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Abstract

We consider a 2d dipolar system, d = 2, with the generalized dipole-dipole interaction
∼ r−a, and the power a controlled experimentally in trapped-ion or Rydberg-atom sys-
tems via their interaction with cavity modes. We focus on the dilute dipolar excitation
case when the problem can be effectively considered as single-particle with the interac-
tion providing long-range dipolar-like hopping. We show that the spatially homogeneous
tilt β of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial
reentrant localization beyond the locator expansion, a < d, unlike the models with ran-
dom dipole orientation. The Anderson transitions are found to occur at the finite values
of the tilt parameter β = a, 0 < a < d, and β = a/(a − d/2), d/2 < a < d, showing the
robustness of the localization at small and large anisotropy values. Both exact analytical
methods and extensive numerical calculations show power-law localized eigenstates in
the bulk of the spectrum, obeying recently discovered duality a↔ 2d−a of their spatial
decay rate, on the localized side of the transition, a > aAT . This localization emerges due
to the presence of the ergodic extended states at either spectral edge, which constitute
a zero fraction of states in the thermodynamic limit, decaying though extremely slowly
with the system size.
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1 Introduction

With the realization of Anderson localization [1] of matter waves in optical lattice and of
light [2], many extensions of disordered quantum systems are proposed [3] and implemented
with and without interactions. A few of notable examples are vibrational modes of polar
molecules [4], Rydberg atoms [5, 6], nitrogen vacancy centers in diamond [7], magnetic
atoms [8, 9], photonic crystals [10], nuclear spins [11], trapped ions [12, 13] and Frenkel
excitations [14].

In all these systems power-law decaying interactions are ubiquitous [3]. In addition, in
the experiments of ultracold atoms the exponent a of this power-law decay can be precisely
controlled in a wide range, 0 < a < 2 [12, 13] and a = 3 or a = 6 in [5, 6]. If the excitations
in such systems are dilute, the long-range interaction induces the flips of far-away excitations.
Thus, this problem has an effective single-particle description of (nearly) non-interacting ex-
citations, where the above interacting term works as the power-law decaying excitation-flip
hopping. Usually such excitations have internal degrees of freedom, similar to the dipole ori-
entation. For homogeneous orientation of all such “dipoles”, perpendicular to their plane,
the corresponding disordered model has deterministic isotropic long-range hopping. Recent
studies show that such models in the dimensionality d = 1 [15–17] and d = 3 [18], with
fully-correlated hopping terms are localized even beyond the locator expansion convergence
(a < d for the power-law interaction). In particular, isotropic power-law hopping models 1/ra

show the power-law localization with the duality between the perturbative regime, a > d, and
beyond it, a < d [15, 16]. Note that for all d ≤ 2 only the measure zero of the states located
at one the spectral edges might be delocalized in such models.

As an experimentally feasible setup of the above generalized dipolar system, one can con-
sider a set of ions, trapped in individual microtraps, which allows for arbitrary geometries
and easy control over the effective anharmonicity of the spatial ion motion near the microtrap
minima. Spin-dependent optical dipole forces, applied to such ionic crystal, create long-range
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Figure 1: Model and phase diagram. (a) Two-dimensional (2d) lattice of quantum
dipoles with dipole-dipole anisotropic interaction (1− β cos2φi j)/|i − j|a, with few
dipolar excitations (see dipoles down shown by blue tops). i = (ix , iy) is the coordi-
nate vector of ith dipole, a > 0 is the generalized power-law decay exponent. The
anisotropy parameter β = 3sin2 θ is governed by the homogeneous tilt angle θ of all
dipoles by the electric field E, tilted from the normal z-axis towards the lattice plane.
φi j is the angle between the spatial 2d vector i− j and the x-axis-aligned projection
of the electric field to the plane. (b) The phase diagram of the anisotropic 2d dipole
model with dilute excitations and the on-site disorder. The color plot shows the r-
statistics at L = 200, averaged over disorder 〈r〉(E) and then over the spectral bulk
[−W/2, W/2], 〈r〉, the black solid line a = aAT = min [β ,β/(β − 1)] separates the
localized ("LOC") phase, a > aAT , from the extended phase, a < aAT , while the black
error bars correspond to these transition points, extracted from its finite-size scaling,
Fig. 3. According to the analysis, the energy-resolved r-statistics 〈r〉(E) is homoge-
neous across the spectral bulk away from the critical point (see Fig. 2). Thus, the
finite-size analysis is done on the spectral-averaged 〈r〉 and the crossing point of the
finite-size curves occurs at the critical value 〈r〉 ' 0.47. The selected points with
symbols "+" and "×" of the same colors (used in further figures) indicate the duality
of power-law localization of wave functions for a < d = 2 and a > d.

effective spin-spin interactions and allow the simulation of spin Hamiltonians that possess
nontrivial phases and dynamics (see, e.g., [12]). Tailoring the optical forces one can gen-
erate arbitrary interactions between spins. Our findings could be observed in the flip-flop
spin-model, as well as in the phonon hopping model itself.

Another way to realize long-range anisotropic model would be to use the dipole radiation
in a 2d photonic crystal near the Dirac cone (i.e., dipolar interaction mediated by the photonic
Dirac cone between atoms), see Ref. [19] in which the authors obtain effective long-range
interactions 1/r1/2, based on the results of Ref. [20]. The 1/r anisotropic hopping can be
as well relevant for 2d polaritons [21]. One should notice that this interaction emerges at
distances exceeding the wavelength. Consequently, the interaction amplitudes are complex
numbers [19], and our consideration might need modifications there.

For dimensionality larger than d > 1, the above experimentally feasible dipolar-like sys-
tems are also characterized by common anisotropy which may have drastically different physics
from the isotropic case. Usually the anisotropic terms are considered as quasi-disorder [22–25]
and in the case of random and heterogeneous dipole orientations they lead to the localization-
delocalization transition at a = d. In this paper we show that the situation is more subtle.
In the case of homogeneous dipole anisotropy, relevant for the experiments in the electric
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field, Fig. 1(a), this anisotropy gives rise to the reentrant localization phase diagram, Fig 1 (b)
beyond the locator expansion, i.e. at a < d.

Thus, in order to combine measure zero of delocalized states from the isotropic case, d ≤ 2,
with the possibility of anisotropy, d > 1, we focus on a two-dimensional, d = 2, quantum dipo-
lar system with the on-site disordered chemical potential and add a spatially homogeneous
angular anisotropy of an effective dipolar form, Fig. 1(a). We show that the Anderson local-
ization beyond the locator expansion is robust to the tilt, β = 3 sin2 θ , homogeneous for all
dipoles, up to a finite critical tilt value, Fig. 1(b), unlike the models with uncorrelated random
off-diagonal hopping (see, e.g., [26,27]). Moreover, we demonstrate that the anisotropy leads
to the reentrant character of localization showing localized eigenstates both at small (nearly
isotropic) and large (strongly anisotropic) tilt. Such systems bridge the gap between models
with deterministic and random interactions and bring new dimensions of anisotropy-mediated
localization to the field of long-range systems. The extensive numerical simulations showing
consistent behavior of level statistics and spatial wave-function properties are analytically sup-
ported by the renormalization group analysis (similar to [17, 18]) and the newly developed
matrix inversion trick [16].

2 Model and its symmetry

We consider the model describing dilute polar excitations propagating via dipole-flips (in-
duced by their dipole-dipole interaction) on a square lattice of sites {i = (ix , iy)} of size L,
ix , iy = 0,1, . . . , L − 1, Fig. 1(a), with the Hamiltonian

H = −
∑

i, j

1− β cos2φi j

ra
i j

|i〉〈 j|+
∑

i

µi|i〉〈i| , (1)

where {|i〉} are site basis states, µi ∈ [−
W
2 , W

2 ] is on-site disorder uniformly distributed over
the above interval, the hopping term depends on the distance ri j =

Æ

(ix − jx)2 + (iy − jy)2
between two lattice sites and its angle φi j with respect to the electric-field projection to the
plane, i.e. x-axis. The effective single-particle hopping model (1) is obtained from the model
of dipoles with dipole-dipole interactions as these interactions induce effective anisotropic
transfer of excitations between sites via dipole-flips (see, e.g., [22, 28]). The anisotropy pa-
rameter β = 3 sin2 θ is introduced by analogy to the experimental setup of dipolar molecules,
Fig. 1(a), and is related to the homogeneous tilt angle θ of dipoles with respect to the z-axis.
In this work we restrict our consideration to the physical values of 0≤ β ≤ 3.

The isotropic limit, β = 0, considered in an early principle paper by Burin and Maksi-
mov [18] for a = d = 3 and investigated in details for d = 1 in [15, 16] represents a newly
discovered universality class of long-range models with fully-correlated hopping. It is these
complete correlations that bring destructive interference of long-range hops back into play,
similarly to the standard weak and Anderson localization case, and localize the bulk of the
system for all values of a at d ≤ 2. Here and further in the paper we mostly focus on the
localization-delocalization transition in the spectral bulk, but not on the nonergodic wave-
function properties.

In the opposite limit of a long-range model with fully uncorrelated random-sign hopping
hi j/r

a
i j [22–24, 29, 30] it is well-known that the localization occurs only for a > d, while the

ergodic delocalization spans over the entire range a < d. The pure d-dimensional dipolar
case of our model, β = d, (initially considered in [22–24, 31] for different d) leads to the
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same result, see Fig. 1(b).1 Note that in general for such long-range models the disorder
amplitude plays a subleading role, changing only the size of the wave-function “head” close to
the maximal point, beyond which the wave-function decays polynomially.

One may naively expect that the intermediate case of 0 < β < d is similar to the pertur-
bation of the fully-correlated model (β = 0) by a fraction ε ∼ β/d of random-sign hopping
(1+ εhi j)/ra

i j as finite β works as a kind of quasi-disorder. However, in the latter model any
ε > 0 immediately delocalizes all the spectral states at a < d as shown in [15, 26], which is
not consistent with the phase diagram, obtained numerically and shown in Fig. 1(b).

Instead, in the anisotropic model (1) there is a finite tilt βAT (a) up to which the Anderson
transition survives

βAT (a) = a ⇔ aAT (β) = β , 0≤ βAT , a ≤ 2 . (2)

This is the main result of the paper summarized in the phase diagram, Fig. 1(b), showing the
localization properties of the bulk states, which is obtained from extensive numerical simula-
tions.

Note that the Hamiltonian (1) obeys the π/2-rotational symmetry of a square lattice,
φi j ↔ φi j +π/2, combined with the disorder strength W , the eigenenergy En, and the tilt β
rescaling

W ↔
W

1− β
, En↔

En

1− β
, β↔

β

β − 1
, (3)

because the hopping term goes under this transformation to

1− β cos2
�

φi j +π/2
�

ra
i j

=
1− β sin2φi j

ra
i j

= (1− β)
1− β

β−1 cos2φi j

ra
i j

. (4)

This symmetry relates the interval 0 < β < 2 to the ones β < 0 and β > 2 and causes the
reentrant character of the above phase diagram. In addition, for β > 1 the negative factor
1 − β , which rescales the energy and the disorder, corresponds simply to mirroring of the
spectrum and moving of extended ergodic states forming measure zero of all states from the
bottom to the top of the spectrum. Thus, further without loss of generality further we restrict
ourselves to 0< β < 2.

3 Overview of the numerical and analytical results

The eigenfunctions ψn(i) and eigenenergies En of the Hamiltonian, Eq. (1), are numerically
calculated by exact diagonalization for 2d square samples of the linear size L from 75 to 280
(i.e., from ∼ 5500 to ∼ 80000 matrix size) and for 102 − 103 random realizations of the
diagonal disorder. The ratio level statistics, Figs. 1(b) and 2(b),

〈r〉(E) =
�

min

�

rn,1,
1

rn,1

��

, rn,1 =
En − En−1

En+1 − En
. (5)

is calculated across the entire spectrum, with the disorder averaging and binning over energies.
It shows the Poisson value 〈r〉= 2 ln 2−1' 0.3863 for all spectral bulk states in the localized
phase, and 〈r〉 ≈ 0.5307 of Gaussian orthogonal ensemble (GOE) [32,33] at the spectral edge

1However, in a recent paper of two of authors [35] it has been shown that the critical point a = β = d = 2 is
more subtle: it shows diffusive transport and non-ergodic eigenstates like in [31] for strong diagonal disorder and
superdiffusion with ergodic wave functions at small disorder.
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Figure 2: Emergence of the finite-size mobility edge across the Anderson tran-
sition. (a) global density of states (DOS), (b) energy-resolved level-spacing ratio
r-statistics 〈r〉(E), and (c) energy-resolved fractal dimensions D2 for each eigenstate
versus energy E in the localized (a = 1.5, β = 1, blue), critical (a = β = 1.5, yellow),
and delocalized (a = 1.5, β = 2, red) phases. Both panels (b) and (c) show localized
(blue), critical (yellow) and ergodic (red) eigenstate properties in the spectral bulk.
The bulk states are within the range [−W/2, W/2], where we take W = 20. The
inset to panel (a) shows power-law tails of DOS at either (a > aAT ) or both (a < aAT )
spectral edges beyond the bulk, which correspond to the ergodic states in panels (b)
and (c). For the energy-resolved data the bins of the 50 adjacent states are used.
The data for D2 are extrapolated from L = 100, 150, 200, and 250 with the corre-
sponding number of disorder realizations 1000, 500, 100, and 50, respectively, see
Sec. 4.2.1 for details. For the rest of the data L = 250. The vertical dashed lines pro-
vide the position of the finite-size mobility edge extracted from the finite-size data
for r-statistics.

and for all eigenstates in the extended phase. The spectral-resolved fractal dimension D2(E),
extracted as an exponent from the inverse participation ratio (IPR)

I2(En) =
∑

i

|ψn(i)|4∝ L−d·D2(En) , (6)

shows consistent behavior in the localized (D2 → 0), critical (0 < D2 < 1), and extended
phases (D2 → 1), Fig. 2(c), for the spectral bulk states.2 The non-trivial bulk-energy-depen-
dence of 〈r〉(E) and D2(E) at the critical point might be a result of the finite-size effect. As in
this work we focus on the localized and ergodic phases and only on the location of the phase

2Note the non-standard definition of the fractal dimension: the dimension of the corresponding fractal in d = 2-
dimensional space is given by d · D2.
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transition, further we do not consider the above energy dependencies and average the data
over the bulk of the spectrum, if not stated otherwise.

Basing on the above spectral-resolved data for many (a,β) points, in the next sections we
perform more deep analysis to determine the phase diagram of the bulk spectral states, shown
in Fig. 1(b), as well as the fraction of ergodic spectral-edge states in the localized phase.

In Sec. 4.1 in order to determine the phase diagram, Fig. 1(b), and confirm the analytical
prediction β = βAT (a), Eq. (2), the more detailed analysis of the finite-size scaling (FSS) of
r-statistics has been performed.

In Sec. 4.2 in order to support the claim of the paper on anisotropy-mediated reentrant
localization beyond the convergence of the locator expansion, a < d = 2 and confirm the con-
sistency of the spectral and spatial measures, we provide the numerical analysis of the spectrum
of fractal dimensions and of the eigenstate spatial decay from the maximum, inevitably show-
ing the power-law localization of the spectral bulk states at all aAT (β) < a < d and ergodic
delocalization otherwise. However, in the latter case the finite-size data convergence of the
fractal dimension to 1 very slow, see Sec. 4.2.1, and the higher-order extrapolation in 1/ ln L
or the linear one with irrelevant exponent [34] shows significant fluctuations, see [35] and
Appendix A for details. The static data analysis of Sec. 4.2 is supported by the dynamics of the
wave packet in Sec. 4.3, confirming the localization at aAT (β)< a < d.

In Sec. 4.4 in order to understand the contribution of the spectral edge states, in the local-
ized phase we determine the location of the finite-size mobility edge via the threshold in the
r-statistics, see Figs. 2 and 9, as well as the fraction of the ergodic r-values. In addition we
extract the fraction of ergodic IPR values from the energy-resolved data, sorted in increasing
IPR value, Fig. 10. The consistency of the data and its agreement with the analytical predic-
tions allows us to claim that the ergodic spectral-edge states form a measure zero of all the
states in the thermodynamic limit, however, at finite sizes this fraction decay only as a power
of the logarithm of the system size L.

Section 5 represents the corresponding analytical analysis: we show that it is the spectrum
of hopping for the considered 2d dipolar model, Eq. (1), which provides the analytical predic-
tion for the phase diagram in Fig. 1(b). The above idea is formalized by the renormalization
group analysis, briefly given in Sec. 5.1, where the importance of the sign-constant spectrum
of hopping is discussed. Section 5.2 is devoted to the analytical prediction of the fraction of
ergodic eigenstates and based on the Ioffe-Regel criterion.

Section 6 concludes our consideration.

4 Numerical results

4.1 Finite-size flow of the ratio r-statistics

Taking into account the fact that r-statistics, Eq. (5), is homogeneous for all spectral bulk states
in both ergodic and localized phase, we perform the finite-size scaling of the data 〈r〉, averaged
both over disorder and the bulk of the spectrum. We determine the transition line β = βAT (a),
Eq. (2) and the error bars in Fig. 1(b) via the change of finite-size flow of 〈r〉(a,β , L) versus
L, Fig. 3(a-d).

First, we describe the procedure of the finite-size collapse of the ratio r-statistics. For each
value of the bare hopping decay rate a the disorder- and spectral-average ratio r-statistics has
been calculated for the range of anisotropy parameters β and system sizes L (see Fig. 3(a-d)
for a = 0.5, a = 1.0, a = 1.5, and a = 1.75, respectively).

The first approximation of the transition β = βAT (a) is given by the crossing point of finite-
size r(β , L) curves, see Figs. 3(a-d). The intersection points of r-statistics versus β for different

7

https://scipost.org
https://scipost.org/SciPostPhys.13.5.116


SciPost Phys. 13, 116 (2022)

1000 4

0.4

0.45

0.5

0 0.5 1

0.4

0.45

0.5
75x75
100x100
150x150
200x200
Poisson
GOE

-50 0 50
0.4

0.45

0.5

0.55

-100 -50 0 50
0.4

0.45
0.5

-100 -50 0 50 100

0.48

0.5

0.52

(e)

(c)(a)

(h)

(g)

00 10

0.4

0.45

0.5

-150 0 150 300

0.4

0.45

0.5

2 3

(b)
1.5 2 2.5

0.4

0.45

0.5

-50 0 50 100
0.48

0.5

0.52
-100      -50 0 50 100

0.45

0.5

(d)

(f) (j)

(i)

Figure 3: Spectral-averaged ratio r-statistics versus the anisotropy parameter β .
Level statistics, averaged over the spectral bulk E ∈ [−W/2, W/2], versus anisotropy
β at (a) a = 0.5, (b) a = 1.0, (c) a = 1.5, and (d) a = 1.75 for the disorder strength
W = 20 and different system sizes L = 75, 100, 150, and 200 (shown in legend)
with the corresponding number of disorder realizations 2000, 2000, 1000, and 400,
respectively. Dashed horizontal lines show the limiting ergodic (r ' 0.53) and Pois-
son (r ' 0.386) values. The vertical lines show the extracted anisotropy parameter
βAT at the localization transition. Panels (e-j) show the finite-size collapse of all 6
crossing points using 〈r〉 = R

�

(β − βAT )L1/ν
�

, with critical values βAT and critical
exponents ν.

system sizes correspond to the Anderson localization transition and agree quite well with the
analytical values shown in Fig. 1(b).

More accurate single-parameter collapse of all curves of the form

〈r〉 (β , L) = R(|β − βAT |L1/ν) . (7)

provides best parameters βAT and ν, see Fig. 3(e-j). It gives βAT = a ± 0.05 for 0 < β < 2
and ν = 1.0 ± 0.2 for all considered a. At the transition line the mean r-statistics takes the
universal value 〈r〉 ≈ 0.47 independent of a. Note that the pairs of crossings βAT in Fig. 3(c, d)
are related to each other with respect to the symmetry (3) within the above mentioned error
bar, while the critical exponents are just the same. The black solid line in Fig. 1(b) shows the
result for the critical value of βAT extracted from Fig. 3, which coincides with the analytical
prediction, Eqs. (2), (3), within the ∼ 10 %-errorbar.

4.2 Eigenstate properties: multifractal analysis and wave-function spatial de-
cay

In addition to the spectral properties, we consider eigenstate ones. We focus on the multifractal
analysis, based on the spectrum of fractal dimensions f (α), fractal dimension D2, as well as
on the spatial decay of the wave functions with the distance from their maxima.

4.2.1 Spectrum of fractal dimensions f (α) and fractal dimensions Dq

In this subsection we focus on the spectral-bulk properties, define the spectrum of fractal di-
mensions and provide the standard extrapolation procedure for it (see, e.g., [15,16,26,36,37])
and for the fractal dimensions Dq [30], Eq. (6).
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Figure 4: Comparison of extrapolated fractal dimension D2 versus power a for
the anisotropic model with fixed bare disorder W = 20 (yellow squares) and for the
2d power-law random banded model (blue circles). The anisotropy is taken to be
β = 2. D2 are extrapolated from L = 100, 150, 200, and 250 with the corresponding
number of disorder realizations 1000, 500, 100, and 50, respectively.

The standard multifractal analysis is based on the generalization of the IPR (6) to the other
wave-function moments:

Iq =

®

∑

i

|ψn(i)|2q

¸

= cq Ld(1−q)Dq , (8)

where the scaling exponents Dq are called fractal dimensions of the order q.
The finite-size fractal dimension is defined by the formula Dq(L) = ln Iq/(1− q) ln Ld and

the main contributions to it are given by the scaling exponent Dq and the prefactor cq of IPR
similarly to (12)

Dq(L) = Dq +
(1− q)−1 ln cq

ln Ld
. (9)

The resulting extrapolated D2 is shown in Fig. 4 versus a for β = 2. One can see there
(yellow squares) the transition from localized phase a > 2 with D2 → 0 to the extended one,
D2 > 0, at a < 2. As a reference point (blue circles) we consider the generalization of the
power-law random banded matrix (PLRBM) model [30,38] to 2d by replacing the correlated
factor 1−β cos2φi j in (1) by a i.i.d. random numbers, and show the fractal dimension extrap-
olated using the simple linear formula (9). The latter confirm the known results D2 = 1 for
a < d = 2 and D2 = 0 for a > d with good accuracy. The discrepancy between these models
in the extended phase is due to severe finite-size effects in anisotropic model (we address this
issue in the Appendix A).

Next we consider the dual measure, namely the spectrum of fractal dimensions f (α), char-
acterizing the multifractality of the states, which is defined via the probability distribution

P(ln |ψn(i)|2)∼ Ld( f (α)−1) , (10)

of the logarithm of the wave-function intensity α = − ln |ψn(i)|2/ ln Ld [30] and can be ex-
tracted directly from the histogram over α [16,26,36,37,39].

The relation between the spectrum of fractal dimensions f (α) and the fractal dimensions
Dq is given by the saddle-point approximation for the disorder averaged generalized IPR [30]

〈Iq〉= Ld

∫

P(α)L−dqαdα= Ld maxα( f (α)−qα) ≡ Ld(1−q)Dq ⇔ Dq =
minα (qα− f (α))

q− 1
, (11)
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where under the disorder average the sum over coordinates is replaced by the factor Ld and
each summand is averaged over P(α). This confirms that f (α) contains all the information
about Dq via the above Legendre transform.

In addition, usually for the non-ergodic extended states in most cases f (α) obeys a so-
called Mirlin-Fyodorov symmetry f (1 − δα) = f (1 + δα) − δα [30]. The ergodic extended
state corresponds to a δ-function at α= 1,3 while the localized state has f (0) = 0 and a certain
(usually linear) form of f (α > 0) = kα, with k = 0 for exponential and k > 0 for power-law
localization.4

As for the finite-size effects, due to the normalization condition of the probability distri-
bution (10), one should take into account finite-size prefactors of P(α) which depend on the
system volume Ld slower than any power. In order to take this into account, we use the fol-
lowing expression f (α, L) at the finite system size N = Ld , d = 2

f (α, L) = f (α) +
c(1)α

ln Ld
+

c(2)α
(ln Ld)2

+ . . . , (12)

with a certain α-dependent constants c(k)α , depending on the P(α)-prefactors. Here and further
we stick to the quadratic in 1/ ln Ld behavior in order to have reliable extrapolation.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

f(
)

a=1.5,b=-1,E=5

L=100
L=150
L=200

f( ) 0.41

Figure 5: Finite-size extrapolation of the multifractal spectrum f (α) for the en-
ergy E = 5, disorder strength W = 10, a = 1.5, and β = −1. f (α) is extrapolated
from L = 100, 150, and 200 with the corresponding number of disorder realizations
1000, 500, and 100, respectively.

The corresponding finite-size f (α, L) and extrapolated f (α) curves are given in Fig. 5 for
a certain mid-spectrum energy E = 5 in the localized phase, a = 1.5, β = −1 and obey the
normalization condition, maxα f (α) = f (α0) = 1, of the probability distribution P(α).

Generally, the position of the maximum α0 of f (α) and its slope k = 1/α0 corresponds to
the effective power-law spatial decay of the wave function with the distance r = |i− i0| from its
maximum i = i0. Indeed, with the distance the eigenstate decays as L−dα = |ψn(i)|2 ∼ r−γ(a),
γ(a) = 2max(a, 2d−a), while the number of states increases as the volume Ld f (α) ∼ rd . Thus,
resolving these expressions with respect to r one obtains

f (α) =
α

α0
, α0 =

γ(a)
d
=max(a, 2d − a) , (13)

which is confirmed by the numerical simulations, Fig. 5.

3With the additional tail f (α) = (3− α)/2 for α > 1 due to the statistics of de Broglie-like oscillations of ψn,
see, e.g., the Supplemental Information in [36] and [39] for details.

4Note that k = 1/2 corresponds to the critical localization as f (α) = α/2 in this case still obeys the Mirlin-
Fyodorov symmetry [30].
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In the model (1) at a = 1.5 < d = 2 as an example (solid lines) the spectrum of fractal
dimensions of the bulk spectral states, Fig. 6(a), shows power-law localized (β = 1, blue),
critical (β = 1.5, yellow), and ergodic (β = 2, red) behavior in the localized phase, at the
transition, and in the extended phase, respectively. The corresponding data at a = 2.5 > d is
always power-law localized (dashed lines) with γ(a) = a.

At the critical a = d = 2 of the convergence of the locator expansion the wave-function
behavior is consistent with the critical localization, Fig. 7, f (α) ' kα, with k = 1/2 corre-
sponding to the critically localized eigenstate and the spatial decay [17].

The wave-function spatial decay 〈ln |ψn(i)|2〉 of the typical wave-function intensity |ψn(i)|2

with the distance r = |i − i0| from its maximum i = i0 suggested as the localization measure
in [15] and used in [16, 17, 26] shows the consistent power-law localization with the decay
rate being dual with respect to the critical line α= d = 2

|ψn(i)| ∼ r−a for a > d , (14a)

|ψn(i)| ∼ ra−2d for a < d , (14b)

as in [15–17] in the whole range of anisotropy parameter β in the localized phase, α > αAT (β),
Eq. (2), see blue lines in Fig. 6(b) and in Appendix B.

At the self-dual line a = d = 2 of (14), Fig. 7, the wave-function behavior is consistent
with the above critical localization f (α) ' α/2 and corresponds to the localized eigenstate
and the spatial decay [17]

|ψn(i)| ∼ r−d (ln r)−2 . (15)

The pure 2d dipole point a = β = 2 considered in [31] and revisited in [35] is exempted here
as it shows the transition from ergodicity to localization over the disorder amplitude.

Both (14) and (15) can be understood in terms of the renormalization group (RG) analysis
similar to the one in [17,18], given in Sec. 5.1.

4.3 Wavepacket dynamics. Return probability

In addition to the static properties given in the previous section by multifractal analysis and
wave-function spatial decay, we confirm the eigenstate localization dynamically.

For this purpose we initialize the wave packet with the delta function at time t = 0 ,

ψ(0) = δ(x − x0) =
∑

n

ψ∗n(x0, 0)ψn(x , 0) , (16)

and compute the evolution of it in time

ψ(t)=
∑

n

ψ∗n(x0, 0)ψn(x , t) =
∑

n

ψ∗n(x0, 0)ψn(x , 0)e−iEn t , (17)

by considering the survival probability defined as [40–42]

R(t) = |〈ψ(0)|ψ(t)〉|2 =
∑

n,m

|ψn(x0, 0)|2|ψm(x0, 0)|2e−i(En−Em)t . (18)

which is an important dynamical measure relevant also for many-body localization [43,44].
By definition at time t = 0 the survival probability equals unity and then as time evolves

it decays (with some revivals) to the constant value at long times

R(t →∞) =
∑

n

|ψn(x0, 0)|4 , (19)
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Figure 6: Spatial properties in the spectral bulk. (a) spectrum of fractal dimensions
f (α) and (b) power-law spatial decay of eigenstates in the bulk of the spectrum for
a = 1.5 (solid), 2.5 (dashed), and β = 1 (blue), 1.5 (yellow), 2 (red). The panel (b)
confirms the duality of power-law spatial decay rate γ(a)≈ γ(2d−a) [15–17] in the
localized phase (β < a < d or a > d), also supported by the slope k < 0.5 of f (α) in
panel (a). f (α) is extrapolated from L = 75, 100, 125, 150, 200, 225 and 250 with
the corresponding number of disorder realizations from 2000 for L ≤ 125 to 300 for
L ≥ 225, see Sec. 4.2.1 for details. and with the disorder amplitude W = 20. For
the spatial decay L = 250 and W = 20 for a = 1.5, for a = 2.5 we choose bigger
W = 200 in order to make the power-law tail dominant on moderate sizes.
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0.5
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Figure 7: Spatial properties at the dual line a = d = 2. (a) spectrum of fractal
dimensions f (α) and (b) power-law spatial decay of eigenstates in the bulk of the
spectrum at the self-dual line a = 2 of (14) for β = 1 (blue), 2 (red), 3 (green). The
linear behavior of f (α) with the slope close to k = 0.5 supports the critical localiza-
tion for β 6= 2. The exceptional point a = β = 2 shows the transition from ergodicity
(W = 4, dashed) to localization (W = 40, solid) over the disorder amplitude. The
disorder strength for β = 1, 3 is W = 40. f (α) is extrapolated from L = 75, 100,
125, 150, 200, 225 and 250 with the corresponding number of disorder realizations
from 2000 for L ≤ 125 to 100 for L = 250, see Sec. 4.2.1 for details. For the spatial
decay L = 200.
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Figure 8: Survival probability of the delta-peak initialized wave packet in the
localized phase for the disorder strength W = 20, β = 0.3, and a = 1.5 (solid
lines), a = 2.5 (dashed lines) for different system sizes L = 75, 100, and 150 with
the corresponding number of disorder realizations 1000, 750, and 400, respectively.

analogously to the IPR with the summation over energies, but not coordinates. The scaling
of the latter measure with the system size Ld shows the localization properties of the wave
packet and, thus, of the underlying eigenstates.

Figure 8 shows the survival probability at β = 0.3, a = 1.5 and a = 2.5, corresponding to
the localized phase β < a < d = 2 and a > d, respectively, for several system sizes, averaged
over the disorder realizations and several initial coordinated x0. From the data it is clearly
seen that in both cases the limiting value (19) does not scale with the system size confirming
the localization of the eigenstates. The larger limiting value of R(t) for a > d corresponds to
the smaller localization region of localized states with respect to β < a < d according to the
renormalization group predictions.

4.4 Finite-size mobility edge and the fraction of ergodic states

From the spectral-resolved measures, considered in Sec. 3, one can extract the position of
the finite-size mobility edge −E∗ below which all the states are ergodic both at a < aAT and
a > aAT , while the other ones are power-law localized above E > −E∗ for a > aAT and extended
with smaller extrapolated D2 for a < aAT .

In order to determine E∗, first, we consider a threshold analysis of the energy-resolved
r-statistics, see Fig. 9. The data on the right panel shows that the corresponding fraction of
ergodic states ferg =

∫

E<−E∗ ρ(E)dE/Ld in the localized phase decays with the system size L,
but does it logarithmically slowly, according to the Ioffe-Regel criterion, considered in Sec. 4.4.

Next, we focus on the estimation of the fraction of ergodic high-energy states in the local-
ized state at 0 < β < a < 2 from the IPR. For this we consider the plot of energy-dependent
IPR values sorted in increasing order for different system sizes versus the renormalized frac-
tion of the states (n/Ld)3−a/ ln L, see Fig. 10. Panels (a) and (b) show the IPR itself I2 and
its renormalization Ld · I2 in order to confirm the scaling of the localized and ergodic states,
respectively, given by the right panel of Fig. 9 for the ratio r-statistics versus energy.

The consistency of the above spectral and spatial data leads us to the conclusion that in
the localized phase, a > aAT , there is measure zero of the delocalized edge states which can
be neglected in the thermodynamic limit.
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In the next section we provide an analytical consideration of the model (1) and explain the
non-trivial bulk-spectrum phase diagram with the localization beyond the convergence of the
locator expansion and its relation to the decaying fraction fer g of ergodic high-energy states.

Figure 9: Threshold analysis of ratio r-statistics versus the energy E.
(left) Energy-resolved 〈r〉(E) for the disorder strength W = 10, a = 1.5, and β = 0.3
for different system sizes L = 100, 150, 200, and 250 with the corresponding num-
ber of disorder realizations 1000, 1000, 150, and 50, respectively. Dashed horizontal
lines show the limiting ergodic (r ' 0.53) and Poisson (r ' 0.386) values. The or-
ange shaded region shows the threshold r ∈ [0.48,0.52] used for the extraction of
the fraction ferg of the ergodic states in the main text. (right) Fraction ferg of ergodic
extended states below the finite-size mobility edge, E < −E∗ < 0, extracted from the
data in the left panel in the localized phase, a = 1.5, β = 0.3, versus the system
size L. The number of disorder realizations is from 2000 for L ≤ 100 to 150 for
L = 250. Numerical ferg (symbols) is consistent with analytical predictions (dashed
line) in (23).

10 -10 10 0
10 -5

10 0

10 -10 10 0
10 0

10 5

Figure 10: Energy-resolved inverse participation ratio sorted in increasing order
versus renormalized state index (a) IPR itself showing collapse at the localized
states and (b) IPR renormalized to the system size N = Ld showing the collapse for
ergodic states. The disorder strength for a = 1, β = 0.3 is W = 20. Finite size data
is represented for L = 200 (solid blue), 250 (dashed red), and 280 (dash-dotted
yellow) with the corresponding number of disorder realizations 100, 80, and 50,
respectively.
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5 Analytical methods and results

The non-trivial phase diagram for the bulk spectrum, Fig. 1(b), and anisotropy-mediated reen-
trant localization can be understood from the structure of the high-energy states and spectrum
of hopping in both isotropic, β = 0, and anisotropic, β > 0 cases of a dipole system (1). Indeed,
the hopping term

∑

i,j |i〉〈j|(1 − β cos2φi j)/|i − j|a in (1), which is translation invariant and

therefore can be diagonalized in the momentum basis |q〉 =
∑

n eiqn|n〉/Ld/2 as
∑

q Vq|q〉〈q| ,
diverges at small |q|< q∗� 1 and a < d = 2

Vq = −
∫ ∞

0

rdr

∫ 2π

0

dφeiqr cos (φ−φq)1− β cos2φ

ra
= caqa−2

�

β − a− (2− a)β cos2φq

�

. (20)

Here ca = −
πΓ (−a/2)
2aΓ (a/2) > 0, Γ (a) is a Gamma-function, and the momentum

q = π
L (mx , my) = q(cosφq, sinφq) is written in polar coordinates q, φq, with

mx , my = 0, 1, . . . , L − 1, see Appendix C for the calculation details.
As a result of this divergence, there are eigenstates of the Hamiltonian (1) at high energies

|Eq| ' |Vq|> E∗, with |Eq| �W and |q|< q∗, which are barely affected by the on-site disorder
and represented by superpositions of plane waves only with small momenta |q| < q∗. Note
that for the isotropic case β = 0 these divergent energies appear only at the negative side
of the spectrum (see Fig. 2). As the corresponding momenta |q| < q∗ in d < 3 constitute an
extensive number, but zero fraction of all q, these states are non-ergodic or even localized
in the momentum space, meaning that they should be diffusive or ballistic in the coordinate
basis.

Although the above exact eigenstates with large energies |Eq| ' |Vq|> E∗ constitute a zero
fraction of all states, they give the dominant contribution to the hopping term due to their
eigenvalues

∑

q
Vq|q〉〈q|=

∑

|Eq|>E∗
Eq|Eq〉〈Eq|+ Jres . (21)

Here we keep the index q for these states as their large energies are almost insensitive to the
disorder term and therefore close to their bare kinetic values Vq. The last term Jres in r.h.s.
contains the summation over the small energies |Eq|< E∗ and perturbative deviations between
|q〉 and |Eq〉.

The action of the total kinetic term on the bulk eigenstates En > E∗, being orthogonal to
the above ones, 〈Eq|En〉= 0, is equivalent to the action of the residual hopping term Jres only.
If there is no compensation in the first sum of Eq. (21), the residual term Jres should be much
smaller than the total kinetic term, having substantially faster spatial decay. This effectively
short-range hopping Jres leads to the localization of the entire spectral bulk providing a new
localization mechanism due to the presence of measure zero of delocalized high-energy states
orthogonal to them.5

These simple arguments work provided the extended high-energy states appear on the
only spectral edge and, thus, their contribution to (21) is not compensated by the states from
the opposite one. The effect of extended spectral edge states has been partially understood
for the case of the only such state in terms of cooperative shielding in [46] and explained
in details for the general case a ≥ 0, d = 1 by the matrix inversion trick in [16, 26] and by
the renormalization group in [17]. In our model (1), the condition that Vq diverges at small
|q| < q∗, a < d, and do not change the sign for different momentum orientations φq in order
to have high-energy states on the only spectral edge is given by

Vq(φq)/Vq(0)> 0 ⇔ a|β − 2|> |a− 2|β . (22)

5Similar effects have been recently observed in non-integrable many body systems where the special spectral-
edge states lead to the departure from the eigenstate thermalization hypothesis in the spectral bulk [45].
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Figure 11: Illustration of the spectral divergence and the localization at a < d
for (a) the isotropic, β = 0, (b) anisotropic localized, 0 < β < βAT (a), and
(c) anisotropic delocalized, β > βAT (a), cases. The top panel shows the one- or
two-sided divergence of the spectrum, while the bottom illustration shows the tilt of
the 2d dipolar system in the strong electric field.

It immediately provides the phase boundary of the localization β < βAT (a), valid for all a and
β , see Eq. (2) for β < 2 and the symmetry (3) for the rest values. In order to illustrate it, in
Fig. 11 we show the kinetic spectrum Vp (top) and the corresponding 2d dipolar system in a
tilted electric field for a = 1 < d = 2 for (a) isotropic, β = 0, and (b) anisotropic, β = 0.75
localized cases, as well as for (c) the delocalized one, β = 2.25. One can see that for the
localized cases the spectrum diverges to the only direction, even at finite anisotropy, while its
two-sided divergence immediately leads to the delocalization.

Note also that the power-law growth of the spectral-edge energies Eq ' Vq ∼ qa−2 with
decreasing momentum q is explicitly represented by the power-law decaying tail of DOS on
either (both) spectral edge(s) in the localized (extended) phase, see the inset to Fig. 2(a).

The finite-size mobility edge E∗ ' Vq∗ found numerically can be determined by Ioffe-Regel
criterion. Indeed, a state is localized as soon as its localization length `loc is smaller than
the system dimension L. In 2d systems the localization length is exponentially growing with
the mean-free path `loc ∼ eckF `mf p , with a certain constant c ∼ O(1). Fixing the Fermi mo-
mentum at kF = q one calculates the mean-free path `mf p(q) ' vqτq via the group velocity
vq = dVq/dq ∼ qa−d−1 at the momentum q and the level broadening determined by the Fermi
Golden rule Γ = τ−1

q ∼ W 2ρ(Eq) ∼ W 2q2d−a for the plane wave scattering on impurities
µi ' W . This gives the fraction ferg of ergodic extended states below the finite-size mobility
edge, `loc ∼ L,

ferg = πq2
∗ ∼

�

W 2 ln L
�−1/(3−a)

, (23)

which decays only as a power of the logarithm of the system size, see Fig. 9.
In the next parts of this section we provide the sketch of the renormalization group ap-

proach to the localization at a < d, see Sec. 5.1, and the Ioffe-Regel argumentation for the
location of the finite-size mobility edge and the corresponding fraction of the ergodic states in
this localized phase, see Sec. 5.2.

5.1 Main idea of the renormalization group analysis

In this Section we follow [17, 18, 47] and reproduce the idea of the renormalization group
(RG) analysis for the 2d anisotropic system. The main assumption of this RG written in the
limit of large disorder strength W � 1 is that at each step, as we consider only the hopping
terms at the distance R, the localization length `(R) of an eigenstate

�

�ψR
n

�

=
∑

iψ
R
n(i) |i〉 around

its maximum i = n is small compared to R� `(R).
For clarity let’s consider the first step of the RG. Similarly to [18] we take the disorder

amplitude W � 1 to be large compared to the nearest-neighbor hopping Vi,i+1 and apply the
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RG procedure to study this problem. As a step of the RG we first cut off the tunneling at a
certain scale R0 and calculate the wave functions (R0 modes) for this scale. Then new cutoff
R1� R0 is chosen and new modes (R1 modes) are constructed as a superposition of R0 modes.
The localization length increases from `0 ® R0 to `1 ® R1 due to the presence of resonances.
At large disorder strength W � 1 only pairs of resonances are relevant, as the probability to
realize triple or higher order ones is smaller in 1/W (please see [17] for more details).

The projectors |ψ(1)k 〉 on new R1 modes can be written via the initial site projectors |i〉 as
follows

|ψ(1)k 〉=
∑

i

ψ
(1)
k (i)|i〉 . (24)

Thus, the hopping term Vi j = −
1−β cos2φi j

ra
i j

rewritten in new operators takes the form

∑

i, j

Vi j|i〉〈 j|=
∑

k,l

|ψ(1)k 〉〈ψ
(1)
l |
∑

i, j

ψ
(1)
k (i)ψ

(1)∗
l ( j)Vi j . (25)

According to RG assumption the modes ψ(1)k (m) are localized rkm < `1 at the length, much
smaller than the distance to the next resonance `1 ® R1, thus, one can neglect the difference
between Vi j and Vkl

��

�ri j − rkl

�

�< rik + r jl < 2l1 ® R1

�

. As a result, Eq. (25) reads as

∑

i, j

1− β cos2φi j

ra
i j

|i〉〈 j| '
∑

n,m

lmln
1− β cos2φmn

ra
mn

|ψR
m〉〈ψ

R
n| , (26)

with the effective charge ln =
∑

iψ
R
n(i) .

In order to estimate the renormalized hopping term lk l∗l /r
a
kl we consider the mean squared

value of lk at a certain energy E as follows [47]




l2
�

E =


∑

k l2
kδ(E − Ek)

�

ρ(E)
=



∑

k

∑

i,
|i−k|<R1

∑

j,
|j−k|<R1

ψ
(1)
k (i)ψ

(1)∗
k ( j)δ(E − Ek)

·

ρ(E)

'

∑

|i−j|<R1




Im Gi−j

�

πρ(E)
'

Im Ḡq'1/R1
(E)

ρ(E)
. (27)

Here the result is written in terms of the density of states (DOS)

ρ(E) =

®

∑

k

δ(E − Ek)

¸

=
1
Ld

∑

q

Im Ḡq(E) , (28)

and the Green’s function

G(E + iη)≡
1

E + iη−H
, (29)

averaged over the diagonal disorder Ḡ(E) = 〈G(E+ iη)〉 and, thus, diagonal in the momentum
space. The latter reads as

Ḡq(E) =
1

E −Σ− Vq
, (30)

with the self-energy given by a simplest coherent potential approximation Σ = −W 2

12 Ḡ0(E) ,
consistent with the Fermi Golden rule result

Γ ≡ ImΣ= −ρ(E)
W 2

12
. (31)
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Here we consider for simplicity the box distribution of the disorder −W/2 < µi < W/2 with
the finite variance




µ2
i

�

= W 2/12 and use it in the determination of the self-energy of the
Green’s function.

In the coherent potential approximation, for the bulk of the spectrum E ∼ W , DOS is q-
independent and is determined solely by the disorder amplitude (like in [17]), ρ(E) ∼ 1/W .
Thus, the imaginary part of the Green’s function is given by a Lorenzian

Im Ḡq(E)'
W

(E − Vq)2 +πW 2/12
, (32)

and, thus, the mean squared charge (27) takes the form of the integral over the momentum
orientation angle φq, with q ' 1/R� 1




l2
�

E =
W

2π2
Im

∫ 2π

0

dφq

E − Vq −Σ
=

W
2π2

∫ 2π

0

Γ dφq

(E − Vq − ReΣ)2 + Γ 2
. (33)

At a < d the integrand denominator dominated by the hopping spectrum, Vq has infrared
divergence, so the angle averaging depends on whether Vq versus φq changes the sign or not
for q ' 1/R� 1.

Indeed, for sign-definite Vq, Eq. (22), the above integral is given mostly by



l2
�

E ∼WΓ/V 2
q'1/R ∼W 2R2(a−d) and leads to

Im Ḡq∼1/R1
(E)'

W

R2(d−a)
1

, (34)

and the effective hopping for all a within the RG approximation scales as

V e f f
R =min

�

1
Ra

,
W 2

R2d−a

�

, (35)

giving localization with the characteristic change of the power law tail at R ' W 1/(d−a) � 1.
This result can be equivalently obtained from the matrix-inversion trick [16]. More rigorous
calculations done at a = d = 2 [17] give logarithmic corrections leading to (15).

In the opposite case of a < aAT , when Vq changes sign with respect to φq, simple cal-
culations give




l2
�

E ∼ W/Vq'1/R ∼ Ra−d resulting in |ψE(i)|2 ∼ r−d . This critical behavior,
formally equivalent to the critical case of a = d for the random-sign hopping term hi j/r

a
i j ,

hints that the delocalized phase at a < aAT is nonergodic. However, more rigorous calcula-
tions of transport based on Kubo formula [35] give logarithmic corrections leading to ergodic
behavior.

This analysis puts the basis under the simple localization-delocalization arguments given
by Eqs. (21) and (22) and Fig. 11 about the presence of high-energy states on either or both
spectral edges.

5.2 Ioffe-Regel criterion for the fraction of high-energy ergodic states

Here we estimate the energy-dependent mean-free path for a < d and, based on the Ioffe-
Regel criterion of localization, estimate the location of the finite-size mobility edge as well
as the fraction of ergodic states in the localized phase of the considered anisotropic model,
Eq. (1).

The mean-free path at a certain energy E can be estimated as follows

`mf p(E)' vqE
τqE

, (36)
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where the energy-dependent momentum qE and the corresponding group velocity vq are de-
termined from the following equations

E = VqE®1 ∼ qa−d ,⇒ qE ∼min
�

1, E−1/(d−a)
�

, (37)

vq =
dVq

dq
∼ qa−d−1 , (38)

while the level broadening Γ ≡ τ−1
qE

can be estimated with Fermi Golden rule of the scattering
of plane waves on the impurities µi ∼W (see Eq. (31))

τ−1
qE
= Im Gi− j=0(E)' ρ(E)

W 2

12
. (39)

Small qE corresponds to large energies E � W , thus, the DOS at such energies is not deter-
mined by ρ(E)∼ 1/W , but involves qE as follows

ρ(E�W ) =
ddqE

dVqE

∼ q2d−a
E . (40)

As a result, we obtain

`mf p(E)∼W−2q2a−3d−1
E ∼W−2E(3d+1−2a)/(d−a) . (41)

According to the Ioffe-Regel criterion the states are delocalized

• in d = 1 as soon as `loc ∼ `mf p > L ;

• in d = 2 as soon as `loc ∼ ecqE`mf p > L ;

• in d = 3 as soon as qE`mf p > 1 .

leading to a certain upper cutoff qE < q∗. The fraction of such delocalized states is given by

ferg =

∫ q∗

0

ddq ∼ qd
∗ . (42)

After straightforward algebra the mobility edge can be estimated as

• in d = 1
qE < q∗ =

�

W 2 Ld
�− 1

2(2−a) ⇒ ferg ∼ q∗ ∼ L−
d

2(2−a) ; (43)

• in d = 2
qE < q∗ =

�

W 2 ln Ld
�− 1

2(3−a) ⇒ ferg ∼ q2
∗ ∼ ln L−

d
3−a ; (44)

• in d = 3
qE < q∗ =W− 2

9−2a ⇒ ferg ∼ q3
∗ ∼ O(1) . (45)

In the 2d case of the considered model (see Figs. 9 and 10) the fraction of ergodic states decays
as the power of the logarithm of Ld . This Ioffe-Regel-based estimate coincides with the fraction
of states which are non-ergodic or localized in the momentum q-basis, see [48].

If instead, following [16, 49], one calculates the fraction of modes which are localized
in the momentum q-basis, this condition will be more restrictive for all d > 1 as it provides
the fraction of plane-wave states, while most of delocalized modes in d ≥ 2 are of diffusive
nature. Such a condition is related to the level spacing |VqE

−VqE+π/L| to be of the order of the
corresponding hopping

|VqE
− VqE+π/L| ∼

vqE

L
>

W
Ld/2

, (46)

which leads to
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• in d = 1

qE < q∗∗ =

�

Ld/2W
t0

�− 1
(2−a)

' q∗ , (47)

• in d = 2

qE < q∗∗ =
�

W
t0

�− 1
3−a

� q∗ , (48)

• in d = 3

qE < q∗∗ =
�

W
L1/3 t0

�− 1
4−a

� q∗ . (49)

6 Conclusion and Outlook

To sum up, we explicitly show both numerically and analytically the phenomenon of the
anisotropy-mediated reentrant Anderson localization transition relevant for generic 2d quan-
tum dipole models. The transition is demonstrated to occur at a finite anisotropy-tilt angle of
dipoles depending on the exponent a of the generalized dipole-dipole interaction controlling
excitation hopping. Moreover, close to the pure 2d dipole-dipole interaction 1 < a ≤ 2 the
phase diagram has a reentrant nature showing the localization both at large and small tilts,
given by the rotation symmetry of the system accompanied by the tilt transformation.

The further research should take into account the robust localized nature of eigenstates
in dilute dipolar systems with respect to the ones with randomized interaction strength. This
difference between the models with deterministic and random interactions plays an important
role also in dense systems where the many-body localization has different properties for such
systems (see, e.g. [50–62]). It might be interesting to understand whether there is a many-
body localization transition driven by the anisotropy of long-range couplings in such systems.
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A Extrapolation of the fractal dimension in the extended phase

In this Appendix we focus on the extended phase of the considered anisotropic model.
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Figure 12: Finite-size extrapolation of the fractal dimension D2 (symbols) with
linear (blue dashed), quadratic (red dash-dotted), cubic (green dotted) expressions
in x = 1/ ln Ld as well as the one with irrelevant exponent (violet solid) considered
in [34]. We show two parameter sets (upper panel) a = 1, β = 2 is W = 4 and
(lower panel) a = 0, β = 2 is W = 20 in order to emphasize that this issue present
both at weak and strong disorder. D2 is averaged over the energy interval |E|<W/4
and extrapolated from L = 75, 85, 100, 125, 150, 175, 200, and 250 with the corre-
sponding number of disorder realizations 2000, 2000, 2000, 2000, 1000, 600, 600,
and 300, respectively.

First, we should mention that the extrapolation of D2 in this case is more subtle. Due to
limited system sizes in 2d the linear approximation (9) provides unreasonable results and,
thus, following recent literature some of the authors of this paper use quadratic in 1/ ln Ld

extrapolation and compare it with further cubic one both for weak and strong disorder, see
Fig. 12.6 In order to double check we also fit the data with the expression with irrelevant
exponent suggested in [34]

Dq(L) = Dq +
(1− q)−1 ln cq + γq L−yir r

ln Ld
. (A.1)

All the results confirm the ergodic nature of the extended phase in the considered model7

which is spoiled by severe finite-size effects forcing one to go beyond linear extrapolation,
Eq. (9).

6Here there is an open question whether severe finite-size effects in an ergodic phase are related to weak
ergodicity. In this weak ergodic phase the fractal dimensions Dq → 1, but along the path different from the
ones from the random-matrix theory, due to the occupation of only a finite fraction of the total Hilbert space by
eigenstates mediated by the breakdown of the basis-rotation invariance [63–65]. This phase plays an important
role in several recent papers [16,26,39,66–68].

7Unlike the long-range static [69–71] and short-range driven [72] models with correlated (quasiperiodic) on-
site disorder, in the current model multifractality does not emerge in the extended phase due to the mixture of
localized and ergodic states.
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B Wavefunction spatial decay

Similar to Figs. 6(b) and 7(b) in the main text and the results of [15–17], we consider the
typical wave function spatial decay with the distance with respect to its maximum. Fig. 13
confirms the duality of power-law spatial decay rate γ(a)≈ γ(2d−a) [15–17] in the localized
phase of the anisotropic model between the standard locator expansion states a > d = 2 and
beyond it a < d.

0 1 2 3 4 5
-40

-30

-20

-10

0

Figure 13: Power-law spatial decay of eigenstates in the bulk of the spectrum for
a = 1 (solid), 3 (dashed), β = 0.5, at the system size L = 200 with 200 disorder
realizations. The disorder amplitude is taken to be W = 20 for a = 1 and W = 200
for a = 3 in order to make the power-law tail dominant on moderate sizes in both
cases.

C Spectrum of hopping, Eq. (20)

The spectrum of the hopping term Vi j = −
1−β cos2φi j

ra
i j

from Eq. (1) is given by its Fourier trans-

form due to translation-invariance of hopping

Vq = −
∑

i, j

eiqx (ix− jx )+iqy (iy− jy )
1− β cos2φi j

ra
i j

. (C.2)

For a 6= d = 2 the latter can be calculated in the continuous approximation as

Vq = −
∫ ∞

0

rdr

∫ 2π

0

dφeiqr cos (φ−φq)1− β cos2φ

ra
= caqa−2

�

β − a− (2− a)β cos2φq

�

.

(C.3)
Here ca = π21−a −Γ (−a/2)

Γ (a/2) , Γ (a) is a Gamma-function, and q = πn/L is the quantized momen-
tum ,with integer n® L/a0, a0 is the inter-atomic distance which we choose to be unity a0 ≡ 1
without loss of generality. The special case of a = d = 2 should be considered separately as
the result depends explicitly on a0

Vq = π
�

(2− β) (γE + ln (qa0/2))−
β

2
cos(2φq)

�

, (C.4)
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with the Euler – Mascheroni constant γE ' 0.577216 .
The divergence of both Eqs. (C.3 ) and (C.4 ) at q→ 0 at a ≤ d signals on the presence of

(the measure zero of) high-energy delocalized states [16,17].
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