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Abstract

We introduce an algorithm that is able to find the facets of Coulomb diamonds in quan-
tum dot arrays. We simulate these arrays using the constant-interaction model, and
rely only on one-dimensional raster scans (rays) to learn a model of the device using
regularized maximum likelihood estimation. This allows us to determine, for a given
charge state of the device, which transitions exist and what the compensated gate volt-
ages for these are. For smaller devices the simulator can also be used to compute the
exact boundaries of the Coulomb diamonds, which we use to assess that our algorithm
correctly finds the vast majority of transitions with high precision.
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1 Introduction

Semiconductor qubits controlled by gate electrodes provide a promising route to large scale
quantum computation [1]. In these types of systems, individual electrons are confined in
quantum dots (QDs) and qubits are formed, for example, by the spin or charge degrees of
freedom of the electrons. Controlling and manipulating the quantum state of the qubits is
then achieved by applying external voltages via gate electrodes (gate voltages). By carefully
tuning these gate voltages, transitions between different states can be realized, which can then
serve as the computational states for quantum computations. The fabrication of large arrays
(currently going up to 16 quantum dots [2–5]) creates a new challenge, as the simultaneous
manual tuning of many gate voltages quickly becomes infeasible for such large arrays.

Changing the gate voltages and measuring the quantum dot occupations in the sys-
tems ground state leads to a so-called charge-stability diagram (CSD), mapping the high-
dimensional voltage space to that of the number of electrons on each dot. Constructing a
CSD is typically done by performing many two-dimensional raster scans of pairs of gate volt-
ages [3,6]. Based on these raster scans higher-precision line-scans are performed around areas
where the QD occupations change to estimate the normal of the charge transition. Knowing
the location and normal of the transitions allows one to define compensated gate voltages (i.e.
linear combinations of voltages, see below). While this approach is feasible for small arrays
of quantum dots, mapping out the CSD for large arrays quickly becomes a very tedious task.
To date, hand-tuned loading and shuttling of electrons in QD arrays has been achieved with
as large as 8 or 9 quantum dots [2–4]. Automating this process instead is highly desirable,
freeing up valuable time towards more impactful experiments. Moreover, since the number
of control voltages grows linearly with the number of quantum dots, hand-tuning their val-
ues becomes more and more challenging due to cross-talk between the dots. Only recently
did we see the emergence of automatic tuning algorithms, often implemented using machine-
learning [6–12]. These approaches were used only for small arrays, and still lag behind the
results achievable via manual tuning.

In this article, we introduce an algorithm for the automated exploration of large quantum
dot arrays, focusing on the identification of transitions between different charge states without
the need to label transitions. In particular, the algorithm is designed to reliably find single- and
multi-electron charge-state transitions in large quantum dot arrays using simple measurement
primitives. The starting point for our tuning problem is a device that has undergone initial
tuning: barrier gate voltages are chosen such that individual dots have been formed and sensor
dots are tuned to compensate for cross-talk from the individual gate voltages. Moreover, the
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Figure 1: Schematic of a 2 × 3 array of capacitively coupled quantum dots, each
occupied by ni electrons, capacitively coupled to external gate voltages v j described
by a matrix C DG

i j , and coupled to each other via capacitances C DD
ik . For simplicity of

visualisation, the couplings C DG
i j are only shown for i = j. In this device, the number

of gate-voltages G equals the number of dots N = 6.

state-space of the device is explored such that initial states of interest are found (e.g., one
electron on each dot). With this, we only rely on the use of line scans to detect the nearest
transition in a chosen direction, and use a machine-learning model to estimate transitions
from measurements. Compared to previous works on the same tuning step [8,9], we will also
make use of explicit knowledge of the underlying physics to constrain the problem to make
the algorithm more efficient. We restrict ourselves to quantum dot devices described by the
constant interaction model [13], appropriate for instance for arrays of gate-controlled spin
qubits. In such quantum dot arrays, charge configurations are dictated by Coulomb energies
(capacitive coupling), and not by relatively weak tunnel coupling. We further assume that in
such a device, we can realize and measure transitions between charge-states reliably up to
some precision δ.

The algorithm presented in this work is theoretical. Our goal is to answer the question
whether the tuning problem of identifying desired single-and multi-electron transitions is re-
liably possible for large-devices that follow the constant-interaction model exactly. This is a
different starting point than the work in [9] that aimed to develop a practical algorithm that
works on small devices that do not require exact adherence to the constant interaction model,
but ultimately does not scale to the devices considered in this work.

In the rest of this article we first introduce quantum dot arrays more formally, and proceed
with describing the algorithmic solution. We then analyze several relevant scenarios of device
layouts and demonstrate the algorithm’s performance. The outlook then considers possible
relaxations of the assumptions we make along the way.

2 Quantum dot arrays and Coulomb diamonds

We consider devices of N quantum dots with significant charging energies (Ec � kB T) that
are weakly-tunnel coupled to each other and to G external gate electrodes, such as the one
schematically shown in Fig. 1. The gate voltages define a high-dimensional space that can
be divided into regions where the device assumes a certain ground state of QD occupations.
These extended regions are referred to as Coulomb diamonds, because it is the Coulomb
blockade effect that prevents additional electrons from tunneling onto a quantum dot un-
less the potential is large enough [14]. The Coulomb diamonds and transitions between them
can be described well using the constant interaction model [13], which, given gate voltages
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v = (v1, . . . , vG) ∈ RG and quantum dot occupations n= (n1, . . . , nN ) ∈ NN , assigns the system
a free energy given by:

F(n, v) =
1
2
(|e|n− C DG v)T (C DD)−1(|e|n− C DG v) . (1)

Here, |e| is the charge of an electron, C DG ∈ RN×D is a matrix whose entries C DG
i j store

the capacitance between the ith dot and jth gate, and C DD is a matrix whose off-diagonal
elements are inter-dot capacitances. The diagonal elements of C DD are chosen such that
∑N

j C DD
i j −

∑G
k C DG

ik = 0.
A Coulomb diamond is then a volume Pn in the high-dimensional voltage space for which

the system ground state assumes a set of occupations n:

Pn = {v | argmin
r

F(r, v) = n}.

= {v | F(n, v)− F(r, v)≤ 0, ∀r ∈ NN}.

=







v | (r − n)T (C DD)−1C DG
︸ ︷︷ ︸

A

v + bnr ≤ 0, ∀r ∈ NN







≈
�

v | tT Av + bn,n+t ≤ 0, ∀t ∈ {−1, 0,1}N
	

. (2)

These inequalities describe high-dimensional half-spaces, whose boundaries form the facets of
a convex polytope Pn. That is, for a given polytope P with equations {Wkv+bk ≤ 0, k = 1, . . . },
the facets are defined by the sets {v ∈ P|Wkv + bk = 0}, k = 1, . . . . The Wk define
the normals of the facets, and the bk their offsets from the origin. In Eq. 2, the term
bnr =

|e|
2 (n

T (C DD)−1n − rT (C DD)−1r) does not depend on the gate voltages v. The vector
t = r − n describes the changes in occupation of the individual quantum dots when crossing a
facet, and so the inequalities can be intuitively understood as representing a transition t from
a state n to a state n+ t. In the rest of this manuscript we limit the elements t i ∈ {−1,0, 1},
because multiple electrons entering or leaving a dot simultaneously is a process that can be
neglected in practise.

Of special importance is the polytope P0, the set of boundaries of the state with zero elec-
trons on all dots. In this polytope, all transitions add a single electron on a quantum-dot, i.e.
the t are unit vectors, and the normals of the polytope facets are the (scaled) rows of the
matrix A. Knowing the (scaled) matrix A allows one to compute compensated control voltages
u, which are related to the gate voltages via a transformation matrix v = Uu. The coordinate
system of u is chosen such, that ui only affects the potential of dot i. Knowledge of u allows the
device user to mitigate capacitive cross talk within the array, which simplifies the task of tuning
the device. Geometrically, when measured in coordinates of u, the normal of the transition
that adds one electron to the ith dot is parallel to the ith standard basis vector.

In the constant interaction model, the compensated control voltages can be computed by
choosing U such, that A · U is a diagonal matrix, for example by choosing U as the (pseudo-
)inverse of A. This can be verified by inserting the definition of u into equation (2), leading
to

Pn =
�

v | tT AUu+ bn,n+t ≤ 0, ∀t ∈ {−1,0, 1}N
	

.

When t is the ith standard basis vector, then tAU is just a multiple of t. The compensated
control voltages are sometimes referred to as virtual gates in the literature [15] and use of this
technique was paramount in the recently achieved hand-tuned control over 8 and 9 qubits [2,
3].
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Iterate

a) b)

Initial Dataset Terminate if correct

Fit model to data Sample new Points

δ

Figure 2: Graphical depiction of the algorithm for a double dot system. Starting
with an initial dataset, the algorithm repeats steps a) and b) until termination. a)
Algorithm fits model (black lines) to separate points inside the target state (blue) and
outside (orange). b) Line-searches are performed from a common starting point (red
dot) in the direction of a point of each facet of the model (red arrows). Line-searches
produces new pairs of samples (orange/blue dots) with the true boundary (dotted
lines) in-between. The distance between red and blue dots is smaller than δ. See
text for more details.

3 Method

For our method, we assume that the device follows the constant interaction model and that
it is equipped with non-invasive charge sensors that can detect the occurrence of a transition
reliably without influencing the underlying capacitances. Further, we assume that the user
can provide a line-search procedure that performs a raster scan along the line between two
points of gate-voltages vstart and vend, and uses the charge sensors to detect the existence of
a transition reliably along this line. We further assume, that the user can find two points
v−, v+ along this raster scan that bound the position of the transition (i.e. v− and v+ lie on
opposite sides of a transition) and that the user can give a bound of the maximum distance
‖v− − v+‖ ≤ δ.

Our task is to estimate the facets of a polytope Pn as best as we can, so that we can identify
the voltage regions corresponding to fixed quantum dot occupations. While Pn has, in the
worst case, 3N −1 facets, in practice only a small set of transitions is of interest. Our algorithm
therefore starts with a pre-selected list of such transitions that are of relevance to an experi-
ment. For example, we may ask for all single-electron transitions from a specific charge state
(e.g. P0), or transitions that leave the number of electrons unchanged. In many applications,
the set of all "one-electron transitions" is relevant, i.e., transitions in which exactly one electron
moves from one dot to another, or from a reservoir to a dot (or vice versa).

We do not assume that the list is an exhaustive enumeration of all transitions present
in the target polytope, nor that all transitions on the list exist. The algorithm will then use
data gathered by the line-searches to select a subset of existing transitions from the list and
produce a new set of candidate line-search directions in order to refine the dataset and fit the
polytope again. This process is repeated until all transitions selected are well-supported by
the measurements and the transitions which are not selected are similarly ruled out with high
certainty.

The algorithm can be described by alternating two steps, depicted in Figure 2. First, an
initial datasetD of measurements is provided by the user. The dataset consists of pairs of points
(v−i , v+i ), i = 1, . . . ,`, bounding a transition of interest. These pairs of points are acquired by
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the aforementioned line-search procedure. The initial dataset can contain data from line-
searches acquired by picking random directions, but may also include educated guesses of
informative search directions.

The algorithm then proceeds to estimate the set of transitions using a regularized maximum-
likelihood approach (see section 3.1 below). This estimation can be erroneous and may rep-
resent a local optimum, or the initial dataset may have a flaw that makes estimation difficult,
e.g., it does not feature enough data points on each transition to estimate it reliably. Because
of this, we use the estimated model to acquire additional points. We sample a point on each
estimated facet and then perform a line-search from a point inside Pn through this point (see
Figure 2b and Appendix A).

If the estimated model is correct, the points returned by the line-search will bound the
estimated transition. Otherwise, they are an example of an error of the model and can be used
to update the estimate. In either case, they are added to D and a new model is estimated.
This process becomes slightly more complicated due to the existence of transitions for which
the model has low confidence or which are not supported by points in the current dataset. For
these transitions we analyze the learned model and create new candidate facets which we use
to produce informative measurement directions that proof or disprove the existence of these
facets (see Appendix A).

This loop is repeated until we are confident that all transitions found are either correct or
too small to be estimated reliably. For the former, we count the number of pairs (v−i , v+i ) that
are separated by a transition and for the latter, we use the radius of the largest G − 1 dimen-
sional hypersphere that can be inscribed into the facet. For details, we refer to Appendix B.

In the following, we describe the model we have chosen to represent and learn a polytope
and how we make it practical for searching relevant transitions of a given state. We will
focus on the general idea of the model, and provide a running example of the algorithm,
while the detailed descriptions of the steps are given in the appendices. Further, a reference
implementation of the algorithm is available at [16].
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Figure 3: Visualization of classifier h(v) for several choices of model parameters.
Black lines indicate the contour h(v) = 0 while blue (red) pixels indicate h(v) < 0
(h(v) > 0). Figures a) and b) use scaled parameters of Wk and bk from a polytope
of the (1,1) state of a simulated double dot. Parameters are scaled such that the
norms ‖Wk‖ have fixed values. For small norms in a), h(v) = 0 has a rounded shape,
while for larger norms in b) the shape h(v) = 0 approximates the underlying convex
polytope well. Figure c) demonstrates the removal of a facet by moving it outside
the polytope (dashed line).
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Figure 4: Visualization of a toy example of the algorithm for learning the polytope
of the (1,1) state on a simulated double-dot device. Colored background with white
lines represent the different states and boundaries of the device. Background colors
are chosen based on the total number of electrons occupying the device in the state.
a-d) Left: Model (red lines) fit to the measurements (red points, only v− are shown
for ease of visualization). Purple lines: adapted model for sampling to account for
facets that were not found during the fit. Right: Sampling process. for each facet
of the adapted model three line-searches (dashed lines) are performed creating new
pairs of datapoints (black points).

3.1 Estimating the model

To learn a polytope Pn with equations Wkv + bk ≤ 0, k = 1, . . . , M we have to identify the
correct set of transitions and then estimate their parameters. We start with a dataset of point
pairs of gate voltages, D = {v+i , v−i ∈ R

G , i = 1, . . . ,`} with ‖v+i − v−i ‖ ≤ δ, and assume that v−i
belongs to the state n, while v+i belongs to a different state.

We formalize learning the polytope from data as a binary classification task, where the
goal is to find a classifier h that separates all v−i from v+i . We derive this model classifier
from a multi-class logistic regression model, the construction of which is fully contained in
Appendix D:

h(v) = log
M
∑

k=1

exp(W T
k v + bk) . (3)

A point is deemed as inside the polytope if h(v)< 0, and outside otherwise. This model is well
suited for modeling convex polytopes as, when ‖Wk‖ becomes large, the set {v ∈ RG|h(v)≤ 0}
approximates a convex polytope arbitrarily well. This is demonstrated in Figures 3a&3b. Fig-
ure 3c demonstrates that an unnecessary facet can be removed from the model by choosing
its offset bk such, that it is moved away from the polytope.

It is important to note at this point that, while we reuse the name Wk, there are subtle dif-
ferences in their interpretation compared to the earlier use in the polytope P. For the polytope
P, the norm ‖Wk‖ can be chosen arbitrary, while for the probabilistic model the norm carries
additional information: the larger the norm, the more the transition is supported by the data,
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and the sharper the probabilistic model becomes. This also means, that after model fitting,
transitions with small norms need to be handled separately.

While simple, this initial adaptation of the polytope P as statistial model is not practical:
The number of parameters of W is large and there is no easy way to infer which transition
is modeled by a given row Wk. We can considerably improve on this by making use of phys-
ical knowledge of the transitions owing to the constant interaction model as follows. In the
constant interaction model, following (2), each transition has a normal Wk ∝ tkA. Thus, if A
were known, W could be computed easily.

It is possible to estimate a row Ak up to a factor by identifying a transition that adds an
electron on the kth dot and measuring its position and normal (in voltage space). However, the
length of the normal vector remains unknown. To represent this, we decompose A= ΛΓ , where
Λ is a real diagonal matrix and Γ stores the estimated normal vectors. This decomposition is
not strictly necessary from a mathematical point of view, since every change of the norm can be
folded into Gamma by multiplying its rows with a diagonal entry of Lambda. However, during
optimization, it allows us to differentiate learning the direction of the transitions (Γ ) and their
norm (Λ). In our approach, both aspects are handled independently, as we have different prior
knowledge regarding the distribution of directions and their relative norm differences. We will
describe this in more detail in the following.

The matrix Γ can be learned efficiently, by measuring the transitions of the polytope
P0. This polytope has exactly N transitions, one for each dot, and the transitions are
tk = (0, . . . , 0, 1, 0, . . . ), i.e. the unit vector with a 1 at index k. Consequently, tT

k A= Ak, and
hence identifying the transitions of P0 gives a direct estimate of Γ . The entries of Λ can then
be estimated by measuring transitions of electrons from one position in the array to the next.
Moving an electron from position i to position j leads to a transition with normal tT A= A j−Ai .
Using an estimate of the normal, we can find Λ such, that tT A∝ tTΛΓ = Λ j jΓ j −ΛiiΓi .

This logic needs to be translated into our fitting code and model Eq. (3). To obtain an
estimate of Γ , we set W = Γ , and train the model using regularized maximum likelihood using
data v−i , v+i obtained from the device initialized in state n = 0. This problem is non-convex
and highly multi-modal, often resulting in getting trapped in bad fits, especially with only a
small number of data points. For the minimization therefore, we include a regularizer Ω(Γ )
that steers the optimizer away from the bad local optima using prior knowledge of the task.
Knowledge of the physics of the system comes in at this step, where we make use of two
properties that are present in common device designs:

1. For all transitions, we expect the absolute voltage value required to add an electron on
the kth dot to be small

2. We assume that the capacitive coupling between a dot (i.e. its plunger gate) and its gate
electrode dominates the influence of all other gate electrodes. That is, the angle between
the normal of the transition adding an electron on the ith dot and the coordinate axis of
the corresponding gate voltage is small.

More details on how these are implemented are in Appendix E.
Having estimated Γ , we can now proceed with the estimation of W (and b) of the target

polytope Pn. We decompose W = cTA= cTΛΓ , with T a matrix whose rows are the transitions
tk we are interested in, and c a real diagonal matrix that enables sharpening the polytope (see
Figure 3b). A single transition is thus described as

Wk = ckk

N
∑

i=1

tkiΛiiΓi . (4)

Together with a good estimate of Γ , we can now learn Pn using regularized maximum
likelihood given the pairs of data v−i , v+i obtained from line-searches with the device initialized
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in state n. For simplicity, we assume that the rows Γk are normalized s.t. ‖Γk‖ = 1. With this,
we keep Γ fixed and only find the values of the diagonal entries of c, Λ and the vector of offsets
b. We again use regularized maximum likelihood on the probability of assigning the right class
label to the points in a point-pair. Here, too, we add a regularizer that we define in more detail
in Appendix E.

Due to the multi-modality of the solution, the optimisation performance varies a lot
with the initialization for parameters c,Λ and b. If we have no prior knowledge of a pos-
sible shape of the polytope (e.g., in the first iteration), we pick ckk = 1/δ, Λ = IN and
bk = −ckk max`i W T

k v−i . This choice of bk ensures that all points v− are classified correctly
by the initial model and each facet is close to points in the dataset. If we already have a
previous estimate, we choose Λ as the same value from the previous iteration.

3.2 Example

We are now ready to describe one example run of the algorithm. In this example, our goal
is to find the transitions of the n = (1,1) state in a double-dot device. We assume that the
algorithm has already been used to learn Γ from P0. In the (1,1) state, six transitions are
possible: four for adding or removing an electron on a dot (tk = ±(1, 0)T , tk = ±(0,1)T ), and
two for moving an electron from one dot to another (tk = ±(1,−1)T ). Thus, T can be chosen
as a 6x2 matrix with these transitions as rows. After choosing an initial set of four points, the
algorithm proceeds to produce the steps given in Figure 4.

In the first step, the algorithm fits the model (4) to the initial dataset (Figure 4a, Left, red
lines). Since the initial set of points is small, many transitions could not be found. To sample
informative points for these transitions, the estimated values of Γ and Λ from the model-fit are
used to add the missing facets at positions such that all v− are correctly positioned inside the
polytope (See Appendix A). The resulting polytope (Figure 4a, purple lines) is used to generate
line-search directions (dashed lines) by sampling three points on each facet. The line-searches
result in new measurements of the boundaries (black dots). These points are added to the
dataset and then another model is fit (Figure 4b, Left, red lines). Now the model correctly
identified four facets and only the two small transitions are missing, which are then added
again for sampling (purple lines). This is repeated several times until in Step 4, Figure 4d all
facets have been identified. From this point onward, the algorithm continues sampling line-
search directions on all facets which are not supported by enough datapoints, until there are
5 or more points on each facet, at which point the algorithm terminates.

4 Results

We consider six different scenarios to test and demonstrate our algorithm in. Each scenario
is characterized by a different 2D device geometry (c.f. Figure 1) and a different set of target
states or transitions. In all examples we assume for simplicity that the number of gates equals
the number of dots and thus G = N . For each scenario we generate devices with different ca-
pacitance matrices C DD and C DG , using the scheme given in Appendix F. The scheme depends
on a parameter ρ that changes the interaction strength (or cross-talk) between gates and dots.
We generate 20 devices with weak (ρ = 1) and strong (ρ = 3) interaction strength, and es-
timate their ground truth polytopes (see Appendix G). The interaction strengths are chosen
such that the polytopes obtained from ρ = 1 devices are similar to many practical devices,
while for ρ = 3, the resulting polytopes have large distortions, which are likely larger than
encountered in practice and more difficult to estimate, especially for the task of estimating
Γ . The generated device parameters are chosen such that the gate-voltages are measured in
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V and the size of the polytopes are around 0.2 (i.e., a range of 200mV) along each axis. We
consider the following scenarios:

S1 As an example for a sequence of operations involving several states, we select a 3x2 device
and aim to find all transitions needed to exchange a pair of electrons. This exchange
is done in such a way that spin can be preserved and thus electrons can not be posi-
tioned on the same dot, due to the Pauli exclusion principle (i.e., we assume that the
electrons are not known to have different spin). We choose a sequence of transitions
that requires computing polytopes for the following 6 states (the corresponding transi-
tions t are just the differences between consecutive states). Colors indicate the intended
electron positions after an operation:




1 0
0 0
1 0



→





1 0
1 0
0 0



→





1 0
0 1
0 0



→





0 0
1 1
0 0



→





0 0
0 1
1 0



→





0 0
1 0
1 0



→





1 0
0 0
1 0



 .

Here, for each computed polytope, T contains all transitions that add or remove an
electron as well as all transitions of a single electron to a different location.

S2 As an example for a more complex transition involving multiple electrons, we consider a
3x2 device with 3 electrons in a zig-zag configuration. The goal is to find the transition
that lets all electrons simultaneously change side, i.e. we need to find the transition





1 0
0 1
1 0



→





0 1
1 0
0 1



 , t =





−1 1
1 −1
−1 1



 .

To find this facet reliably, we need to include most facets that are near it or intersect with
it. However, we don’t want to include all transitions, since on larger devices, the total
set of all possible transitions would be too large. As a result, we choose T to include the
following transitions:

• t and transitions that can be obtained from t by setting one entry to 0

• Transitions that affect up to two electrons (and 4 locations in the array) simulta-
neously.

The second group includes transitions in which up to two electrons move from one dot
to another, or from a reservoir to a dot (or vice versa).

S3 In a 3x3 device with one electron on each dot, find all transitions that add, remove or move
a single electron. T is chosen using the same principle as in S1.

S4 The same scenario as S3 with a 4x4 device.

S5 The same scenario as S4 but we restrict T further to only include pairwise transitions be-
tween direct neighbours. This means we exclude for example searching for a transition
of an electron from the top-left to the bottom right corner. This reduces the number of
transitions considered from 284 in S4 to 112.

S6 We consider a 4x4 device with one electron on each dot. However, in this case we assume
that we can completely detach the reservoir and thus the device can not exchange elec-
trons with it. Technically, this means that the computed polytopes no longer represent
ground states of the device.
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This way only transitions are possible that keep the amount of electrons constant, i.e.,
transitions t that move electrons within the array, thus tT

1N = 0 (here, 1N denotes
the all-one vector with N entries). These polytopes are special as they are unbounded
independent of the state the device is in, which we show in the following. Assuming
tT
1N = 0, we can compute the normal of a transition Wk = tT

k A. If we take the direction
q = A−1

1N , we obtain
W T

k q = tT
k AA−1

1N = tT
k 1N = 0 .

Thus, the normals of all facets of the polytope are orthogonal to the direction q. From
this follows, that for any point v ∈ Pn, v + tq ∈ Pn, ∀t ∈ R.

To solve this issue and to obtain bounded polytopes, after estimating Γ , we choose N −1
independent vectors orthogonal to q̂ = Γ−1

1 and find the projected polytope in the
resulting N − 1 dimensional subspace. This projection can be computed using a house-
holder reflection matrix that maps the direction q to the first basis vector that can then
be discarded. While the shape of the resulting polytope depends on the chosen Γ , the
polytope will always represent a finite polytope, as long as qT q̂ 6= 0.

For T , we consider all single electron inter-dot transitions in this example. Due to the
fact that the large transitions that include exchanges with the reservoir cannot take place
in this scenario, all N · (N − 1) = 240 such transitions are present on the ground truth
polytope.

In all scenarios, we use our algorithm to estimate Γ and the relevant polytopes, and use two
different choices, δ ∈ {0.001, 0.002}, for the line-search precision. To prevent endless runs we
terminate either when, for computing Γ , more than 4000 line-searches were conducted, or if
for the individual polytopes in a scenario more than 15000 line-searches were conducted. As
lower bound for voltages considered by line-searches, we take vi ≥ −2. As a lower bound for
the size of a facet to be considered we require the radius r of the largest hypersphere that can
be inscribed into it to be r ≥ rmin = 2δ.

As initial datasets, for estimating Γ in a device with N dots, we sample 4N(N + 5) initial
points, a number which worked well empirically in our experiments. As starting point, we
choose v = −21N , the lower bound in all directions and we sample in direction p = exp(2y),
where y ∈ RG is a standard normal variable. This prevents sampling in directions that can
violate the lower bound. This strategy is designed to give enough informative measurements
that allow the algorithm to terminate quickly.

For the target polytopes Pn, we sample N2 initial points. We first create a starting point
for line-searches by sampling a point close to the boundary. This is uninformative and thus
reflects the fact that we often have no good estimate for the center of the polytope. Then we
sample direction vectors uniformly on the unit sphere. This setup only gives little information
of the small facets of the polytope, and thus finding the small facets purely relies on our ability
to sample informative candidate points during the run of the algorithm.

Next, we present our evaluation of the results. We will focus here on measurements for pre-
cision and accuracy of the estimated polytopes. Our results on running time of the algorithm
and required number of line-searches can be found in Appendix H.

4.1 Evaluation of Γ

We first evaluate the results of our algorithm for computing Γ . For this, we evaluate the values
of Γ computed in scenarios S1 (3x2), S3 (3x3) and S4 (4x4). We first evaluated in how many
cases the algorithm succeeded. This means that the algorithm terminated and for each row of
Γ , we found at least N + 3 pairs of samples separated by it.
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(a) Error of normals Γ
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(b) Error of compensated control voltages

Figure 5: Accuracy of the algorithm for estimating normal vectors Γ . We show both
the angular deviations of the estimated rows of Γ to the true values as well as the
misalignment of the compensated coordinate system.
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(a) Fraction of target transitions found
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(b) Relative size of missed transitions

Figure 6: Success rate of the algorithm for computing Pn. Left: fraction of facets
found. We take only facets of the polytope into account that are included in T (e.g.,
"all one-electron transitions") and would be selected by the stopping criterion. Right:
for missed facets, we measure the relative size compared to our stopping criterion.
See the text for more details.

In all our experiments, we only observed failed trials on the 4x4 device with setting ρ = 3,
where the solver could get trapped in a local optimum. This happened in approximately 10%
of trials. This also means that for these trials no other polytopes of the scenario could be
computed and we exclude them from our experiments. Still, all our results reported for S4, S5
and S6 had at least 17 successful trials for ρ = 3 (out of 20 trials).

For the successful trials, we computed the angular differences between Ak and Γk for all dots
and trials and report their 5%,50% and 95% quantiles of the angular errors in all scenarios in
Figure 5a. In all cases, the error is below 0.1 degrees. Further, we measured the correctness by
computing the angle between the transitions of P0 in the coordinate system of the compensated
control voltages (i.e. the angle between the rows of AΓ−1) and the standard basis. This is the
most important metric, since it measures how perpendicular the transitions of P0 are in this
coordinate system and thus, how well the compensation works. Again, we report their 5%,
50% and 95% quantiles in all scenarios in Figure 5b. The error is slightly higher but still below
0.15 degrees.

4.2 Evaluation of Pn

Next, we evaluate the estimated polytope transitions in the six scenarios. Our evaluation
focuses on three different error conditions:
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False Positive The algorithm returns a transition that does not exist on the device.

False Negative The algorithm misses to learn a facet that does exist on the device, is included
in T and has largest inscribed hypersphere radius r ≥ rmin.

Unusable transition An existing transition is found, but the estimates are so poor that using
it results in a different transition.

For false negatives, the condition on size might sound odd at first. After all, we would hope
to find all transitions in T that exist in the polytope. However, our line-searches operate with
limited accuracy, making it impossible to detect facets that are smaller than the accuracy of
the line-search.

This is reflected in the design of the algorithm, as it only returns facets with largest in-
scribed hypersphere radius ≥ rmin = 2δ (See Appendix B). Consequently, it only makes sense
to use the same threshold on the facets of the ground truth polytope to check whether they
should be even considered for comparison. As a result, changing δ effectively changes the
task, as not only the precision of the estimated polytope is changed, but also the ground truth
we compare it to. For example in S4, with δ = 0.002 we only expect to find approximately 80
facets on average, while at δ = 0.001, this number rises to 100.

To evaluate whether a facet is usable, we take the center of the computed largest inscribed
hypersphere on the facets of the estimates polytope and perform a line-search through this
point from inside the polytope. We then evaluate whether the facet hit in the ground truth
polytope has the same label as the label assigned to the transition by the model. This mimics
how a practitioner would use these facets in order to change the ground-state of the device.

In all converged trials, we did not find a single instance of a false positive or of an unusable
transition. This leaves evaluation of false negatives. The fraction of facets found in all scenarios
is shown in Figure 6a. In all scenarios and for all settings, more than 96% of the transitions
have been found and for S6 all facets have been found in all trials.

For the missed facets with radius r ≥ rmin, we computed the relative size-difference r−rmin
rmin

of the radius of the inscribed hypersphere to the stopping criterion. The reported 50% and
95% quantiles are shown in Figure 6b. One can see that for the scenarios S3, S4, S5 and S6 the
missing facets have a difference in radius consistently smaller than 1.1rmin, while for S1 we
observed a few facets being missed with radius r ≈ 2rmin in the case of ρ = 1 and δ = 0.002.
However, this number is based on a total of 7 missed facets over all estimated polytopes.

For scenarios S1 and S2 we were targeting specific (sequences of) transitions. We evaluated
whether the tasks were solved by checking whether all required transitions were found. For
S2 the task was to find a single transition. This was achieved in all but 2 trials in the setting
ρ = 1,δ = 0.002. The remaining 78 trials succeeded. For S1 we had to check whether all
6 transitions were found. For this we made use of the fact that each transition appears as
candidate in two polytopes: either as part of the polytope belonging to the initial state, or
as transition in the polytope from the target state back to the initial state. If any of them
succeeded in finding the transition, we counted the transition as found. With this strategy,
we managed to find the sequence of transitions in all cases but one for ρ = 1,δ = 0.002. In
this case, we found that one of the required facets in the ground truth polytope was smaller
than our cut-off radius and thus the task was not solvable for the algorithm with our chosen
stopping criterion.

5 Discussion

In this manuscript we introduced an algorithm for determining Coulomb diamonds (poly-
topes) in large quantum dot arrays. We used regularized maximum likelihood optimization
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to estimate a model (Eq. 3), and tested it on several scenarios. In almost all of the cases,
the resulting polytopes and transitions were found with high accuracy. Most importantly, our
algorithm did neither return any transition that did not exist on the device, nor mislabeled
any of the transitions it found. Moreover, we showed that we can construct a point on each
facet such, that a linear ramp from a point inside the polytope through it results in the desired
ground state transition.

Additionally, our method for proposing new line-search directions is efficient. Our algo-
rithm required less than 15000 measurements even in devices with 16 dots with up to 100
facets of interest. This places our algorithm within a factor 10 of the minimum amount (G·‖T‖)
of measurements required to verify the learned polytope. This is in contrast to the bounds ob-
tained for the number of line-search directions for uninformed sampling strategies (see The-
orem 2 in [17]), which are exponential in the dimension of the number of dots and which
assume perfect line-search accuracy. The reason for our sample efficiency compared to the
naive bound is our sampling procedure, as visualized in Figure 4. As the size of the estimated
facet is used as part of the sampling process, facets that are believed to be big are sampled
with low density, while in small facets, high density sampling is performed. Since the shape
of the polytopes are dominated by a few large facets, this allows to save many line-searches in
the majority of estimates.

To achieve this, we made several assumptions. First, we use the constant interaction model
to describe the array of quantum dots. We also assume that the devices can realize, and mea-
sure, transitions between ground-state transitions reliably. This means that we can measure
whether an electron moved inside the array and that the device is manufactured such, that
existing electron transitions occur when the device control parameters are chosen accordingly.
For example, an existing transition adding an electron to a quantum dot requires that this
dot can easily exchange electrons with a reservoir and does not need to rely on co-tunneling
events. However, this is not a limitation of the algorithm, but of the device. if a theoreti-
cally existing ground state transition does not occur during our measurements, we can as well
treat the transition as non-existing and we have shown that our algorithm handles missing
transitions gracefully.

Our assumptions on the measurements of transitions are weaker. The only assumption
we make here is that when linearly ramping the gate voltages between vstart and vend, we
can reliably measure whether a transition occurred and that we can determine the transition
voltages with within a precision δ. We do not require that we know which transition occurred
nor how the measurement is conducted. We treat δ as an external parameter: if the sensor
signal is noisy and uncertain, our algorithm will miss facets of the Coulomb diamonds that are
small since they can not be detected reliably anymore.

While the devices we consider are idealized, our work is an important stepping stone to-
wards fully autonomous tuning of these transitions in spin qubit arrays. If we fail to find an
algorithm under the idealized conditions described in this work, we can not expect to find an
algorithm that performs well on a real device. On the other hand, if we find an algorithm
that works reliably, there is hope that this algorithm can be generalized to less favourable
conditions in the future, or that improvements in material design, manufacturing and sensing
progressively narrow the gap. In this case, we have shown that our algorithm provides the
essential tools to program a device reliably.

Still, our algorithm is not perfect. For estimating P0, which is important for computing
compensated control voltages, we have observed that our algorithm does not find the solution
in all cases for large devices. We expect that this problem can be solved simply by re-running
the algorithm with a new set of measurements. Failures here are expected, as the problem
of estimating convex polytopes using a binary classification dataset is known to be a NP-hard
machine-learning problem [18]. Our results also showed that our strategy for obtaining ad-
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ditional measurements does not help to solve the issue: In most trials the algorithm managed
to find the solution with the chosen initial set of randomly sampled points, or not at all. We
suspect that this problem can be solved more efficiently by obtaining measurements not only
of the position of the transition but also of its normal, as has been utilized by experimentalists
in the literature [3]. However, adapting this approach requires a more careful modeling of the
sensor signal, which is outside the scope of our work.

A limitation of our work arises due to the charge sensors themselves. In our algorithm,
we do not model the effects of charge sensing on the constant interaction model, thus adding
the implicit assumption that charge sensors do not interact with it. This is an assumption
that may not be valid in practice, because charge sensors are capacitively coupled to the array
and therefore change the capacitance matrices. Still, our results carry over to weakly coupled
charge sensors, when their effect on the constant interaction model can be approximated by
adapting (2) to

Pn ≈
�

v ∈ RG | tT Av + tT AS vS + bn,n+t ≤ 0, ∀t ∈ {−1,0, 1}N
	

,

where vS is the vector of gate voltages of the sensor gate electrodes and AS is the effect of the
gate electrodes on the dots of the device due to capacitive coupling. In practice, gate-voltages
vS are chosen to compensate for changes of the control voltages v to keep the potential of the
sensor dots constant. This compensation is done by choosing vS as affine linear functions of
v, i.e., vS = US v + bS . The resulting polytope as a function of v using sensor compensation is
described as

PComp
n ≈

�

v | tT (A+ ASUS)
︸ ︷︷ ︸

Ã

v + bn,n+t + tT AS bS

︸ ︷︷ ︸

b̃n,n+t

≤ 0, ∀t ∈ {−1, 0,1}N
�

.

The polytope still abides to the general form of (2), especially the connection of transition t
and its normal, which allows to compute the polytope PComp

0 to obtain an estimate of Ã that

can be used to learn PComp
n with the adapted offset b̃n,n+t . Thus, our proposed algorithm can

still be used to learn the transitions of the compensated gate voltages, assuming that the sensor
compensation function is the same for all polytopes of interest and the number of electrons
on the sensor dot remains constant. We leave more complex interaction of sensors for future
work.

More generally, future work must incorporate more general types of deviations of the de-
vice from the constant interaction model, which requires adaptations of our model and fitting
process. While the work presented here is able to adapt to some deviations due to the freedom
of picking parameters b and Λ, deviations in the normals of the learned facets are currently not
modeled well. This holds especially for deviations that cause the facets of transitions t and −t
(e.g., adding and removing an electron at a dot location) to not be parallel. These deviations
can be described by generalisations of the constant interaction model, in which the capaci-
tance matrices C DD and C DG may depend on the occupation numbers n of the array. These
changes reflect that dots with large ni are typically somewhat larger and thus have typically
larger capacitances, than a dot with small ni .

In this case, using an estimate of Γ obtained in the empty device (P0) might not be a good
description of the normals of the coulomb diamond of a state with large electron occupation.
However, if we still assume that deviations from parallelity in the polytope Pn are small, we
can try to adapt Γ , while learning the polytope. This requires a careful choice of regularisation
and adaptation of the stopping criteria to expect larger errors. For larger deviations, additional
terms must be incorporated into the model.

The assumption of linear transitions is strong, as it is unlikely that the device has perfectly
linear boundaries between ground-states. However, prior work [9] has already shown in prac-
tical application that at least some small devices have coulomb diamonds that are sufficiently
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linear to fit a convex polytope to them, showing that the strategy has the potential to become
practical on some devices.

Compared to our approach, the approach in [9] used much weaker assumptions on the
shape of the polytope, which affects computation time. In their results, computing a polytope
for a 2x2 array took 4 hours, while our approach takes less than 1h on a 4x4 array (scenario
S5). Further, the approach in [9] needs to compute convex hulls and halfspace-intersections
in gate-voltage space, which is a problem that grows exponentially in the size of the array
and becomes infeasible already in 4x4 arrays. Finally, our approach offers the possibility to
only search for a set of transitions of interest, unlike the model-free approach used in [9], that
requires finding all facets of sufficient size.

The possible gains of restricting the search to relevant facets are significant, as our results
on the 4x4 devices in scenarios S4 and S5 showed. The polytopes computed had up to 3700
facets of which 1200 are large enough to be considered by our size cut-off of 2δ. Of these, only
100 were contained in our set of transitions T considered in S4. The comparison of running
times of S4 and S5 reveals that reducing T further not only reduces the computation time, but
also the number of line-searches. In the best case, we observed that reducing the number of
transitions considered by a factor of 2.5, reduces the computation time by factor of 2-3 and
the number of line-searches by 30-50%. In our scenarios, this reduction comes at almost zero
cost in the usability of the result, because almost all single-electron transitions exist between
direct neighbours. Thus, a smart pre-selection of transitions can significantly reduce running
time.

Further, our work does not cover the tuning of additional gate electrodes, for example
"barrier electrodes" that tune the tunnel barriers between the dots. We currently assume that
practitioners can fix those parameters before using our algorithm for estimating Γ and other
polytopes Pn. However, these electrodes are fine-tuned after certain states have been found
(e.g., the state n = (1,1, . . . , 1) or are changed during device operation, and thus affect the
learned polytopes due to capacitive interactions. A full incorporation of these barrier elec-
trodes in our algorithm is therefore a challenge and a desirable next step to allow automatic
tuning of quantum dot arrays.

While our strategy might lead to practical algorithms for some devices, many devices of
interest do not fulfill the linear assumption and curvilinear approaches are required. Our work
does not offer a direct solution for these devices but there is hope that our general approach
to the problem can be adapted to this case. In this work, we took a physical model of the
device and then derived a statistical model from it which we then fit to measurements. This
approach allowed the statistical model to be interpretable and robust, because the learned
parameters are connected to the original physical model, but it also allowed it to abstract away
from most details of the capacitance matrices of the device. For curvilinear devices the first
step would be to devise a sufficient generalization of the constant interaction model that still
allows for efficient analysis to then derive a sufficient generalization of the statistical model. Of
course, devising a proper model does not entail that we can learn or optimize it. For example,
in curvilinear devices, the question of whether a set of points represents a strongly curved
transition or two transitions with an intersection might become difficult to answer given noisy
measurements.

Ultimately, we believe that not all devices can be tuned efficiently, due to the mathematical
difficulty of the tuning task in its most general form. Our work puts very strong assumptions on
devices and shows that when these assumptions are fulfilled, it is possible to find the transitions
of interest, even for the largest devices manufactured to date. Future work then has the task
to weaken the assumptions and show that tuning is still possible. We believe that weakening
the assumptions on the regularity of the convex polytopes (e.g., as the ones obtained from
simulated devices like [19]) are still within reach. Beyond that, we expect that the weakening
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of assumptions comes at so large computational costs, that only smaller devices can be tuned,
at which point layout and manufacturing strategies become more constrained towards devices
that are still tuneable. We see our work as a first step along this line.
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Code and Data Repository

The code (and link to the associated data) can be found at https://github.com/Ulfgard/
quantum_polytopes.

A Sampling

There is a large variation of the size and surface area of facets in a Coulomb diamond. Thus,
it is unlikely that we obtain enough samples for each facet using random sampling alone.
Instead, for general Pn, we will obtain new measurements by constructing points for each
candidate facet of our learned estimate P̃n, through which we perform a line-search. To do
this, we have to handle first that we only have learned a probabilistic model for P̃n. Not all
possible candidates of transitions tk have enough evidence in the model, which is represented
by a small ‖Wk‖. These facets might not exist, or there is not enough evidence in the dataset
to support them. In both cases, the model will likely move the facets outside the polytope.
Our approach is to take these facets, treat them as existing and move them back inside the
polytope. This will likely generate an additional facet to sample new candidate points from.
If the facet does not exist, these points will result in the facet being pushed further away, until
eventually it can only be placed in a corner of the model, which rules it out.

This can be formalized as follows: If ‖Wk‖ ≥ 0.1/δ, we assume that there is sufficient
evidence for it in the model and add the linear equation W T

k v+ bk ≤ 0 to P̃n. If ‖Wk‖< 0.1/δ,
we add a replacement facet W̃ T

k v + b̃k ≤ 0 with W̃k = Wk and b̃k = max`i W̃ T
k v−i . This moves

the facet as much inside the polytope as possible without miss-classifying a point that is known
to be inside v−i .

Afterwards, we can sample points on each facet in P̃n by handling two cases:

• The facet belonging to transition tk intersects with the polytope P̃n in more than one
point. In this case, we can compute the largest inscribed hypersphere on the facet (see
Appendix C) in P̃n as a lower bound on the surface area covered by it. We then sample
three points within the hypersphere uniformly at random. Sampling multiple points al-
lows to quickly find enough points supporting a small facet in order to fulfill our stopping
criterion, see Apendix B. If a facet is already supported by a large number of point pairs,
we skip sampling from it in order to save measurement time.

• The facet belonging to tk does intersect with P̃n in at most a single point.

In this case, we can not sample from the inscribed hypersphere, as the facet does not
exist. Instead, we will find the closest point v ∈ P̃n to the facet and select it as candidate.
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This point is the solution of the LP

max
x

W T
k v

s.t. v ∈ P̃n

∧ vi ≥ li , i = 1, . . . , G ,

where Wk is the normal of the facet belonging to tk in P̃n and li the lower-bound in the
ith gate voltage.

For each of these candidate points we conduct a line-search starting from an estimated mid-
point of the polytope through the sampled points on the boundary. Each line-search returns
another pair (v−, v+) that we add to the dataset. To prevent that multiple copies of similar
points are added to the dataset, we will add new points only if there are no points in the
dataset within a distance of δ/4.

For P0 we decided to use a strategy that ensures that samples are spaced over a wide
surface area of the polytope. Since in our experiments G = N , all facets intersect in a single
point. Thus we can simply sample rays starting from that point along a facet until it hits the
lower bound in any coordinate. Along this ray we can then sample a point on the boundary.
Afterwards we conduct a line-search starting from the lower bound of voltages −21N to the
selected point on the boundary. However, due to our use of a large number of initial points,
this sampling strategy needed to be employed only rarely.

B Termination condition for the algorithm

The stopping criterion of the algorithm is based on a check that for all facets the algorithm
found, we either established that the facet is correct, or that it is too small to be estimated
reliably with the line-search precision available.

We base the check for correctness of a facet on the fact that a plane in G dimensions can be
uniquely defined via G linearly independent points it passes through. Our line-search proce-
dure however, does not produce single points, but point pairs (v−i , v+i ), i = 1, . . . ,` bounding
the transitions of the polytope. While a single plane can pass through multiple points between
a point-pair, finding more than G point-pairs that are separated by the plane gives strong evi-
dence that the facet found by the algorithm is real and that its parameters are correct.

If the facet is small in some direction, the limited precision of the line-search might make
it impossible to reliably estimate its parameters or even disprove its existence. Thus, for each
facet, we compute the radius r of the largest inscribed hypersphere (see Appendix C). We only
consider correctness of equations belonging to facets with radius r > rmin and consider facets
smaller than that as undecided: the algorithm returns them, but does not claim that they are
correct. In our work and evaluation, we consider these facets as non-existing/not found.

In our implementation, we chose rmin = 2δ. Then, for facets with r > rmin, we compute
the number of point pairs in the dataset separated by them. A facet with parameters w, b
separates a point pair (v−, v+)if it holds wT v− + b < 0 and wT v+b > 0. We consider a facet
correct if more than G + 3 point pairs fulfill this condition.

To summarize, the stopping criterion of our algorithm is that for each facet of the polytope
P, either r < rmin or it separates more than G + 3 point pairs.
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C Computing the largest inscribed hypersphere

Given a G dimensional polytope P with linear inequalities W T
k x + bk ≤ 0, k = 1, . . . , M , the

largest inscribed hypersphere B(m, r) = {x | ‖x − m‖ ≤ r} with radius r and midpoint m is
the solution of the problem

max
r,m

r

s.t. x ∈ P, ∀x ∈ B(m, r)

∧ r > 0 .

It can be computed as a solution to the equivalent LP

max
r,m

r

s.t. W T
k m+ bk + ‖Wk‖r ≤ 0, k = 1, . . . , M .

In our application, we need to compute the largest inscribed hypersphere on the ith facet
of P, which is a G − 1 dimensional object. To do this, we first compute the polytope of the
facet fi = {x ∈ P | W T

i x + bi = 0} and find a G − 1 dimensional coordinate representation
for fi , before we can compute the largest inscribed hypersphere. For this, we first compute
a rotation matrix Q, so that W T

i Q = (0, . . . , 0,‖Wi‖), which can be achieved by defining Q as
a householder reflection. With this, we can substitute coordinates x = Qz, and obtain as the
equality constraint of the ith facet W T

i x + bi = W T
i Qz + bi = ‖Wi‖zG + bi = 0. Thus, in this

coordinate system, we obtain immediately that zG = −bi/‖Wi‖ . This allows us to obtain the
G − 1 dimensional description, by rewriting fi in terms of the coordinates in z and removing
the coordinate zG

f̃i =

(

z̃ ∈ RG−1

�

�

�

�

G−1
∑

j=1

(WkQ) j z̃ j + bk − (WkQ)G
bi

‖Wi‖
≤ 0, k 6= i

)

.

With this representation, it is possible to compute the solution of the G − 1 dimensional in-
scribed hypersphere problem. And for any point z̃ in the inscribed sphere the corresponding
G dimensional coordinate becomes

x =Q
�

z̃,−
bi

‖Wi‖

�T

.

D Derivation of the model

To derive our model, we start with a suitable multi-class classification problem, assuming first
that in each line-search we can observe which transition t ∈ T occurred. With this, we can
assign each v+ a label y = 1, . . . , N according to the index of t in T . We will further assign the
label y = 0 to all points v−i ∈ Pn, leading to N + 1 classes in total. We can now create a linear
probabilistic classifier assigning class y to point v via

p(y|v, W, b) =
1

Z(v, w, b)
·

¨

1 if y = 0 ,

exp(W T
y v + bc) if y > 0 .

Here, W ∈ RN×G is the vector of scaled transition normals and Z(v, W, b) =
1+

∑N
k=1 exp(W T

k v+ bk) is the normalization constant. This model is equivalent to multi-class
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logistic regression and knowing the labels, the transitions can be learned easily via maximum-
likelihood estimation.

In reality, we can not observe the label of the transition and instead only observe
whether y = 0 or y > 0 by detecting the presence of a transition between a pair of
points. This leads to a binary classification problem with probabilities p(y = 0|v, W, b) and
p(y > 0|v, W, b) =

∑N
y=1 p(y|v, W, b). The model h can be derived from this via

h(v) = log
p(y > 0|v, W, b)
p(y = 0|v, W, b)

= log
N
∑

k=1

exp(W T
k v + bk) .

This model can be learned using maximum likelihood estimation. Assuming a set of point
pairs (v−i , v+i ), i = 1, . . . ,`, we can assign to each point v−i the label y = 0, as those points are
inside the polytope by assumption. For the points outside, we can only assign that y > 0. With
the previously defined probabilities, we obtain the regularized maximum likelihood objective

max
W,b
−Ω(W, b) +

∑̀

i=1

log p(y = 0|v−i , W, b) + log p(y > 0|v+i , W, b) . (D.1)

Here,Ω is a regularization term. For the training details of the final models trained that include
the assumptions of the constant interaction model, see Appendix E.

E Regularization and Learning

E.1 Learning Γ

For learning Γ , we substitute W = Γ in equation (D.1) and pick a regularizer Ω which steers
the optimizer away from some of the bad local optima using the prior knowledge of the task.
We make use of two properties: a) for all transitions, we expect the absolute voltage value
required to add an electron on the kth dot to be small and b) we expect that the searched
normals are similar to the standard coordinate axis. Based on this, we propose the following
regularizer:

Ω(Γ , b) = α1‖Γ−1 b‖2 +α2

N
∑

k=1

�

1−
Γkk

‖Γk‖

�2

.

The first term computes the intersection of all boundaries and penalizes it based on the squared
distance from the origin. The second term computes the cosine of the angle between the kth
row of Γ and the kth standard basis vector and penalizes the squared distance to cos(0) = 1.

As parameters, we chooseα1 = 100 (assuming that ‖Γ−1 b‖ has units in Volt) andα2 = 100.
We initialize the optimizer by choosing initial values Γ = 1

δ IN and set bk = −
1
δ max`i W T

k v−i .
In the solver, we reparameterized b = −Γq, which, when Γ is invertible is equivalent to

q = −Γ−1 b as in the constraint. This makes solving slightly more numerically stable, as no
inverse of Γ needs to be computed in the regularizer.

E.2 Learning Pn

For learning Pn, we substitute W = cTΛΓ in equation (D.1) due to our model assumption (4).
As we keep Γ and T fixed, the regularized maximum-likelihood objective becomes

max
c,Λ,b
−Ω(c,Λ) +

∑̀

i=1

log p(y = 0|v−i , cTΛΓ , b) + log p(y > 0|v+i , cTΛΓ , b) , (E.1)
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under the constraints that cii ,Λii > 0 and Ω(c,Λ) is again a regularisation term, as defined
below.

We have a bit of knowledge about the parameters from our model that can help guide
the optimizer to a reasonable solution. Since the devices we consider have a regular shape,
the norms of Wk should be similar. Therefore, λii u 1. Further, if the kth facet exist, then
‖v+i − v−i ‖ ≤ δ implies that ‖Wk‖=O( 1

δ ). We can put both together using the regularizer

Ω(c,Λ) =
N
∑

i=1

α1δ
2‖cii t

T
i ΛΓ‖

2 +α2 log2(Λii) .

The first term is a regularizer based on the squared norm of Wk scaled by δ2 to reflect the
expected scale. For candidate transitions that are not found by the optimizer, this term also
drives the norm ‖Wk‖ to zero, which gives an easy condition to filter out transitions which are
not used by the model. The second term penalizes deviations of Λkk from one on log-scale.
This also prevents that the optimal solution of Λkk can become close to zero or negative. Both
terms are weighted by regularization factors α1 and α2. We found that α1 =

1
100 and α2 = 10

worked well in practice.
Finally, in order to remove the positivity constraints from the problem, we performed a

reparameterization: ckk = log(1+ exp(c′kk)) and Λkk = exp(Λ′kk) and then solved for c′kk and
Λ′kk with the fitting reparameterized starting values.

F Device generation

In our experiments, we will simulate 3x2, 3x3 and 4x4 devices. For all devices, we choose the
number of gates equal to number of dots, i.e., G = N . We further assume that the dominating
capacitance of a dot is that of its plunger gate to the gate electrode. The parameter matrices
C DG and C DD of an array of size U × V are randomly generated as follows. We create a
connection matrix C0 for the chosen device layout and create randomized C DD and C DG from
C0 via:

C DG = Sg

�

IN +
ρ

10
C0

�

+ ε ,

C DD = −
ρ

10
SDC0SD +Q .

Here, IN is the N dimensional identity matrix, Sg and SD are diagonal matrices with entries
exp(z), z ∼N (0, 0.01) and ε ∈ RN×N is a noise matrix with entries εi j ∼ Uniform(0,0.02). The
factor ρ governs the interaction strength between dots and gates and finally, Q is a diagonal
matrix that is chosen such, that

∑N
j (C

DD)i j −
∑G

k (C
DG)ik = 0, i = 1, . . . , N . The random

variables Sg , SD and ε model deviations introduced by device manufacturing.
We compute C0 as follows: We pick (C0)i j = 1 if array locations i and j are direct hori-

zontal or vertical neighbours in the array grid. If they are direct diagonal neighbours, we pick
(C0)i j = 0.3, and 0 otherwise. In our experiments, we pick ρ ∈ {1,3}. The higher ρ is, the
less C DD resembles a diagonal matrix and the more the polytope becomes distorted.

G Computing the baseline

Computing the ground truth polytopes of a spin-qubit array based on the constant interaction
model is a hard problem in higher dimensions. When computing the boundaries of a N -
dimensional polytope Pn formed by the constant interaction model where D = N , there are up
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to 3N −1 candidates for linear halfspaces aT
k v+ bk ≤ 0, k = 1, . . . , 3N −1. This initial number

can be reduced considerably in certain cases. For example, if a target state n contains a dot
with ni = 0, we can ignore transitions that remove an electron at that location. Similarly, if
the device is not connected to an external reservoir, we only need to consider transitions that
leave the number of electrons in the array constant. From the remaining candidates, most will
still not intersect with Pn and must be filtered out.

To determine whether a candidate halfspace aT
l v + bl ≤ 0 forms part of the boundary of

Pn, we need to find a point v ∈ Pn such that aT
l v + bl = 0. Since a point fulfilling v ∈ Pn

fulfills aT
k v + bk ≤ 0, for all candidate halfspaces, determining the boundaries that make up a

convex polytope can be done by solving a linear program (LP) for each candidate, where each
LP has up to 3N −2 linear inequalities. This naive approach is not feasible for the large devices
considered in this work.

To reduce computation time, we will use a multi-stage approach for computing candidates.
We use the fact that we can exclude the lth linear boundary, when we find any subset of
candidate inequalities k1 . . . , kK such, that there exists no point v ∈ RN that fulfills aT

l v+bl = 0
and aT

ki
v + bki

≤ 0, i = 1, . . . , K . Thus, if we find a set of likely candidates, we can quickly
remove a large part of halfspaces via this approach by solving relatively small LPs. A suitable
set of candidates are all transitions that add/remove an electron from the device, as well as
all transitions where a single electron moves between dots.

We therefore partition the candidates into batches of 1000 inequalities, adding to each
batch the likely transition candidates described above. We then solve an LP for each candidate
in the batch. Afterwards, we iteratively merge all remaining candidates of all batches and
solve the resulting LPs after each merge. We use this strategy to compute exact polytopes for
N ≤ 9.

For larger arrays, we compute polytopes by only computing transitions involving electron
changes within sub arrays of shape us × vs, usvs ≤ 9. We consider all possible sub arrays
of this shape that are contained with the device layout. For each sub array, we compute all
candidate transitions and merge them, potentially adding additional candidates of interest.
Afterwards, we use the algorithm above to compute the polytope. For example, in a 4x4 grid
with N = 16, we create 3x3 sub arrays. There are 4 ways to fit a 3x3 array into the 4x4 grid,
leading to 4 · (39 − 1) candidate transitions. To this set we add all single electron transitions
that are not contained in any of the blocks. While the number of candidates is still large, this
strategy excludes a large number of transitions. For example, the computed ground truth will
not contain any transition that involve simultaneous changes at more than 9 locations in the
array.

H Runtime

Finally, we consider evaluation times and number of required line searches. For computing Γ ,
almost all trials finished in the first iteration of the algorithm, which means that computation
time was in the order of seconds to minutes, while the number of line-searches was almost
equal to the initial estimate. More interesting is the running time for the full target polytopes,
which we depict in Figures 7a&7b.

Most noteworthy is the comparison of results in S4 and S5, which show the time saved by
reducing the number of transiitons considered. The median number of line searches in these
settings is reduced by 30-50%, while the running time is reduced by 50-70%.
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102 103 104

Total running time (s)

ρ= 1, δ= 0.002

ρ= 1, δ= 0.001

ρ= 3, δ= 0.002

ρ= 3, δ= 0.001

(a) Running time

100 1000 10000
Number of Line-searches

ρ= 1, δ= 0.002

ρ= 1, δ= 0.001

ρ= 3, δ= 0.002

ρ= 3, δ= 0.001

(b) Number of Line Searches

Figure 7: Number of line searches and total running time for estimating the target
polytopes in the different scenarios. Colors and symbols indicate the same scenarios
as Figure 6.
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