
SciPost Phys. 13, 115 (2022)

On spectrally flowed local vertex operators in AdS3

Sergio Iguri1,2,3? and Nicolas Kovensky4†

1 CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE),
C. C. 67, Suc. 28, 1428 Buenos Aires, Argentina.

2 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Ciudad Universitaria, 1428 Buenos Aires, Argentina.

3 Universidad Abierta Interamericana, Facultad de Arquitectura.
1428 Buenos Aires, Argentina

4 Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,
Orme des Merisiers, 91191 Gif-sur-Yvette CEDEX, France.

? siguri@iafe.uba.ar , † nicolas.kovensky@ipht.fr

Abstract

We provide a novel local definition for spectrally flowed vertex operators in the SL(2,R)-
WZW model, generalising the proposal of [1] for the singly-flowed case to all ω > 1.
This allows us to establish the precise connection between the computation of correla-
tors using the so-called spectral flow operator [1], and the methods introduced recently
in [2] based on local Ward identities. We show that the auxiliary variable y used by the
authors of [2] arises naturally from a point-splitting procedure in the space-time coor-
dinate. The recursion relations satisfied by spectrally flowed correlators, which take the
form of partial differential equations in y-space, then correspond to null-state condi-
tions for generalised spectral flowed operators. We highlight the role of certain SL(2,R)
discrete module isomorphisms in this context, and prove the validity of the conjecture
put forward in [2] for y-space structure constants of three-point functions with arbitrary
spectral flow charges.
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1 Introduction

Strings propagating in asymptotically AdS3 geometries and orbifolds thereof constitute one of
the fundamental ingredients in our current understanding of some important open questions
in quantum gravity in general, and in the microscopic description of black holes in particular.
Indeed, they provide a framework in which we can apply powerful computational techniques,
such as worldsheet string theory and more generally two-dimensinal conformal field theory
(CFT), together with the AdS3/CFT2 duality, and low-dimensional supergravity, to address a
wide range of interesting phenomena far beyond the regimes of applicability of supergravity
and perturbation theory. The computation of correlation functions in this context has pro-
vided crucial insights into the fundamental nature of the holographic duality [3–5], but also
non-AdS holography and single-trace T T̄ and J T̄ deformations of 2d CFTs [6–11], black hole
phenomenology [12–20] and even condensed matter physics [21].

When the background configuration is that of global AdS3 with pure NS-NS flux, one can
describe the string dynamics in terms of a solvable worldsheet model. The prototypical exam-
ple is that of type IIB superstring theory on AdS3 × S3 × T4 (or K3). The main ingredient of
the corresponding 2d CFT on the worldsheet is the WZW model based on the universal cover
of SL(2,R), first studied in [22–25]. Although it is believed to be exactly solvable, many dif-
ficulties in computing observables arise from the fact that the target space is both Lorentzian
and non-compact. This was understood in [26, 27], where the authors showed that a consis-
tent spectrum and partition function are only obtained upon including the so-called spectrally
flowed representations. As opposed to the compact case, the spectral flow automorphisms give
rise to new representations, inequivalent to the canonical ones, which encompass in particular
a continuum of long string states, i.e. those that can reach the asymptotic boundary while
remaining finite in energy.

The spectral flow operation is more naturally thought of in the so-called m-basis, i.e. where
the Cartan current is diagonalized, and the analysis is nicely complemented by considering the
parafermionic decomposition [28]. Increasing the spectral flow charge ω of a given state can
be described in terms of what is known as the spectral flow operator, whose parafemionic part
reduces to a multiple of the identity. The first instances of three-point functions involving spec-
trally flowed states where computed in [1, 28], using the fact that this spectral flow operator
possesses a null descendant.

On the other hand, for holographic purposes, it is necessary to work with operators that
are local in spacetime1, namely, those defined in terms of the x-basis. The continuous label
x , the quantum variable conjugated to m, is identified with the (holomorphic) coordinate of
the holographic CFT2 living at the AdS3 boundary. Roughly speaking, these local operators
are constructed by combining an infinite number of m-basis operators, which correspond to

1Throughout this paper, we follow [1] and refer to x-basis vertex operators as local. However, we note that
computing their spacetime OPEs in full generality remains an interesting open problem.
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their spacetime modes. The presence of states with non-trivial spectral flow charge, which
are not affine primaries, and their complicated OPEs with the conserved currents render the
computation of correlation functions in this model quite complicated.

By using and further developing the techniques of [1], a number of papers have managed to
compute certain subfamilies of spectrally flowed local correlation functions [29–35]. However,
when attempting to apply these methods to more general correlators, one faces a serious issue
since there is no x-basis definition of spectrally flowed operators generalizing the ω = 1 case
described in [1]. The importance of this statement is made clearer by noting that resorting to
our m-basis intuition is simply not enough. Indeed, as it was also discussed in [36, 37], and
despite our terminology, the relation with the x-basis is much more subtle than, say, in the
SU(2) case, and, as a consequence, the fusion rules are actually not the same for both types of
operators.

More recently, an interesting alternative approach was developed in [2,3,38]. The authors
made use of a set of local Ward identities arising in the spectrally flowed sectors to derive
recursion relations satisfied by correlation functions in terms of the spacetime weights h of
the different insertions. By introducing the associated conjugate coordinate y as an auxiliary
variable, these recursion relations were then recast as partial differential equations, for which
a general solution was put forward. The structure of this solution is based on the intuition
stemming from the tensionless string scenario, where the theory is believed to be exactly dual
to a symmetric product orbifold [36, 37]. In this model, for which the holographic duality is
perhaps close to be formally proven [3, 4], correlation functions vanish unless there exists a
holomorphic covering map from the string worldsheet to the AdS3 boundary. Although this
is not the case in more general situations, the existence of these covering maps underlies the
proposal of [2,38].

The solution for the spectrally flowed correlators of the SL(2,R)-WZW model is, however,
still to be proven. The main obstacle is that there is no known closed form for the recursion
relations alluded above (respectively, partial differential equations in terms of the y variables).
So far, they have been derived case by case. Although solving these constraints produces
explicit integral expressions for the corresponding correlators, it does so only up to an overall
structure constant, which depends on the spectral flow charges and the unflowed SL(2,R)
spins of the different insertions, but not on their spacetime weights. Furthermore, since there
is no clear relation between the y-basis analysis and the spectral flow operator used in [1], it
is not well understood why these methods produce results consistent with each other, at least
in the limited subset of cases where one can use both.

In this work we fill an important gap in the literature by providing an explicit definition of
x-basis vertex operators with arbitrary spectral flow charge, namely, forω> 1, thus generalis-
ing the analysis of [1]. This definition is based on a similar point-splitting procedure involving
the unflowed vertex and a modified spectral flow operator. It is also recursive in the sense that
this spectral flow operator is a flowed version of the original one, albeit by only ω− 1 units.
We prove the validity of our proposal by explicitly computing all OPEs with the conserved cur-
rents. We also show how to make practical use of this definition for the computation of two-
and three-point functions by invoking a modified version of the null-state conditions.

We then establish the precise relation between this formalism and that of [2,38] by show-
ing how the y variable arises from our definition of boundary-local operators in spectrally
flowed sectors of the theory. We describe how the partial differential equations satisfied by the
correlators in terms of the y variable can be re-interpreted as the null-state conditions associ-
ated to the spectral flow operators involved in our construction. Finally, and after discussing
the identification series in this context, we show how to fix the explicit form of the structure
constants, such that our result coincides with what was conjectured in [2]. Further progress
along these lines will be presented in a future paper [39].
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2 Definitions and conventions

We will mostly follow the conventions of [1,38], and work in the bosonic SL(2,R)-WZW model
at level k > 3 [40,41]. We also focus directly on the x-basis, except for the initial definitions,
and omit most anti-holomorphic variables unless necessary.

The holomorphic conserved currents of the model will be denoted J a(z). They satisfy the
OPEs

J a(z)J b(w)∼
ηabk/2
(z −w)2

+
f ab

cJ
c(w)

z −w
, (1)

where η+− = −2η33 = 2, f +−3 = −2 and f 3+
+ = − f 3−

− = 1. The energy-momentum tensor
and the central charge follow from the Sugawara construction, and are given by

T (z) =
1

k− 2
: −J3(z)J3(z) +

1
2

�

J+(z)J−(z) + J−(z)J+(z)
�

: , (2)

and

c =
3k

k− 2
. (3)

The relevant representations of the (holomorphic) zero-mode algebra are as follows. On
the one hand, one has the principal discrete series of lowest (highest) weight, spanned by

D±j = {| j m〉 , m= ± j,± j ± 1,± j ± 2, · · · } , (4)

respectively, with J3
0 | j m〉 = m| j m〉. These are unitary representations for any positive real j,

one being the charge conjugate of the other. There are also the principal continuous series,
spanned by

Cαj = {| j m〉 , 0≤ α < 1 , j = 1/2+ is , s ∈ R , m= α,α± 1,α± 2, · · · } . (5)

It was shown in [26] that a consistent spectrum of the model is built out of continuous and
lowest weight representations with

1
2
< j <

k− 1
2

, (6)

together with their spectrally flowed images, to be introduced below. Eq. (6) follows from L2

normalization conditions, no-ghost theorems and spectral flow considerations.
In the unflowed sector, the action of the currents on the primary states is given by

J3
0 | j m〉 = m| j m〉 , (7a)

J±0 | j m〉 =

¨

(m∓ ( j − 1))| j, m± 1〉 if m 6= ∓ j

0 if m= ∓ j ,
(7b)

J a
n | j m〉 = 0 ∀n> 0 . (7c)

The corresponding primary vertex operators Vjm(z) can be obtained from those of the Eu-
clidean counterpart of the model, namely the H+3 -WZW model [25], by means of the following
Mellin-like transform:

Vjm(z) =

∫

C
d2 x x j−m−1 x̄ j−m̄−1Vj(x , z) , (8)

after a well-defined analytical continuation in j is assumed. In the so-called x-basis, a generic
vertex Vj(x , z) has conformal weight

∆= −
j( j − 1)
k− 2

, (9)
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and is acted upon by the currents as

J a(w)Vj(x , z)∼
Da

j Vj(x , z)

(w− z)
, (10)

where
D+j = ∂x , D3

j = x∂x + j , D−j = x2∂x + 2 j x . (11)

The two-point function is given by




Vj1(x1, z1)Vj2(x2, z2)
�

=
1

|z12|4∆1

�

δ2(x1 − x2)δ( j1 + j2 − 1) +
B( j1)
|x12|4 j1

δ( j1 − j2)
�

, (12)

with

B( j) =
2 j − 1
π

Γ [1− b2(2 j − 1)]
Γ [1+ b2(2 j − 1)]

ν1−2 j , ν=
Γ [1− b2]
Γ [1+ b2]

, b2 = (k− 2)−1 . (13)

The three-point function takes the form

〈Vj1(x1, z1)Vj2(x2, z2)Vj3(x3, z3)〉= C( j1, j2, j3)

�

�

�

�

�

x j3− j1− j2
12 x j1− j2− j3

23 x j2− j3− j1
31

z∆1+∆2−∆3
12 z∆2+∆3−∆1

23 z∆3+∆1−∆2
31

�

�

�

�

�

2

, (14)

where the structure constant has a complicated formula given in terms of Barnes double
Gamma functions [1, 25]. Among its properties, the following two will be relevant for our
purposes:

C( j1, j2, 0) = B( j1)δ( j1 − j2) , (15)

C
�

j1, j2,
k
2

�

∼ δ
�

j1 + j2 −
k
2

�

, (16)

where the last expressions holds only up to k-dependent factors.
At first sight, the complex variable x appears simply as an SL(2,R) version of the isospin

variables defined for SU(2) in [42]. However, given that the integrated zero modes of the
currents realize the space-time Virasoro modes L0 and L±1, and by examining the expressions
of the associated differential operators (11), one is led to interpret x as the local coordinate
on the boundary theory [22]. According to (12), in the bosonic theory a z-integrated vertex
operator Vj(x) is identified with a local operator of weight j in the boundary. Conversely, the
corresponding boundary Virasoro modes are given by the m-basis operators. Indeed, for states
in the discrete sector, the transform in Eq. (8) can be inverted, giving

Vj(x , z) =
∑

m,m̄

xm− j x̄ m̄− j Vjm(z) ∼ exJ+0 + x̄ J̄+0 Vj j(z)e
−xJ+0 − x̄ J̄+0 . (17)

The vertex Vj(x , z) is thus realised as Vj j(z) = Vj(x = 0, z), translated from the origin to
x . Poles in the integrand of (8) coming from the expansion around x = 0 (x = ∞) are
associated to states in the D+j (D−j ) representation [2, 3]. For states in the continuous sector,
(17) is modified to account for the fact that, although m− m̄ is an integer number, m+ m̄ can
take arbitrary real values, which must be integrated over, giving [38],

Vj(x , z) =
i

(2π2)

∑

m−m̄

∫ ∞

−∞
d(m+ m̄) xm− j x̄ m̄− j Vjm(z) . (18)

States defined in this way satisfy the reflection property

V1− j(x , z) = B(1− j)

∫

d2 x ′ |x − x ′|4 j−4Vj(x
′, z) , (19)
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showing that B( j) defines the reflection coefficient. Note that, although unflowed contiuous
states are tachyonic and do not survive the GSO projection in the full superstring construction,
their spectrally flowed cousins are actually physical, and describe long string configurations.

In this context, the action of the currents can be compactly written in terms of [23]

J(x , z)≡ exJ+0 J−(z)e−xJ+0 = J−(z)− 2xJ3(z) + x2J+(z) . (20)

Then, the corresponding OPE with the vertex operators reads

J(x ′, z′)Vj(x , z)∼
1

z′ − z

�

(x − x ′)2∂x ′ + 2 j(x − x ′)
�

Vj(x , z) . (21)

2.1 Spectral flow

Spectral flow automorphisms of the current algebra (1) are defined as

J±(z)→ J̃±(z) = z±wJ±(z) , J3(z)→ J̃3(z) = J3(z)−
kω
2

1
z

, (22)

where the so-called spectral flow charge ω is an integer number. Since we work with the
universal cover of SL(2,R), holomorphic and anti-holomorphic spectral flow charges must
coincide [1]. As mentioned above, the action of (22) on the principal series of SL(2,R) defines
representations that are, in general, inequivalent to the canonical ones, and must be considered
in order to complete the spectrum.

At the level of primary vertex operators, and for w > 0, the mapping introduced in (22)
defines the so-called flowed primaries, whose OPEs with the currents take the form

J+(z)Vωjm(w) =
(m+ 1− j)Vωj,m+1(w)

(z −w)ω+1
+

ω
∑

n=1

( j+n−1Vωjm)(w)

(z −w)n
+ . . . , (23a)

J3(z)Vωjm(w) =

�

m+ k
2ω
�

Vωjm(w)

(z −w)
+ . . . , (23b)

J−(z)Vωjm(w) = (z −w)ω−1(m− 1+ j)Vωj,m−1(w) + . . . , (23c)

where the ellipsis indicate higher order terms. Similar equations hold forω< 0 with the roles
of J+ and J− inverted. The operators Vωjm(z) are not affine primaries. They are, however,
Virasoro primaries with weight

∆= −
j( j − 1)
k− 2

−mω−
k
4
ω2 , (24)

since

T̃ (z) = T (z) +
ω

z
J3(z)−

k
2
ω2

z2
. (25)

Note that for ω > 0 (ω < 0), independently of the original state, these correspond to lowest
(highest) weight states of the zero-mode algebra with spin

h= m+
k
2
ω , (26)

(h = −m− kω/2, respectively). The spectrally flowed affine modules alluded above are built
by acting freely with the currents on spectrally flowed primary states. In particular, other states
in the corresponding global multiplets are not spectrally flowed primaries.
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Given that spectral flow is most naturally understood in the m-basis, one can formally
define vertex operators local in x with non-trivial spectral flow charges by extrapolating the
definition (17) [38]. Here, the role of the state at the origin x = 0, i.e., the lowest-weight
state, is played by the spectrally flowed primary state, that is

Vωjh (x = 0, z)≡ Vωjm(z) (ω> 0) . (27)

Since states with both positive and negative ω contribute to the same vertex, the x-basis
operator is only defined by the absolute value. Conversely, the state at Vωjh (∞, z) is associated
to V−ωj,−m(z).

All properties defining spectrally flowed operators in the x-basis can be condensed into the
following OPE [43]:

J(x ′, z′)Vωjh (x , z) ∼ (x − x ′)2
ω+1
∑

n=1

�

J+n−1Vωjh
�

(x , z)

(z′ − z)n
+

2h(x − x ′)Vωjh (x , z)

z′ − z
+ · · ·

∼ (x − x ′)2
ω+1
∑

n=1

�

J+n−1Vωjh
�

(x , z)

(z′ − z)n
+

2h(x − x ′)Vωjh (x , z)

z′ − z
+ · · ·

∼ (x − x ′)2







( j −m− 1)Vωj,h+1(x , z)

(z′ − z)ω+1
+

ω
∑

n=2

�

J+n−1Vωjh
�

(x , z)

(z′ − z)n







+
(x − x ′)2∂x + 2h(x − x ′)

z′ − z
Vωjh (x , z) + · · · . (28)

Although there are higher order poles in the OPEs, we still have
�

J a
0 Vωjh

�

(x , z) = Da
h Vωjh (x , z) , (29)

with the differential operators (11), while

�

J±±ωVωjh
�

(x , z) =
�

h−
k
2
ω∓ ( j − 1)

�

Vωj,h±1(x , z) , (30)

since h= m+ kω/2.

3 Spectrally flowed states in the x-basis

Even though local operators defined from m-basis spectrally flowed primaries as above capture
the correct physics, most of the terms appearing in the formal series expansion generalising
(17) and (18) are complicated operators which have no simple m-basis expressions. Moreover,
the interpretation of x-basis correlation functions in terms of infinite sums of the m-basis ones
is rather subtle. It is then useful to have an independent definition for Vωjh (x , z), directly built
in the x-basis.

For the first non-trivial case, ω = 1, such a formula is already known. It was introduced
in [1] in terms of the fusion of Vj(x) with the spectral flow operator Vk

2
(x , z). It takes the

explicit form

Vω=1
jh (x , z) = lim

ε,ε̄→0
εmε̄m̄

∫

d2 y y j−m−1 ȳ j−m̄−1Vj(x + y, z + ε)Vk
2
(x , z) , (31)
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building on the parafermionic decomposition

J3(z) = −

√

√k
2
∂ φ(z), φ(z)φ(w)∼ − log(z −w) , (32)

and
Vωjm(z)∼ Ψ jm(z)e(

m+ k
2ω)

q

2
k φ(z) . (33)

Here Ψ jm(z) refers to the parafermionic vertex. Spectral flow only affects the exponential part
of the state. It is easy to see that the parafermionic factor in Vk

2
k
2

is a multiple of the identity,
i.e. Vk

2
k
2

is a pure exponential in φ which can be used to construct the spectrally flowed
operators. Indeed, for unit spectral flow charge we have

lim
z′→z
(z − z′)mVjm(z

′)Vk
2

k
2
(z) = Vω=1

jm (z) . (34)

This explains the presence of the ε-limits in (31), while the y integrals simply select the desired
J3

0 eigenstate Vjm(z) from the zero-mode representation characterised by Vj(x + y, z) sitting
at the origin x = 0, according to (8). Note that, in the discrete case, the y integrals can be
taken to be holomorphic and anti-holomorphic contour integrals, as opposed to integrals over
the whole complex plane.

One of the main results of this paper is to extend (31) to arbitrary spectral flow sectors.
The proposed definition reads as follows:

Vωjh (x , z) = lim
ε,ε̄→0

εmωε̄m̄ω

∫

d2 y y j−m−1 ȳ j−m̄−1Vj(x + y, z + ε)Vω−1
k
2

k
2ω
(x , z) , (35)

where we recall that h = m + kω/2. Although we will focus on the proposal (35), there is
actually an alternative way to write this. Indeed, as in [1] for the ω= 1 case, one has

Vωjh (x , z) = lim
y, ȳ→0

y j−m ȳ j−m̄

∫

d2ε εmω−1ε̄m̄ω−1Vj(x + y, z + ε)Vω−1
k
2

k
2ω
(x , z) . (36)

One of these expressions is manifestly local in x , while the other is manifestly local in z. Note
that there is an intriguing symmetry between x and z (or rather zω) which, to some extent,
also appears below in Eqs. (50)-(53)2.

Before proving Eq. (35) in full generality, we first show that it passes a series of non-trivial
checks. We will refer to vertex operators of the form Vω−1

k
2

k
2ω
(x , z) as generalized spectral flow

operators.
First, we note that, for ω = 1, Eq. (35) reduces to (31). Indeed, V 0

k
2

k
2

(x , z) = Vk
2
(x , z).

Second, we evaluate (35) at x = 0, and inductively show that Vωjh (0, z) = Vωjm(z). We have

Vωjh (0, z) = lim
ε,ε̄→0

εmωε̄m̄ω

∫

d2 y y j−m−1 ȳ j−m̄−1Vj(y, z + ε)Vω−1
k
2 , k

2ω
(0, z)

= lim
ε,ε̄→0

εmωε̄m̄ωVjm(z + ε)V
ω−1
k
2

k
2
(z) = Vωjm(z) , (37)

where the y integral has become the usual transform to the m-basis (8). The inductive step
corresponds to setting Vω−1

k
2

k
2ω
(0, z) = Vω−1

k
2

k
2

(z). The final equality corresponds to the extension

of (34) to arbitrary ω. Of course, one can relate Vωjh (∞, z) to V−ωj,−m(z) in a similar way.

2It would be interesting to further explore these features. For this, we thank the referee for pointing out the
KZ-BPZ relation discussed in Ref. [42].
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A third simple check comes from studying the action of the zero-mode currents on (35).
For J+0 , using Eqs. (11) and (29) it first reduces to ∂y when acting on the spectrally unflowed
vertex Vj(x + y, z + ε) in the integrand, while on the spectral flow operator it gives ∂x − ∂y ,
as expected. The action of J3

0 (x) ≡ J3
0 − xJ+0 , defined in analogy to (20), is slightly more

interesting to derive. Using J3
0 (x) = J3

0 (x + y) + yJ+0 , we get

�

J3
0 Vωjh

�

(x , z) = lim
ε,ε̄→0

εmωε̄m̄ω

∫

d2 y y j−m−1 ȳ j−m̄−1 ×
�

j + y∂y +
k
2
ω

�

Vj(x + y, z + ε)Vω−1
k
2 , k

2ω
(x , z)

=
�

m+
k
2
ω

�

Vωjh (x , z) = hVωjh (x , z) , (38)

consistently with (29). A similar computation can be performed for J−0 (x).
Finally, it is also instructive to see how J+ω achieves the shift h → h+ 1 in this language.

Consider, for simplicity, the operator Vωjh evaluated at z = 0. Then the action of J+ω on the
spectral flow operator inside (35) vanishes because it acts on a state with spectral flow charge
ω−1 as J+1 on an unflowed state. On the other hand, one needs to be careful when acting on
Vj(x + y,ε) since the worldsheet insertion point is shifted from the origin. By using

J+n (0) =
n
∑

i=0

�

n
i

�

εn−iJ+i (ε) , (n> 0) , (39)

which holds for sufficiently small values of w, and follows from J+n (ε) =
∮

w dz(z − w)nJ+(z)
[44], the only non-trivial action is from the term proportional to εω. More precisely, we get

�

J+ωVωjh
�

(x , 0) = lim
ε,ε̄→0

εmωε̄m̄ω

∫

d2 y y j−m−1 ȳ j−m̄−1
�

εω∂y

�

Vj(x + y,ε)Vω−1
k
2

k
2ω
(x , 0) , (40)

which reproduces (30) upon integrating by parts. The action of J−−ω can be obtained analo-

gously by noting that
�

J−−ωVω−1
k
2

k
2ω

�

(x , z) is a null vector.

Let us now prove that spectrally flowed operators as defined in Eq. (35) satisfy the OPE
(28) with the currents. We proceed by induction in ω. For the singly-flowed case this was
proven in [1]. Assuming the validity of (28) for all operators with spectral flow charges up to
ω− 1, we can write

J(x ′, z′)Vω−1
k
2

k
2ω
(x , z)∼

ω
∑

n=1

(x − x ′)2

(z′ − z)n

�

J+n−1Vω−1
k
2

k
2ω

�

(x , z) +
kω(x − x ′)

z′ − z
Vω−1

k
2

k
2ω
(x , z) .

Then, (35) implies

J(x ′, z′)Vωjh (x , z) ∼ lim
ε,ε̄→0

εmωε̄m̄ω

∫

d2 y y j−m−1 ȳ j−m̄−1

�

(x + y − x ′)2∂y + 2 j(x + y − x ′)

z′ − z − ε

+
(x − x ′)2(∂x − ∂y) + kω(x − x ′)

z′ − z

�

Vj(x + y, z + ε)Vω−1
k
2

k
2ω
(x , z)

+
ω
∑

n=2

(x − x ′)2Vj(x + y, z + ε)
�

J+n−1Vω−1
k
2

k
2ω

�

(x , z)

(z′ − z)n
. (41)
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Let us consider the first term and expand (z′−z−ε)−1 =
∑∞

n=0 ε
n(z′−z)n+1. All contributions

with n > ω vanish in the ε → 0 limit. After integrating by parts, the simple pole in (z − z′)
takes the form

limε,ε̄→0
εmωε̄m̄ω

z−z′

∫

d2 y y j−m−1 ȳ j−m̄−1
�

(m+ 1− j)(2(x − x ′) + y) + (2 j − 2)(x + y − x ′)

+ (x − x ′)2∂x + kω(x − x ′)
	

Vj(x + y, z + ε)Vω−1
k
2

k
2ω
(x , z)

=
(x − x ′)2∂x + 2

�

m+ k
2ω
�

(x − x ′)

z − z′
Vωjh (x , z) . (42)

where the terms linear in y also vanish in the ε → 0 limit. Proceeding similarly with the
(z − z′)ω+1 pole, for which only the y−1 term survives due to the presence of the extra εω

factor, we re-obtain Eq.(35) but with m replaced by m+ 1, together with an extra ( j −m− 1)
coefficient, as implied by the action of J+ω = J̃+0 . Upon setting z = 0, the rest of the singular
terms have as integrands expressions of the form

ω
∑

n=2

(x − x ′)2

z′n

§

εn−1∂y Vj(x + y,ε)Vω−1
k
2

k
2ω
(x , 0) + Vj(x + y,ε)

�

J+n−1Vω−1
k
2

k
2ω

�

(x , 0)
ª

=

ω
∑

n=2

(x − x ′)2

z′n

§

εn−1
�

J+0 (ε), Vj(x + y,ε)
�

Vω−1
k
2

k
2ω
(x , 0) + Vj(x + y,ε)

�

J+n−1Vω−1
k
2

k
2ω

�

(x , 0)
ª

.

In order to recover (28) we would like to pull J+n−1(0) to the left of Vj(x+ y,ε). This is slightly
subtle. Even though all the current modes involved are positive and Vj(x + y,ε) is an affine
primary, we do pick up some extra contributions due to the fact that the former come from an
expansion of J+(z) around z = 0 instead of z = ε, where Vj(x + y,ε) is inserted. Again, (39)
shows that the set of terms with non-zero powers of ε obtained in this way exactly cancel the
higher order terms coming from the (z′−ε)−1 expansion in the first term of (41), thus yielding
the desired result.

Hence, Eq.(35) satisfies (28), and provides an alternative definition for x-basis spectrally
flowed vertex operators with arbitrary spectral flow charge ω.

4 Sample correlation functions and series identifications

In this section we show how the definition (35) can be used for the computation of correlation
functions involving spectrally flowed operators. We first focus on two-point functions and then
consider a set of three-point functions. Along the way, we clarify the role of the so-called series
identifications, i.e. the isomorphisms relating spectrally flowed highest- and lowest-weight
representations with consecutive spectral flow charges.

Even though the iteration is not straightforward, our formula (35) is recursive in the sense
that it allows us to write a vertex operator with spectral flow charge ω in terms of two inser-
tions, an unflowed one, and another with charge ω− 1 3. As in the proof outlined at the end
of the previous section, we will proceed by induction several times along the rest of the paper.
For this, we make use of all results derived in [1] for operators with ω≤ 1.

3It would be interesting to further explore the possibility of a recursive definition in which each iteration adds
a unit of spectral flow to the vertex operator. We have checked that naïve extensions of (35) do not satisfy the
expected OPEs with the currents, although the reason for this remains unclear.
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4.1 Two-point functions

Boundary-local two-point functions of spectrally flowed operators with generic charges were
originally derived in [1] by first transforming to the m-basis, then using the parafermionic
decomposition, and finally going back to the x-basis. We will generically refer to this type of
procedure as an m-basis method, as opposed to the x-basis techniques employed in this paper
(and also recently in [2,38]).

Starting from (35), the computation of the two-point function
¬

Vωjh (x , z)Vωj′h′(x
′, z′)

¶

, which
necessarily preserves spectral flow, can be reduced to that of a four-point function of the form

­

Vj(x + y, z + ε)Vω−1
k
2

k
2ω
(x , z)Vj′(x

′ + y ′, z′ + ε′)Vω−1
k
2

k
2ω
(x ′, z′)

·

. (43)

This can be computed exactly due to the fact that the operators Vω−1
k
2

k
2ω
(x , z) are built upon

Vk
2

k
2
(z), which has a null descendant. For ω = 1, the corresponding (unflowed) state satisfies

the following null-state condition and simplified Knizhnik-Zamolodchikov (KZ) equation:

J−−1

�

�

�

�

k
2

,
k
2

·

=
�

L−1 + J3
−1

�

�

�

�

�

k
2

,
k
2

·

= 0 . (44)

More generally, for the states created by Vω−1
k
2

k
2ω
(0,0) = Vω−1

k
2

k
2

(0), Eqs. (22) and (25) imply

J−−ω

�

�

�

�

k
2

,
k
2

,ω− 1
·

=
�

L−1 +ωJ3
−1

�

�

�

�

�

k
2

,
k
2

,ω− 1
·

= 0 , (45)

where | j, m, w〉 stands for the state created by V w
jm(z) when inserted at the origin.

We can use these identities to analyse a slightly more general four-point correlator, which
will be useful later on. Consider

­

Vj1(x1, z1)V
ω−1
k
2

k
2ω
(x2, z2)Vj3(x3, z3)V

ω−1
j4h4
(x4, z4)

·

=

C̃ω( j1, j3, j4)|F(x , z)|2
�

�

�

�

�

x ( j1+h2− j3−h4)
43 x−2h2

42 x (h2+ j3− j1−h4)
41 x (h4− j1−h2− j3)

31

z(∆3+∆4−∆1−∆2)
43 z2∆2

42 z(∆1+∆4−∆2−∆3)
41 z(∆1+∆2+∆3−∆4)

31

�

�

�

�

�

2

,
(46)

where

z =
z21z43

z31z42
, x =

x21 x43

x31 x42
, ∆2 = −

k
4
ω2 , h2 =

k
2
ω , h4 = j4 +

k
2
(ω− 1) . (47)

The identities (45) imply that the insertion of the operators

ONS
ω ≡

∮

z2

dz′J−(x2, z′)
(z′ − z4)ω

(z′ − z2)ω
, (48)

OKZ
ω ≡ ∂z2

+
ω

z24

∮

z2

dz′J3(x2, z′)
(z′ − z4)
(z′ − z2)

, (49)

into the correlator on the LHS of (46) gives zero. Let us briefly describe the rationale for
constructing ONS

ω and OKZ
ω . The negative powers of (z′− z2) in ONS

ω ensure that we pick up the
correct mode J−−w when acting on Vω−1

k
2

k
2ω
(x2, z2). Conversely, and upon inverting the integration

contour, the positive powers of (z′ − z4) avoid picking up residues related to other correlators
(most of them unknown) coming from all singular terms in the J−(x2, z′)Vω−1

j4h4
(x4, z4) OPE,

see Eq.(28). On the other hand, for OKZ
ω it turns out that only a unit power of (z′ − z4) is
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necessary to avoid these poles. A heuristic way to see this is that we are ultimately interested
in taking the limit x4→∞, for which, as discussed above, Vω−1

j4h4
(x4, z4)→ V−(ω−1)

j4,−m4
(z4), with

m4 = h4−
k
2(ω−1). Sinceω≥ 1, the latter operator only has at most a single pole contribution

in the OPE with J3(x2, z′).
As a consequence, the conformal block F(x , z) satisfies the differential equations

�

x
zω
−

x − 1
(z − 1)ω

�

x(x − 1)∂xF =
�

κ

�

x2

zω
−
(x − 1)2

(z − 1)ω

�

+
2 j1 x
zω
+

2 j3(x − 1)
(z − 1)ω

�

F , (50)

and

−
1
ω
∂zF =

x(x − 1)
z(z − 1)

∂xF +
�

j1
z
+

j3
z − 1

+ κ
�

x
z
−

x − 1
z − 1

��

F , (51)

where κ = h4 − h2 − j1 − j3. Similarly to the ω = 1 case considered in [1], this can be solved
exactly. We find that, up to a multiplicative constant,

F(x , z) = z j1ω(z − 1) j3ωx2 j3+κ(x − 1)2 j1+κPω(x , z)h2−h4− j1− j3 , (52)

where the last factor contains the polynomials

Pω(x , z) = zω(x − 1)− x(z − 1)ω . (53)

These polynomials correspond exactly to a subset of those appearing in the four-point function
analysis of [38]. In their notation, they correspond to the cases P̃(ω−1,ω−1,1,1)(x , z). Moreover,
for ω = 1 we simply have P1(x , z) = z − x , showcasing the somewhat unexpected singularity
at z = x discussed in [1]. More generally, for ω> 1 we find more complicated singularities at
the zeros of (53), which have also been discussed recently in [45].

Eqs. (52) and (53) will allow us to get an explicit expression for (46) up to the constant
C̃ω( j1, j3, j4). Regarding this constant, for ω = 1, i.e. for the unflowed four-point function,
one can determine it by using the OPE of [25] to factorize the correlator in the z12→ 0 limit.
Since there is a single state propagating in the corresponding channel, the relevant unflowed
three point function reduces to (16) (up to a j-independent factor) so that one gets4 [1]

C̃1( j1, j3, j4)∼ B
�

k
2
− j1

�−1

C
�

k
2
− j1, j3, j4

�

∼ B( j1)C
�

k
2
− j1, j3, j4

�

. (54)

However, extending this type of arguments to the flowed sectors is non-trivial. In fact, we
note that the alternative methods of [2] did not allow the authors to unambiguously fix the
h-independent structure constants for spectrally flowed three point functions, whose form
was conjectured in order to match with a set of previously known results [1, 29]. In the
following subsection we will show that, as a consequence of (35), Eq. (54) actually holds
for all C̃ω

�

j1, j3, j4
�

with ω≥ 1, i.e.

C̃ω( j1, j3, j4)∼ B( j1)C
�

k
2
− j1, j3, j4

�

. (55)

In order to further motivate this statement and provide a cross-check for our result in
Eqs. (52),(53), we can compare it with the conjecture of [38]. For the case of four-point
functions with total spectral flow ω1+ω2+ω3+ω4 ∈ 2Z, this proposal takes the form given
their Eq. (3.7), which is analogous to the unflowed four-point function when written in terms
of the so-called generalized differences X i j which depend explicitely on the y variables and
on the polynomials P̃(x , z) alluded above. The particular set of four-point functions under

4Here we have ignored a k-dependent factor, which will be fixed in Eq.(67) below.
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consideration, i.e. those in Eq. (46), is particularly interesting since, as discussed above, the
corresponding unflowed conformal block is known exactly. It is given by Eq. (52) for ω = 1.
Moreover, the generalized cross-ratio takes the form

X ≡
X21X43

X31X42
=

x(z − 1)ω−1

Pω−1(x , z)
. (56)

Upon inserting this into the unflowed conformal block, we find that the proposal of [38] is
consistent with our formulae due to the identities

X − 1=
zω−1(x − 1)
Pω−1(x , z)

, X − z = −
Pω(x , z)

Pω−1(x , z)
. (57)

Hence, we have provided a proof for their conjecture for correlators of the form (46).

Let us come back to the computation of the spectrally flowed two-point function.
We take the above results and set ( j1, j3, j4) →

�

j1, j2, k
2

�

, (h1, h3, h4) →
�

h1, h2, k
2ω
�

,
(z1, z2, z3, z4)→ (z1 + ε1, z1, z2 + ε2, z2) and (x1, x2, x3, x4)→ (x1 + y1, x1, x2 + y2, x2) . Then,
the cross-ratios become

z =
ε1ε2

z12(z12 + ε12)
, x =

y1 y2

x12(x12 + y12)
. (58)

Note that in this case there are two spectral flow operators involved. Using either of them
should lead to the same null-state condition, implying j1 = j2 = j. Thus, Eq.(43) becomes

C̃ω

�

j1, j2,
k
2

�

�

�

�

�

�

�

z
k
2ω

2

12 (z12 + ε12)−2∆1z j1ω(z − 1) j1ω

xkω
12 (x12 + y12)2 j1[zω(x − 1)− x(z − 1)ω]2 j1]

�

�

�

�

�

�

2

. (59)

The holomorphic part of the two-point function is then given by

x−kω−m1−m2
12

z(
2∆1−(m1+m2)ω−

k
2ω

2)
12

∫

d y1d y2 y j1−m1−1
1 y j1−m2−1

2

�

1+ z
ω
2 y12 + y1 y2

�−2 j1
, (60)

where we have momentarily omitted the structure constant, dropped some factors of z, which
is small in the ε1,2→ 0 limit, and also rescaled yi → z

ω
2 x12 yi . We can further ignore the term

proportional to z
ω
2 in the last factor of the integrand, and change variables to y1 =

p
uv and

y2 =
p

uv−1. After re-inserting the anti-holomorphic factors, this integral becomes
∫

dv vm2−m1−1

∫

duu j1−
m1+m2

2 −1(u− 1)−2 j1 = πδ2(m1 −m2)
γ( j1 +m1)

γ(2 j1)γ(1− j1 +m1)
, (61)

where we have introduced γ(x) = Γ (x)/Γ (1− x̄). Hence, the two point function contains a
contribution of the form

C̃ω

�

j1, j2,
k
2

�

πδ2(h1 − h2)

|z12|4(∆1−h1ω+
k
4ω

2)|x12|4h1

γ
�

j1 + h1 −
k
2ω
�

γ(2 j1)γ
�

1− j1 + h1 −
k
2ω
� , (62)

which gives the correct bulk term [1] by means of (16) provided Eq. (54) is satisfied forω≥ 1.
Actually, for j2 = 1 − j1 it turns out that there is an additional distributional solution for
Eqs.(50)-(51) given by

|F(x , z)|2 =
�

�z j1ω(z − 1)(1− j1)ωx1−2 j1(x − 1)2 j1−1
�

�

2
δ2 [Pω(x , z)] . (63)

It is straightforward to check that this solution generates the correct extra contribution, leading
to [1]
¬

Vωj1h1
(x1, z1)V

ω
j2h2
(x2, z2)

¶

=
δ2(h1 − h2)
�

�

�z2∆1
12 x2h1

12

�

�

�

2

�

δ( j1 + j2 − 1) +
πδ( j1 − j2)B( j1)γ( j1 +m1)

γ(2 j1)γ(1− j1 +m1)

�

.

(64)
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4.2 Series identifications

In this section we describe how the so-called series identifications work in the x-basis, and
show that they imply (54) for ω≥ 1, as anticipated above.

It is well known that the inequivalence of irreducible representations with different spec-
tral flow charges holds with the exception of the series identifications, i.e. the affine module
isomorphisms given by

D̂±,w
j ' D̂∓,w±1

k/2− j . (65)

In the m-basis, this follows from the spectral flow automorphism, together with the following
identity between highest/lowest-weight states:

Vωj,− j(z) =N ( j)Vω−1
k
2− j, k

2− j
(z) ω≥ 1 , (66)

where

N ( j) =

√

√

√

B( j)

B
� k

2 − j
� . (67)

It can be seen from Eq. (13) that N ( j) ∼ B( j) up to k-dependent factors5, and that the j-
independent factor missing on the RHS of Eq. (16) is precisely B( j1)/N ( j1). Thinking about
x-basis operators as translated from the origin suggests that, in the local basis, Eq. (66) should
read

Vω
j,h=− j+ k

2ω
(x , z) =N ( j)Vω−1

k
2− j,h= k

2− j+ k
2 (ω−1)

(x , z) ω≥ 1 . (68)

We now show that this follows directly from the definition (35). On the RHS of (68) we
have

Vω−1
k
2− j,h= k

2− j+ k
2 (ω−1)

(x , z) = lim
ε→0
|ε|(k−2 j)(ω−1)

∫

d2 y|y|−2Vk
2− j(x+ y, z+ε)Vω−2

k
2

k
2 (ω−1)

(x , z) . (69)

On the other hand, the LHS is of the form

Vω
j,h=− j+ k

2ω
(x , z) = lim

ε→0
|ε|−2 jω

∫

d2 y ′|y ′|4 j−2Vj(x + y ′, z + ε)Vω−1
k
2

k
2ω
(x , z) (70)

= lim
ε→0
|ε|−2 jω

∫

d2 y ′|y ′|4 j−2 lim
ε′→0
|ε′|k(ω−1)

∫

d2 y|y|−2

×Vj(x + y ′, z + ε)Vk
2
(x + y, z + ε′)Vω−2

k
2

k
2 (ω−1)

(x , z) ,

where we have used (35) twice. We now make use of the OPE formula in the unflowed sector,
namely [25]

Vj1(x1, z1)Vj2(x2, z2)∼
∫

d j3 d2 x3 C( j1, j2, j3)|z1 − z2|2(∆3−∆1−∆2)V1− j3(x3, z1)

|x1 − x2|2( j1+ j2− j3)|x2 − x3|2( j2+ j3− j1)|x1 − x3|2( j1+ j3− j2)
. (71)

For the specific case j1 = j and j2 =
k
2 , this gives

Vj(x + y ′, z + ε)Vk
2
(x + y, z + ε′) (72)

∼
∫

d j3 d2 x3

C
�

j, k
2 , j3

�

|ε − ε′|
2(∆3−∆ j−∆ k

2
)
V1− j3(x3, z + ε)

|y ′ − y|2( j+
k
2− j3)|x + y − x3|2(

k
2+ j3− j)|x + y ′ − x3|2( j+ j3−

k
2 )

∼
∫

d2 x3

|ε − ε′|2 jV1− k
2+ j(x3, z + ε)

|y ′ − y|4 j|x + y ′ − x3|2(k−2 j)
∼
|ε − ε′|2 j

|y ′ − y|4 j
Vk

2− j(x + y ′, z + ε) ,

5These k-dependent factors were ignored in a previous version, as was done in [1]. We thank L. Eberhardt and
A. Dei for bringing this to our attention.
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where we have used (16) and (19). Inserting this into Eq. (70) and rescaling y → y y ′ and
ε′→ εε′, we obtain (69). This holds up to an overall normalization constant, which we fix by
asking that at x = 0 this coincides with (66), thus proving (68).

We pause for moment and note that, using (68), we can write the spectral flow operator
involved in the definition of Vωj (x , z) in Eq. (35) in three different but equivalent ways:

Vω−1
k
2

k
2ω
(x , z)∼ Vω

0, k
2ω
(x , z)∼ Vω+1

k
2

k
2ω
(x , z) . (73)

The fact that we get three alternative expression is specific to the j = k
2 since the related

j̃ = k
2 − j = 0 representation is both highest- and lowest-weight. The middle expression in

Eq. (73) has a natural interpretation in terms of the boundary theory as a spacetime twist
operator.

Let us show that the identity (68) allows us to prove that

C̃ω( j, 0, j′) = 〈Vj(0,0)Vω−1
k
2 , k

2ω
(1,1)Vω−1

j′, j′+ k
2 (ω−1)

(∞,∞)〉=
B( j)
N ( j)

δ

�

j + j′ −
k
2

�

, (74)

thus extending (16) to the spectrally flowed sectors. Note that this in turn also implies the
validity of Eq. (54) beyond the singly-flowed sector. Once again, we proceed by induction. As-
suming (74), the derivation presented in the previous section provides the two-point function
for states with spectral flow ω− 1. Hence, we have

­

Vω−1
k
2− j,− j+ k

2ω
(x , z)Vω−1

k
2− j′,− j′+ k

2ω
(x ′, z′)

·

bulk
=

δ( j − j′)B
� k

2 − j
�

(z − z′)∆ j+ jω− k
4ω

2(x − x ′)2h
. (75)

On the other hand, we can compute the same two-point function by using (68) to rewrite, say,
the vertex evaluated at (x , z) in terms of the corresponding state with spectral flow charge ω,
and insert the definition (35). Then, we find

(75)=N ( j)−1 lim
ε,ε̄→0

|ε|−2 jω

∫

d2 y |y|4 j−2
­

Vj(x + y, z + ε)Vω−1
k
2 , k

2ω
(x , z)Vω−1

k
2− j′,− j′+ k

2ω
(x ′, z′)

·

.

(76)
By evaluating the three-point function on the RHS, performing the y integral and taking the
ε → 0 limit, we find that the matching with (75) holds precisely provided the corresponding
structure constant is given by (74). While we have derived this result for highest/lowest-
weight flowed representations, we expect it to hold in general by analytic continuation in the
spins j and j′. This completes the flowed two-point function computation outlined in the
previous subsection.

We will come back to the series identifications of Eq. (68) in the final section of the paper,
highlighting its importance when analysing three-point functions with arbitrary spectral flow
charges.

4.3 Three-point functions

We now show how to use (35) in the context of the computation of spectrally flowed three
point functions. The goal is simply to illustrate how it can be used in some particular cases,
leaving a more extensive analysis for future work.

We consider the subset of cases where the spectral flow charges are
(ω1,ω2,ω3) = (ω, 0,ω−1) . This is simple because it can be analized from our result (46), as
is seen by writing (only) the operator with the highest spectral flow charge in terms of (35).
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Indeed, we have

¬

Vωj1h1
(x1, z1)Vj2(x2, z2)V

ω−1
j3h3
(x3, z3)

¶

= lim
ε,ε̄→0

εm1ωε̄m̄1ω

∫

d2 y y j1−m1−1 ȳ j1−m̄1−1

×〈Vj1(x1 + y, z1 + ε)V
ω−1
k
2

k
2ω
(x1, z1)Vj2(x2, z2)V

ω−1
j3h3
(x3, z3)〉 . (77)

Upon inserting Eqs. (52) and (53), the y integral can be performed by rescaling
y → yzω x31−x32

x21 x31
and working at small worldsheet cross-ratio, similarly to what was done

in the computation of the two-point function above. This leads to

¬

Vωj1h1
(x1, z1)Vj2(x2, z2)V

ω−1
j3h3
(x3, z3)

¶

=

�

�

�

�

�

z∆3−∆1−∆2
12 x∆1−∆3−∆2

23 x∆2−∆1−∆3
13

xh1+ j2−h3
12 xh3+ j2−h1

23 xh1+h3− j2
13

�

�

�

�

�

2

(78)

×Ĉω ( j1, j2, j3, h3)
γ (h3 − h1 + j2)

γ
�

1+ k
2ω− j1 − j2 − h3

�

γ
�

1+ k
2ω− j1 − h1

� . (79)

Here Ĉω ( j1, j2, j3, h3) is a constant that can be computed by considering the propagation of an
intermediate state with spectral flow charge ω − 1 in the factorization limit. It then follows
from Eq. (74) and the series identification (68) that

Ĉω ( j1, j2, j3, h3) = N ( j)
­

Vω−1
k
2− j1,− j1+

k
2ω
(0,0)Vj2(1,1)Vω−1

j3h3
(∞,∞)

·

=
­

Vω
j1,− j1+

k
2ω
(0, 0)Vj2(1,1)Vω−1

j3h3
(∞,∞)

·

. (80)

Hence, this simple application of our formula (35) provides a non-trivial recursion relation for
structure constants with charges (ω, 0,ω− 1) in terms of the weight h1:

¬

Vωj1h1
(0,0)Vj2(1,1)Vω−1

j3h3
(∞,∞)

¶

­

Vω
j1,− j1+

k
2ω
(0, 0)Vj2(1,1)Vω−1

j3h3
(∞,∞)

· =
γ (h3 − h1 + j2)

γ
�

1+ k
2ω− j1 − j2 − h3

�

γ
�

1+ k
2ω− j1 − h1

� .

(81)
The correlators originally derived in [29] indeed satisfy this relation.

Let us finish this section by briefly discussing a slightly more general case, given by the
correlators of the form

¬

Vω1
j1h1
(x1, z1)V

ω2
j2h2
(x2, z2)V

ω1−ω2−1
j3h3

(x3, z3)
¶

, ω1 >ω2 ≥ 1 . (82)

We note that, due to the fact that all spectral flow charges are non-zero, this type of correlation
function is generically not accessible from m-basis methods [29]. It can be seen that also in this
case (35) leads to further recursion relations, which turn out to be consistent with the results
of [38]. The computation is, however, more involved than in the case considered above. Upon
writing the leftmost vertex in terms of (35) and using the NS and KZ conditions (45), one
obtains a set of unknown contributions coming from the additional poles in the OPEs of the
currents with Vω2

j2h2
. Fortunately, it turns out that we actually have additional equations as

well. Instead of the single operator of ONS
ω1

defined in (48), the four-point function of interest,
namely

­

Vj1(x1, z1)V
ω−1
k
2

k
2
(x2, z2)V

ω2
j3h3
(x3, z3)V

ω1−ω2−1
j4h4

(x4, z4)
·

(83)

is now annihilated by

ONS
ω1,n ≡

∮

z2

dz′J−(x2, z′)
(z′ − z4)n

(z′ − z2)ω1−1
, (84)
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for all n = ω1 − ω2 − 1, . . .ω1 − 1. In summary, together with the KZ condition we have
a system of ω2 + 2 differential equations for the correlator we want to compute where ω2

unknowns of the form
­

Vj1 Vω−1
k
2

k
2

(J+n Vω2
j2h2
)Vω1−ω2−1

j3h3

·

(for n = 1, . . . ,ω2) appear linearly. These can

then be eliminated, leaving once again two differential equations, which allow us to determine
this four-point function exactly. Once again, it can be compactly expressed in terms of a more
general family of polynomials considered in [38].

5 The y variable and point-splitting

There have been several instances where we have seen hints of a connection between our
formalism and that of [2, 38]. We now make the connection explicit, thus clarifying how to
relate these works with the computations of [1,28].

So far, several integrals appearing in the computation of different correlation functions
suggest a close relation between the integration variable y appearing in our proposal (35)
and that introduced in [2,38] with the so-called y-transform. The latter is associated with an
object Vωj (x , y, z) defined as a linear combination of the spectrally flowed primary states with
all allowed values of h for fixed j and ω, thus mimicking the role of the x-basis for unflowed
states. To make the relation precise, consider Eq. (35) under the rescaling y → yεω, which
leads to

Vωjh (x , z) =

∫

d2 y y j−m−1 ȳ j−m̄−1 lim
ε,ε̄→0

|ε|2 jωVj(x + yεω, z + ε)Vω−1
k
2 , k

2ω
(x , z) . (85)

Importantly, here we have used the fact that, since the powers of ε and ε̄ are now independent
of m and m̄, respectively, we can safely exchange the order of the limiting and integration
procedures. We then see that Eq. (85) reproduces exactly the inverse y-transform as introduced
in [2], namely

Vωjh (x , z) =

∫

d2 y y j−m−1 ȳ j−m̄−1Vωj (x , y, z) , (86)

provided we identify

Vωj (x , y, z)≡ lim
ε,ε̄→0

|ε|2 jωVj(x + yεω, z + ε)Vω−1
k
2

k
2ω
(x , z) . (87)

Eqs. (87) is one of the main results of this paper.
As a first consistency check for this identity, we can show that the reflection symmetry of

the unflowed sector given by Eq. (19) implies an analogous property for the y-basis operators
in the flowed sectors considered in [2]. Indeed, we have

B(1− j)

∫

d2 y ′ |y − y ′|4 j−4Vωj (x , y ′, z)

= B(1− j) lim
ε,ε̄→0

|ε|2(1− j)ω

∫

d2 y ′ |x + yεω − y ′|4 j−4Vj(y
′, z + ε)Vω−1

k
2 , k

2ω
(x , z) (88)

= lim
ε,ε̄→0

|ε|2(1− j)ωV1− j(x + yεω, z + ε)Vω−1
k
2 , k

2ω
(x , z) = Vω1− j(x , y, z) ,

where in the second line we have changed variables y ′→ y ′εω + x , and similarly for ȳ ′.
Moreover, we can precisely show the validity of Eq. (87) by studying the action of the

different currents on the RHS. Once again, for simplicity we set z = 0. Let us then start by
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acting with J+ω(x) = J+ω. Using that J+ω ∼ ε
ωJ+0 (ε) when acting on Vj(x ,ε) (where "(ε)" refers

to the mode expansion around z = ε), and that it annihilates Vω−1
k
2 , k

2ω
(x , 0), we have

�

J+ω, Vωj (x , y, 0)
�

= lim
ε,ε̄→0

|ε|2 jω
�

εw ∂

∂ (yεω)

�

Vj(x+ yεω,ε)Vω−1
k
2

k
2ω
(x , 0) = ∂y Vωj (x , y, 0) , (89)

so that J+ω generates translations in y . Similarly, we can act with J−−ω(x). From the action on
the unflowed vertex with shifted insertions, we have J−−ω(x)∼ ε

−ωJ−0 (x)(ε), thus leading to
�

J−−ω(x), Vωj (x , y, 0)
�

=
�

2 j y + y2∂y

�

Vωj (x , y, 0) . (90)

Note that J−−ω(x) annihilates the spectral flow operator, since it equals J̃−−1(x). Unlike in the

previous case, the vanishing of
�

J̃−−1(x), Vω−1
k
2

k
2ω
(x , 0)

�

is non-trivial, and it is a consequence of

the fact that the latter has a null descendent. Finally, it is simpler to compute the action of
the Cartan current, which acts non-trivially on both the unflowed vertex and the spectral flow
operator, giving

�

J3
0 (x), Vωj (x , y, 0)

�

=
�

j +
k
2
ω+ y∂y

�

Vωj (x , y, 0) , (91)

since J3
0 (x) = J3

0 (x + yεω) + yεωJ+0 . Consequently, we find that these results exactly match
the properties described in [2], proving that Eq. (87) provides an alternative definition for the
y-basis operators, and relating it to the x-basis formalism originally used in [1], and further
extended in the present work.

The expression introduced in Eq. (87) allows us to highlight the role of holomorphic cov-
ering maps in this context. The proposal of [2] for y-basis three-point functions can be un-
derstood in terms of the properties of certain holomorphic maps from the worldsheet to the
AdS3 boundary. When the spectral flow charges involved in a given correlator are such that
the associated covering map Σ actually exists, it behaves near an insertion point z as

Σ(z + ε) = x + aεω + · · · , (92)

for some parameter a and small ε. Comparing this with Vj(x + yεω, z + ε) inside Eq.(87), we
see that the parameters a are very special points in the y-plane: the y-basis correlators of [2]
present divergences whenever the y variable associated to one of the insertions approaches
the coefficients defining a related covering map. We will come back to this in [39].

5.1 Recursion relations from null-state conditions

We now show how the definition (87) provides a reformulation of the recursion relations for
correlation functions of spectrally flowed operators, which become differential equations in
the y-basis, derived case by case in [2,3].

We first recall their derivation from the local Ward identities of the SL(2,R)-WZW model.
Consider a generic n-point correlator

¬

Vω1
j1h1
(x1, z1) . . . Vωn

jnhn
(xn, zn)

¶

. Upon inserting the con-
served currents J a(z) and using the OPEs (28), one obtains cumbersome linear relations with
the following three main ingredients:

• the usual differential operators Da in Eq. (11) acting on the original correlator,

• a total of
∑n

i=1(ωi − 1) new unknown correlators of the form
¬

Vω1
j1h1
(x1, z1) . . . (J+p Vωi

jihi
)(x i , zi) . . . Vωn

jnhn
(xn, zn)

¶

, (93)

for i = 1, . . . , n and p = 1, . . . ,ωi − 1 (p = 0 would correspond to the action of Da) and
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• correlators where one of the spacetime weights has been shifted by one unit, that is,
¬

Vω1
j1h1
(x1, z1) . . . Vωi

jihi±1(x i , zi) . . . Vωn
jnhn
(xn, zn)

¶

, (94)

for i = 1, . . . , n. For the upper sign, and up to a coefficient, these actually correspond to
the p =ωi cases of Eq. (93).

One can actually solve for the unknowns (93). Eq. (28) implies that inserting J−(x i , z), with
x i one of the insertion points, must lead to a regular expression as z → zi . Moreover, the
coefficients of the first ωi − 1 regular terms vanish identically. In other words, one has

¬

J−(x i , z)Vω1
j1h1
(x1, z1) . . . Vωn

jnhn
(xn, zn)

¶

= (z − zi)
ωi−1( ji +mi − 1)

¬

Vω1
j1h1
(x1, z1) . . . Vωi

jihi−1(x i , zi) . . . Vωn
jnhn
(xn, zn)

¶

+ · · · ,
(95)

for i = 1, . . . , n, and with mi = hi −
k
2ωi . This gives a total of

∑n
i=1ωi linear equations, which,

after solving for the above unknowns, renders a system of recursion relations – also involving
differential operators in x i – for the actual primary correlators we want to compute.

At the level of three-point functions, the dependence on the insertion points x i and zi
are fixed by conformal invariance on the worldsheet and on the AdS3 boundary, respectively.
However, the resulting recursion relations are still difficult to solve in general. For instance,
for the specific case ω1 =ω2 =ω3 = 1 they read

(m1 + j1 − 1)
¬

V 1
j1,h1−1V 1

j2h2
V 1

j3h3

¶

+ (h2 + h3 − h1)
¬

V 1
j1h1

V 1
j2h2

V 1
j3h3

¶

= (m2 − j2 + 1)
¬

V 1
j1h1

V 1
j2,h2+1V 1

j3h3

¶

+ (m3 − j3 + 1)
¬

V 1
j1h1

V 1
j2h2

V 1
j3h3+1

¶

,
(96)

and similarly for 1 ↔ 2 and 1 ↔ 3, and where we have set x1 = z1 = 0, x2 = z2 = 1 and
x3 = z3 =∞. Note that this corresponds to one of the cases that can not be computed in
general by using the methods of [1] and [29], since all operators have non-zero spectral flow.

The main motivation for introducing the y variable in [2] was that it transforms these
recursion relations into partial differential equations, as indicated by Eqs. (89), (90) and (91).
In our example, the relation (96) becomes

�

y1(y1 − 1)∂y1
+ 2y1 j1 + (y2 − 1)∂y2

+ (y3 − 1)∂y3
+ κ

�

¬

V 1
j1
(y1)V

1
j2
(y2)V

1
j3
(y3)

¶

= 0 , (97)

with κ= k
2 − j1 + j2 + j3. The correlator on the right-hand side of (97) stands for

¬

V 1
j1
(0, y1, 0)V 1

j2
(1, y2, 1)V 1

j3
(∞, y3,∞)

¶

. (98)

As discussed in [38], the original correlator can then be obtained as

¬

Vω1
j1
(x1, y1, z1)V

ω2
j2
(x2, y2, z2)V

ω3
j3
(x3, y3, z3)

¶

=
x

h0
3−h0

1−h0
2

21 x
h0

2−h0
1−h0

3
31 x

h0
1−h0

2−h0
3

32

z
∆0

1+∆
0
2−∆

0
3

21 z
∆0

1+∆
0
3−∆

0
2

31 z
∆0

2+∆
0
3−∆

0
1

32

×

�

Vω1
j1

�

0, y1
x32zω1

21 zω1
31

x21 x31zω1
32

, 0

�

Vω2
j2

�

1, y2
x31zω2

21 zω2
32

x21 x32zω2
31

, 1

�

Vω3
j3

�

∞, y3
x21zω3

31 zω3
32

x31 x32zω3
21

,∞
��

.

(99)

A comprehensive set of linear relations for three-point functions similar to that of Eq. (97)
were derived in [2]. This was done for sufficiently low values of the spectral flow charges ωi ,
leading the authors to conjecture a general solution, up to an overall h-independent constant,
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based on the theory of holomorphic covering maps. However, no general expression for these
differential equations is known, and this conjecture remains to be proven.

We now show that the definition in Eq. (87) provides a new, perhaps more direct perspec-
tive on the origin of these constraints. We do this in the particular case considered above, that
is, when all three insertions have unit spectral flow. In light of Eq. (87), this corresponds to a
specific limit of a six-point function, where three of the insertions are spectral flow operators.
More precisely, we have

lim
ε1,ε2,ε3→0

® 3
∏

i=1

|εi|2 ji Vji (x i + yiεi , zi + εi)Vk
2
(x i , zi)

¸

. (100)

As reviewed above, the spectral flow operators have a null descendant. Consequently, the six
point function on the right-hand side of Eq. (100) must satisfy three differential equations,
associated to the corresponding null-state conditions. Using the OPEs of unflowed x-basis
vertex operators with the affine currents, we see that the condition coming from the Vk

2
(x1, z1)

insertion takes the following form:
¨ 3
∑

i=2

x i1 + yiεi

zi1 + εi

�

(x i1 + yiεi)
∂yi

εi
+ 2 ji

�

+
x i1

zi1

�

x i1

�

∂x i
−
∂yi

εi
+ k

��

+ y1

�

y1∂y1
+ 2 j1

�

�

® 3
∏

i=1

Vji (x i + yiεi , zi + εi)Vk
2
(x i , zi)

¸

= 0 .

(101)

Here, the first two terms come from the action of J−(x1) on Vji (x i+ yiεi , zi+εi) and Vk
2
(x i , zi),

respectively (and with i = 2, 3), while the final term comes from the action on
Vj1(x1 + y1ε1, z1 + ε1), and where we have already cancelled some ε1 factors. We are only
interested in the ε1,2,3 → 0 limit of this relation. Fortunately, the divergent terms in the first
line of Eq. (101), which scale as ε−1

2,3, cancel exactly. Hence, (87) leads to the conclusion that

the correlator
¬

V 1
j1
(x1, y1, z1)V 1

j2
(x2, y2, z2)V 1

j3
(x3, y3, z3)

¶

is annihilated by the differential operator

3
∑

i=2

x i1

zi1

�

2yi∂yi
+ x i1

�

∂x i
−
∂yi

zi1

�

+ 2 ji + k

�

+ y1

�

y1∂y1
+ 2 j1

�

. (102)

Upon using (99), this becomes exactly the condition written in Eq. (97). An analogous com-
putation holds for 1↔ 2 and 1↔ 3.

In other words, the recursion relations of [2,3] can be understood as arising form the null-
state conditions associated to the spectral flow operator appearing in the alternative definition
in Eq. (87).

5.2 Fixing the structure constants

An explicit proposal for y-basis three-point functions with arbitrary spectral flow charges
was put forward in [2]. The authors conjectured that, for the odd parity case, namely
ω1 +ω2 +ω3 ∈ 2Z+ 1,

¬

Vω1
j1
(y1)V

ω2
j2
(y2)V

ω3
j3
(y3)

¶

= Cω( j1, j2, j3)X
k
2− j1− j2− j3
123

3
∏

i=1

X
− k

2+ j1+ j2+ j3−2 ji
i , (103)

while for the even parity case, i.e. when ω1 +ω2 +ω3 ∈ 2Z,
¬

Vω1
j1
(y1)V

ω2
j2
(y2)V

ω3
j3
(y3)

¶

= Cω( j1, j2, j3)X
j1+ j2+ j3−k
;

∏

i<`

X j1+ j2+ j3−2 ji−2 j`
i` , (104)
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where, for any subset I ⊂ {1,2, 3}, X I(y1, y2, y3) is defined as

X I(y1, y2, y3) =
∑

i∈I : εi=±1

Pω+
∑

i∈I εi ei

∏

i∈I

y
1−εi

2
i . (105)

Here we have omitted the right-moving dependence. In eq. (105), ω = (ω1,ω2,ω3) and the
coefficients Pω are fixed based on certain holomorphic covering maps. Although it was not
proven, the dependence on the yi-variables contained in the generalized differences X I was
strongly motivated from a case by case study of local Ward identities. On the other hand, the
overall constant factors Cω( j1, j2, j3), were argued to be very simply related to the unflowed
structure constants C( j1, j2, j3) based on the comparison with results previously computed in
[29] for restricted families of correlators, a relation that was shown to pass several consistency
checks. More precisely, the authors proposed that

Cω( j1, j2, j3) =

�

C( j1, j2, j3) , if ω1 +ω2 +ω3 ∈ 2Z ,
N ( j1)C

� k
2 − j1, j2, j3

�

, if ω1 +ω2 +ω3 ∈ 2Z+ 1 ,
(106)

which is unambiguously defined since

N ( j1)C
�

k
2
− j1, j2, j3

�

=N ( j2)C
�

j1,
k
2
− j2, j3

�

=N ( j3)C
�

j1, j2,
k
2
− j3

�

. (107)

In this final section we prove that, provided the yi-dependence of Eqs. (103) and (104)
is correct, Cω( j1, j2, j3) is indeed given by (106). We do so by using the series identification
y-basis formula leading to (68) by means of (86). More precisely, we have

Vω
j, j+ k

2ω
(x , z) = Vωj (x , y = 0, z) , Vω

j,− j+ k
2ω
(x , z) = lim

y→∞
y2 jVωj (x , y, z) , (108)

so that
lim

y→∞
|y|4 jVωj (x; y; z) =N ( j)Vω−1

k
2− j
(x; y = 0; z) . (109)

This leads to the following identity:

lim
y3→∞

|y3|4 j3
¬

Vω1
j1
(y1)V

ω2
j2
(y2)V

ω3
j3
(y3)

¶

=N ( j3)
­

Vω1
j1
(y1)V

ω2
j2
(y2)V

ω3−1
k
2− j3

(y3 = 0)
·

,

(110)
which will give us a recursion relation for Cω( j1, j2, j3). The latter being a constant, we can
freely set y1 = y2 = 0. For the even parity case, both in the LHS and in the RHS of (110), the
product of X I factors reduces to

P j1+ j2+ j3−k
ω P j3− j1− j2

ω+e1+e2
P j1− j2− j3
ω+e2−e3

P j2− j3− j1
ω+e1−e3

, (111)

while for the odd parity case they gives

P
k
2− j1− j2− j3
ω+e1+e2−e3

P
− j1+ j2+ j3−

k
2

ω+e1
P

j1− j2+ j3−
k
2

ω+e2
P

j1+ j2− j3−
k
2

ω−e3
. (112)

In both cases, we find that Eq. (110) holds iff

Cω( j1, j2, j3) =N ( j3)Cω−e3

�

j1, j2,
k
2
− j3

�

. (113)

An analogous computation can be carried out for either of the first two insertions in-
stead. We conclude that the constants Cω( j1, j2, j3) can be obtained recursively start-
ing from the unflowed case. Indeed, using (107) it is straightforward to see that
Cω( j1, j2, j3) = Cω−ei−e j

( j1, j2, j3) for all i, j = 1,2, 3, so that the result only depends
on the overall parity of ω1 + ω2 + ω3 and gives either C0( j1, j2, j3) = C( j1, j2, j3) or
Ce1
( j1, j2, j3) =N ( j1)C( k

2 − j1, j2, j3) [1], as stated in (106).
Although we have proven (106) for discrete representations, we expect that it holds also

for the continuous series by analytic continuation in j [1,46].
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6 Discussion

Let us summarise the main results of this paper. We have obtained an x-basis definition of spec-
trally flowed local operators in the SL(2,R)-WZW model with an arbitrary spectral flow charge.
This is given in Eq. (35), which generalises the point-splitting expression and the concept of
spectral flow operator introduced in [1,26] for the singly flowed case. Then, we identified the
auxiliary variable y involved in this definition with that introduced recently in [2, 38], thus
clarifying the relation between the two approaches. In particular, the differential equations
satisfied by correlation functions in y-space previously derived from local Ward identities were
re-interpreted as null state conditions for the generalised spectral flow operators appearing in
(35).

Our alternative approach provides a new set of tools for proving the conjecture of [2]
for all spectrally flowed three-point functions. As a first step, we have been able to fix the
corresponding y-independent part of the structure constants, namely Eq. (106). It would be
extremely interesting to use (35) to obtain a closed form for the full set of recursion relations
satisfied by the local correlators of spectrally flowed vertex operators. This would allow us to
elucidate the nature of the so-called generalised differences X I appearing in Eqs. (103) and
(104), and also in spectrally flowed four-point functions [38]. Significant progress in this
direction will be addressed in [39].
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