
SciPost Phys. 13, 073 (2022)

High-frequency transport and zero-sound
in an array of SYK quantum dots

Aleksey V. Lunkin1,2? and Mikhail V. Feigel’man1

1 L.D.Landau Institute for Theoretical Physics, Chernogolovka, Russia
2 HSE University, Moscow, Russia

? lunkin@itp.ac.ru

Abstract

We study an array of strongly correlated quantum dots of complex SYK type and account
for the effects of quadratic terms added to the SYK Hamiltonian; both local terms and
inter-dot tunneling are considered in the non-Fermi-liquid temperature range T � TFL.
We take into account soft-mode fluctuations and demonstrate their relevance for phys-
ical observables. Electric σ(ω, p) and thermal κ(ω, p) conductivities are calculated as
functions of frequency and momentum for arbitrary values of the particle-hole asymme-
try parameter E . At low-frequenciesω� T we find the Lorenz ratio L = κ(0, 0)/Tσ(0, 0)
to be non-universal and temperature-dependent. Atω� T the conductivityσ(ω, p) con-

tains a pole with nearly linear dispersion ω ≈ s p
q

ln
ω

T reminiscent of the "zero-sound",
known for Fermi-liquids. We demonstrate also that the developed approach makes it pos-
sible to understand the origin of heavy Fermi liquids with anomalously large Kadowaki-
Woods ratio.
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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1] describes a zero-dimensional system of N interacting
fermions. The energy levels of electrons are degenerate, and the interaction matrix elements
are random with zero mean and variance with typical energy scale J . On the one hand, the SYK
model presents a fully analytical description of a strongly interacted fermionic system [2–5].
On the other hand, the model has "asymptotic symmetry" (at the mean-field level), which leads
to the existence of Goldstone mode with strong infra-red fluctuations.

From the condensed matter theory viewpoint, two questions seem to be natural: 1) how
could one extend the SYK model to describe fermionic systems in dimensions d ≥ 1 ? 2)
how the properties of this model are modified under reasonable perturbations? The simplest
way to extend SYK model to higher dimensions is to consider an array of SYK quantum dots
coupled by weak tunnelling [8]. Using the saddle-point approximation valid at N → ∞,
the authors of Ref. [8] predicted non-Fermi-liquid temperature behavior of dc conductivity
σ(T ) ∝ 1/T [9–13] in the temperature range T � TF L , while at T below the crossover
temperature TF L the usual Fermi-liquid behavior withσ(T → 0)→ const was found. A number
of other papers have also considered similar issues [14–17].

The answer to the second question becomes non-trivial once the analysis goes beyond
the mean-field limit N →∞. At finite values of N , quadratic perturbations of the strength
Γ � J added to the Hamiltonian of a single SYK quantum dot with basic energy scale J
leave intact [18] the non-Fermi-liquid ground-state for sufficiently small Γ < Γc ≈ J/N .
The behavior of the mixed SYK4+SYK2 quantum dot at stronger perturbation magnitudes
Γc < Γ ≤ J/

p
N was studied in Ref. [19] where unexpected "polaron" bound-state solution

was found. Physical significance of the corresponding bound-state energy was clarified in
Ref. [20], where non-equilibrium generalization of the approach [19] was developed. We
demonstrated that high-frequency parametric modulation of the SYK2 part of the Hamiltonian
leads at TF L = Γ 2/J < T � Γ to the energy dissipation rate that is peaked at the frequency
corresponding to the polaron energy ∼ Γ . As a byproduct, we demonstrated that physical sus-
ceptibilities at TF L � T ≤ Γ acquire important fluctuational contributions while single-fermion
Green’s function is described by pure SYK4 saddle-point solution.

In the present paper we study non-equilibrium properties of an array of SYK4+SYK2 quan-
tum dots and extend substantially the results of Ref. [8]. On technical level, our extension
amounts to the account for the effects of fluctuation of the soft reparametrization mode (ab-
sent in Ref. [8] due to the limit N → ∞ employed there). Clearly, any real quantum dot
may contain finite number of electrons only, and this number does not need to be very large
generically, thus the account for the effects arsing due to finite N is essential. Moreover, our
analysis demonstrate the existence of important temperature region TF L < T < Γ where the
said fluctuation effects contribute considerably to thermal conductivity even in the N →∞
limit, while static electric conductivity is not affected by those effects and is given correctly
by the results of Ref. [8]. Another direction of our study where it differs from Ref. [8] and
similar papers is that we consider frequency- and momentum-dependent electric and ther-
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mal conductivities; moreover, we consider general situation with an arbitrary particle-hole
asymmetry. Last but not least, we consider more general model where quadratic terms in the
Hamiltonian are present both as tunneling terms (with strength w) and inside quantum dots,
with strength Γ . It will allow us to describe the situation of "heavy Fermi liquid" with anoma-
lously large Kadowaki-Woods ratio known for 3He under pressure and some HTSC materials,
see [21].

In our model SYK dots are coupled by tunnelling matrix elements t i j with the typical energy

scale w2 = N t2
i j . Intra-dot quadratic terms are characterized, like in Ref. [20], by random

matrix elements Γi j with effective strength Γ . In the absence of intra-dot interactions, the
system’s bandwidth would be of the order of w, like in usual granular metal [22]. Our goal
is to study the opposite situation when intra-dot interactions are very strong, with typical
energy scale J � w, Γ . At the same time, we do not include long-range (inter-dot Coulomb)
interactions into our model. For this reason, any response to electric field we calculate below
should be understood as response to the local field, but not to the external one.

The role of quadratic terms of the Hamiltonian depends crucially on the temperature scale
considered. At relatively high temperatures J � T ≥ Γ̃ charge and energy transport are de-
scribed by the large-N saddle-point approximation developed in Ref. [8]. Here Γ̃ ∼max(Γ , w)
is the effective strength of quadratic perturbations, and we will assume it to be large in com-
parison to the critical magnitude Γc ≈ J/N determined in Ref. [18]. We will be most interested
in the moderate-T region Γ̃ 2/J = TF L ≤ T ≤ Γ̃ which is analogous to the region Γ 2/J ≤ T ≤ Γ
studied in Ref. [20]. It will be shown that in this temperature region transport properties are
strongly affected by fluctuations of the soft reparametrization mode known to determine the
behavior of SYK model [4,5]. The condition Γ̃ � Γc mentioned above will allow us to consider
these fluctuations Gaussian. While single-Fermion Green’s function is well-described by the
N →∞ approximation, fluctuations crucially affect kinetic properties at T ≤ Γ̃ .

The method we employ is based on the use of continuity equations for charge and energy
currents in presence of external sources: electric field and gradient of the Luttinger poten-
tial [23]. We show that reparametrization mode is intrinsically related to the energy current.
We consider frequency- and momentum-dependent conductivities, paying major attention to
the asymptotic regions of low frequencies ω� T and high frequencies ω� T . In the static
limit ω→ 0 we confirm the results of Ref. [8] for electric conductivity σ, while thermal con-
ductivity κ is found to contain additional terms that become important at T ≤ Γ̃ . As a result,
the Lorenz ratio L = κ/Tσ appears to be non-universal and strongly temperature-dependent.
At low frequencies and low momenta, the dispersion of electric and thermal conductivities is
characterized by diffusion laws. Charge diffusion constant De scales ∝ 1/T like conductiv-
ity, while energy diffusion constant DT demonstrates rather nontrivial T -dependence with a
maximum at T ∼ Γ̃ .

In the high-frequency region ω � T we found a zero-sound - like mode which provides
a pole in the frequency- and momentum-dependent conductivity σ(ω, p) when temperature
is low compared to the bandwidth, T � w. Decay rate of this mode 1/τ(ω) ≈ ω/ ln ωT
is somewhat smaller than its frequency at T � ω � w. Dispersion of this mode is
ω(p) = sp

p

ln(sp/T ) where velocity s ∝ w is temperature-independent. Remarkably, nei-
ther the largest energy scale of the problem J , nor the number N of fermions in each dot enter
these results, which form a new "universality class" of strongly interacting Fermi-system. High-
frequency thermal conductivity κ(ω, p) contains, in general, two contributions. One of them
is proportional to electric conductivity σ(ω, p) and to the square of particle-hole asymmetry
parameter E; the second contribution is present also at E = 0, we will call it "intrinsic" and de-
note as κ̃(ω, p) below. This contribution to thermal conductivity contains a weakly-dispersive
resonance at the frequency ω0 ∼ Γ̃ , similar to the result of Ref. [20] for a single SYK dot.

The rest of the paper is organized as follows: in Sec.2 we introduce our model and discuss
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the source terms needed to calculate susceptibilities. In Sec. 3 we describe mean-field solution
of the model. The effective action for small fluctuations in the presence of the sources is
derived in Sec. 4. Section 5 contains our main results for electric and thermal conductivities.
Our conclusions are provided in Sec. 6. Some technical details are present in the Appendix.

2 The model

We study an array of SYK quantum dots with N fermions each. The Hamiltonian is as follows:

H =
∑

r

(

Hr +
∑

δr

∑

i, j

�

tr,i;r+δr, jψ
†
r,iψr+δr, j + h.c.

�

)

,

Hr =
1
2!

∑

i, j,k,l

Ji, j;k,l;r A
¦

ψ†
r,iψ

†
r, jψr,kψr,l

©

+
∑

0<i, j≤N

Γi, j,rψ
†
r,iψr, j −µN̂ . (1)

Here ψr,i is an annihilation operator in the dot with coordinate r on the ith site inside the
dot. Here N̂ is the operator of the total number of particles and µ is a chemical potential.
The first term in the first line represents the Hamiltonian of an individual dot. The second
term describes tunneling between neighboring dots. The dots are labeled by the index r and
notation δr is used to label the neighbors of a dot r. There are N � 1 positions for fermions in
each dot (labeled by index i, j, k . . .). The Hamiltonian Hr describes fermions in each single dot
r. The first term in the expression for Hr is the Hamiltonian of the SYK models for the complex
fermions [24] whereas the second term in Hr is a perturbation which lifts the degeneracy
of their spectrum. The sign A {. . .} denotes the antisymmetrized product of operators [24].
Tensors J . . . and Γ . . . satisfy following symmetry properties: J∗i, j;k,l;r = J∗l,k; j,i;r , Γ ∗i, j,r = Γ j,i,r
and J j,i;k,l;r = Ji, j;l,k;r = −Ji, j;k,l;r . Components of tensors t..., J..., Γ... are independent random
Gaussian variables with zero mean value and the following variances:

|Ji, j;k,l;r|2 =
2J2

N3
, Γ 2

i, j,r =
Γ 2

N
, t2

r,i;r+δr, j =
w2

N
. (2)

We assume that the SYK term is dominant: J � Γ , w.
The operators of charge density and energy density are defined as follows:

Qr =
∑

i

ψ†
r,iψr,i −

N
2

,

Hr = Hr +
1
2

∑

δr

∑

i, j

��

tr,i;r+δr, jψ
†
r,iψr+δr, j + h.c.

�

+ r 7→ r−δr
�

. (3)

Note that the latter one contains symmetrized terms responsible for inter-dot tunneling. In
thermal equilibrium, the average charge at a dot is equal to 〈Qr〉=Q.

To calculate charge and heat conductivity, we introduce the source terms that describe
electric voltage and Luttinger potential. The Hamiltonian with the sources reads:

HS(t) = H +
∑

r

(QrU(r, t) + L(r, t)Hr) . (4)

Our goal is to derive expressions for the charge and energy currents originating from the
presence of these sources.
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3 Around SYK solution

3.1 Action in terms of the Green’s function G and self-energy Σ

We will use path integral representation of the problem in the Keldysh form [25], since we
are interested in non-equilibrium properties. To simplify discussion of the derivation to the
soft-mode action we will omit terms with sources. We will restore them during the discussion
of the continuity equations. The full action with sources could be found in the appendix.

The action is defined as an integral over Keldysh contour and has the form:

S =

∫

C

 

∑

r,i

ψ†
r,k i∂tψr,k −HS(t)

!

d t . (5)

First of all we need to take average over disorder. Since the Keldysh functional integral is
normalized to unity (in the absence of source fields), the averaging of the functional with the
action (5) can be performed in the straightforward way, making use of Eqs. (2).

We would like to rewrite the action in terms of the matrix field G(t1, t0|r) defined as:

G(t1, t0|r) = −
i
N

∑

l

ψr,l(t1)ψ
†
r,l(t0) , (6)

and axiliary matrix field Σ(t1, t0|r)which plays the role of Lagrangian multiplier conjugated to
G(t1, t0|r). Then the action becomes quadratic in terms of fermions, and they can be integrated
out. The action acquires then the following form:

S = −iN
∑

r

∫

C

d t1d t0(Σ(t1, t0|r) +Σ f ree(t1, t0))G(t0, t1|r)− iN t r log{Σ̂}

+ iN

∫

C

d t1d t0

∑

r

¦ J2

4
[G(t1, t0|r)G(t0, t1|r)]

2 +
Γ 2

2
G(t1, t0|r)G(t0, t1|r) (7)

+w2
∑

δr

G(t1, t0|r)G(t0, t1|r+δr)
©

.

We introduced new notation Σ f ree(t1, t0) ≡
�

i∂t1
+µ

	

δ(t1 − t0). Since N � 1 we can start
from the mean-field (saddle-point) solution and then add fluctuation effects.

3.2 Pure SYK solution

Saddle-point equations for Σ and G can be obtained by minimization of the action (9) over
these matrix variables in the absence of sources. The terms describing quadratic perturbations
to the Hamiltonian are irrelevant at this stage as long as we consider temperatures T � TF L ,
where TF L ≡max{w2

J , Γ
2

J }. It will be convenient to replace time variable t by its dimensionless
analog u≡ 2πT t. Then self-energy and Green’s function will change according to

G(t1, t0|r)≡
�

2πT
J

�1/2

G(u1, u0|r) , Σ(t1, t0|r)≡ J2
�

2πT
J

�3/2

Σ(u1, u0|r) . (8)
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Using these new variables we write the SYK action in the form:

SSY K = −iN t r log{Σ̂} − iN
∑

r

∑

σ1,σ0

σ1σ0

∫

du1du0Σ f ree,σ1σ0
(u1, u0)Gσ1σ0

(u0, u1|r)

+ iN
∑

σ1,σ0

σ1σ0

∫

du1du0

∑

r

¦1
4

�

Gσ1σ0
(u1, u0|r)Gσ0σ1

(u0, u1|r)
�2

(9)

−Σσ1σ0
(u1, u0|r)Gσ0σ1

(u0, u1|r)
©

.

Here we split a Keldysh contour C into positive and negative branches [25], so that summa-
tion variables σ0,1 take values ±1. Minimization of the action (12) provides the saddle-point
functional equations in the form:

Σσ1σ0
(u1, u0|r) =

�

Gσ1σ0
(u1, u0|r)Gσ0σ1

(u0, u1|r)
�

q
2−1

Gσ0σ1
(u0, u1|r) ,

∑

σ

σσ1

∫

Σσ1σ
(u1, u|r)Gσσ0

(u, u0|r)du= −δσ1,σ0
δ(u1 − u0) . (10)

We omit the term Σ f ree from the saddle-point equations (10) since it is parametrically small at
time scales t � 1/J where we will consider these equations. We introduce parameter q which
is equal to 4 in our case; this form can be important in the context of generalized SYK model
(with arbitrary number of fermions, [4]) we also used this parameter for the dimensional
regularization (see comment in 6) Translationally invariant solution of these equations is (see
also [26]):

G(s)σ1σ0
(u1, u0|r) = b∆gσ1σ0

(u1 − u0) , b =
(1− 2∆) sin(2π∆)

2π(cos(2π∆) + cosh(2πE))
, (11)

where we have used function g defined as follows:

gσ1σ0
(u)≡ ie−iEu

�

4sinh2
�u

2

��−∆ �
θ (u)

�

−e−iπ(∆+iE) eiπ(∆+iE)

−e−iπ(∆+iE) eiπ(∆+iE)

�

+ θ (−u)
�

e−iπ(∆−iE) e−iπ(∆−iE)

−eiπ(∆−iE) −eiπ(∆−iE)

��

σ1σ0
.

(12)

Here ∆ = 1
q and E ∈ (−∞,∞) is the parameter of particle-hole asymmetry which can be

related (see [24,26]) to the average charge of the dot Q as follows:

Q= −θ
π
−
�

1
2
−∆

�

sin(2θ )
sin(2π∆)

, e2πE ≡
sin(π∆+ θ )
sin(π∆− θ )

. (13)

Actually the asymmetry parameter E cannot be too large in its absolute value. The stable
solutions of the type provided by Eq.(11) can be obtained for |E | ≤ 0.14 only, as it was found
numerically in Refs. [27, 28]. Although these papers studied models similar but not identical
to ours, they worked with the same saddle-point equations (10), so we expect that their results
for maximum value of |E | apply to our case as well.

3.3 Selection of the soft-mode manifold

The saddle-point solution (11) breaks down large symmetry of the saddle-point equations
(10). Namely, symmetry transformations allowed for Eqs. (10) are as follows: for any solution
Gσ1,σ0

(u1, u0|r) we can produce a new solution G̃ defined as

G̃σ1,σ0
(u1, u0|r) =

�

F
′

σ1
(u1, r)F

′

σ0
(u0, r)

�∆
ei
�

ϕσ1
(u1,r)−ϕσ0

(u0,r)
�

(14)

× Gσ1,σ0
(Fσ1
(u1, r), Fσ0

(u0, r)|r) .
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Here F(u) is a monotonous function, and ϕ(u) is an arbitrary function. On the other hand,
the solution (11) allows for much smaller symmetry group SL(2, R). As a result, approximate
action (12) has a zero mode. Once previously neglected term with Σ f ree is put back into
the action, this zero mode transforms into soft Goldstone mode, like it happens in the σ-
model [29]. The corresponding manifold is parametrized by the functions F(u) and ϕ(u) by
means of transformations (36) applied to the mean-field solution (11). As a result, we obtain
the following action for the soft modes:

Sso f t =
∫

drS(F,φ)
SY K ,r + (S − SSY K)|G=G(F,φ) , GF,φ

σ1σ0
(u1, u0|r) = b∆g(F,φ)

σ1σ0
(u1, u0|r) ,

g(F,φ)
σ1σ0
(u1, u0|r) =

�

F
′

σ1
(u1, r)F

′

σ0
(u0, r)

�∆
ei
�

ϕσ1
(u1,r)−ϕσ0

(u0,r)
�

(15)

×gσ1,σ0
(Fσ1
(u1, r), Fσ0

(u0, r)) .

Here S(F,φ)
SY K ,r is the original action for soft modes in the SYK model which has the form:

S(F,φ)
SY K ,r =

∑

σ

σ

∫

du
¦

−CESch
�

eFσ(u,r), u
�

+ CQ

�

ϕ′σ(u, r) + EF ′σ(u, r)− E
�2©

. (16)

Here

CE = Nαs
2πT
JV0

, CQ = NK
2πT
JV0

, (17)

where αs ≈ 0.05 and K ≈ 1.04 see [4, 24] and V0 is the system volume per single dot . The
second term in Sso f t comes from quadratic perturbations in the Hamiltonian and contains
terms∝ Γ 2 and w2.

Soft fluctuations play a crucial role in the theory of the SYK model: they change asymptotic
behaviour of the Green function, as shown in Ref. [3]). On the other hand, quadratic perturba-
tions (terms with Γ and w) partially suppress these fluctuations, as demonstrated in Ref. [19].
These fluctuations are also responsible for the kinetic properties of the system [8,20]. Bellow
we will consider a quadratic action for these fluctuations to find saddle-point solution in the
presence of sources. We will discuss physical properties of these fluctuations in section 5.

4 Quadratic action for soft modes in presence of source fields

We will consider soft-mode fluctuations around the mean-field solution (11) at Gaussian level
in this section; smallness of these fluctuations is controlled by the following inequalities:

Fσ(u, r) = u+ fσ(u, r) , f ′σ(u, r)� 1 , ϕ′σ(u, r)� 1 . (18)

We will expand action (16) up to the second order in small fluctuations f and ϕ (similar
procedure was used in Ref. [20]).

The result can be conveniently written in the Fourier representation:

Sfinal =
1
2

∫ ddpdΩ
(2π)d+1

�

ϕ̂p,Ω + E f̂p,Ω

�†
n
�

Ĝ(ϕ)0 (Ω)
�−1
− Σ̂(ϕ)t (Ω,p)

o

�

ϕ̂p,Ω + E f̂p,Ω

�

+1
2

∫ ddpdΩ
(2π)d+1 f̂ †

p,Ω

n
�

Ĝ( f )0 (Ω)
�−1
− Σ̂( f )(Ω)− Σ̂( f )w (Ω,p)

o

f̂p,Ω . (19)

Here d is the space dimension of our problem. We introduced vectors that describe fields and
sources on positive (ϕ+p,Ω) and negative (ϕ−p,Ω) parts of the Keldysh contour. We also performed
Keldysh rotation defined as follows:

ϕ+p,Ω = ϕ
(cl)
p,Ω +

ϕ
(q)
p,Ω

2
, ϕ−p,Ω = ϕ

(cl)
p,Ω −

ϕ
(q)
p,Ω

2
. (20)
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The same notations are used for other fields and sources. 2 × 2 Keldysh space represented

in terms of (cl, q) variables is convenient for representations of matrices Σ̂ and
�

Ĝ(ϕ)0 (Ω)
�−1

.
Since we consider fluctuations in Gaussian approximation only, it will be sufficient to study
the behavior of retarded (R) part of Green function and self-energy.

The corresponding explicit expressions are provided below:
�

Ĝ(ϕ)0 (Ω)
�−1

(R)
=
�

G(ϕ)0,(R)(Ω)
�−1
= CQΩ

2 ,
�

G( f )0,(R)(Ω)
�−1
= CEΩ

2(Ω2 + 1) ,

Σ
( f )
(R)(Ω) =

CΓ
2 Ω

2ψ(Ω) , Σ
(ϕ)
w,(R)(Ω,p) = 8Cw

∑

δr

�

pδr
2

�2
(ψ(Ω) + 2) , (21)

Σ
( f )
w,(R)(Ω,p) = Cw

2

∑

δr

n

Ω2ψ(Ω) + 1
2

�

pδr
2

�2 �
2(1+Ω2) + (1+ 2Ω2)ψ(Ω)

�

o

.

Here we introduced the functions ψ(Ω), and constants CΓ , Cw, which are defined as follows:

ψ(Ω) = Ψ
�

1
2
− iΩ

�

−Ψ
�

−
1
2

�

, Ψ(z) = ln′ (Γ (z)) ,

CΓ =
N

4πV0

Γ 2

J T

p

b , Cw =
N

2πV0

w2

J T

p

b . (22)

The lattice will be considered as a generalized cubic one, so we introduce the following nota-
tions:

C̃w ≡ Cw

∑

δr

1= 2dCw , σ̃ ≡ Cw
1
p2

∑

δr

�

pδr
2

�2

= Cw
a2

2
. (23)

Here d is a dimension of the lattice and a is a lattice constant; the above formulas are valid at
ap� 1.

The expressions (19) and (21) for quadratic part of the soft-mode action in presence of
sources is the main result of this Section. These formulae will be used below to determine
kinetic properties of the system in both limits of low (ω� T) and high (ω� T) frequencies.

5 Electric and thermal transport at arbitrary frequencies

5.1 Noether’s theorem

As we are interested in the kinetics of the system we would like to obtain expressions for
currents of energy and charge in our system. We need to consider the following change of the
initial fermionic fields to find these currents, according to Noether’s theorem:

ψr, j(t) 7→ eiδϕ(t,r)ψr, j(t +δ f (t, r)) . (24)

On the other hand, we use fields f and ϕ instead of fermionic ones. To connect them let us
write a transformation law for the field G using its definition (6):

Gσ1,σ2
(t1, t2|r) 7→ ei(δϕσ1

(t1,r)−δϕσ2
(t2,r))Gσ1,σ2

(t1 +δ fσ1
(t1, r), t2 +δ fσ2

(t2, r)|r) . (25)

This map is not equal to the symmetry map described in eq. (36). As we want to limit ourselves
by soft mode fluctuations only we need to project the result of the symmetry application to
the manifold of soft modes. Finally, we will obtain the following transformation law for fields
f and ϕ:

ϕσ(u, r) 7→ ϕσ(u, r) +δϕσ(u, r) , f σ(u, r) 7→ f σ(u, r) + 2πTδ fσ(u, r) . (26)
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This transformation rule reveals the physical origin of fields ϕ and f . These fields are conju-
gated to the charge density fluctuations and energy density fluctuation respectively. In other
words they are related as:

δQ(t, r) = − δS
δ∂uϕ(q)(u, r)

, δE(t, r) = −
1

2πT
δS

δ∂u f (q)(u, r)
. (27)

We can understand the meaning of coefficients in the action using this expression. Let us
slightly change the temperature and chemical potential of the system. As a result, the saddle-
point solution will change. Green function of the new system could be obtained from the Green
function of the original system using symmetry transformation (36). For this transformation:
f (cl)(u, r) = δT

T u and ϕ(q)(u, r) = δµ
2πT u. As a result, the charge density and energy density will

change as:

δQ=
CQ

2πT
(δµ+ 2πEδT ) , δE = 2πT

�

�

CE + CΓ + C̃w

� δT
T
+ EδQ

�

. (28)

Using these equations, we can note that heat capacity of the system is:
�

δE
δT

�

Q
= 2π(CE + CΓ + C̃w) . (29)

In the absence of quadratic terms, this result agrees with the heat capacity of the SYK model
CSY K = 2πCE [4]. Quadratic terms become important for heat capacity at low temperatures
when

CE ≤ CΓ + C̃w ⇔ T ≤ Γ̃ =
p

Γ 2 + 4dw2 . (30)

As we see, quadratic terms play the crucial role here, even at T � TF L .
We also can find compressibility of the system (see also [24]):

�

δQ
δµ

�

T
=

CQ

2πT
. (31)

Finally, we can verify Maxwell’s relation (see [17,24,26]):
�

δS
δQ

�

T
= −

�

δµ

δT

�

Q
= 2πE . (32)

Here we have connected entropy and energy as δE = TδS.
In this subsection, we have considered the statistical mechanics of the system. These prop-

erties were found as a response of our system to static perturbation. In the following subsection
we will find kinetic properties of the system as a response on dynamical sources.

5.2 Continuity equations

In the limit N � 1 we can use the saddle point equation. In the absence of the quantum
component of sources the quantum component of fields at saddle-point configuration will be
zero. So we have only two saddle-point equation:

δS
δϕ(q)(u, r)

= 0 ,
δS

δ f (q)(u, r)
= 0 . (33)

As fields ϕ and f are conjugated to charge and energy densities, we conclude that the
above equations are continuity equations for charge and energy densities respectively.
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We can also obtain expressions for the densities of charge current and energy current as:

j(Q),αp,ω = −
δSfinal

δ(ipα f (q)p,Ω)†
, and j(E),αp,ω = −

δSfinal

δ(ipαϕ(q)p,Ω)†
. (34)

There are non-zero currents in the system at the presence of sources (L and U). We can
solve saddle-point equations (33) to find fields ϕ and f in the presence of sources. Using this
result we can connect currents and sources as:

�

j(Q),αp,ω

j(E),αp,ω

�

=
�

σ(p,ω)e2 2πEeσ(p,ω)
2πEeTσ(p,ω) κ̃(p,ω)+(2πE)2Tσ(p,ω)

�

� −ipαUp,ω

−ipαT L(cl)
p,ω

�

. (35)

Here e is the charge of electron. We have also restored the dimensionalities of currents
and sources. Left upper block of the matrix (35) shows that electric conductivity at arbitrary
frequency and momentum is given by e2σ(ω, p), where

σ(p,ω= 2πTΩ) =
8σ̃ψ̃(Ω)CQ

−iCQΩ+ 8σ̃p2 ψ̃(Ω)
−iΩ

, where ψ̃(Ω) =ψ(Ω) + 2≈ −iΩ , (36)

at Ω→ 0 . (37)

Recall that notations CQ and σ̃ are defined in Eqs. (17) and (23) correspondingly.
The expression for heat conductivity (right-bottom matrix element in Eq. (35)) contains

two terms. The first one describes thermal current without transport of charge (we call it
intrinsic thermal conductivity):

κ̃(p,ω= 2πTΩ) =σ̃Tπ2 (38)

×

�

CE(Ω2 + 1)− C̃ψ(Ω)
� �

(Ω2 + 1)ψ̃(Ω) + 5Ω2ψ(Ω)
�

+ 2Ω2ψ2(Ω)CΓ

−iCEΩ(Ω2 + 1) + C̃
2 iΩψ(Ω) + σ̃

4 p2
�

(Ω2 + 1) ψ̃(Ω)−iΩ + iΩψ(Ω)
� .

Here we introduced a new constant C̃ , see Eqs. (22) and (23):

C̃ ≡ CΓ + C̃w =
N
p

b
4πV0J T

Γ̃ 2 . (39)

This constant describes contribution of perturbations to the heat capacity (see also (28)).
The second term in the right-bottom block of (35) is due to charge transport; the total

thermal conductivity is given then by

κ(p,ω) = κ̃(p,ω) + (2πE)2 T σ(p,ω) . (40)

Finally, off-diagonal elements of the conductivity matrix (35) define a Seebeck (S ) coefficient,
which is equal to

S =
2πE

e
=
∂ S
∂Q

, (41)

where S is the entropy of the system. This result was obtained in Refs. [24,26].
Below we consider simplified expressions for electric and thermal conductivities at low

frequencies ω� T and and high frequencies ω� T .

10

https://scipost.org
https://scipost.org/SciPostPhys.13.3.073


SciPost Phys. 13, 073 (2022)

5.3 Hydrodynamic limit

In the hydrodynamic limit ω� T , the system is in a local equilibrium. In this limit, electric
conductivity and intrinsic heat conductivity acquire the following form:

σ(p,ω) = (2π)2σ̃
−iω

CQ
2πT

−iω
CQ

2πT + (2π)2σ̃p2
, (42)

κ̃(p,Ω) =
σ̃Tπ4

2

−i2π
�

CE + 2C̃
�

ω

−i2π
�

CE + C̃
�

ω+ σ̃Tπ4

2 p2
. (43)

Uniform static electric conductivity is equal to

σ0(T ) = σ(0,Ω→ 0; T ) = π
p

b
N
V0

w2

J T
a2 . (44)

Dispersions of both conductivities as functions of frequency and momentum are characterized
by diffusive dependencies. The diffusion coefficients are as follows (see also (29, 31)):

De = σ0(T )
�

δQ
δµ

�−1

∝
1
T

, charge diffusion , (45)

DT =
π2

8
σ0(T ) T

�

δE
δT

�−1

∝

¨

T at T � Γ̃
T−1 at T � Γ̃

, energy diffusion . (46)

Lorenz ratio L in the zero-ω and zero-p limit is given (see Eqs. (43), (40),(17) and (23) )
by

L =
κ(0, 0)

Tσ(0, 0)
+ (2πE)2 = π

2

8
CE + 2C̃

CE + C̃
+ (2πE)2 = π

2

8

αs +
p

b Γ̃ 2

(2πT )2

αs +
p

b
2

Γ̃ 2

(2πT )2

+ (2πE)2 . (47)

At relatively high temperatures T ≥ Γ̃ the heat capacity is dominated by pure SYK term,
CE � CΓ , and Lorenz ratio follows the result of Ref. [17], L = π2/8+ (2πE)2 . However, at
lower temperatures T � Γ̃ the heat capacity is determined by the term coming from quadratic
perturbation in the Hamiltonian, C̃ � CE , and we find for Lorenz ratio another result:

L =
π2

4
+ (2πE)2 . (48)

We emphasize that considerable variation of the Lorenz ratio with temperature occurs in do-
main T ∼ Γ̃ � TF L where modifications of the saddle-point solution are small. The whole
effect upon L(T ) which we found, comes due to soft-mode fluctuations. At lowest temper-
atures T ≤ TF L the Lorenz ratio returns to its Fermi-liquid value LF L =

π2

3 irrespectively of
E .

5.4 High-frequency, low-T limit

Relaxation rate in our system is bounded as 1/τinel ≤ T thus the high-frequency range ω� T
corresponds to its non-equilibrium behaviour. Surprisingly, we find electric current response
containing a pole in the complex plane of frequency with nearly linear dispersion and relatively
small decay rate. This resonance mode looks similar to the zero sound in Fermi-liquids [30]
in spite of completely different nature of our system. Electric conductivity in this regime can
be written as follows (see Eq.(37) ):

σ(p,ω) = 8σ̃CQ
i ω

2πTψ(
ω

2πT )

CQ

�

ω
2πT

�2 − 8σ̃p2ψ( ω2πT )
, ψ(Ω)≈ ln(|Ω|)− i

π

2
sign(Ω) . (49)
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At Ω � 1 the real part of the function ψ(Ω) is much larger than its imaginary part which
makes possible propagation of waves. The dispersion of waves is determined by the position
of the pole in Eq.(49):

ω2(p) = s2p2 ln
� sp

T

�

, s = 2
p

DeT . (50)

The characteristic velocity s is temperature-independent as De ∼
1
T and we can express it

as:

s =
2b1/4

K1/2
aw . (51)

For the condition sp� T to be satisfied, the temperature should be low enough, T � w. Note
that s does not depend on the largest energy scale J , although the mere existence of this mode
is related to strong electron-electron interaction. Similar situation was found in our previous
study [20] of the energy absorption in a single SYK4+SYK2 quantum dot. Life-time τ(p) of the
"zero-sound" modes (50) is relatively long at ω� T , namely: ω(p)τ(p)≈ ln ωT .

Thermal conductivity in the high-frequency regime contains two terms, one of them is
proportional to σ(p,ω) given by Eq.(49), see general relation (40). The second term, the
intrinsic thermal conductivity, is given by

κ̃(p,ω) = 3σ̃πψ
� ω

2πT

� iω
�

CE

�

ω
2πT

�2 − (C̃ − 1
3 CΓ )ψ(

ω
2πT )

�

CE

�

ω
2πT

�2 − C̃
2ψ(

ω
2πT )−

σ̃
2 p2ψ( ω2πT )

. (52)

As a function of frequency, κ̃(p,ω) contains a pole at the frequencyωth(p)which is close to
a single resonance frequencyω0 defined below, since we always have the condition σ̃p2� CE
fulfilled. The equation for ω0 reads

h ω0

2πT

i2
=

C̃
2CE

ln
� ω0

2πT

�

→ ω0 =
b1/4

2
p
αS

h

Γ̃ 2 ln
ω0

2πT

i1/2
. (53)

To characterize decay rate and dispersion of the intrinsic thermal mode ωth(p) we set
ωth(p)≡ si gn(ω)ω0 +δωth(p) and find:

δωth(p) = −
iπ
4

ω0

ln
� ω0

2πT

� +
si gn(ω)σ0ω0

8π2C
p2 , (54)

where C = CE + C̃ . The mode ωth(p) is completely analogous to the frequency of resonant
absorption found in Ref. [20].

6 Conclusions

We have studied a model of strongly correlated electron liquid described by SYK4 + SYK2
quantum dots coupled by single-particle tunneling terms. Effective strength of quadratic per-
turbations Γ̃ =

p
Γ 2 + 4dw2 is small compared to interaction strength J , but it is still much

larger than the critical value Γc ≈ J/N found in Refs. [18, 19]. Therefore non-Fermi-liquid
behaviour of the system is limited from below by the temperature scale TF L ≈ Γ̃ 2/J , and we
consider the range of temperatures T ≥ TF L only. Our results do not depend on the number
N of electrons in each quantum dot, as long as we work at Γ̃ � Γc . However, at smaller Γ̃ the
parameter N becomes important; this region of parameters is still to be studied.

The generic case of an electron - hole asymmetric model, E 6= 0, is considered. General
expressions for frequency-dependent and momentum-dependent electric and thermal conduc-
tivities σ(p,ω) and κ(p,ω) are derived. For non-zero asymmetry parameter E , thermal con-
ductivity contains both the "intrinsic" (unrelated to charge transport) term, and the term pro-
portional to electric conductivity.
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Qualitatively new results are obtained for the intermediate temperature interval
TF L � T ≤ Γ̃ where fluctuations of the reparametrization soft mode make strong effect upon
kinetic properties. Physically this mode can be understood as space-time fluctuations of the
local energy density in strongly interacting system. It is thus natural that these fluctuations
affect thermal conductivity, which is strongly modified already in the static dc limit, studied
previously within saddle-point approximation [8]. Namely, the Lorenz ratio L = κ/Tσ is
found to be temperature - dependent, it also depends on particle-hole asymmetry parameter
E , see Eqs. (47,48). Electric conductivity in the dc limit is not sensitive to soft-mode fluctua-
tions and demonstrate "strange-metal" scaling σ∝ 1/T in agreement with Ref. [8], as well
as kinetic relaxation time τ(T )∼ 1/T .

Soft-mode fluctuations become even more important for the high-frequency ω� T trans-
port that is strongly non-equilibrium since ωτ(T )� 1. We found that high-frequency electric
conductivity contains a pole contribution (49), with the dispersion relation of nearly-linear
form, Eq.(50), which seems to be a "strongly - correlated partner" of a zero-sound mode known
for Fermi-liquids. This mode exists in an intermediate temperature range TF L < T � w. We
emphasize that "sound velocity" given by Eq.(51) does not depend on interaction parame-
ter J , although existence of such a mode is related to strong interactions. Lifetime of these
nearly-sound modes τs(p) is relatively long in the ω/T � 1 limit: τs(p)ω(p)≈ ln sp

T .
High-frequency thermal conductivity contains (at E 6= 0) similar pole contribution; in addi-

tion, the intrinsic contribution to high-frequency thermal conductivity κ̃(ω) contains a weakly
dispersive resonance at frequency ω0 ∼ Γ , see Eqs. (52,53). This resonance is similar to the
one found in Ref. [20] for parametric excitation of the SYK quantum dot; its quality factor
is Q ∼ ln ω0

2πT . In general, our results are fully compatible with those obtained in Ref. [20];
the difference between Majorana and complex fermion models consists just in the presence of
charge transport in the latter one.

Fig. 1 provides schematic view of the "phase diagram" of the model we studied, in the case
Γ � w. We used logarithmic axis for the ratios ω/w and T/w to make our phase diagram
compact. Depending on relations between temperature T , frequency ω and transport band-
width w, various transport regimes discussed above can found in the phase diagram; they are
indicated in the Figure. 1 in the self-explanatory way; blue region in the centre corresponds
to crossover between various specific regimes.

Recently we became aware of interesting preprint [21] discussing phenomenology of sev-
eral strongly interacting fermionic systems, like overdoped La2−xSrxCuO4 and 3He under

Figure 1: Transport regimes
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strong pressure. One of important observations made in Ref. [21] is that both these very
different objects demonstrate significant deviation from the "universal" Kadowaki-Woods ratio
A/γ2 known for many various electronic materials including strongly correlated ones; here A
is the coeffcient in the T2 law of resistivity known for Fermi-liquids, R(T ) = R0 + AT2, and γ
enters specific heat, C(T ) = γT . Namely, for La1.67Sr0.33CuO4 the ratio A/γ2 is anomalously
large; for the compressed 3He one cannot define conductivity, but the analysis of transport
relaxation rate leads to very similar conclusion as for La1.67Sr0.33CuO4.

Kadowaki-Woods ratio was discussed in Ref. [8] where it was found to be universal; how-
ever in the model [8] the only quadratic terms were the tunneling ones. Here we would like
to notice that "heavy Fermi-liquid" with anomalously large Kadowaki-Woods ratio can be ob-
tained within SYK4+SYK2 model we consider here, if we assume Γ � w. Indeed, in this model
conductivity scales [8] as σ ∼ w2

J T at T > TF L = Γ 2/J . Below TF L we expect Fermi-liquid
behavior to set in, with R(T ) = AT2, thus by continuity arguments A ≈ (J/wΓ )2. Then, the
specific heat coefficient γ ≈ J/Γ 2, and the Kadowaki-Woods ratio is A/γ2 ∼ Γ 2/w2 � 1 and
does not depend on J . We conclude that the model studied in this paper may be relevant for the
description of extremely strongly interacting Fermi systems, like those discussed in Ref. [21].
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A Action and continuity equations in the presence of the sources

In this appendix we will cover gaps of the main text. Particular, we have not written action
with sources to simplify formulas.

The action for fields G and Σ in the presence of sources has the following form:

S = −iN
∑

r

∫

C

d t1d t0(Σ(t1, t0|r) +Σ f ree(t1, t0))G(t0, t1|r)− iN t r log{Σ̂}

+ iN

∫

C

d t1d t0

∑

r

�

J2

4
[G(t1, t0|r)G(t0, t1|r)]

2 +
Γ 2

2
G(t1, t0|r)G(t0, t1|r)

�

× (1+ L(r, t1) + L(r, t0))

+ iNw2

∫

C

d t1d t0

∑

r,δr

G(t1, t0|r)G(t0, t1|r+δr)
�

1+
L(r, t1) + L(r+δr, t1)

2
(55)

+
L(r, t0) + L(r+δr, t0)

2

�

+ exp{iϕ(U)(r+δr, t1)− iϕ(U)(r, t1)− iϕ(U)(r+δr, t0) + iϕ(U)(r, t0)} .

Our aim will be to find the action for the soft modes in the presence of sources. Using this
action we apply procedure 16 from the main text.
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After substitution of the field G from the soft manifold we can find that terms proportional
to Γ or w contains logariphimcaly divergent integral (for q = 4 ). This devergency does not
affect on the action of the soft mode but to find one we need to use the following regularization
procedure. We should consider the problem with general q and expand action up to the second
order in soft mode fluctuation, after than we need to take the limit q → 4 − 0. The similar
procedure was also performed in [20]. As a result we have the quadratic action for soft mode,
which can be written in the Fourier domain as:

Sfinal =
1
2

∫

ddpdΩ
(2π)d+1

�

ϕ̂p,Ω − E( f̂p,Ω −
i
Ω

L̂p,Ω)
�†
�

Ĝ(ϕ)0 (Ω)
�−1

�

ϕ̂p,Ω − E( f̂p,Ω −
i
Ω

L̂p,Ω)
�

+
1
2

∫

ddpdΩ
(2π)d+1

�

f̂p,Ω −
i
Ω

L̂p,Ω

�†
�

Ĝ( f )0 (Ω)
�−1

�

f̂p,Ω −
i
Ω

L̂p,Ω

�†

−
1
2

∫

ddpdΩ
(2π)d+1

�

�

f̂p,Ω −
2i
Ω

L̂p,Ω

�†
�

Σ̂( f )(Ω) + Σ̂( f )w (Ω)
�

�

f̂p,Ω −
2i
Ω

L̂p,Ω

�

+ f̂ †
p,Ω

�

Σ̂( f )w (Ω,p)− Σ̂( f )w (Ω,0)
�

f̂p,Ω

�

−
1
2

∫

ddpdΩ
(2π)d+1

¦

L̂†
p,ΩΣ̂

(L, f )
t (Ω,p) f̂p,Ω + f̂ †

p,ΩΣ̂
( f ,L)
t (Ω,p)L̂p,Ω

©

−
1
2

∫

ddpdΩ
(2π)d+1

�

ϕ̂p,Ω − E f̂p,Ω + ϕ̂
(U)
p,Ω

�†
Σ̂
(ϕ)
t (Ω,p)

�

ϕ̂p,Ω − E f̂p,Ω + ϕ̂
(U)
p,Ω

�

. (56)

This action without sources was written in the main text as: (19). Besides operators G and Σ̂
mentioned in the main text we also introduced the following operators:

Σ
( f ,L)
t,(R) (Ω,p) = −Σ(L, f )

t,(R) (Ω,p) = Cw

∑

δr

iΩ
�

pδr
2

�2

ψ(Ω) . (57)

The variation of the above action leads us to continuity equations (see (5.1,5.2)) which
has the following form in the presence of sources:

0= −
δSfinal

δϕ
(q)†
p,Ω

= −iCQΩ
�

Vp,Ω + E Lp,Ω

�

+ 8σ̃p2 ψ̃(Ω)
−iΩ

�

Vp,Ω + Up,Ω

�

,

0= −
δSfinal

δ f (q)†p,Ω

= E
δSfinal

δϕ
(q)†
p,Ω

− iCEΩ(Ω
2 + 1)

�

τp,Ω − Lp,Ω

�

(58)

+
CΓ
2

iΩψ(Ω)
�

τp,Ω − 2Lp,Ω

�

+
σ̃

4
p2

��

(Ω2 + 1)
˜ψ(Ω)
−iΩ

+ iΩψ(Ω)

�

τp,Ω + i4Ωψ(Ω)Lp,Ω

�

.

These equations describes charge and energy conservations respectively. Here we also intro-
duced notations:

Vp,Ω ≡ −iΩ
�

ϕ
(cl)
p,Ω − E f (cl)

p,Ω

�

, τp,Ω ≡ −iΩ f (cl)
p,Ω . (59)

We need to solve continuity equations to find changes of fields ϕ and f caused by sources.
Using this information we can find currents using (34). It leads us to the expression (35)
which is the main result of the text.

15

https://scipost.org
https://scipost.org/SciPostPhys.13.3.073


SciPost Phys. 13, 073 (2022)

References

[1] A. Kitaev, Talks at KITP (2015), http://online.kitp.ucsb.edu/online/entangled15/kitaev/,
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.

[2] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94,
106002 (2016), doi:10.1103/PhysRevD.94.106002.

[3] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum
mechanics, Nucl. Phys. B 911, 191 (2016), doi:10.1016/j.nuclphysb.2016.08.002.

[4] A. Kitaev and S. J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,
J. High Energy Phys. 05, 183 (2018), doi:10.1007/JHEP05(2018)183.

[5] A. Kitaev and S. J. Suh, Statistical mechanics of a two-dimensional black hole, J. High
Energy Phys. 05, 198 (2019), doi:10.1007/JHEP05(2019)198.

[6] R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252, 343 (1985), doi:10.1016/0550-
3213(85)90448-1.

[7] C. Teitelboim, Gravitation and Hamiltonian structure in two spacetime dimensions, Phys.
Lett. B 126, 41 (1983), doi:10.1016/0370-2693(83)90012-6.

[8] X.-Y. Song, C.-M. Jian and L. Balents, Strongly correlated metal built
from Sachdev-Ye-Kitaev models, Phys. Rev. Lett. 119, 216601 (2017),
doi:10.1103/PhysRevLett.119.216601.

[9] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruckenstein, Phe-
nomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett.
63, 1996 (1989), doi:10.1103/PhysRevLett.63.1996.

[10] P. Gegenwart, Q. Si and F. Steglich, Quantum criticality in heavy-fermion metals, Nat.
Phys. 4, 186 (2008), doi:10.1038/nphys892.

[11] R. A. Cooper et al., Anomalous criticality in the electrical resistivity of La2−x Srx CuO4,
Science 323, 603 (2009), doi:10.1126/science.1165015.

[12] J. A. N. Bruin, H. Sakai, R. S. Perry and A. P. Mackenzie, Similarity of
scattering rates in metals showing T-linear resistivity, Science 339, 804 (2013),
doi:10.1126/science.1227612.

[13] S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer and J. V. Waszczak, Normal-
state transport properties of Bi2+x Sr2−y CuO 6+δ crystals, Phys. Rev. B 41, 846 (1990),
doi:10.1103/PhysRevB.41.846.

[14] A. Altland, D. Bagrets and A. Kamenev, Sachdev-Ye-Kitaev non-Fermi-liquid corre-
lations in nanoscopic quantum transport, Phys. Rev. Lett. 123, 226801 (2019),
doi:10.1103/PhysRevLett.123.226801.

[15] N. V. Gnezdilov, J. A. Hutasoit and C. W. J. Beenakker, Low-high voltage duality in tun-
neling spectroscopy of the Sachdev-Ye-Kitaev model, Phys. Rev. B 98, 081413 (2018),
doi:10.1103/PhysRevB.98.081413.

[16] D. V. Khveshchenko, Connecting the SYK dots, Condens. Matter 5, 37 (2020),
doi:10.3390/condmat5020037.

16

https://scipost.org
https://scipost.org/SciPostPhys.13.3.073
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1016/j.nuclphysb.2016.08.002
https://doi.org/10.1007/JHEP05(2018)183
https://doi.org/10.1007/JHEP05(2019)198
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/10.1103/PhysRevLett.119.216601
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1038/nphys892
https://doi.org/10.1126/science.1165015
https://doi.org/10.1126/science.1227612
https://doi.org/10.1103/PhysRevB.41.846
https://doi.org/10.1103/PhysRevLett.123.226801
https://doi.org/10.1103/PhysRevB.98.081413
https://doi.org/10.3390/condmat5020037


SciPost Phys. 13, 073 (2022)

[17] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport
in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography,
Phys. Rev. B 95, 155131 (2017), doi:10.1103/PhysRevB.95.155131.

[18] A. V. Lunkin, K. S. Tikhonov and M. V. Feigel’man, Sachdev-Ye-Kitaev model with quadratic
perturbations: The route to a non-Fermi liquid, Phys. Rev. Lett. 121, 236601 (2018),
doi:10.1103/PhysRevLett.121.236601.

[19] A. V. Lunkin, A. Yu. Kitaev and M. V. Feigel’man, Perturbed Sachdev-Ye-Kitaev
model: A polaron in the hyperbolic plane, Phys. Rev. Lett. 125, 196602 (2020),
doi:10.1103/PhysRevLett.125.196602.

[20] L. Aleksey and M. Feigel’man, Non-equilibrium Sachdev-Ye-Kitaev model with quadratic
perturbation, SciPost Phys. 12, 031 (2022), doi:10.21468/SciPostPhys.12.1.031.

[21] K. Behnia, On the dynamic distinguishibality of nodal quasi-particles in overdoped cuprates,
SciPost Phys. 12, 200 (2022), doi:10.21468/SciPostPhys.12.6.200.

[22] I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur and K. B. Efetov, Granular electronic systems,
Rev. Mod. Phys. 79, 469 (2007), doi:10.1103/RevModPhys.79.469.

[23] J. M. Luttinger, Theory of thermal transport coefficients, Phys. Rev. 135, A1505 (1964),
doi:10.1103/PhysRev.135.A1505.

[24] Y. Gu, A. Kitaev, S. Sachdev and G. Tarnopolsky, Notes on the complex Sachdev-Ye-Kitaev
model, J. High Energy Phys. 02, 157 (2020), doi:10.1007/JHEP02(2020)157.

[25] A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cam-
bridge, UK, ISBN 9780521760829 (2011), doi:10.1017/CBO9781139003667.

[26] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025
(2015), doi:10.1103/PhysRevX.5.041025.

[27] T. Azeyanagi, F. Ferrari and F. I. S. Massolo, Phase diagram of planar matrix quantum
mechanics, tensor, and Sachdev-Ye-Kitaev models, Phys. Rev. Lett. 120, 061602 (2018),
doi:10.1103/PhysRevLett.120.061602.

[28] M. Tikhanovskaya, H. Guo, S. Sachdev and G. Tarnopolsky, Excitation spectra of quan-
tum matter without quasiparticles. I. Sachdev-Ye-Kitaev models, Phys. Rev. B 103, 075142
(2021), doi:10.1103/PhysRevB.103.075142.

[29] K. Efetov, Supersymmetry in disorder and chaos, Cambridge University Press, Cambridge,
UK, ISBN 9780521470971 (1996), doi:10.1017/CBO9780511573057.

[30] E. M. Lifshitz and L. P. Pitaevskii, Statistical physics: Theory of the condensed state, Elsevier,
Amsterdam, Netherlands, ISBN 9780080503509 (1980).

17

https://scipost.org
https://scipost.org/SciPostPhys.13.3.073
https://doi.org/10.1103/PhysRevB.95.155131
https://doi.org/10.1103/PhysRevLett.121.236601
https://doi.org/10.1103/PhysRevLett.125.196602
https://doi.org/10.21468/SciPostPhys.12.1.031
https://doi.org/10.21468/SciPostPhys.12.6.200
https://doi.org/10.1103/RevModPhys.79.469
https://doi.org/10.1103/PhysRev.135.A1505
https://doi.org/10.1007/JHEP02(2020)157
https://doi.org/10.1017/CBO9781139003667
https://doi.org/10.1103/PhysRevX.5.041025
https://doi.org/10.1103/PhysRevLett.120.061602
https://doi.org/10.1103/PhysRevB.103.075142
https://doi.org/10.1017/CBO9780511573057

	Introduction
	The model
	Around SYK solution
	Action in terms of the Green's function G and self-energy 
	Pure SYK solution
	Selection of the soft-mode manifold

	Quadratic action for soft modes in presence of source fields
	Electric and thermal transport at arbitrary frequencies
	Noether's theorem
	Continuity equations
	Hydrodynamic limit
	High-frequency, low-T limit

	Conclusions
	Action and continuity equations in the presence of the sources
	References

