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Abstract

We consider a 2D quantum spin model with ring-exchange interaction that has sub-
system symmetries associated to conserved magnetization along rows and columns of a
square lattice, which implies the conservation of the global dipole moment. The model is
not integrable, but violates the eigenstate thermalization hypothesis through an exten-
sive Hilbert space fragmentation, including an exponential number of inert subsectors
with trivial dynamics, arising from kinetic constraints. While subsystem symmetries are
quite restrictive for the dynamics, we show that they alone cannot account for such a
number of inert states, even with infinite-range interactions. We present a procedure
for constructing shielding structures that can separate and disentangle dynamically ac-
tive regions from each other. Notably, subsystem symmetries allow the thickness of the
shields to be dependent only on the interaction range rather than on the size of the active
regions, unlike in the case of generic dipole-conserving systems.
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1 Introduction

A question that provokes a lot of research in the field of non-equilibrium dynamics of quantum
systems is whether an isolated quantum system eventually comes to an equilibrium (“thermal-
izes"). An isolated quantum system is said to thermalize if in the thermodynamic limit and
at long times, for any small subsystem the rest of the system acts as a thermal bath [1]. The
renowned Eigenstate Thermalization Hypothesis (ETH) [2–4] implies that in generic thermal-
izing quantum systems all eigenstates in the bulk of the spectrum are thermal, meaning that
average values of local observables saturate to values dictated by a thermal ensemble at the
temperature set by the eigenenergy [5].

Two widely known classes of non-thermalizing systems, where ETH does not hold, are
integrable systems and many-body localized (MBL) systems. In both cases ergodicity is pre-
vented by the existence of an extensive number of conserved quantities. In the former case,
they are directly encoded in the Hamiltonian, while in the latter case, emergent local inte-
grals of motion are created by strong disorder. Apart from these two instances, ETH was
believed to hold true in generic non-integrable models and has been extensively tested numer-
ically [4,6–14]. However, more recently a possibility for eigenstates to behave non-thermally
in non-integrable disorder-free many-body quantum systems has been observed experimen-
tally [15] and explored theoretically, both in 1D [16–40], 2D [21, 31, 41–44] and higher di-
mensions [21,45–48]. These states have been dubbed “quantum many-body scars".

One of the possible mechanisms leading to quantum scars is the Hilbert space fragmen-
tation [22–24, 29, 30, 33–35, 43, 49], when the Hilbert space is fractured into dynamically
disconnected sectors (further we call them “fragments") due to kinetic constraints, without
any obvious conserved quantities corresponding to these sectors. While initial works on quan-
tum scars considered models where non-thermal eigenstates constituted a vanishing fraction
of the spectrum, models with Hilbert space fragmentation showed the possibility of exponen-
tially many disconnected fragments [23,24]. In particular, in Ref. [23], where such extensive
fragmentation was dubbed “Hilbert space shattering", the authors studied a 1D spin model
with global charge and dipole conservation laws and on general grounds argued that dipole-
conserving models in any dimension should exhibit Hilbert space shattering, including an ex-
ponential number of completely inert states. Our work presents an example of the Hilbert
space shattering in 2D.
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Figure 1: Three spin-1/2 models on the square lattice with ring-exchange interaction
of the form S+S−S+S− on the red solid plaquettes. The model (a) has been proposed
in Ref. [57] and shown to exhibit the SSPT phase that is equivalent to a HOTI. The
ring-exchange is present on every fourth plaquette, while at the edges the pairwise
interaction is XY (S+S−), as shown with orange lines. The model (b), where the
ring-exchange dynamics is allowed for every second plaquette, is an equivalent rep-
resentation of the QLM (or, to be precise, its kinetic part), as well as the fully packed
QDM if considered in a particular charge sector. The XY-plaquette model (c) is a
natural continuation of this sequence, that enables ring-exchange dynamics on every
plaquette of the square lattice.

In this paper, we numerically study the spin-1/2 XY-plaquette model: a 2D dipole-conserving
model with additional subsystem symmetries along columns and rows of the square lattice.
The model consists of the ring-exchange terms (1) on each elementary plaquette of the lat-
tice. While the low-energy properties of similar models with ring-exchange terms have been
studied in Refs. [50–55], the properties of the excited states, especially with regards to ergod-
icity, have not been investigated so far, to the best of our knowledge. The motivation behind
studying ergodic properties of this model is twofold. For one, the XY-plaquette model con-
serves dipole moment and, as already mentioned, should exhibit an extensive Hilbert space
fragmentation [23]. Secondly, recent works studied several related models with subsystem
symmetries on the square lattice that have more restrictive dynamics than the XY-plaquette
model. In particular, we compare in Fig. 1 a family of three models, which essentially differ
in the density of the plaquettes to which the ring exchange term is applied. The model in
Fig. 1(a), which is a 2D generalization of the 1D AKLT spin chain [56], has been shown to
exhibit a subsystem symmetry protected topological phase (SSPT) with gapless corner modes,
which is an instance of a higher-order topological insulator (HOTI) [57]. This model has the
ring-exchange dynamics enabled on every fourth plaquette of the square lattice. Furthermore,
as illustrated in Fig. 1(b), the kinetic part of the quantum link model (QLM) [58, 59] can be
represented in a similar form, with the ring-exchange on every second plaquette (see Appendix
D for details on how to rewrite QLM in this form). The fragmentation of the Hilbert space in
the QLM has been recently observed in Ref. [44]. In addition, the fully packed quantum dimer
model (QDM) [60] is equivalent to a particular charge sector of the QLM (as we show in Ap-
pendix E), and exhibits non-ergodic properties as have been shown in Refs. [61, 62]. Three
of the above-mentioned models (HOTI phase from [57], QLM and QDM) not only have sub-
system symmetries, but even more restrictive local symmetries (as explained in Appendices
D–E). It is therefore the next logical step to lift these local conservation laws and allow the
ring-exchange dynamics on every plaquette of the square lattice [Fig. 1(c)], such that the most
restrictive integrals of motion are subsystem symmetries.

The structure of the paper is as follows. In Section 2, we introduce the model and its sym-
metries, and explain how it can be efficiently studied numerically. In Section 3, we explicitly
demonstrate that the model exhibits Hilbert space fragmentation and discuss how this is al-
tered by longer-range interactions. For different ranges of interaction, we count the number
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of inert states using the transfer matrix approach and show that for the minimal interaction
range it scales exponentially with the number of degrees of freedom (d.o.f.), unlike for the
case of infinite interaction range, where the Hilbert space fragmentation is absent and the
number of inert states scales sub-exponentially. We therefore conclude that subsystem sym-
metries alone are not enough for the shattering of the Hilbert space. Next, we numerically
investigate the structure of the full fragmented Hilbert space for lattices up to 5×5. We show
the size distribution of the fragments, as well as elaborate on which symmetry sectors are “the
most fragmented". The abundance of low-dimensional fragments clearly demonstrates that the
model violates ETH in the strong sense. In Section 4, we present the procedure for construct-
ing shielding structures that lead to isolated disentangled active regions. Notably, subsystem
symmetries allow the thickness of these shields to be comparable to the interaction range, un-
like in the case of generic dipole-conserving systems where a shield has to be at least of the
same size as the active region it isolates [23]. In Section 5, we study the level spacing statistics
and the entanglement entropy of eigenstates. We show that while in the absence of disorder
the model exhibits Poisson spacing statistics, upon the addition of “infinitesimal" disorder the
statistics changes to Wigner-Dyson, while the fragmentation structure is preserved. We there-
fore conclude that the XY-plaquette model with “infinitesimal" disorder is a non-integrable
model that nevertheless violates ETH. In addition, we study the time evolution of the entan-
glement entropy in different fragments and for different interaction ranges.

2 XY-plaquette model

We study a 2D quantum model with a spin-1/2 degree of freedom at each site of a square lat-
tice. The Hamiltonian contains ring exchange terms defined on elementary square plaquettes.

Ĥ1×1 = K
∑

〈i jkl〉∈□1×1

�

Ŝ+i Ŝ−j Ŝ+k Ŝ−l + h.c.
�

, (1)

where Ŝ x ,y,z
i are spin-1/2 Pauli operators acting on the Hilbert space at site i, Ŝ±i ≡ Ŝ x

i ±iŜ y
i and

□1×1 is the set of elementary plaquettes, i.e., squares of size 1×1 lattice spacings (as illustrated
in Fig. 2, left panel). In addition to spatial (C4 rotation, mirror reflection, translation) and
time reversal symmetries, this model possesses U(1) subsystem symmetries generated by the
operators Û x

n , Û y
m which act non-trivially on 1D subsystems, i.e., columns Λx

n and rows Λy
m.

Û x
n (α) = exp
�

iα
∑

j∈Λx
n

Ŝz
j

�

, n= 1, . . . , Nx ,

Û y
m(α) = exp
�

iα
∑

j∈Λy
m

Ŝz
j

�

, m= 1, . . . , Ny ,
(2)

where Nx and Ny are the number of columns and rows of the square lattice respectively. These
symmetries correspond to conserved magnetization on each column and row, which can be
chosen as good quantum numbers (for convenience, we will shift the magnetization values to
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Figure 2: (Left) The ring exchange term acts on elementary plaquettes (i jkl). Sub-
system symmetry operators Û x

n (α), Û y
m(α) are defined on columns Λx

n and rows Λy
m,

respectively. (Right) The number of non-empty symmetry sectors for systems of size
N × N , for N = 2, . . . , 8.

be integers from 0 to the maximal possible value).

M x
n =
∑

i∈Λx
n

sz
i +

Nx

2
, n= 1, . . . , Nx ,

M y
m =
∑

i∈Λy
m

sz
i +

Ny

2
, m= 1, . . . , Ny ,

M ≡
Nx
∑

n=1

M x
n =

Ny
∑

m=1

M y
m ,

(3)

where sz
i is an eigenvalue of Ŝz

i . Let us denote the set of subsystem symmetry quantum numbers
as M≡ (M , M x , M y)≡ (M , {M x

n }, {M
y
m}). These quantities remain conserved if we add a term

Ĥz

�

{Ŝz
i }
�

arbitrarily dependent on Ŝz
i operators to the Hamiltonian (1).

Additionally, the presence of subsystem symmetries implies the existence of conserved
dipole moment in the x and y directions. This follows from the fact that the conserved dipole
charge can be expressed in terms of the conserved subsystem charges

Dx =
∑

j

jx sz
j =
∑

jx

jx M x
jx

,

Dy =
∑

j

jysz
j =
∑

jy

jy M y
jy

,
(4)

where j ≡ ( jx , jy) are the coordinates of the lattice sites. The crucial role of dipole conser-
vation and locality in the phenomena of Hilbert space fragmentation has been emphasized in
Refs. [23,24].

The total number of independent subsystem symmetries grows as Nx + Ny − 1, linearly
with the linear system size, and is sub-extensive, i.e., less than the number of d.o.f., which is
Nx Ny . Despite an O(Nx , Ny) number of symmetries, the model is still non-integrable, as we
will show in section 5 by analyzing the level spacing statistics. However, the symmetries play
a crucial role in the highly constrained dynamics of the model.

We work in the Ŝz basis and denote the local basis states as |sz = −1/2〉 ≡ |0〉,
|sz = +1/2〉 ≡ |1〉. Then basis states that span the full Hilbert space can be naturally writ-
ten as (0,1)-matrices of size Nx × Ny , that is matrices consisting of only 1’s and 0’s. In this
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language, the ring exchange term performs the following local transformation (“flip") of a
matrix:

Ĥ1×1 :

�

1 0
0 1

�

←→
�

0 1
1 0

�

, (5)

while it annihilates all other configurations. The subsystem symmetries imply the conserva-
tion of the sum of numbers in each column and row of the matrix. For (0,1)-matrices with
prescribed row and column sums there exists the Gale-Ryser algorithm [63–66], which allows
to determine whether there exists any matrix satisfying sums M, and in case it does, it allows
one to obtain such a matrix. Knowing one such matrix, all other matrices with M can be
obtained by performing non-local flips as in Eq. (5) and combinations thereof [63].

Using the Gale-Ryser algorithm we established the number of non-empty symmetry sectors
for N×N lattices up to N = 8 with periodic boundary conditions (p.b.c.) (Fig. 2, right). As one
can see, the logarithm of this number is proportional to N log(N), which coincides with the
results from [67], where such proportionality is shown to be typical for continuous subsystem
symmetries. This, in particular, shows that subsystem symmetries alone are not responsible
for Hilbert space fragmentation that we will see below.

3 Fragmentation of the Hilbert space

A combination of the sub-extensive number of conserved charges assigned to 1D subsystems
and local plaquette interactions severely fragment the Hilbert space and generically lead to
non-ergodic dynamics. In this section we explore kinetic aspects of the Hilbert space structure
for the quantum XY-plaquette model.

A simple illustration: The phenomenon of Hilbert space fragmentation in the XY-plaquette
model can be illustrated as follows. Consider the 4× 4 lattice and let us choose the symme-
try sector with quantum numbers M = 2, M x = (0,1, 0,1), M y = (0, 1,0,1) (the quantum
numbers are counted from left to right and from bottom to top). The Hilbert space of this
symmetry sector is spanned by two basis states that can be depicted via the following 4 × 4
(0,1)-matrices:

A(1) =







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0






, A(2) =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






. (6)

Although these basis states are in the same symmetry sector, one cannot get from state A(1)

to state A(2) by the application of the Hamiltonian in Eq. (1), since both these states have no
flippable plaquettes. In other words, A(1) and A(2) are dynamically disconnected from each
other. In fact, both A(1) and A(2) are disconnected from any other state and consequently have
trivial dynamics under the Hamiltonian (1). Henceforth, we will refer to such completely
disconnected states as inert states.

Hilbert space structure: At the coarsest level, the full Hilbert space H is decomposed into
magnetization sectors HM . Incorporating subsystem symmetries, each HM is decomposed
into symmetry sectors HM ≡H(M ,M x ,M y ). Each subsystem symmetry sector can potentially be
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𝐻 =

⋱

Figure 3: Structure of the block-diagonalized Hamiltonian. Dashed blocks corre-
spond to M values. Solid blue blocks correspond to symmetry sectors characterized
by M≡ (M , M x , M y) quantum numbers. Solid red blocks correspond to fragments.
The red block structure is a property of the Hamiltonian alone, while the other blocks
are imposed by the symmetries.

decomposed into dynamically disconnected fragments FM
i .

H =
⊕

M
HM =
⊕

M
HM ,

HM =
⊕

M x ,M y

H(M ,M x ,M y ) ,

HM =
⊕

i

FM
i .

(7)

The Hamiltonian is then block-diagonalized as shown in the Fig. 3. Note that some fragments
or even whole symmetry sectors can be 1-dimensional (inert states). On the other hand, some
high-dimensional symmetry sectors might consist only of one fragment. Since the map from
subsystem symmetry charges to total dipole moment is many-to-one, block diagonalization
based on conserved dipole moment and total charge provides a relatively coarse kinetic de-
scription of the Hilbert space.

Locality and fragmentation: In addition to the Hamiltonian Ĥ1×1, which performs flips on
elementary plaquettes in the set □1×1, we may also consider longer range Hamiltonians that
preserve subsystem symmetries (2). Apart from arbitrary Ŝz terms, which are not important for
fragmentation, one may consider interactions similar to Ĥ1×1, but defined on larger rectangles,
such as:

Ĥ1×2 :

�

1 • 0
0 • 1

�

←→
�

0 • 1
1 • 0

�

,

Ĥ2×1 :





1 0
• •
0 1



←→





0 1
• •
1 0



 ,

Ĥ2×2 :





1 • 0
• • •
0 • 1



←→





0 • 1
• • •
1 • 0



 , etc. ,

(8)

where • denotes an arbitrary spin not taking part in the interaction. For later conve-
nience we introduce three Hamiltonians: Ĥ ≡ Ĥ1×1, Ĥ ′ ≡ Ĥ1×1 + Ĥ1×2 + Ĥ2×1 and
Ĥ ′′ ≡ Ĥ1×1 + Ĥ1×2 + Ĥ2×1 + Ĥ2×2.

In addition to the terms that flip spins at the corners of a rectangle, an interaction that pre-
serves subsystem symmetries (2) generically would consist of spin-raising and spin-lowering
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operators arranged in an alternating way at the corners of a figure of an arbitrary shape com-
posed of alternating vertical and horizontal edges. More elaborate examples of such figures
are:

Ĥ :





1 • 0
0 1 •
• 0 1



 ←→





0 • 1
1 0 •
• 1 0



 ,

Ĥ :







• 1 0 •
• • 1 0
1 0 • •
0 • • 1






←→







• 0 1 •
• • 0 1
0 1 • •
1 • • 0






,

Ĥ :







• 1 • 0
• • • •
0 • • 1
1 0 • •






←→







• 0 • 1
• • • •
1 • • 0
0 1 • •






.

(9)

It is easy to see that the magnetization in each row and column is conserved, since each edge of
the figure is either vertical or horizontal and contains exactly one 0 and one 1, which exchange
positions under the Hamiltonian action. This process does not change row and column sums.
Note that the boundaries of the figures can also be self-intersecting, as shown in the third
example in Eq. (9).

In Appendix G, we discuss the role of the ring-exchange interaction “shape" for the Hilbert
space fragmentation in systems with subsystem symmetries, and its interplay with the locality
of the interaction.

Counting inert states: The number of inert states can be calculated using the transfer
matrix approach, analogous to the construction of inert states in a 1D dipole-conserving spin-
1 chain in Ref. [23, 24]. The process of construction resembles the notion of mathematical
induction. First, we consider a lattice of size Nx×Ny with p.b.c. in the x-direction, and assume
that the system is in an inert state. It is thus in one of the product states in Ŝz-basis and can
be represented by a (0,1)-matrix. Now, we would like to stack an additional (Ny + 1)-th row
on top, such that the system remains in an inert state. Allowed combinations of 0’s and 1’s in
the (Ny + 1)-th row depend on the configuration in the Ny -th row. We can construct a matrix
T depicting which configurations in rows Ny and Ny + 1 are compatible with each other. Let
us give an example of such a matrix for the case of Nx = 3:

T =




(000) (001) (010) (011) (100) (101) (110) (111)

1 1 1 1 1 1 1 1 (000)

1 1 0 1 0 1 0 1 (001)

1 0 1 1 0 0 1 1 (010)

1 1 1 1 0 0 0 1 (011)

1 0 0 0 1 1 1 1 (100)

1 1 0 0 1 1 0 1 (101)

1 0 1 0 1 0 1 1 (110)

1 1 1 1 1 1 1 1 (111)




, (10)

where rows and columns correspond to the 8 possible configurations of the Ny ’th and (Ny+1)’th
rows of the lattice, respectively. We can then write





N(000)
...

N(111)





(Ny+1)

= T





N(000)
...

N(111)





(Ny )

, (11)
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Figure 4: The number of inert states on N ×N lattices for different ranges of rectan-
gular interactions: (red) Ĥ, (green) Ĥ ′, (yellow) Ĥ ′′, (pink) infinite range (rectan-
gles of any size), and, for comparison, (blue) the full dimensionality of the Hilbert
space: 2N2

. Red curve scales as 1.13 · 1.80N2
(a straight line on the log plot). Green

and yellow curves have slight deviations from straight lines. However, due to the
limited number of data points, it is hard to tell if they grow exponentially or sub-
exponentially. For the system with no Hilbert space fragmentation (i.e., infinite range
rectangular interactions) the number of inert states grows sub-exponentially (pink).
An analytic expression for the pink curve was obtained using results from Ref. [68].

where
�

N(000), . . . , N(111)
�

(Ny )
is a vector depicting the number of inert configurations on a

lattice of length Ny in the y-direction that end with a row (000), . . . , (111), correspondingly.
Using this recursive relation, we can calculate the number of inert states on the Nx ×Ny lattice
as vTT Ny v with v = (1, 1, . . . , 1)T if we assume open boundary conditions (o.b.c.) in the y-
direction, and as Tr

�

T Ny
�

if we assume p.b.c. in the y-direction.

One can as well calculate the exact number of inert states for longer-range interactions
using a similar approach, where instead of matrix T one has to construct a higher-dimensional
tensor of size 2Nx × · · · × 2Nx and then take an appropriate contraction of Ny such tensors.

In Fig. 4 we compare how the number of inert states grows with the number of d.o.f. for
lattices N ×N for different interaction ranges. As expected, increasing interaction range leads
to the decrease in the number of inert states. The minimal possible number of inert states is

2 3 4 5 6 7 8 9 10 11 12 13 14
Nx

101

102

103

m
ax

Figure 5: Scaling of the largest eigenvalue λmax of the transfer matrix T , depending
on the lattice size in x-direction Nx . The fitted line is λmax ≈ 1.80Nx .
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Figure 6: M -dependence of (blue) the total number of states, (red) the number of
inert states, (turquoise) the number of fragments, (black) the number of symmetry
sectors, (purple) the number of fragmented (i.e., containing more than one fragment)
symmetry sectors, for the 5 × 5 lattice with p.b.c. and the Hamiltonian Ĥ. Inset:
M -dependence of the number of inert states for different (rectangular) interaction
ranges: (red) Ĥ, (green) Ĥ ′, (yellow) Ĥ ′′.

dictated by the subsystem symmetries, and is achieved when the interaction range is increased
to infinity (pink curve). In this case every inert state constitutes a 1-dimensional symmetry
sector. The red straight line in Fig. 4 indicates that local 1×1 interactions lead to exponential
(in the number of d.o.f.) growth of the inert subspace. More precisely, fitting the results for
N = 2, . . . , 13, we get that the number of inert states scales as ∝ 1.80N2

. In addition, we
can estimate this scaling behavior in another way. Since Tr

�

T N
�

= λN
1 + . . .+ λN

2N , where λi
are the eigenvalues of T , in the thermodynamic limit this sum is dominated by the largest
eigenvalue λmax and therefore the number of inert states in a system Nx×Ny , Ny →∞, scales
as (λmax(Nx))

Ny . In Fig. 5 we plot the largest eigenvalues for Nx = 1, . . . , 13 and determine
that it scales as∝ 1.80Nx , leading to∝ 1.80Nx Ny scaling of the total number of inert states
when both Nx , Ny →∞, which coincides with our first estimation obtained from fitting the
exact results in Fig. 4.

The extensive number of inert states demonstrates “shattering" of the Hilbert space. It
should be noted that shattering is not simply a consequence of the sub-extensive number of
conserved quantities due to subsystem symmetries, since upon increasing the interaction range
to infinity the dimension of the inert subspace no longer grows exponentially, as shown in pink.
The analytic expression for the pink curve was obtained in Ref. [68]:

N
∑

j=1

(−1)N+ j j!

�

N
j

�

( j + 1)N <
1
2

N2N eN (12)

at large N , where

�

N
j

�

is the Stirling number of the second kind (the bound is calculated in

Appendix F). The quantity scales slower than eN2
and therefore we conclude that in case of

the “rectangular" interactions the locality of interaction plays a crucial role for the extensive
fragmentation of the Hilbert space.

Distribution of fragment sizes: Here we present numerical results revealing the detailed
structure of the Hilbert space for N ×N lattices with p.b.c., for N up to 5 for the Hamiltonians
Ĥ, Ĥ ′, and Ĥ ′′. We note that, since the largest lattice size we consider is 5×5, the rectangular
interactions of length up to 2 × 2 completely remove the Hilbert space fragmentation, since
they act on roughly the half of the lattice size. Our numerical results confirm this intuition.
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Figure 7: Fragment size distribution for the 5 × 5 lattice, for different interaction
ranges.

In order to reveal how the symmetry sectors split into disconnected fragments, we recursively
iterate over basis states and apply the corresponding Hamiltonian.

In Fig. 6 we plot the dependence of the numbers of inert states, fragments, symmetry sec-
tors and fragmented symmetry sectors on the total magnetization M . We see that the “typical"
states lie in sectors with magnetization close to 0 (the middle of the range in M) and that all
magnetization sectors (except for the extremal ones) exhibit extensive fragmentation with ex-
ponentially many inert states and fragmented symmetry sectors. The reduction of the number
of inert states upon the increase of the interaction range is seen in the inset of Fig. 6.

It is also instructive to look at the size distribution of fragments. In Fig. 7 this data is plotted
for the 5× 5 lattice. We observe a polynomial decrease (a straight line on the log-log plot) in
the amount of fragments as their dimensionality increases. While as the range of interaction
increases, the number of small-dimensional fragments decreases, and the number of large-
dimensional fragments increases. It is also notable that even for Ĥ1×1 interactions there exist
large fragments (for the 5× 5 lattice: 2 fragments of size 2030). We will analyze the thermal
properties of these large fragments in some detail in the next section.

We further study the connection between magnetization sector and largest fragment sizes.
Figure 8 shows the size of the largest symmetry sector (red) and the largest fragment (blue)
as a function of M for lattices 4×4 and 5×5, respectively. These plots immediately reveal the
qualitative difference between even×even and odd×odd lattices: when N = 2n, the largest
symmetry sector and the largest fragment lie in the mid-magnetization sector, or more pre-
cisely in the symmetry sector M x = M y = (n, n, . . . , n), i.e., the magnetization is n in each
column and row; when N = 2n+1, the largest symmetry sector and the largest fragment lie in
symmetry sectors M x = M y = (n+ 1, n+ 1, . . . , n+ 1) and M x = M y = (n, n, . . . , n). Another
interesting feature one can notice is that while the largest fragment occupies almost the whole
symmetry sector in most of the magnetization sectors, there are magnetization sectors around
M = N , N2−N , with a marked deviation from such behavior. This indicates that symmetry sec-
tors in these magnetization sectors are fragmented into several fragments of comparable sizes,
rather than into one large and several small fragments. This statement is further supported by
Fig. 9, where the largest number of fragments in a single symmetry sector for different mag-
netization sectors have been plotted. The most fragmented symmetry sectors turn out to be
M x = M y = (1,1, . . . , 1) and M x = M y = (N − 1, N − 1, . . . , N − 1). As can be seen, there is
no fragmentation for the Hamiltonian Ĥ ′′ which includes terms up to 2× 2 interaction range,
while there are still some remnants of fragmentation for the Hamiltonian Ĥ ′ with 1× 2 and
2× 1 interaction range.
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Figure 8: (Blue) the size of the largest fragment in each M -sector; (Red) the size of
the largest symmetry sector in each M -sector, for the Hamiltonian Ĥ (1×1 interaction
range) on the 5× 5 lattice with p.b.c. Inset: same for the 4× 4 lattice with p.b.c.

The size of a given fragment can be deduced from the time evolution of the wave function
initialized in a pure state |ψ0〉 belonging to this fragment. In particular, one can look at the
Fourier transform (FT) of the Loschmidt echo, |〈ψ(t)|ψ0〉|

2, and read off the size of the frag-
ment from the number of peaks in the FT spectrum (see Appendix B for details). Since the
positions of peaks depend on the energy differences in the energy spectrum of the fragment,
one might apply random magnetic fields in the z-direction in order to avoid the overlap of the
peaks.

4 Shielding structures

It can happen that while a state is not inert, some specific spins might still remain inert through-
out the time evolution of the system. For instance, if a particular spin Ŝi has the same sz

i eigen-
value in all the basis states of a certain fragment of the Hilbert space, this spin is ensured to
have a fixed (non-evolving) sz

i eigenvalue as long as the system is in a pure or mixed state
belonging to this fragment. More generally, a spin Ŝi will remain inert under the time evolu-
tion of a system initialized in a density matrix with support restricted to fragments where all
basis states have the same value of sz

i . We will show that it is possible to construct “shielding
structures": sets of inert spins separating regions of non-inert spins (“active regions"). This es-
sentially leads to breaking up the system into spatial regions that are completely disentangled
from each other and can therefore be considered as disconnected systems with respect to time
evolution, and thermal or quantum fluctuations.

Now, let us deduce the conditions for a spin to be inert. For simplicity, here we will consider
only the interaction encoded in Ĥ (we discuss longer range interactions in the Appendix A).
We assume the system is in one of the Ŝz-basis states which we write in (0,1)-matrix notation
(generalization to eigenstates or mixed states is straightforward). Whether the chosen spin
belongs to a flippable plaquette or not (i.e., whether it is “immediately flippable" by the action
of the Hamiltonian), depends on its immediate neighborhood that contains eight surround-
ing spins. In Fig. 10 we list all sufficient local configurations of spins (in black) that make it
impossible to immediately flip the central spin (denoted in red).

Working in the Ŝz basis, we will be coloring all immediately non-flippable spins in red. By
the above discussion, the neighborhood of each of these red spins contains at least one of the
22 configurations in Fig. 10 that protect it from immediate flipping. If we can find a subset
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Figure 9: Lattice 5× 5 with p.b.c.; The largest number of fragments in a single sym-
metry sector for each M -sector.

of red spins As such that the neighborhood of each of the spins in As contains at least one of
above structures that is itself in As, then As is a shielding structure that is inert at all times.
It is now straightforward to build a shielding structure starting from one spin and following
the iterative procedure, as illustrated in Fig. 11. We start with a single spin and ensure it is
immediately non-flippable (i.e., red) by surrounding it with one of the local configurations in
Fig. 10. Now we do the same for newly added spins. We then iteratively repeat this procedure,
gradually building up the shielding structure (as exemplified in Fig. 11).

Three examples of such inert shielding structures are presented in Fig. 12. The elementary
building blocks of the shields, as one can see from the Fig. 10, are: the straight horizontal
and vertical lines, “4-junctions" (intersections of four diagonal lines) and two types of “3-
junctions". These building blocks define the “branching rules" of shielding structures. One
verifies from the shape of these elementary building blocks that in order for a shield to close
onto itself, it has to go through the p.b.c. (or terminate at the o.b.c.), meaning that shields are
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Figure 10: If a spin in red is surrounded by one of the presented local configurations
of spins in black, it cannot be immediately flipped. Only half of the configurations is
shown. The second half is obtained by a global spin flip, 0↔ 1 (22 configurations
in total).
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Figure 11: An example of a shielding structure construction. We iteratively ensure
inertness of each spin by adding new appropriate spins in its surrounding. This is
repeated until the structure “closes onto itself".
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Figure 12: Examples of shielding structures separating the system into spatially dis-
connected disentangled active regions (painted in different colors); p.b.c are as-
sumed. (a) Two simple straight shields can separate the system into two active
regions. (b, c) More complicated shielding structures, including “3-junctions". In
(c), the spins in the region painted in solid red color can be chosen arbitrarily, but
nevertheless will necessarily remain inert.

necessarily non-local objects. Non-locality of the shields implies that in the thermodynamic
limit the probability of having a shield in the system tends to zero. The isolated active regions,
however, can be localized in space, as presented in Fig. 12.

In Ref. [23], it was pointed out that for a generic dipole conserving system, shielding
structures isolating an active region should be at least of the size of the active region. In the
particular case of the XY-plaquette model, however, the thickness of the shields depends only on
the interaction range, while the separated active regions can be arbitrarily large. For example,
for 1× 1 interaction it suffices for the shields to be only 1 site thick. For 1× 2, 2× 1 and 2× 2
interactions, the 2-site thickness of the shields will be enough, and so on: for n×m interactions,
shields of thickness max(n, m) will be able to prevent active regions from thermalizing with
each other.

Existence of such shielding structures significantly affects the correlation func-
tion properties, such as, for instance, the equal-time spin-spin correlation function
Cz

0i(t) ≡ 〈Ŝ
z
0(t)Ŝ

z
i (t)〉 − 〈Ŝ

z
0(t)〉 〈Ŝ

z
i (t)〉. Generically, shields do not possess translational or

rotational symmetry, and since they split the system into disentangled spatial regions, Cz
0i(t)

also loses translational and rotational invariance and becomes crucially dependent on the ini-
tial state and the choice of the coordinate origin ( jx , jy) = (0, 0). Cz

0i(t) can be non-zero only
if the corresponding spins at sites 0 and i belong to the same active region. Otherwise, if i lies
in a different active region, separated from the origin by shields, Cz

0i(t) = 0 at all times t. We
confirm this with numerical calculations. We initialize the system initialized in the state







0 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0






, (13)

which has two active regions (in black) separated by shields (in red). In Fig. 13 we compare
the time evolution of Cz

0i(t) for two different choices of the origin (denoted with a black dot).
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One can see that the correlation function has non-trivial dynamics only when both spins lie
within the same active region, and is equal to zero when spins lie in different active regions
or one of the spins belongs to the shielding structure (and thus fully inert). The unusual
behavior of the correlation function in the models with rectangular ring-exchange interactions
was investigated in the quantum circuit setting in Ref. [69].

5 Entanglement entropy

Entanglement entropy of eigenstates: As we have shown in the previous sections, sub-
system symmetries lead to an extensive number of disconnected components of the Hilbert
space, while local ring-exchange interactions fragment these components even further, lead-
ing, in particular, to an exponential number of inert states. One way to explicitly show that
such fragmentation of the Hilbert space leads to the violation of ETH is to probe the entangle-
ment entropy.

We divide the system into two parts, A and B with a straight cut through the middle (or,
for (2n+ 1)× (2n+ 1) lattices, approximately the middle) of the lattice. The Von Neumann
bipartite entanglement entropy is defined as

SAB(ρA) = −Tr(ρA lnρA) , (14)

where ρA = TrB ρ is the reduced density matrix of the full density matrix ρ and the trace TrB
is taken over the B subregion.

In Fig. 14 we plot the entanglement entropy of eigenstates as a function of their eigenen-
ergy for the Hamiltonian Ĥ. In contrast to systems obeying ETH, where states in the middle of
the energy spectrum are highly entangled, here we observe the coexistence of states ranging
from low-entangled to high-entangled ones for practically any narrow energy window. In this
plot, all inert states fall into one point (E = 0, SAB = 0), while the visible line (E, SAB = 0) at
the bottom of the plot corresponds to states in fragments where the bipartition cut separates
disconnected active regions (i.e., there are shielding structures separating A and B regions),
and therefore the entanglement between A and B is zero.

Zero energy eigenstates: Another prominent feature is the vertical line of states at
(E = 0, SAB). Let us explain the abundance of the zero-energy eigenstates. In our choice
of basis, each block of the full Hamiltonian Ĥ (corresponding to a fragment Fi), ĤFi

, is repre-
sented by a symmetric (0,1)-matrix with zeros on the main diagonal. 1’s in this Hamiltonian
essentially show which basis states can be connected via a single plaquette flip. We can illus-
trate this with a connectivity graph in Hilbert space; examples are presented in Fig. 15, where
(a), (b) and (c) graphs correspond to the Hamiltonians

Ĥ(a)
Fi
=





0 1 1
1 0 0
1 0 0



 , Ĥ(b)
Fi
=







0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0






,

Ĥ(c)
Fi
=







0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0






,

(15)

respectively. Recall that if a matrix n×n has rank m≤ n, it has exactly n−m zero eigenvalues.
The rank m is strictly less than n when the columns (rows) are linearly dependent, which
for a (0,1)-matrix means that some of the columns (rows) are identical, or that there is a
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Figure 13: Time evolution of the equal-time spin-spin correlation function Cz
0i(t),

with i ≡ ( jx , jy) and the origin chosen at the black dot, from the initial state (13).
The initial state contains shielding structures that split the system into two active
regions (denoted by red dashed lines). Two choices of the origin are compared (left
and right columns). The correlation function is non-zero only in the active region
containing the origin.
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denotes the number of states with a particular SAB and E.
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zero column (row). In terms of the connectivity graphs, this corresponds to a permutation
symmetry of the graph, i.e., there are states upon permutation of which the graph remains
the same 1. For instance, in Fig. 15(a), the permutation of states 2 and 3 does not change
the graph. The same holds true for Fig. 15(b) with regards to the permutation of states 2,3,4.
In the corresponding Hamiltonians this can be seen as identical columns (rows), and thus
the fragment in (a) has a zero energy state and the fragment in (b) has a doubly degenerate
zero energy state. The connectivity graph in Fig. 15(c) does not possess any permutation
symmetries and therefore the corresponding fragment has no zero energy level. Owing to this
permutation symmetry of the basis states, one obtains several zero energy eigenstates as can
be in Fig. 14.

Energy and entanglement properties of large fragments: In this subsection we numer-
ically investigate integrability properties of the model. For this, we resort to large fragments
and study their energy level spacing statistics and the spectrum of the entanglement entropy
of eigenstates. As an example, we choose a 9856-dimensional fragment lying in a symmetry
sector with quantum numbers M = 11, M x = (1,3, 2,1, 2,2), M y = (2,2, 2,2, 2,1) of the 6×6
lattice with p.b.c. We consider a one-parameter family of Hamiltonians with random magnetic
field,

Ĥrand(x) = (1− x)Ĥ1×1 + x
∑

i

hi Ŝ
z
i , (16)

where x ∈ [0,1] and hi is a random number uniformly distributed between -1 and 1. Note
that the second term preserves the subsystem symmetries.

We denote the difference between consecutive energy levels as sn = En+1 − En and
introduce the ratio of consecutive level spacings, r = sn/sn−1, as well as the value
r̃n = min(sn, sn−1)/max(sn, sn−1). The distribution of ratios r in Fig. 16 shows that in the
absence of disorder (x = 0), the spacing statistics is Poisson and the model appears integrable
(at least inside of the considered fragment). However, upon the addition of small disorder,
x = 0.01, the statistics changes to Wigner-Dyson, with level repulsion that can be approxi-
mated by the corresponding function for the Gaussian orthonormal ensemble (GOE) [70] – the
random matrix theory result that indicates non-integrability. The average value of r̃ changes
from 〈r̃〉 ≈ 0.3890, which is close to the r̃−value for the Poisson statistics, 〈r̃〉Poisson ≈ 0.3863,
to 〈r̃〉 ≈ 0.5165 that is closer to 〈r̃〉GOE ≈ 0.5359.

Note that the random magnetic field along z-direction does not violate subsystem sym-
metries, nor does it alter any fragmentation properties. Therefore, for any value of x , the
model is non-ergodic, since it exhibits an abundance of low-dimensional fragments, including
an exponential number of inert states. Thus, at low values of x we have an example of a
non-integrable model that violates ETH.

12 3

a) 4

12 3

b)
21 3 4

c)

Figure 15: Examples of connectivity graphs in Ŝz-basis for different fragments, cor-
responding to the Hamiltonians (15). Graphs (a) and (b) possess permutation sym-
metry: graph (a) does not change upon the exchange of states 2 and 3, (b) does not
change upon any permutation of states 2,3,4. As a result, the corresponding Hamilto-
nians contain (a) two, (b) three equal columns (rows), which results in them having
(a) one-, (b) 2-dimensional eigenspace with energy zero.

1Unless the symmetric states are connected to each other, as in the case with a fully-connected graph of 3
states.
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Figure 16: Probability distribution of the ratio r of consecutive energy level spac-
ings, rn = (En+1 − En)/(En − En−1), for a large (9856-dimensional) Hilbert space
fragment of the model (16) on a 6×6 lattice with p.b.c, for two values of parameter
x: (red) no disorder, x = 0, (blue) small disorder, x = 0.01. Solid lines corre-
spond to distributions of r for (red) Poisson ensemble, P(r) = (1+ r)−2, (blue) GOE,
P(r) = 27

8
r+r2

(1+r+r2)5/2 (surmise from Ref. [70]).

At x = 0, while being integrable, the considered fragment nevertheless has only high-
entangled eigenstates in the middle of the spectrum (red arc in Fig. 17), indicating that the
system thermalizes well within the fragment. However, at x = 0.01 scar states with low entan-
glement appear (blue dots in Fig. 17). Upon further increase of x , the entanglement entropy
of these scar states increases until they eventually merge with the arc. We also note that at
high values of x ∼ 0.58, the GOE spacing distribution gradually changes back to Poisson, while
all eigenstates become low-entangled. Whether this transition happens at x < 1 in the ther-
modynamic limit, is an open question. We defer studies of this transition and more precise
characterization of the transition in the vicinity of x = 0 to later work.
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Figure 17: Bipartite entanglement entropy of eigenstates as a function of their
eigenenergy, for a large Hilbert space fragment of the model (16) on the 6×6 lattice
with p.b.c., for (red) x = 0, (blue) x = 0.01. Dashed line: Page value for this frag-
ment, SAB,Page ≈ 6.16. With no disorder, the fragment appears thermalizing, since
the entanglement entropy of eigenstates form an arc with high-entangled states in
the middle of the spectrum (with some outlying states, which are nevertheless have
high entanglement). However, upon adding small disorder, low-entangled scar states
appear.
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Figure 18: Growth of entanglement entropy SAB for an initial random state in Sz-basis
in the largest symmetry sector of the 5×5 lattice with p.b.c., for different interaction
ranges. SAB saturates to the value SAB ≈ 4.36 (independent of the interaction range)
below the Page value for this symmetry sector, SAB,Page ≈ 4.53, at a rate that increases
upon the increase of the interaction range.

Time evolution of entanglement entropy: Another way to probe thermalization is to
look at how entanglement between subregions A and B grows in time. We calculate the en-
tanglement entropy SAB(t) as a function of time, initializing the system in different fragments.
For sufficiently low-dimensional fragments, the entanglement entropy evolves periodically in
time, with perfect recurrences occurring simultaneously with the recurrences in the Loschmidt
echo. In contrast, for larger fragments, SAB is expected to saturate at some value. We first ex-
amine the largest symmetry sector of the 5 × 5 lattice. This symmetry sector consists of a
large fragment of dimension 2030 and 10 inert states when considering Ĥ. Increasing the
interaction range has two effects: (i) the inert states merge into the largest fragment, and
(ii) the connectivity of the basis states increases (in the sense that more links appear on the
connectivity graph introduced above), which leads to faster thermalization. This can be seen
in Fig. 18, where we plot SAB depending on time t after initializing the system in one of the Ŝz

basis states. The entanglement entropy saturates to a value SAB ≈ 4.36 that is slightly lower
than the maximal possible (Page) value for the corresponding symmetry sector, SAB,Page ≈ 4.53
2. The Page value has been evaluated through the exact formula SAB,Page =

∑mn
k=n+1

1
k −

m−1
2n ,

where m =min(dA, dB), n =max(dA, dB) [71], and dA(B) is the Hilbert space dimension of the
subsystem A(B) in the considered symmetry sector.

From Fig. 18, it is clear that upon the increase of the interaction range the saturation rate
of the entanglement entropy increases, i.e., entanglement between A and B grows faster. How-
ever, for this particular case the saturation value of SAB is independent of the interaction range.

We can also find a symmetry sector where the saturation value crucially depends on
the interaction range. From Figs. 8 and 9, we know that symmetry sectors with M = N ,
M x = M y = (1, 1, . . . , 1) and M = N2 − N , M x = M y = (N − 1, N − 1, . . . , N − 1) consist
of several fragments comparable in size. Therefore, we expect that upon the increase of the
interaction range, the “available" Hilbert space will substantially increase. In Fig. 19, we plot
SAB(t) for such a symmetry sector on a 6×6 lattice with o.b.c. (on the 5×5 lattice the dimen-
sions of separate fragments in such a sector are too small to exhibit saturation). This symmetry
sector has dimension 720 and under Ĥ is fragmented into 258 fragments with sizes ranging

2The fact that entanglement entropy does not reach the Page value is consistent with the fact that ETH is
expected to hold only in the thermodynamic limit. The saturation value of SAB is expected to approach SAB,Page

upon the increase of the system size.
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Figure 19: Growth of entanglement entropy SAB for an initial random state in Sz-
basis in the M = 6, M x = M y = (1,1, . . . , 1) symmetry sector of the 6 × 6 lattice
with o.b.c., for different interaction ranges. SAB saturates to different values below
the Page value for this symmetry sector, SAB,Page ≈ 4.29, at a rate that increases upon
the increase of the interaction range. The system under Ĥ explores a 13-dimensional
fragment of the Hilbert space and exhibits periodic behavior with perfect revivals
(the first one is at t ≈ 3553), while under Ĥ ′ and Ĥ ′′ it explores the whole 720-
dimensional symmetry sector. Despite the fact that the explored Hilbert space for Ĥ ′

and Ĥ ′′ is the same, the saturation value of SAB is larger for Ĥ ′′, presumably since
the connectivity of the Hilbert space is enhanced (while it is not clear if the green
line ever saturates to the same value as the yellow one, we confirm numerically that
it does not do so at least until t = 2.0 · 105).

from 1 to 13. We initialize the system in one of the Sz basis states from the 13-dimensional
fragment. Upon the increase of the interaction from Ĥ to Ĥ ′, all fragments merge into one 720-
dimensional fragment. Upon the change of interaction from Ĥ ′ to Ĥ ′′, the explored Hilbert
space does not become bigger (all 720 states are already connected), but the improvement of
the connectivity between the states leads to the increase of the saturation value of the entan-
glement entropy SAB.

6 Discussion

Generalization to other lattices and 3D: We expect qualitatively similar physics in models
on other lattices with ring-exchange interactions compatible with subsystem symmetries. In
Fig. 20, on the three lattices we show the ring-exchange terms preserving subsystem symme-
tries, together with the 1D submanifolds on which these symmetries are defined.

On the honeycomb lattice, the minimal interaction comprise 4-site ring-exchanges on each
hexagon, which upon increasing the interaction range can be elongated only in one direction,
as shown on the right of Fig. 20(a). The generators of the corresponding subsystem symmetries
are sums of Ŝz operators (as is always the case with ring-exchange interactions) along the
zigzag lines shown on the left of Fig. 20(a). Note that if we were to consider the 6-site hexagon
flip as the only term instead, the magnetization on each hexagon would be preserved, leading
to an extensive number of local conserved quantities, which is much more restrictive than
subsystem symmetries.

On the triangular lattice, the subsystem symmetries with support on the straight lines
shown on the left of Fig. 20(b) allow for the hexagon flips, together with various longer-range
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b)

a)

c)

Figure 20: Ring-exchange terms depicted with red solid figures that preserve sub-
system symmetries with support on 1D submanifolds depicted with yellow, purple
and green lines, on (a) honeycomb, (b) triangular, (c) kagome lattices. Only spins
colored in black take part in the ring-exchange, while light-grey spins do not. In
addition to the most local interactions, several longer-range examples are shown.

ring-exchanges, as depicted on the right of Fig. 20(b). Analogously, one can do the same anal-
ysis for the kagome lattice [Fig. 20(c)] and various other 2D lattices.

Last but not least, one can straightforwardly make a generalization to 3 dimensions. Here
subsystem symmetries can be defined not only on 1D, but also on 2D submanifolds. For in-
stance, on the cubic lattice, two main possibilities arise. The first one concerns the same
ring-exchanges as for the square lattice but on the x y , xz, and yz planes of the cubic lattice.
These interactions preserve magnetization on each plane, as well as the charge and dipole
moment. A second possibility is to simultaneously flip spins at the vertices of an elementary
cube (and the longer-range versions). This interaction preserves the magnetization not only
in each plane, but also in each line parallel to x , y, z directions. In addition, it conserves the
quadrupole moment.
Conclusions: Our work explores the phenomenon of extensive Hilbert space fragmenta-
tion (shattering) in 2D. In addition to the conserved dipole moment, the class of models we
consider have O(N) subsystem symmetries (with N the linear size of the system). One might
argue that O(1) global conserved quantities (charge and dipole moment conservation) are
sufficient to observe Hilbert space fragmentation and that subsystem symmetries are therefore
an unnecessary additional restriction on the dynamics. We show that the subsystem symme-
tries in conjunction with locality add an intricate feature to the shielding structures, that is
their thickness depends only on the interaction range and not on the size of the active region
which is being isolated. Therefore, it becomes possible to isolate infinite active regions with
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Figure 21: Local configurations of spins (in black) that are sufficient for the central
spin (red) to not be immediately flippable under the action of the Hamiltonian Ĥ ′,
i.e., rectangular interactions 1×1, 1×2, 2×1. All possible such configurations (330 in
total) can be obtained from the ones presented in the figure by applying all possible
combinations of C4 and C2 rotations, mirror reflections about the horizontal, vertical
and two diagonal (at 45°) lines going through the central spin, as well as Z2 spin-flip.

finitely thick shields. This property might come in hand for applications in quantum memory,
since it allows to protect an arbitrary region from decoherence using thin enough pre-designed
shielding buffers.

In addition, as we have shown, subsystem symmetries alone do not produce an exponen-
tial number of inert states, as well as they are not enough to make the system integrable.
This makes the kinetic constraints imposed by the ring-exchange interaction crucial for the
extensive Hilbert space fragmentation. Despite this, there still exist large Hilbert space sec-
tors. Thus, the XY-plaquette model exhibits versatile dynamical regimes, including abundant
inert states and low-dimensional integrable sectors, as well as high-dimensional sectors with
non-ergodic dynamics.
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A Shielding structures for longer-range interactions

In Section 3, we discussed shields that can isolate active regions from each other, for 1 × 1
rectangular interactions. Analogous shields can be constructed for interactions of longer range.

For the Hamiltonian Ĥ ′ (i.e., rectangular interactions 1× 1,1× 2,2× 1), we list all local
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environments that are sufficient for the central spin to not be immediately flippable (Fig. 21).
These environments can be constructed by adding additional spins to the environments from
Fig. 10, which would ensure that none of the 2× 1 and 1× 2 plaquettes involving the central
spin are immediately flippable. For Ĥ ′, there are in total 330 such local configurations. In
Fig. 21 we list only the basic ones, while the rest can be obtained from them by applying
symmetry operations: C4 and C2 rotations, mirror reflections about the horizontal, vertical or
two 45°diagonal lines, and the flip of all spins.

Although now, using Fig. 21, we can construct a shield, i.e., a set of spins inert at all times,
it is not enough to ensure the isolation of active regions. For example, imagine a simple shield
that is a single straight line of 0’s going through p.b.c. and separating the sample into two
disconnected active regions. These two regions are not disentangled from each other, since
the 1×2 interaction can still “penetrate" the shield, i.e., act on spins that are in different active
regions. To make sure that the active regions are isolated, we need to make the shield two
spins thick. In the simplest case it would be two adjacent lines of 0’s.

Generically, we can conclude that in the XY-plaquette model active regions of arbitrary size
can be isolated from each other by placing shields (sets of spins inert at all times) in between
them that are as thick as the largest dimension of the interaction.

B Determining the fragment size from time evolution

Here we show how one can deduce the dimensionality d of a fragment F from the time evolu-
tion of a pure stateψ0 ∈ F . Under the Hamiltonian, H the state evolves as |ψ(t)〉= e−iH t |ψ0〉.
Let us project the resulting state |ψ(t)〉 to an arbitrary pure state |φ〉 ∈ F from the same frag-
ment, 〈φ|ψ(t)〉= 〈φ|e−iH t |ψ0〉. Taking the FT of the absolute value square of this projection,

FT
�

|〈φ|ψ(t)〉|2
�

(ω) =
1

2π

∫ +∞

−∞

�

� 〈φ|e−iH t |ψ0〉
�

�

2
e−iωt dt . (17)

We can now diagonalize the Hamiltonian, −iH t = PDP−1, where P is independent of t and
D is a diagonal matrix consisting of −i tλi with λi , i = 1, . . . , d the eigenvalues of H. The
exponential e−iH t is then diagonalized by the same matrix P: e−iH t = PeDP−1. It is therefore
clear that the expression under the integral in (17) will take the form

�

� 〈φ|e−iH t |ψ0〉
�

�

2
e−iωt = c0 +
∑

i ̸= j

ci je
−i t(λi−λ j+ω) , (18)

and after the integration the peaks in the Fourier spectrum will be positioned at frequencies
ω= 0,λ1 −λ2, . . . ,λi −λ j , . . . Assuming none of the energy differences are the same, we get

1+
�d

2

�

peaks in total (an additional overlap of peaks might happen if one of the eigenenergies
is 0, while two other ones are negatives of each other). In order to avoid coinciding peaks,
one could apply random magnetic field, which will shift every energy level in a non-generic
way and resolve all 1+

�d
2

�

peaks in the Fourier spectrum.
However, another issue might arise. Depending on the states |ψ0〉 , |φ〉, some of the coef-

ficients ci j might be zero. Then, the protocol to determine d should include several trials with
different random states |ψ0〉 and |φ〉 and choosing the one with maximal number of peaks.
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Figure 22: Red dots represent the set of sites on which the operator Ô from Eq. 19 is
defined. Each 1× 1 plaquette touches exactly one red site. Such a set exists only if
Nx , Ny are both even.

C Particle-hole symmetry

There exists an anticommuting operator for the Hamiltonian Ĥ (i.e., interaction range 1×1):

Ô =
∑

i∈{•}

Ŝz
i , {Ô, Ĥ}= 0 , (19)

where {•} is the set of sites depicted in Fig. 22. Each term in Ĥ contains exactly one operator
belonging to this set. Note however that it is possible to construct such a set only if both Nx
and Ny are even. As a result, the spectrum of the model with 1× 1 interactions is symmetric
with respect to E = 0 when Nx , Ny are even. The operator Ô commutes with the subsystem

symmetries, [Ô, Û x(y)
n ] = 0, and therefore the energy spectrum of each symmetry sector is

symmetric with respect to E = 0. It is also worth mentioning that although for any eigenstate
ψ with eigenenergy E there exists another eigenstate ψ̃ with eigenenergy −E, the bipartite
entanglement entropies of these two eigenstates need not be the same. Additionally, note that
adding longer-range interactions destroys this particle-hole symmetry.

D From quantum link model to XY-plaquette model

In this Appendix we show how the XY-plaquette model can be obtained by lifting charge con-
servation in the QLM, which is a 2D lattice gauge theory [58, 59]. The fragmentation of the
Hilbert space in the QLM has been shown in Ref. [44], where the authors study the localization-
delocalization transition for certain initial conditions by associating the process with a perco-
lation problem.

The model is defined on a square lattice with spin-1/2 d.o.f. positioned on the links, as
shown in Fig. 23(a) (left panel). The Sz-basis states are denoted as arrows along the link. A
plaquette is flippable if the four arrows around it are oriented clockwise or anticlockwise. The
Hamiltonian for the QLM reads

ĤQLM = λ
∑

□

�

U□ + U†
□
�2
− J
∑

□

�

U□ + U†
□
�

, (20)

with U□ = Ŝ+i Ŝ−j Ŝ+k Ŝ−l , where i, j, k, l are sites around the plaquette. The first λ-term is just
the potential energy which for λ < 0 favors configurations with many flippable plaquettes.
Therefore, it does not play a role in the kinetic connectivity of basis states, unlike the second
J -term which is the ring-exchange interaction, same as in (1). Thus, for our purposes, we
consider QLM with λ= 0.
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Figure 23: To see the connection between the QLM and the XY-plaquette model, it is
convenient to represent QLM, that is formulated in terms of arrow d.o.f. on the links
(left column), as a plaquette model with 0/1 d.o.f. on the sites of a square lattice
rotated by 45° with respect to the original lattice, which is a natural framework for
the XY-plaquette model (right column). (a) The vertices of the QLM are bipartitioned
into A (red) and B (blue) sublattices. In the language of the XY-plaquette model, the
number of plaquettes is doubled, with white plaquettes corresponding to the original
plaquettes of the QLM, and blue/red plaquettes corresponding to the vertices of the
QLM. Unlike in the QLM, in the XY-plaquette model we can additionally flip blue and
red plaquettes. (b) Charges are defined on the vertices of the QLM in (21), i.e., on
blue/red plaquettes in the XY-plaquette model language. They are conserved in the
QLM, while this conservation is lifted when we allow blue/red plaquettes to flip.

To establish the correspondence between the arrow notation and
�

�sz = −1
2

�

≡ |0〉,
�

�sz = +1
2

�

≡ |1〉 notation, we have to divide the lattice into two sublattices, A and B, as shown
in Fig. 23(a) (left panel). Then on sublattice A we define “arrow in vertex" ≡ |1〉, “arrow out
of vertex" ≡ |0〉; and vice versa on sublattice B: “arrow in vertex" ≡ |0〉, “arrow out of vertex"
≡ |1〉. It is then straightforward to slightly redraw the lattice, so that it takes a more familiar
form of a (0,1)-matrix. On the right panel of Fig. 23(a), white plaquettes correspond to the
original plaquettes on the left panel, while red and blue plaquettes correspond to red and blue
vertices on the left panel. If we formulate QLM as on the right panel of Fig. 23(a), the terms
in the Hamiltonian (20) are defined only on white plaquettes, and therefore the XY-plaquette
model is the QLM (with λ = 0) with more dynamics allowed, since it adds the possibility for
the red and blue plaquettes to be flipped. We will further show how this additional dynamics
introduces fracton-like restricted mobility for the charges that were conserved in the QLM.
Before that, two important notes are in place: first, for the XY-plaquette model to have the
conventional p.b.c. of a square lattice, the p.b.c. in the QLM have to be imposed not along the
links, but rather along the diagonals of the plaquettes, as shown by the x and y directions in
Fig. 23(a); second, such a mapping can only result in a 2n×2n lattice, since otherwise it is not
possible to bipartite the lattice into A and B sublattices.

Now, let us identify conserved quantities in the QLM. We define charge at site i as
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Figure 24: Fracton-like dynamics of the charges on the blue sublattice upon the flip
of the plaquette on the red sublattice: (top panel) new charges can be created only in
quadrupoles, which are free to move in the plane, (bottom panel) a dipole of charges
can move only in the direction perpendicular to its dipole moment. A single charge
remains immobile under the dynamics of the XY-plaquette model.

qi =
1
2(arrows out− arrows in), which correspond to charge operators

q̂i = (−1)η
∑

+
Ŝz

i , (21)

where the summation goes over four links adjacent to the vertex i, η= 1 for sublattice A and
η= 0 for sublattice B (see Fig. 23(b)). These operators commute with the Hamiltonian at each
site, [ĤQLM, q̂i] = 0, and therefore the charge at each vertex in the QLM is conserved. Another
set of conserved quantities is the fluxes, defined on the vertical (horizontal) lines (along y
(x)-direction) going through the middle of the links, Λx(y)

n , n= 1, . . . , Nx(Ny). We define it as

Φx
n =

1
2
(arrows to the right− arrows to the left) ,

Φy
n =

1
2
(arrows up− arrows down) ,

(22)

and the corresponding symmetry operators:

Φ̂x
n = (−1)n
∑

i∈Λx
n

Ŝz
i ,

Φ̂y
n = (−1)n
∑

i∈Λy
n

Ŝz
i ,

(23)

where Λx
n with an even n is such that the sublattice A lies to the right and the sublattice B lies

to the left of the line Λx
n (analogously for Λy

n : n is even when the sublattice A lies above the
line Λy

n and the sublattice B lies below the line Λy
n ). The fluxes are connected to the charges
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Ht

Figure 25: Fully packed QDM. Each site is dimerized with one of its nearest neigh-
bors. Two parallel nearest neighbor dimers can flip, as shown on the right.

through the Gauss’s law:

Φ̂x
n+1 − Φ̂

x
n =
∑

j∈between
Λx

n andΛx
n+1

q̂ j ,

Φ̂
y
n+1 − Φ̂

y
n =
∑

j∈between
Λ

y
n andΛy

n+1

q̂ j .
(24)

When we transition from the QLM to the XY-plaquette model by allowing red and blue
plaquettes to flip, the fluxes Φ̂x

n , Φ̂y
n remain conserved (in fact, they become the subsystem

symmetries defined in (2)), while we lift the conservation of charges q̂i . However, although
the charges become dynamical quantities, they still possess local charge and dipole moment
conservation on each sublattice. We illustrate this in Fig. 24, where we observe what happens
to the charges on the blue sublattice when the red plaquette is flipped. One can see that new
charges can be created only in quadrupoles, while a dipole can freely move along the direction
perpendicular to its dipole moment. In turn, a single charge is immobile.

E Equivalence between the quantum dimer model and the quan-
tum link model

In this Appendix we show how the fully packed QDM is equivalent to the QLM in a particular
vertex-charge sector. The QDM is defined on a square lattice where every site is dimerized
with one of its nearest neighbors, as shown in Fig. 25. The corresponding Hamiltonian is

ĤQDM = ĤV + Ĥt ,

ĤV = V
∑

□

��

�

� 
 �

�+
�

�

� 
 �

�

�

,

Ĥt = −t
∑

□

��

�

� 
 �

�+
�

�

� 
 �

�

�

.

(25)

The equivalence can be easily seen if we divide all horizontal and vertical links in QDM
into two sublattices, A and B. Then, a dimer on sublattice A we identify with an arrow to the
right or down, while the absence of a dimer we identify with an arrow to the left or up. We do
the opposite on the sublattice B. In this manner, we have rewritten the QDM in the language
of QLM. Since each site in the fully packed QDM belongs to exactly one dimer, each vertex in
the corresponding QLM will have staggered ±1 vertex charges. ĤV and Ĥt are exactly equal
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to the λ- and J -terms in the QLM, respectively. Therefore, the fully packed QDM is a special
instance of the QLM, taken in a particular charge sector.

In principle, one can consider defects in the QDM: monomers (sites that are not paired up
in dimers) and higher-order polymers, when more than two spins are entangled (however, we
do not allow long-range entangled dimers or polymers). With such defects, the QDM becomes
exactly equivalent to the QLM, allowing a configuration in any charge sector.

F Bound on the number of inert states with infinite range interac-
tions

For completeness, here we explicitly show how to obtain the bound from Eq. 12.

N
∑

j=1

(−1)N+ j j!

�

N
j

�

( j + 1)N <
N
∑

j=0

j!

�

N
j

�

( j + 1)N ≤
N
∑

j=0

1
2

N !
(N − j)!

jN− j( j + 1)N

<

N
∑

j=0

1
2

N j jN− j( j + 1)N =
N
∑

j=0

1
2

�

N
j

� j

( j( j + 1))N <
N
∑

j=0

1
2

N j

j!
( j( j + 1))N

<
1
2
(N(N + 1))N

N
∑

j=0

N j

j!
N→∞
−−−−→

1
2

N2N eN ,

(26)

where in the first line we have used the upper bound on the Stirling number of the second
kind from Ref. [72]:

�

N
j

�

≤
1
2

�

N
j

�

jN− j . (27)

G Locality and “shape" of interactions

In order to study the interplay of locality and the “shape" of subsystem symmetry preserving
interactions, consider increasing the interaction range to infinity. Does one have to include all
subsystem symmetry preserving interactions in order to completely remove the Hilbert space
fragmentation? The answer is no. There is a minimal set of interactions that are sufficient to
dynamically connect all the states within each of the symmetry sectors. On the square lattice,
such set consists of “rectangular" interactions (8). This is apparent, since, as we have stated
before, the construction of all states in a particular symmetry sector is performed by recur-
sively flipping all flippable rectangles. This procedure necessarily will produce all states with
prescribed column and row sums, due to the theorem from Ref. [63]. The existence of such
a minimal set implies that if in a physical system, for whatever reason, some of the interac-
tions from this set are forbidden (or exponentially suppressed in comparison to interactions of
other “shapes" of the same range), the Hilbert space fragmentation would persist even upon
increasing the interaction range to infinity.

Let us demonstrate this on an example. If one interprets the ring-exchange term as a hop-
ping of hard-core bosons, it seems plausible that in the presence of a strong on-site potential,
the correlated hopping should only occur between the neighboring sites, and therefore only
the terms like Ĥ1×1 and







0 1 0 1
1 • • 0
0 • • 1
1 0 1 0






←→







1 0 1 0
0 • • 1
1 • • 0
0 1 0 1






(28)
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Figure 26: Support of a local operator Q, supp(Q) (in orange), is fully located inside
a rectangle B ≡ [x0, x1] × [y0, y1] (in blue). The intersection of supp(Q) and the
leftmost column of B is a set eB ≡ {x0} × [ ỹ0, ỹ1] (in red). Since Q is local, we can
always identify the lowermost site i0 of the rightmost column of the support of Q.

are not exponentially suppressed, i.e., the terms where the ring-exchange acts on a loop with
no “gaps" in between neighboring flipped spins. In such a setting, even upon an increase of the
interaction range to infinity, the Hilbert space fragmentation will not disappear, since generic
rectangular interactions (8) are not allowed. In particular, for instance, states (6) will not
become connected to each other.

While the generic mechanisms leading to the fragmentation of the Hilbert space in quan-
tum models are still not clear, our observation points to the fact that in real physical systems
the locality of interactions in itself may not be a necessary ingredient for it. It is also important
to take into account the geometry of interactions allowed in a concrete system.

H Absence of local conserved quantities

One might ask whether the studied XY-plaquette model has any emergent local conserved
quantities. In case it does, they might be responsible for the observed Hilbert space fragmenta-
tion. In this Appendix, we prove that no local conserved operator can exist in the XY-plaquette
model.

The proof goes as follows. Let us assume that there exists a local conserved operator Q, i.e.,
[H,Q] = 0. By “local" we mean that the support of the operator, supp(Q), is bounded. Thus, on
the considered square lattice, supp(Q) is fully located inside some rectangleB ≡ [x0, x1]×[y0, y1],
i.e., supp(Q) ⊆ B. Therefore, supp(Q) consists of at most P = (x1 − x0 + 1) (y1 − y0 + 1) sites.

Since the local degrees of freedom obey Pauli algebra, the operator Q generically can be
written as

Q =
∑

µ

cµ
P
⊗

i=1

σ
µi
i , (29)

where µ≡ {µ1,µ2, . . . ,µP} is a string composed of µi ∈ {0,1, 2,3}, such that σµi
i is one of the

four Pauli matrices (including identity) at site i = 1, . . . , P. The summation goes over all 4P

possible strings and cµ are arbitrary complex coefficients.
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Consider the intersection of the support of Q and sites at x = x0, i.e., sites in the leftmost
column of B. Since supp(Q) is bounded, this intersection, supp(Q)∩{x = x0}, is also bounded
and lies inside region eB ≡ {x0} × [ ỹ0, ỹ1], where ỹ0 ≥ y0, ỹ1 ≤ y1. Thus, we can identify site
i0 ≡ (x0, ỹ0). In short, for any local operator Q on a square lattice, we can always find the
lowermost site of the leftmost column belonging to the support of Q (see Fig. 26).

This, in turn, means that there exist terms in the Hamiltonian that have overlap with
supp(Q) on one site only. In particular, terms σ+k0

σ−l0
σ+i0
σ−j0

and σ−k0
σ+l0
σ−i0
σ+j0

overlap supp(Q)
only on site i0, as shown in Fig. 26. This fact, together with [H,Q] = 0 and the form of the
operator Q, (29), leads to the conclusion that for any non-zero term in (29), µi0 = 0. I.e., Q
can only contain an identity acting on site i0. However, this contradicts the fact that i0 belongs
to the support of Q. Therefore, our initial assumption about the existence of a local conserved
operator Q was wrong.

Note that the addition of arbitrary σz terms to the Hamiltonian does not alter the conclu-
sion.
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hopping, Commun. Phys. 3, 99 (2020), doi:10.1038/s42005-020-0364-9.

[27] T. Iadecola and S. Vijay, Nonergodic quantum dynamics from deformations of classical cel-
lular automata, Phys. Rev. B 102, 180302 (2020), doi:10.1103/PhysRevB.102.180302.

[28] T. Iadecola and M. Schecter, Quantum many-body scar states with emergent ki-
netic constraints and finite-entanglement revivals, Phys. Rev. B 101, 024306 (2020),
doi:10.1103/PhysRevB.101.024306.

[29] Z.-C. Yang, F. Liu, A. V. Gorshkov and T. Iadecola, Hilbert-space frag-
mentation from strict confinement, Phys. Rev. Lett. 124, 207602 (2020),
doi:10.1103/PhysRevLett.124.207602.

[30] T. Rakovszky, P. Sala, R. Verresen, M. Knap and F. Pollmann, Statistical localization:
From strong fragmentation to strong edge modes, Phys. Rev. B 101, 125126 (2020),
doi:10.1103/PhysRevB.101.125126.

[31] P. A. McClarty, M. Haque, A. Sen and J. Richter, Disorder-free localization and many-
body quantum scars from magnetic frustration, Phys. Rev. B 102, 224303 (2020),
doi:10.1103/PhysRevB.102.224303.

[32] I. Papaefstathiou, A. Smith and J. Knolle, Disorder-free localization in a simple U(1) lattice
gauge theory, Phys. Rev. B 102, 165132 (2020), doi:10.1103/PhysRevB.102.165132.

[33] L. Herviou, J. H. Bardarson and N. Regnault, Many-body localization in a fragmented
Hilbert space, Phys. Rev. B 103, 134207 (2021), doi:10.1103/PhysRevB.103.134207.

[34] D. Hahn, P. A. McClarty and D. J. Luitz, Information dynamics in a model with Hilbert
space fragmentation, SciPost Phys. 11, 074 (2021), doi:10.21468/SciPostPhys.11.4.074.

[35] C. M. Langlett and S. Xu, Hilbert space fragmentation and exact scars of generalized Fredkin
spin chains, Phys. Rev. B 103, L220304 (2021), doi:10.1103/PhysRevB.103.L220304.

[36] J.-Y. Desaules, A. Hudomal, C. J. Turner and Z. Papić, Proposal for realizing quan-
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