, y, q)R8V
a,c(z, y, q)R8V

a,b(z, w, q) . (B.3)

The R matrix (B.2) with generic values of q seems to be different from the R matrices of
free fermionic 8-vertex models in [65, 66]. It would be interesting to understand whether
there exists the transformation preserving the Yang–Baxter relations that relates the R matrix
(B.2) to the known ones in [66].

C The R matrix for the Fendley model with r = 2

We present the R matrix in (63) for the Fendley model with r = 2 explicitly, i.e.

RFM(u, v) =























































r1 0 0 0 0 0 r3 0 0 0 0 r2 0 r2 0 0
0 0 r3 0 r1 0 0 0 0 r2 0 0 0 0 0 r2
0 0 0 r2 0 r2 0 0 r1 0 0 0 0 0 r3 0
0 r2 0 0 0 0 0 r2 0 0 r3 0 r1 0 0 0
0 r1 0 0 0 0 0 −r3 0 0 r2 0 −r2 0 0 0
0 0 0 −r3 0 1 0 0 −r2 0 0 0 0 0 r2 0
0 0 r2 0 −r2 0 0 0 0 r1 0 0 0 0 0 −r3
−r2 0 0 0 0 0 r2 0 0 0 0 −r3 0 r1 0 0
0 0 r1 0 −r3 0 0 0 0 −r2 0 0 0 0 0 r2
−r3 0 0 0 0 0 r1 0 0 0 0 r2 0 −r2 0 0
0 −r2 0 0 0 0 0 r2 0 0 r1 0 −r3 0 0 0
0 0 0 r2 0 −r2 0 0 −r3 0 0 0 0 0 r1 0
0 0 0 r1 0 r3 0 0 −r2 0 0 0 0 0 −r2 0
0 r3 0 0 0 0 0 r1 0 0 −r2 0 −r2 0 0 0
−r2 0 0 0 0 0 −r2 0 0 0 0 r1 0 r3 0 0
0 0 −r2 0 −r2 0 0 0 0 r3 0 0 0 0 0 r1























































, (C.1)

where
r1 = 1 , r2 = tanh(u− v) , r3 = − tanh(u− v) tanh(u+ v) . (C.2)

It also satisfies the following Yang–Baxter relation,

RFM
(a,b)(c,d)(z, w,θ )RFM

(a,b)(e, f )(z, x ,θ )RFM
(c,d)(e, f )(w, x ,θ ) =

RFM
(a,b)(e, f )(z, x ,θ )RFM

(c,d)(e, f )(w, x ,θ )RFM
(a,b)(c,d)(z, w,θ ) .

(C.3)

The R matrix for the Fendley model with r = 2 depends on both (u − v) and (u + v),
hence it cannot be brought into a different form, differnt from the case of the free fermionic
eight-vertex model (50).

19

https://scipost.org
https://scipost.org/SciPostPhys.13.3.070


SciPost Phys. 13, 070 (2022)

When v = 0, we have

RFM
(a,b)(c,d)(u, 0) = LFM

a,b,c(u)L
FM
a,b,d(u) = (1+ uhFM

a,b,c)Pb,cPa,c . (C.4)

Moreover, the inverse of the R matrix can be obtained by permuting the auxiliary spaces and
spectral parameters, i.e.

RFM
(a,b)(c,d)(u, v)RFM

(c,d)(a,b)(v, u) =
2[cosh(4u) + cosh(4v)− 2 sinh(2u) sinh(2v)]

[cosh(2u) + cosh(2v)]2
. (C.5)
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