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Abstract

The hyperscaling relation and standard finite-size scaling (FSS) are known to break
down above the upper critical dimension due to dangerous irrelevant variables. We
establish a coherent formalism for FSS at quantum phase transitions above the upper
critical dimension following the recently introduced Q-FSS formalism for thermal phase
transitions. Contrary to long-standing belief, the correlation sector is affected by danger-
ous irrelevant variables. The presented formalism recovers a generalized hyperscaling
relation and FSS form. Using this new FSS formalism, we determine the full set of critical
exponents for the long-range transverse-field Ising chain in all criticality regimes ranging
from the nearest-neighbor to the long-range mean-field regime. For the same model, we
also explicitly confirm the effect of dangerous irrelevant variables on the characteristic
length scale.
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1 Introduction

Finite-size scaling (FSS) provides an important tool for extracting critical properties from finite
systems. It allows one to extrapolate to the thermodynamic limit by exploiting the generalized
homogeneity of observables provided by renormalization group (RG) theory [1]. In spite of
being widely used for several decades already, FSS has been insufficiently understood above
the upper critical dimension duc for a long time. In the context of RG theory, FSS [2] has been
proven below the upper critical dimension [3] and the breakdown of which for d > duc has
been identified to be due to the presence of dangerous irrelevant variables (DIV) in the free
energy sector [4,5]. Even though irrelevant variables flow to zero under successive renormal-
ization, a DIV cannot be set to zero as the free energy density f is singular in this limit [4]. In
contrast, the correlation sector was thought to be unaffected by DIV for a long time [4, 6–9].
This breakdown of FSS is often associated with the breakdown of hyperscaling

(d + z)ν= 2−α , (1)

which is clearly violated above the upper critical dimension, where the critical exponents do
not depend on the dimension anymore [6]. Historically, in an attempt to fix FSS above the up-
per critical dimension for thermal phase transitions, an additional characteristic length scale,
the so-called thermodynamic length scale, was introduced [5, 7, 10]. Although this approach
is capable of producing correct results in many frameworks [7, 10–17], the theory does not
capture the full picture in a coherent way [9, 18, 19] as it neither explains the anomalous
scaling of the characteristic length scale ξ [20] nor the anomalous decay of the correlation
function [14,19,21–23] above the upper critical dimension. Moreover, the theory is based on
the disputable claim that the correlation sector is unaffected by the DIV [6–9,19].

Recently, the topic of FSS above the upper critical dimension has been revisited for thermal
phase transitions [9, 18, 19, 24]. By relaxing the claim that the characteristic length scale ξ,
that diverges at the critical point, is bound by the linear system size and allowing the corre-
lation sector to be affected by DIV, they derived a coherent picture of FSS above the upper
critical dimension for classical systems, called Q-FSS [9, 19, 24], and derived a generalized
hyperscaling relation [18,24]. We aim to transfer Q-FSS to quantum phase transitions, which
we refer to as quantum Q-FSS, pointing out the necessary steps while stressing the differences
and connection to the classical counterpart.

Besides the need for a fundamental understanding of FSS, finite-size effects inevitably play
a role in experiments and numerical simulations of finite systems. For systems which can be
modelled by a theory above the upper critical dimension, there is a demand for a generalized
FSS formalism which is also applicable in the regime d > duc. In particular, the upper criti-
cal dimension becomes accessible in low dimensions for systems with unfrustrated long-range
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interactions as these lower the upper critical dimension with respect to the short-range coun-
terparts [25]. These long-range interactions have received a lot of interest in quantum systems
lately as they exhibit remarkable quantum critical properties [26–30].

Algebraically decaying interactions are present in dipolar systems such as Rydberg atoms
[31] and in systems of trapped ions [29,32–42], where the decay exponent of the long-range
couplings ∼ |x|−d−σ can be continuously tuned [29,39–42]. It shall be explicitly stressed that
those experimental platforms realize systems with a mesoscopic number of well-controlled
entities in contrast to solid-state bulk systems.

With vast progress being made in the experimental realization of long-range interacting
quantum systems, the demand for a theoretical understanding of this long-range regime has in-
creased. In particular, the long-range transverse-field Ising model (LRTFIM) with algebraically
decaying Ising couplings has become a paradigmatic model to study the effects of long-range
interactions [25, 43–54]. For a ferromagnetic coupling, those give rise to a continuum of
universality classes for small decay exponents σ going over to a mean-field regime for even
smaller σ [47,48,51–54]. In this regime, simulations of finite systems cannot be extrapolated
to the thermodynamic limit within the standard formalism [52]. Even methods operating in
the thermodynamic limit potentially need to make use of a generalized hyperscaling relation
that is also valid above the upper critical dimension for extracting the whole set of critical
exponents in all criticality regimes.

Following the spirit of classical Q-FSS [18], we provide a quantum Q-FSS formalism unify-
ing the scaling predictions from RG with the criticality known from mean-field calculations. In
the course of this, we will derive – similar to the classical case [18] – a generalized hyperscal-
ing relation which is also valid above the upper critical dimension. We will validate our theory
by applying it to numerical data of the one-dimensional ferromagnetic LRTFIM obtained by
quantum Monte Carlo (QMC) simulations and high-order series expansions using perturbative
continuous unitary transformations (pCUT) and demonstrate the extraction of the full set of
critical exponents using quantum Q-FSS.

The paper is divided into three main parts: Sec. 2 covers the theoretical part of this pa-
per in which we derive quantum Q-FSS, while in Sec. 3 we validate quantum Q-FSS based
on a numerical study of the one-dimensional ferromagnetic LRTFIM. We give a conclusion of
this work in Sec. 4. In detail, we start Sec. 2 with a brief description of the necessary scaling
framework in the vicinity of a continuous quantum phase transition. Adressing the scaling of
finite systems, we first consider the well-behaved scenario below the upper critical dimension
in Sec. 2.1. Quantum Q-FSS is then gradually derived in Sec. 2.2 starting with a treatment of
DIV similar to the classical case which leads to a modified scaling of observables. In Sec. 2.2.1,
a necessary argument that fixes the scaling with the linear system size is transferred to the
quantum case. As the main results, a generalized hyperscaling relation and quantum Q-FSS
are presented in Sec. 2.2.2 and Sec. 2.2.3 respectively. In Sec. 2.2.4 we draw the connec-
tion to classical Q-FSS and discuss different perspectives on the modified scaling above the
upper critical dimension. In Sec. 3 we verify quantum Q-FSS and the generalized hyperscal-
ing relation derived in Sec. 2 by numerically calculating the full set of critical exponents of the
one-dimensional LRTFIM in its three criticality regimes by means of QMC and high-order series
expansions. After introducing the LRTFIM in Sec. 3.1, we briefly introduce the two numerical
methods together with the observables we measure in Sec. 3.2. In Sec. 3.3 we present the
critical exponents directly extracted by the two methods respectively as well as the full set of
critical exponents calculated by using scaling relations including the generalized hyperscaling
relation. Furthermore, we provide numerical evidence that the correlation sector is affected
by DIV by studying the FSS of the characteristic length scale.
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2 Scaling at continuous quantum phase transitions

We consider a system close to a second-order quantum phase transition with three relevant
parameters r, H, T vanishing at the critical point. With r ∼ λ − λc being the distance of the
control parameter λ to the critical control parameter value λc, H denoting the symmetry-
breaking field coupling to the order parameter m and T being the temperature. Without loss
of generality, the system is in its symmetry-broken phase for r < 0 and in the symmetric phase
for r > 0. At the quantum critical point r, H, T = 0, the characteristic length scale ξ diverges
and the physical quantities exhibit singular behavior in the form of power laws, which get
characterized by critical exponents:

χr =
∂ 2 f
∂ r2

∼ |r|−α , m(r → 0−)∼ |r|β , m∼ |H|1/δ , χ =
∂ 2 f
∂ H2

�

�

�

�

H=0
∼ |r|−γ ,

G(q,ω= 0)∼ |q|−(2−η) , ξ∼ |r|−ν ξτ ∼ |r|
−zν .

(2)

Widom proposed the generalized homogeneity of those functions close to a critical point [55,
56], which was later understood within the framework of RG [57]. Extending this generalized
homogeneity to finite systems by including the inverse linear system size 1/L as an additional
relevant parameter is the basis of FSS [1, 58]. Close to the critical point, the singular part
of the free energy density f and characteristic length ξ asymptotically become generalized
homogeneous functions (GHFs) [6,57–60]

f (r, H, T, L−1, u) = b−(d+z) f (b yr r, b yH H, bz T, bL−1, b yuu) , (3)

ξ(r, H, T, L−1, u) = bξ(b yr r, b yH H, bz T, bL−1, b yuu) , (4)

depending on the couplings r, H, T, u and the inverse system length L−1 with the respective
scaling dimensions yr , yH , z > 0, yL = 1, and yu < 0 governing the linearized RG flow with
spatial rescaling factor b > 1 around the RG fixed point, at which all couplings vanish by
definition. All of those couplings are relevant except for u which denotes the leading irrele-
vant coupling [61, 62]. Other irrelevant couplings with scaling dimensions smaller than yu
have already been set to zero as f is assumed to be analytic in these parameters. The scaling
power yr of the control parameter r is related to the critical exponent ν by yr = ν−1 [62].
The generalized homogeneity of the other observables in Eq. (2) follows from the general-
ized homogeneity of f (for details see Ref. [59]), e. g., the generalized homogeneity of the
magnetization

m(r, H, T, L−1, u) = b−(d+z)+yH m(b yr r, b yH H, bz T, bL−1, b yuu) (5)

follows from taking the derivative of f with respect to H.

2.1 Scaling below the upper critical dimension

Below the upper critical dimension, f is an analytic function in u and one can safely set u= 0
in the homogeneity laws, dropping the dependence on u in Eq. (3)

f (r, H, T, L−1) = b−(d+z) f (b yr r, b yH H, bz T, bL−1) , (6)

as well as in the homogeneity laws for the other observables as it was already done for the
other irrelevant couplings.

By probing the singular behavior of the respective GHFs at the critical point approaching
it along one of the principal axes [59], one can relate the scaling dimensions of the relevant
variables with the critical exponents

α= −
d + z − 2yr

yr
, β =

d + z − yH

yr
, δ =

yH

d + z − yH
, γ= −

d + z − 2yH

yr
, (7)
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from which some of the scaling relations, including the hyperscaling relation 2−α= (d+z)ν,
can be extracted when additionally using y−1

r = ν. Expressing the scaling dimensions in
terms of the critical exponents, the homogeneity law for an observable O with bulk divergence
O(r, 0, 0, 0)∼ |r|ω is given by

O(r, H, T, L−1) = b−ωyrO(b yr r, b yH H, bz T, bL−1) (8)

= b−ω/νO(b1/νr, b(β+γ)/νH, bz T, bL−1) , (9)

where Eq. (7) was used to express yH = (β + γ)yr in terms of critical exponents. From that,
FSS is readily obtained by setting b = L, thereby fixing the last entry to bL−1 = 1,

O(r, H, T, L−1) = L−ω/νΨ(L1/νr, L(β+γ)/νH, Lz T ) , (10)

with Ψ being the universal scaling function of the observable O.
However, this FSS only holds for d < duc since u is a DIV above the upper critical dimension,

meaning that f (r, H, T, L−1, u) is singular at u= 0, which renders the homogeneity Eq. (6) for
f (r, H, T, L−1, u= 0)meaningless. We will now explicitly consider the case in which u is a DIV.

2.2 Scaling above the upper critical dimension

As u is a DIV above the upper critical dimension, it cannot be dropped in the homogeneity
relations. Instead, we assume for the singular part of the free energy density for small u [6]

f (r, H, T, L−1, u) = up(d+z) f̄ (upr r, upH H, upT T, upL L−1) , (11)

so that the dependence on u can be absorbed into the other variables up to a global power
p(d+z) of u. This implies a modified scaling for the free energy density [6]

f (r, H, T, L−1) = b−(d+z)∗ f (b y∗r r, b y∗H H, bz∗T, b y∗L L−1) (12)

= L−(d+z)∗/y∗LF(L y∗r /y∗L r, L y∗H/y∗L H, Lz∗/y∗L T ) (13)

by defining the modified scaling powers [6]

(d + z)∗ = (d + z)− p(d+z) yu ,
y∗r = yr + pr yu , y∗H = yH + pH yu ,

z∗ = z + pz yu , y∗L = 1+ pL yu .
(14)

In contrast to the classical case [6], where y∗L was implicitly set to y∗L = yL = 1 by the authors,
we allow y∗L to be distinct from yL . Fixing y∗L is possible because the scaling powers of a GHF
are only determined up to a common non-zero factor [59] such that there is a freedom to set
one non-zero scaling power to an arbitrary non-zero value. We keep the derivation general
and postpone the discussion of specific choices for the absolute values of the modified scaling
powers to Sec. 2.2.4 as it has no impact on the derivation of the generalized hyperscaling
relation (see Sec. 2.2.2) or Q-FSS (see Sec. 2.2.3).

For a long time, the correlation sector was thought to be unaffected by DIV [6–8]. However,
classical Q-FSS [9, 18] showed that the correlation sector needs a reexamination as well [9].
In analogy to classical Q-FSS [9, 18], we therefore allow the characteristic length scale ξ to
be affected by DIV analogous to the free energy sector. This results in the modified scaling
[6,18,24]

ξ(r, H, T, L−1) = b−y∗
ξξ(b y∗r r, b y∗H H, bz∗T, b y∗L L−1) (15)

= LϙΞ(L y∗r /y∗L r, L y∗H/y∗L H, Lz∗/y∗L T ) (16)
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with y∗
ξ
= −1− pξ yu = −y∗r /yr in order to reproduce the correct bulk singularity ξ ∼ |r|−ν

and defining a "pseudocritical exponent"1
ϙ ("koppa"), which is related to the critical exponent

ν by

ϙ=
y∗r

yr y∗L
= ν

y∗r
y∗L

. (17)

Analogous to the case below the upper critial dimension, the modified scaling powers
can be related to the critical exponents by comparing the singularities of the thermodynamic
functions in terms of critical exponents with the singularities of the respective GHFs in terms
of the modified scaling powers. This leads to very similar equations

α= −
(d + z)∗ − 2y∗r

y∗r
, (18)

β =
(d + z)∗ − y∗H

y∗r
, (19)

δ =
y∗H

(d + z)∗ − y∗H
, (20)

γ= −
(d + z)∗ − 2y∗H

y∗r
, (21)

which fix the quotients of the modified scaling powers to

y∗r =
(d + z)∗

2
, y∗H =

3(d + z)∗

4
, (22)

when inserting the mean-field critical exponents α= 0 and δ = 3.
We want to note that it is to be expected that only the ratios of the modified scaling powers

can be fixed as the scaling powers of a GHF can be rescaled with a common non-zero factor
without altering the GHF [59]. Since Eqs. (18) – (21) were extracted from the scaling of
infinite systems, they only relate the modified scaling powers determining the bulk scaling.
In order to extend the scaling to finite systems, the modified scaling power y∗L needs to be
connected to the bulk scaling powers y∗r , y∗H , and (d+z)∗ as well. For this, one has to consider
the scaling of finite systems as it was done for the classical counterpart in Ref. [6]. After
finding this last missing ratio intrinsic to the GHF, the homogeneity relations are completely
determined as the absolute values of the scaling powers are meaningless.

2.2.1 Linking bulk scaling to finite systems

Comparing the finite-size scaling of the order-parameter susceptibility with the scaling of its
modified GHF structure, Binder et al. [6] argued for the classical case that d∗ = d given that
y∗L = 1. By transferring this argument to quantum systems, we will derive a non-trivial relation
for (d + z)∗. Unlike in the original argument [6], we will continue to leave y∗L unspecified to
keep the derivation general. Like Binder et al. [6], we consider the susceptibility in a finite
system at H = T = 0 which, for a quantum system, is given by an infinite integral over
imaginary time

χL = Ld

∫ ∞

0

〈m(τ)m(0)〉L dτ , (23)

1This new exponent ϙ was sometimes called critical exponent [24] as well as pseudocritical exponent [63], but
often simply referred to as "exponent" in the past. We choose to call ϙ a pseudocritical exponent due to its very
similar definition to bulk critical exponents as the ratio of scaling powers defining the power-law behavior of a
thermodynamic quantity in one parameter along its respective principal axis. In contrast to critical exponents, ϙ
defines a power law with respect to a finite linear system size L and is therefore not defined at criticality, at which
L is infinite.
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introducing the short-hand notation OL = O(r, H = 0, T = 0, L−1). In contrast to
the classical case, where m commutes with the Hamiltonian H and the susceptibility re-
duces to χL = Ldβ〈m2〉L , we need to take the scaling due to the imaginary-time integral
into account. As the correlations are expected to decay exponentially in imaginary time
〈m(τ)m(0)〉L ∼ e−∆Lτ〈m2〉L with the finite-size energy gap ∆L ∼ ξ−1

τ,L , the integration gives

χL ∼ Ld



m2
�

L∆
−1
L . (24)

For sufficiently large systems, 〈m2〉L and ∆L take on their bulk values 〈m2〉∞ ∼ |r|
2β and

∆∞ ∼ |r|
zν and the susceptibility scales as

χL ∼ Ld |r|2β |r|−zν , (25)

close to the critical point r = 0. This scaling has to be compatible with the GHF structure of
the susceptibility

χ(r, H, T, L−1) = L[−(d+z)∗+2y∗H ]/y∗LX (L y∗r /y∗L r, L y∗H/y∗L H, Lz∗/y∗L T ) , (26)

that follows from taking the second derivative of Eq. (13) with respect to H. We therefore
require the scaling function X for large L to scale as

lim
x→±∞

X (x , 0, 0)∼ |x |2β−zν , (27)

to reproduce the correct bulk singularity in |r| and further demand

−(d + z)∗ + 2y∗H + (2β − zν)y∗r
y∗L

= d , (28)

in order to match the scaling in L. Using Eq. (19) and ν = 1/yr , we eliminate the critical
exponents β and ν in Eq. (28) and obtain

(d + z)∗ = y∗Ld +
y∗r
yr

z , (29)

which relates the modified scaling power y∗L of the inverse linear system size L−1 with the
modified bulk scaling powers. This is an important step towards deriving a FSS form above
the upper critical dimension as the FSS is governed by the ratio of y∗L with the other modi-
fied scaling powers (see, e. g., Eqs. (13) and (26)). With this, all ratios of modified scaling
powers are known, fixing them up to a common non-zero factor that can be chosen freely (see
Sec. 2.2.4). This global factor does not alter our results which we are about to discuss, starting
with a generalized hyperscaling relation. However, one can already identify two meaningful
choices from Eq. (29): For the choice y∗L = 1 that was also taken for the classical counter-
part [6, 18], (d + z)∗ = d + ϙz and the scaling of imaginary time and temperature seems to
be modified by a factor of ϙ. On the other hand, when leaving the scaling power y∗r = yr un-
modified, (d + z)∗ = d/ϙ+ z and the temperature scaling seems unmodified while the spatial
dimension is reduced by a factor of ϙ.

2.2.2 Generalized hyperscaling relation

Hyperscaling is commonly said to break down above the upper critical dimension due to the
emergence of DIV [5]. We obtain a generalized hyperscaling relation from Eq. (18), which re-
lates the critical exponent α with the modified scaling powers. Inserting Eq. (29) into Eq. (18)
yields

2−α=
�

d
ϙ
+ z
�

ν , (30)
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where it was additionally used that ϙ−1 = y∗L yr/y∗r and ν = y−1
r . This already shows that the

spatial dimensions display anomalous behavior with respect to the conventional hyperscaling
relation, not the imaginary-time dimension.

The generalized hyperscaling relation also yields a way to determine the new pseudocritical
exponent ϙ. The regular hyperscaling relation is still valid at d = duc and relates the mean-field
values for α and ν via 2− α = (duc + z)ν. As the mean-field critical exponents also hold for
d > duc, this relation remains valid above the upper critical dimension. Comparing it with the
generalized hyperscaling relation Eq. (30) gives

ϙ=
d

duc
for d > duc , (31)

for the new pseudocritical exponent. The ratio ϙ/ν = y∗r /y∗L will be of particular importance
in the quantum Q-FSS form describing the finite-size scaling of observables in finite systems
above the upper critical dimension. In the classical case [9, 18, 19, 24], a system with spa-
tial dimension D > Duc and an upper critical dimension Duc has a pseudo-critical exponent
ϙcl = D/Duc that governs the scaling ξL ∼ Lϙcl at the classical critical point. Considering the
quantum-classical mapping and demanding that the exponent ϙ of a quantum system should
coincide with the ϙcl of its classical analogue, the generalization of Q-FSS to the quantum case
would yield ϙ = (d + z)/(duc + z) which clearly differs from Eq. (31) for any non-zero z and
d > duc. This apparent contradiction will be resolved in Sec. 2.2.4 by taking a closer look on
the quantum-classical correspondence.

2.2.3 Quantum Q-Finite-size scaling

As an important result, FSS above the upper critical dimension is derived. Like standard
FSS [2], it predicts the rounding of physical quantities in finite systems with respect to the
bulk behavior. Analogous to the case d < duc, for an observable O with bulk divergence
O(r, 0, 0, 0)∼ |r|ω the GHF structure is given by 2

O(r, H, T, L−1) = b−ωy∗r O(b y∗r r, b(β+γ)y
∗
r H, bz∗T, b y∗L L−1) (32)

= L−ωϙ/νΨ(Lϙ/νr, L(β+γ)ϙ/νH, Lz∗/y∗L T ) . (33)

This also holds for the special case of the characteristic length scale ξ with ω = −ν (see
Eq. (15)). As a result of ϙ 6= 1, the characteristic length scale of a finite system does not scale
linearly with the linear system size at the critical point, but with

ξL ∼ Lϙ . (34)

This is an important, non-trivial consequence of Q-FSS as the characteristic length scale was
formerly thought to be bound by the linear system size [6] until this claim was relaxed by
classical Q-FSS [18,24].

With Eq. (33) and ϙ = d/duc for d > duc, the rounding of finite systems with respect to
the bulk behavior is characterized in terms of a universal scaling function Ψ and the critical
exponents. It can be used to extract critical exponents in a mean-field regime from finite
systems [52, 64]. In Ref. [52], this allowed us to benchmark the employed algorithm in the
numerically challenging regime of long-range interactions.

2We leave the scaling power z∗ of the temperature undetermined in this scaling law. It governs the FSS of the
finite-size gap with∆L ∼ Lz∗ . Based on the modified scaling power (d+z)∗ (see Eq. (29)), z appears to be modified
as z → y∗r

yr
z and we therefore conjecture that z∗ = y∗r

yr
z, because the scaling power (d + z)∗ is the scaling power of

the Euclidean spacetime volume and, similarily, we have a scaling power y∗L for the spatial dimension which is also
reflected in d → y∗L d in Eq. (29).
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In complete analogy to the classical case [19], the definition of ϙ can be extended to d < duc
by setting

ϙ=max
�

1,
d

duc

�

, (35)

such that the FSS form Eq. (33) holds below as well as above the upper critical dimension.
For d < duc, the exponent ϙ= 1 recovers the standard FSS forms and the linear scaling of the
characteristic length scale ξL ∼ L.

2.2.4 Comparing classical and quantum Q-FSS

As for now, the classical and quantum Q-FSS appear analogous, but there are some important
differences to note. The classical pseudocritical exponent ϙcl = D/Duc is also given by the ratio
of the dimension D of the classical system with respect to its upper critical dimension Duc.
However, this means that the exponent ϙ of a quantum system differs from the exponent ϙcl of
its classical D = (d + 1)-dimensional analogue, e. g., for the 4d nearest-neighbor transverse-
field Ising model (TFIM), ϙ = 4/3 (see App. A for numerical evidence), while for its classical
analogue, the 5d classical Ising model, ϙcl = 5/4 [18, 20, 24]. The important difference is
that the quantum system is only finite in d dimensions with the imaginary time dimension –
constituting the additional classical dimension – being infinite at zero temperature. The (d+1)-
dimensional classical analogue of a d-dimensional finite quantum system at zero temperature
therefore has a geometry Ld×∞with d = D−1 finite dimensions and one infinite dimension.3

This is supported by a study of Brézin [3]. He showed for the classical spherical model
that in a geometry LD−1 ×∞, the correlation length at the critical point T = Tc for D > Duc
scales as [3]

ξL ∼ L(D−1)/(Duc−1) , (36)

with the linear system size L. This result was argued to also hold for finite N in the N -vector
model [3], which includes the Ising model for N = 1. The 5d classical Ising model with
geometry L4 ×∞ therefore has a ϙ = (D − 1)/(Duc − 1) = 4/3 which is in line with the
quantum-classical mapping.

The link between classical and quantum Q-FSS is also visible in a certain choice for the
modified scaling powers. Up to now, their absolute values remained unspecified as only their
ratios enter into the generalized hyperscaling relation Eq. (30) and Q-FSS form Eq. (33). As
the characteristic length scale ξ does no longer scale linearly with L for d > duc, one of these
length scales inevitably scales with a scaling power that is unusual for a length scale in RG.
The two choices we consider are given by leaving y∗L = yL = 1 invariant, meaning pL = 0,
or by leaving the scaling power yξ of ξ invariant by setting y∗

ξ
= −y∗r /yr = −1, meaning

pξ = pr = 0. The resulting modified scaling powers are compared for the (LR)TFIM in Tab. 1
and for the classical (long-range) Ising model in Tab. 2.

The first point to note is that, when the scaling power of the characteristic length scale re-
mains the one of a length scale in RG (see the right columns in Tab. 1 and Tab. 2), the modifying
p-factors are equivalent for the quantum and classical model and the absolute values of the
modified bulk scaling powers are equivalent for models in terms of the quantum-classical map-
ping, which is consistent with the equivalence of criticality in terms of the quantum-classical
mapping. Only the scaling power for L−1 differs due to the difference in ϙ and ϙcl. On the
other hand, when choosing the linear system size L to scale as an ordinary length scale in RG,
neither the modifying p-factors nor the modified scaling powers y∗r coincide. Only y∗L = 1 in
both cases coincides by construction.

3In practice, it is sufficient to have a finite inverse temperature β � ξL,τ ∼∆−1
L for which the system does not

feel its finite extent in imaginary time. For larger temperatures we expect a crossover to classical Q-FSS.
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Table 1: Modified scaling powers for the (LR)TFIM when choosing pL = 0 or pr = 0
respectively. The choice pL corresponds to leaving the scaling power of the inverse
system size invariant, while the choice pr leaves the scaling power of the character-
istic length scale invariant.

pL = 0 pr = 0
y∗L yL + pL yu 1 pL = 0 1/ϙ pL = −

1
d

(d + z)∗ d+z−p(d+z) yu d + ϙz pd =
1
3 duc + z pd = −1

y∗r yr + pr yu
2
3 d pr = −

2
3 yr pr = 0

y∗H yH + pH yu
3
4(d + ϙz) pH = −

1
2

3
4(duc + z) pH =

1
2

z∗ z + pz yu ϙz pz = −
1
3 z pz = 0

Table 2: Modified scaling powers for the (long-range) Ising model when choosing
pL = 0 or pr = 0 respectively. The choice pL corresponds to leaving the scaling
power of the inverse system size invariant, while the choice pr leaves the scaling
power of the characteristic length scale invariant.

pL = 0 pr = 0
y∗L yL + pL yu 1 pL = 0 1/ϙcl pL = −

1
D

d∗ d − pd yu d pd = 0 Duc pd = −1
y∗r yr + pr yu

1
2 d pr = −

1
2 yr pr = 0

y∗H yH + pH yu
3
4 d pH = −

1
4

3
4 Duc pH =

1
2

Even though the absolute values of the scaling powers are not important for Q-FSS, we
prefer the picture in which ξ retains its scaling power yξ = −1 as a length scale in RG. Not
only because the modifications of the quantum and classical systems are equivalent by virtue
of the quantum-classical mapping, but also because the length scale ξ is also apparent in bulk
systems. Here, the scaling does not depend on L−1 = 0 and the choice of modified scaling
powers remains meaningful. Moreover, for y∗

ξ
= −1, the bulk scaling powers are independent

of the dimension d just as the criticality is independent of the dimension for d > duc.

3 Application and verification of quantum Q-FSS

So far, we derived a coherent quantum Q-FSS theory with a generalized hyperscaling relation
and FSS forms to extract critical exponents from simulations of finite systems. In this section
we verify this formalism by applying it to the LRTFIM on the linear chain. We compute –
using two independent numerical methods – a full set of critical exponents below and above
the upper critical dimension. On the one hand, we simulate finite systems using stochastic
series expansion (SSE) [65–68] quantum Monte Carlo (QMC) to demonstrate the application
of the FSS scaling forms Eq. (33). On the other hand, we use perturbative continuous unitary
transformations (pCUT) [69, 70], a series-expansion method in the thermodynamic limit, to
demonstrate the application of the generalized hyperscaling relation Eq. (30). Further, we ex-
plicitly calculate the characteristic length scale ξL on finite systems with SSE QMC in order to
demonstrate its scaling with the pseudocritical exponent ϙ and support our claim that the cor-
relation sector is affected by DIV. The raw data used in this work as well as the extracted scaling
dimensions of the respective calculated quantities and their conversion to critical exponents
are provided in Ref. [71].
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3.1 Long-range transverse-field Ising chain

We consider the ferromagnetic LRTFIM on the linear chain. The Hamiltonian is given by

HLRTFIM =
J
2

∑

i 6= j

1
|i − j|1+σ

σz
i σ

z
j − h

∑

j

σx
j , (37)

with Pauli matrices σx/z
i describing spins 1/2 located on lattice sites i. The transverse field is

tuned by the parameter h> 0, while the ferromagnetic Ising coupling is tuned by the parameter
J < 0. The positive parameter (1+σ) governs the decay of the Ising coupling constants, from
a nearest-neighbor model for σ =∞ to an all-to-all coupling for σ = −1.

The model exhibits a continuous quantum phase transition between a field-polarized and
a symmetry-broken ferromagnetic phase for all σ > 0. Its upper critical dimension is lowered
with decreasing decay parameter σ and the universality class of the quantum critical point
varies as a function of this decay parameter. One may identify three different regimes [25],
namely a regime with the well-known (d + 1)-dimensional Ising criticality for large σ, a
long-range Gaussian regime with mean-field criticality for small σ as well as an intermedi-
ate regime with continuously varying critical exponents connecting the two limiting regimes.
Those regimes and, in particular, their boundaries can be understood by means of a field-
theoretical analysis of the critical point [25,53,72] considering the one-component quantum
rotor action [25]

A= 1
2

∫

q,ω

( g̃ω2 + aqσ + bq2 + r)φ̃q,iωφ̃−q,−iω + u

∫

x ,τ

φ4
x ,τ , (38)

with a, b > 0 and r, u being the mass and coupling term [25]. For σ ≥ 2 the leading term in q
recovers the nearest-neighborφ4 Ising action with the (d+1)-dimensional Ising criticality [62].
A detailed analysis of the RG flow of the kinetic sector [53] suggests that this Ising criticality
holds for even smaller decay exponents σ > 2−ηSR with ηSR being the anomalous dimension
of the respective short-range model. By a scaling analysis of the Gaussian theory for σ < 2, it
is possible to derive the long-range mean-field critical exponents [25]

γ= 1, ν=
1
σ

, η= 2−σ , z =
σ

2
. (39)

By inserting these exponents into the hyperscaling relation, the upper critical dimension duc(σ)
can be derived with [25]

2−α= ν(d + z) ,
α=0

−−−−−−→
ν= 1

σ , z=σ2
duc =

3σ
2

. (40)

For the linear chain with d = 1, this results in a regime of mean-field criticality, in which
d > duc, for

σ <
2
3

. (41)

In this regime, standard FSS is not applicable and the critical exponents can be extracted from
finite systems only by means of quantum Q-FSS (see Eq. (33)). Inserting the value for the
upper critical dimension and d = 1 into the expression of the pseudocritical exponent ϙ yields

ϙ=max
�

1,
2

3σ

�

=

¨

1 for σ ≥ 2/3
2

3σ for σ < 2/3
. (42)

In the FSS analysis we will encounter several combinations of critical exponents, for which
the analytic values are known in the limiting cases of the mean-field regime with σ < 2/3 and
of the short-range regime with σ > 2 − ηSR. These combinations of exponents are given in
Tab. 3.
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Table 3: Analytical values in the limiting regimes for the exponents that are directly
accessible by the methods presented in Sec. 3.2.

Regime ν
ϙ

β ϙν γ ϙν zν (2− z −η)ν α

σ < 2/3 σ−1

2/(3σ) =
3
2

1
2 ·

2
3 =

1
3 1 · 2

3 =
2
3

σ
2 ·

1
σ =

1
2 (σ− σ2 )/σ =

1
2 0

σ > 2−ηSR 1 1
2 1 1 2− 1− 1

4 =
3
4 0

3.2 Numerical methods and observables

We study the one-dimensional LRTFIM with two different methods to validate Q-FSS for quan-
tum systems. While SSE operates on finite systems, pCUT operates in the thermodynamic limit.
For the former, we exploit the quantum Q-FSS form Eq. (33) to extract critical exponents from
simulations of finite systems. In both cases, we utilize the generalized hyperscaling relation
Eq. (30) in addition to other scaling relations to extract the full set of critical exponents.

3.2.1 Stochastic series expansion

We use the SSE QMC approach introduced by A. Sandvik to sample the transverse-field Ising
model with arbitrary Ising interactions Ji j on arbitrary graphs [65–68]. The SSE approach is
based on a high temperature expansion of the partition function

Z = Tr
�

e−βH
	

=
∞
∑

n=0

∑

{|α〉}

(−β)n

n!
〈α|Hn|α〉 , (43)

with the idea to extend the configuration space in imaginary time by using an adequate de-
composition H = −

∑

i Hi and rewriting [65–68]

Hn = (−1)n
∑

{Sn}

n
∏

p=1

Hi , (44)

as sequences Sn of the operators Hi . This extended configuration space is then sampled by
a Markov chain. We will not go into the details of the algorithm as we follow precisely the
scheme described in Ref. [52].

The SSE method is a finite-temperature quantum Monte Carlo technique. To obtain
ground-state results, the temperature of the simulation needs to be sufficiently low for the con-
tribution of excited states to the averaged observables to be negligible. A systematic approach
to ensure convergence in temperature within the statistical Monte Carlo error was described
in Ref. [52]. By the application of this scheme, all observables are measured at effectively zero
temperature.

As in Ref. [52], we determine the mean squared magnetization 〈m2〉L for a set of transverse
fields h and system sizes L, where

m=
1
L

∑

i

σz
i (45)

is the order parameter of the investigated quantum phase transition. In this work, we addi-
tionally calculate the order-parameter susceptibility

χL = L

∫ β

0

〈m(τ)m(0)〉L dτ , (46)
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using the algorithm of Sandvik and Kurkijärvi [65].
By performing a data collapse of 〈m2〉L and χL using the scaling predictions from Q-FSS

(see Eq. (33))



m2
�

L (r) = L−2βϙ/νM(Lϙ/νr) ,

χL(r) = Lγϙ/νX (Lϙ/νr) ,
(47)

for vanishing longitudinal field H = 0 and effectively vanishing temperature T = 0 with
r ∼ h − hc and universal scaling functions M and X , we extract the exponents ν/ϙ, βϙ/ν
and γϙ/ν. The data collapse was performed as described in Ref. [52].

In addition to the common critical exponents, we also measure the pseudocritical exponent
ϙ in the mean-field regime by performing a data collapse of the finite-size characteristic length
scale with scaling

ξL(r) = LϙΞ(Lϙ/νr) , (48)

according to Q-FSS. As ν = σ−1 is known from the Gaussian theory, the only free parameters
in the fit are ϙ, hc, and the scaling function Ξ.

For measuring the characteristic length scale ξ, at which the correlations switch to their
long-distance behavior [62,73], we consider the order-parameter correlation function

GL(i − j,ω= 0) =
∂



σz
i

�

L

∂ H j

�

�

�

�

�

H j=0

=

∫ β

0

¬

σz
i (τ)σ

z
j (0)

¶

L
dτ , (49)

with H j being a local longitudinal field coupling to spin σz
j at lattice site j. The correlation

function Eq. (49) is the zero-frequency component of the Fourier transform of the imaginary-
time correlation function

GL(i − j,τ) =
¬

σz
i (τ)σ

z
j (0)

¶

L
, (50)

which also contains information on the dynamics of the system. We are not interested in any
dynamical properties in this study and will therefore only use the zero-frequency correlation
function in Eq. (49) as well as the equal-time correlation function

GL(i − j,τ= 0) =
¬

σz
iσ

z
j

¶

L
. (51)

Using the Fourier transform of the correlation functions for τ = 0 and ω = 0, we extract
the characteristic length scale in the long-range mean-field regime, where the criticality is
described by a Gaussian field theory. The correlation function in Fourier space is given by the
propagator of the long-range Gaussian field theory [25,63]

G̃(q,ω)∼
1

aqσ + g̃ω2 +m2
, (52)

with m the characteristic energy scale, which in terms of the coupling r is given by m2 ∼ |r|.
This yields the zero-frequency and equal-time correlation functions [74]

G̃(q,ω= 0)∼
1

aqσ +m2
, (53)

G̃(q,τ= 0)∼
1

2
p

g̃
p

aqσ +m2
. (54)

For a finite system, the definition of a characteristic length scale in terms of the correlation
function is ambiguous [75]. There are several definitions for ξL which will converge to ξ∞ for
L→∞ [75]. For long-range systems, finding a suitable definition for the characteristic length
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is even more difficult, as the correlation function does not exhibit the usual exponential decay
of gapped systems but decays algebraically even away from the critical point [73]. Common
definitions that are tailored for correlation lengths, which specify the exponential decay of a
correlation function at long distances, such as the second moment

ξ(2)∞ =

√

√

√ 1
2d

∫

|x|2G(x)dx
∫

G(x)dx
, (55)

therefore might yield ξ(2)∞ =∞ in an infinite system not only at the critical point r = 0, but
also for r 6= 0 [76].

We will instead consider the definition [63]

ξ
(LRω)
L =

1
qmin

�

G̃L(0,ω= 0)− G̃L(qmin,ω= 0)
G̃L(qmin,ω= 0)

�1/σ

, (56)

with qmin = 2π/L the smallest wavevector fitting on the finite lattice. By inserting Eq. (53)

ξ
(LRω)
L =

1
qmin

�

aqσmin +m2
L

m2
L

− 1

�1/σ

= a1/σm−2/σ
L , (57)

the momentum dependency cancels.4 In case of the equal-time correlation function, we use
the square of G̃(q,τ= 0) in order to remove the square-root in Eq. (54) which yields a slightly
modified formula

ξ
(LRτ)
L =

1
qmin

�

G̃2
L(0,τ= 0)− G̃2

L(qmin,τ= 0)

G̃2
L(qmin,τ= 0)

�1/σ

= a1/σm−2/σ
L , (58)

for the same quantity. In the limit L →∞, the estimates for the characteristic length exhibit
the correct singularity

ξ(LR)
∞ = a1/σm−2/σ

∞ ∼ |r|−1/σ ∼ |r|−ν . (59)

3.2.2 Perturbative continuous unitary transformations

We also use high-order series expansions in the thermodynamic limit employing the method of
perturbative continuous unitary transformations (pCUT) [69,70] to extract critical exponents.
The pCUT method comes with the prerequisite that the Hamiltonian must take the form

H =H0 +V = E0 +Q+
N
∑

m=−N

Tm , (60)

with the unperturbed Hamiltonian H0 = E0 +Q where E0 is the unperturbed ground-state
energy, Q counts the number of quasi-particles, and the perturbation V which must decom-
pose into a sum of operators Tm that change the system’s energy by m quanta such that
[Q, Tm] = mTm. The fundamental idea of pCUT is to transform the original Hamilitonian
H perturbatively order by order into an effective quasiparticle-conserving Hamiltonian Heff
mapping the complicated many-body problem to an easier effective few-body problem with
[Q,Heff] = 0. The effective Hamiltonian Heff contains products of Tm operators with exact
rational coefficients and is independent of the exact form of H [69]. Similarly, observables

4It is important that we use a zero-momentum quantity to observe the anomalous scaling of the characteristic
length scale because only zero-momentum quantities are affected by DIV for periodic boundary conditions. A
detailed analysis of the role of Fourier modes can be found in Ref. [9].
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O can be mapped to effective observables Oeff resulting in an expression analogous to the
Hamiltonian. However, the quasiparticle-conserving property is lost [70].

These model-independent expressions of the effective Hamiltonian and observables
come at the cost of a second, model-dependent step, where the Hamiltonian must be normal-
ordered. This is usually done by a full-graph decomposition applying the effective Hamilto-
nian or observable to topologically distinct finite clusters exploiting the linked-cluster theorem
which states that only linked processes have an overall contribution to cluster-additive quanti-
ties [77]. For long-range interactions, linked-cluster expansions are only feasible using white
graphs [47, 48, 77]. This means that additional information is encoded into a multivariable
polynomial during the application of pCUT while edge colors (colors would correspond to dis-
tinct distances between interacting sites) on graphs are ignored in the topological classification
of white graphs reducing the amount of contributing graphs to a finite number [47,48,51,77].

After employing the pCUT method on white graphs, the resulting contributions must be
embedded on the infinite chain to determine the contributions in the thermodynamic limit. For
each realization of a graph on the lattice, every variable of the multivariable polynomial must
be replaced by the proper coupling strength ∼ |i− j|−1−σ. Due to the hard-core constraint that
graph vertices must not overlap, the embedding procedure is equivalent to evaluating infinite
nested sums. As the sums become quite tedious, it is advantageous to evaluate them using
Markov chain Monte Carlo integration [47]. For a generic quantity κ, the embedding problem
can be written as

κ=
∑

n

cκnλ
n , cκn =

n+1
∑

N=2

S[ fN ] , (61)

where S[·] is the Monte Carlo sum over all possible configurations and fN contains all graph
contributions from graphs with N vertices since the sums are identical for a given number of
graph vertices.

To extract the critical point and exponents beyond the radius of convergence of the pure
perturbative series we use DlogPadé extrapolations as described in Ref. [78]. We define the
Padé extrapolant

P[L, M]D =
PL(λ)

QM (λ)
=

p0 + p1λ+ · · ·+ pLλ
L

1+ q1λ+ · · ·+ qMλM
, (62)

with pi , qi ∈ R of the logarithmic derivative D(λ) = d
dλ ln(κ) with a physical quantity κ which

is given as a perturbative series up to order r. The extrapolant is determined such that its
Taylor expansion up to order r − 1 = L + M must recover the series of D(λ). The DlogPadé
extrapolant of κ is then defined as

dP[L, M]κ = exp

�

∫ λ

0

P[L, M]D dλ′
�

. (63)

Given a dominant power-law behavior κ ∼ |λ − λc|−θ , an estimate for the critical point λc
can be determined by analyzing the poles of P[L, M]D as well as for the exponent calculating
the residuum Res P[L, M]D|λ=λc

at the physical pole. If λc is known, we can define biased
DlogPadés by the Padé extrapolant P[L, M]θ ∗ of θ ∗ = (λc −λ)

d
dλ ln(κ). As before, the critical

exponent θ can be determined by the residuum of P[L, M]θ ∗ at the physical pole. If further the
exponent θ̂ of the multiplicative logartihmic correction to the dominant power-law is known
θ ∗ = (λc −λ)

d
dλ ln(κ) + θ̂ / ln(1−λ/λc) can be used.

Now, turning to the LRTFIM in Eq. (37), we perform high-oder series expansions about the
high-field limit h� J . The reference state |ref〉 in the unperturbed limit is the fully polarized
state |→ · · · →〉 with local spin-flips

�

�← j

�

at arbitrary positions j as elementary excitations. By
rescaling the energy spectrum of the Hamiltonian with 1/2h and using the Matsubara-Matsuda

15

https://scipost.org
https://scipost.org/SciPostPhys.13.4.088


SciPost Phys. 13, 088 (2022)

transformation [79] to express the Hamiltonian in terms of hard-core boson operators b(†)j ,
we arrive at

H = E0 +Q+
∑

i< j

λ(i − j)
�

b†
i b j + b†

i b†
j +H.c.

�

, (64)

with the unperturbed ground-state energy E0 = −N/2 with N the number of sites,
Q =

∑

i b†
i bi counting the number of quasiparticles (QPs), and the coupling term

λ(i − j) = J/2h × |i − j|−1−σ. After normal-ordering and Fourier transformation, the effec-
tive 1QP Hamiltonian becomes

H̃1QP
eff = Ē0 +

∑

k

ω(k)b†
k bk , (65)

where Ē0 is the ground-state energy andω(k) the 1QP dispersion. Note that we do not consider
multi-QP properties in this work. With the Hamiltonian in this form, the control-parameter
susceptibility and the 1QP excitation gap can be directly determined by

χr =
d2 Ē0

dλ2
, ∆=min

k
ω(k) , (66)

with the minimum at kcrit = 0. Further, we choose to calculate the 1QP static spectral weight
as an observable. Starting from the usual definition of the static structure factor and exploiting
that it decomposes into a sum of spectral weights, we arrive at

S1QP(k) =
�

�

�〈k|σz
eff,k |ref〉

�

�

�

2
= |s(k)|2 , (67)

with σz,1QP
eff,k = s(k)(b†

k + bk) being the effective Pauli z-operator in second quantization re-
stricted to the 1QP channel. Finally, we note the well-known critical behavior

χr ∼ |λ−λc|−α , ∆∼ |λ−λc|zν , S1QP(kcrit)∼ |λ−λc|−(2−z−η)ν , (68)

of the control-parameter susceptibility, the 1QP excitation gap, and the 1QP static spectral
weight. Here, we calculated the ground-state energy to order 14, the elementary excitation gap
to order 11 and the 1QP spectral weight to order 10 in the perturbation parameter. Compared
to Ref. [47], we were able to add two more perturbative orders to the gap series. Furthermore,
it should be stressed that the pCUT approach for long-range interactions was only applied to
the 1QP excitation gap so far [47,50,51] and is here extended to the ground-state energy and
to observables, specifically to the 1QP spectral weight. For a more elaborate discussion on the
recent progress of the pCUT approach for long-range systems we refer to Ref. [80].

3.3 Full set of critical exponents and the pseudocritical exponent ϙ

We now present the critical exponents of the ferromagnetic LRTFIM for different decay expo-
nents σ ∈ [0.1,3]. This includes the long-range mean-field regime 0< σ < 2/3, the interme-
diate regime 2/3< σ < 2−ηSR, as well as the onset of short-range criticality for σ > 2−ηSR.
In addition, we will present the pseudocritical exponent ϙ extracted for different decay expo-
nents in the long-range mean-field regime. Before we show the full set of critical exponents, we
first present the exponents directly extracted by SSE and pCUT in Fig. 1 and Fig. 2 respectively.

For SSE, those are the exponents ν/ϙ and βϙ/ν determined by a data collapse of the mean
squared magnetization 〈m2〉L as well as γϙ/ν determined by a data collapse of the order-
parameter susceptibility χL . In the long-range mean-field regime, the extracted exponents
agree well with the field-theoretical predictions with small systematic shifts of 1−2% towards
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Figure 1: Exponents extracted by data collapses of the SSE data as a function of
the decay parameter σ. The field-theoretical predictions in the long-range mean-
field regime with σ < 2/3 (see Tab. 3: ν/ϙ = 3/2, βϙ/ν = 1/3, γϙ/ν = 2/3) as
well as the well-known 2d Ising critical exponents in the short-range regime σ > 2
(see Tab. 3: ν/ϙ = 1, βϙ/ν = 1/2, γϙ/ν = 1) are depicted by black dashed lines.
The expected shift of the short-range regime to σ > 2− ηSR [53] is not reflected in
the exponents due to a rounding at the boundary. The raw data used to extract the
exponents and the numerical values of the exponents are provided in Ref. [71].

larger values (ν/ϙ and βϙ/ν) and of 3− 4% towards smaller values (γϙ/ν). This shows that
the Q-FSS form Eq. (33) indeed predicts the FSS of those observables correctly. The boundary
to the intermediate regime is rounded and at σ = 2/3, where d = duc, there is a large shift
due to the occurence of multiplicative logarithmic corrections to scaling [81–86] which we did
not take into account. In the intermediate regime, the exponents flow monotonously to the
well-known critical exponents of the short-range model [87] with the boundary between in-
termediate and short-range regime being rounded. The short-range exponents are in excellent
agreement with the ones from the analytic solution [87].

For pCUT, the exponents zν, (2 − z − η)ν, and α defined in Eq. (68) are determined us-
ing (biased) DlogPadé extrapolants from high-order series of the associated quantities. The
exponents zν and (2− z − η)ν are in good agreement with the theoretical predictions in the
long-range mean-field regime as well as in the nearest-neighbor regime apart from small sys-
tematic offsets. The large deviation at the upper critical dimension at σ = 2/3 arises from
the presence of multiplicative logarithmic corrections to the dominant power-law behavior
in the vicinity of the critical point [81–86]. For σ < 0.4, the exponents deviate from the
field-theoretical predictions by less than 1.1% for zν and by less than 1.0% for (2− z − η)ν.
Further, it should be noted that the spectral-weight exponent resolves the boundary between
the intermediate and nearest-neighbor regime better than the gap exponent. The behavior of
the exponent α is more subtle as the exponent is expected to be zero everywhere apart from
the intermediate regime [25, 87]. In fact, the dominant divergence at the upper-critical di-
mension as well as in the nearest-neighbor regime is logarithmic which makes the extraction
of the exponent demanding. In the nearest-neighbor regime, we account for this logarithmic
divergence by using DlogPadé extrapolants biased with the expected logarithmic exponent
one [88]. However, this results in a jump at the boundary to the intermediate regime where
unknown subleading terms to scaling are to be expected that we cannot take into account.
Moreover, the deviation from the expected constant mean-field exponent for σ < 2/3 arises
due to the presence of the dominant logarithmic divergence at the upper critical dimension
σ = 2/3 [81, 83–85] influencing the extrapolations for σ ≤ 2/3. It should be noted that the
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Figure 2: Exponents extracted by (biased) DlogPadé extrapolants of high-order se-
ries from pCUT as a function of the decay parameter σ. The field-theoretical pre-
dictions in the long-range mean-field regime with σ < 2/3 (see Tab. 3: zν = 1/2,
(2− z −η)ν = 1/2, α = 0) as well as the well-known short-range critical exponents
in the short-range regime σ > 2−ηSR [53] (see Tab. 3: zν= 1/2, (2−z−η)ν= 3/4,
α= 0) are depicted by black dashed lines. The raw data used to extract the exponents
and the numerical values of the exponents are provided in Ref. [71].

direct determination of α is certainly challenging for any numerical technique due to its pecu-
liar behavior.

By means of each method, we extracted a set of three independent critical exponents, re-
spectively. The full set of critical exponents was determined using the generalized hyperscal-
ing relation as well as the other common scaling relations. This full set of critical exponents
is depicted in Fig. 3. All exponents agree well with the predictions from field-theory in the
long-range mean-field regime σ < 2/3 up to the small systematic shifts propagating in the
conversion of exponents. The noteable deviation of β for small σ using the pCUT method
can be understood by error propagation of α. Analogous, the kinks at σ = 2 − ηSR visible
for most of the pCUT exponents come from the methodological artifact of the extraction of α
at the boundary between the nearest-neighbor regime and continuously varying exponents.
Combining the exponents zν and (2− z − η)ν from pCUT with the exponent α from SSE to
compensate the deficiency of extracting α directly, the exponents can be further improved in
the long-range mean-field and intermediate regime. However, the rounding of the exponents
at the boundary to the nearest-neighbor regime deteriorates.

The results verify the Q-FSS form Eq. (33) that was used for the data collapse of SSE data as
well as the generalized hyperscaling relation Eq. (30) that was used to convert the exponents
from both algorithms. Moreover, the study of the long-range mean-field regime ensures that
the employed algorithms are capable of investigating the demanding regime of long-range
interaction with high accuracy. To the best of our knowledge, the full set of critical exponents
in the non-trivial intermediate regime is reported for the first time. Previous studies deduced
up to two critical exponents [52–54]. We want to note that the bump in the exponent α for
σ § 2/3 is not an artifact due to rounding at the boundary and corrections to the dominant
power-law behavior close to the critical point, but is also reflected in data of functional RG
calculations [53] when converting ν and z of Ref. [53] to α using hyperscaling. The bump
seen in the QMC data when tuning the decay exponent from the short-range regime to the
long-range mean-field regime is very similar to the "bump" when tuning the dimension of the
respective short-range model from d = 2 to d = 4 with α= 0 for d = 2 and d > 4= duc while,
in between, α= 0.110087(12) for d = 3 [89]. The remaining exponents interpolate smoothly
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Figure 3: Full set of critical exponents as a function of the decay parameter σ ex-
tracted by SSE (×), pCUT (◊), and pCUT with the α from SSE (◦). The predic-
tions for the long-range mean-field and short-range criticality are depicted by black
dashed lines for σ < 2/3 and σ > 2 − ηSR respectively. For α, we additionally
added converted data from functional RG (see Ref. [53], •) to compare the bump
in the intermediate regime. The raw data used to extract the exponents and the
numerical values of the critical exponents are provided in Ref. [71].
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Figure 4: Pseudo-critical exponent ϙ as a function of the decay parameter σ. ϙ was
extracted by data collapses of the finite-size characteristic length scale ξ(LRω)

L (see

Eq. (56)) and ξ(LRτ)
L (see Eq. (58)). Both agree within error with the predictions of

ϙ = d
duc

in the mean-field regime σ < 2
3 and clearly outrule the long-standing belief

that ξ ∼ L. The data of the characteristic length scale used to extract ϙ and the
numerical values of ϙ are provided in Ref. [71].

between the long-range mean-field and short-range regimes.
The Q-FSS approach becomes essential in the long-range mean-field regime. In Fig. 4, we

show the pseudocritical exponent ϙ, deduced from the data collapse of the finite-size charac-
teristic length scales Eqs. (56) and (58). Within error, our results agree with the prediction
of ϙ = max(1, d/duc) derived in Sec. 2.2. Our results clearly rule out the long-standing belief
that the correlation sector is unaffected by DIV, i. e., ϙ= 1 (gray dashed line in Fig. 4).

4 Conclusion

We derived a coherent formalism of FSS above the upper critical dimension for continu-
ous quantum phase transitions and confirmed the results numerically by means of the one-
dimensional LRTFIM. Our analysis shows that the Q-FSS formalism developed in Ref. [9, 18,
19, 24, 90] for classical systems can be transferred to quantum phase transitions. This pro-
vides a tool to extract the critical exponents for continuous quantum phase transitions above
the upper critical dimension from finite-system simulations which is especially useful for un-
frustrated long-range interacting systems, where the upper critical dimension is experimentally
accessible.

Although the derivation of critical exponents above the upper critical dimension can be
easily performed with mean-field considerations, we stress the non-trivial nature of deriving
the same exponents using FSS. The extraction of these critical exponents from finite systems is
in and of itself an achievement, which is especially handy to test a method and its accuracy in
the context of numerically challenging long-range models as the expected critical exponents
are known.

In addition to the possibility of extracting critical exponents, we also introduced a general-
ized hyperscaling relation. We demonstrated the application of this generalized hyperscaling
relation to derive a full set of critical exponents by means of two independent methods with
pCUT being a method operating in the thermodynamic limit. This generalized hyperscaling
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relation makes it possible to perform conversions requiring the hyperscaling relation above the
upper critical dimension.

Apart from the mean-field critical exponents extracted and converted by Q-FSS, we fur-
ther present a full set of critical exponents for the one-dimensional LRTFIM in the non-trivial
regime of intermediate decay exponents, whereas former studies [52–54] only extracted up
to two independent critical exponents.

So far, we applied the formalism only to numerical data, but a certainly formidable appli-
cation would be to extract critical exponents above the upper critical dimension from experi-
mentally measured observable curves using quantum simulators and applying our approach.
This would build a bridge all the way from DIV in the RG flow down to an experimental real-
ization. In this context, we want to note that the boundary conditions play an important role
for FSS above the upper critical dimension as the Fourier modes affected by DIV were found to
depend on the choice of boundary conditions [9]. For periodic boundary conditions, which are
often the first choice in numerical studies but not necessarily in experimental realizations, the
zero-momentum observables such as the uniform magnetization are affected by DIV leading
to Q-FSS [9], while for free boundary condition other Fourier modes are affected by DIV (see
Ref. [9] for details).

Another aspect of our work is the discussion of the connection to the classical Q-FSS the-
ory. Understanding the connection between the classical and quantum case, paves the way
to transfer further findings of the classical Q-FSS theory. Possible further studies regarding
quantum Q-FSS include an in-depth discussion of the correlation sector in analogy to classical
Q-FSS [19], which resulted in an additional η-like critical exponent ηϙ and a corresponding
new scaling relation [19]. Furthermore, one could also numerically validate quantum Q-FSS
for free boundary conditions where applicable [9] or, conversely, validate FSS with the un-
modified scaling powers from Gaussian theory for Fourier modes not affected by DIV [9].

Besides systems above the upper critical dimension, there are also other models for which
hyperscaling breaks down. In particular, in disordered systems this can also happen due to the
appearance of dangerous irrelevant variables [8,91].
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A 4d nearest-neighbor transverse-field Ising model

In order to draw the connection between classical and quantum Q-FSS, it is instructive to
consider the 4d nearest-neighbor TFIM as it corresponds to the 5d classical nearest-neighbor
Ising model. The Hamiltonian of the nearest-neighbor TFIM is given by

H = J
∑

〈i, j〉

σz
iσ

z
j − h

∑

i

σx
i , (69)
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Figure 5: Data collapse of the squared magnetization (left) and the order-parameter
susceptibility (right) for the 4d nearest-neighbor TFIM according to Eq. (70). The
critical exponents with mean-field values ν = 1/2, β = 1/2 and γ = 1 were kept fix
in the fit. The raw data used for these data collapses is provided in Ref. [71].

with the sum being restricted to pairs 〈i, j〉 of nearest-neighbor sites. The universality of this
model in d dimensions is the (d + 1)-dimensional classical Ising universality by virtue of the
quantum-classical mapping [62, 92]. The upper critical dimension is duc = 3, making the 4d
model the lowest-dimensional representative with d > duc. According to quantum Q-FSS,
ϙ = d/duc = 4/3, while for the 5d classical analogue, ϙcl = D/Duc = 5/4 [18, 20, 24]. To
provide data for this discrepancy, which got explained in Sec. 2.2.4, we perform a data collapse
of the squared order parameter 〈m2〉L and order-parameter susceptibility χL (see Eq. (33))




m2
�

L (r) = L−2βϙ/νM(Lϙ/νr) ,

χL(r) = Lγϙ/νX (Lϙ/νr) ,
(70)

while fixing the mean-field critical exponents ν = 1/2, β = 1/2 and γ = 1. The collapses of
the data are shown in Fig. 5 together with the respective exponents and critical field values.
Both fits yield an exponent ϙ

ϙm2 = 1.3310(9) ,

ϙχ = 1.326(9)
(71)

very close to the prediction ϙ= 4/3.
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