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Pauli crystal melting in shaken optical traps
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Abstract

Pauli crystals are ordered geometric structures that emerge in trapped noninteracting
fermionic systems due to their underlying Pauli repulsion. The deformation of Pauli crys-
tals - often called melting - has been recently observed in experiments, but the mecha-
nism that leads to it remains unclear. We address this question by studying the melting
dynamics of N = 6 fermions as a function of periodic driving and experimental im-
perfections in the trap (anisotropy and anharmonicity) by employing a combination of
numerical simulations and Floquet theory. Surprisingly, we reveal that the melting of
Pauli crystals is not simply a direct consequence of an increase in system energy, but
is instead related to the trap geometry and the population of the Floquet modes. We
show that the melting is absent in traps without imperfections and triggered only by a
sufficiently large shaking amplitude in traps with imperfections.
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1 Introduction

Correlations between particles underlie many complex phenomena in quantum many-body
systems, from the quantum Hall effect [1–3] to high-temperature superconductivity [4–6].
The exploration of the type and origin of correlations is thus essential to understand the com-
plexity of quantum many-body systems. Of particular interest to our research is the fact that
correlations can emerge as self-ordering structures in the spatial distribution and lead to in-
triguing crystalline phases of matter. More commonly however, solid crystalline phases are
formed as a result of more conventional inter-particle interactions. Already in 1934 Eugene
Wigner theorized that a solid phase of electrons will form when the density of electrons is so
low that their wave functions do not overlap due to long-range Coulomb interactions [7], and
his prediction was verified experimentally decades later [8,9]. More recently, other intriguing
quantum crystalline phases have been obtained experimentally, such as in dipolar quantum
gases [10,11], Rydberg atoms [12,13], and Bose-Einstein condensates in optical cavities [14].

Pauli crystals are yet another crystalline phase that was recently realized thanks to rapid
developments in the preparation and control of ultracold atoms [15–18]. Pauli crystals are ge-
ometrically ordered structures that form at extremely low temperatures when noninteracting
fermions are constrained by trapping potentials. Whereas the emergence of other crystalline
phases is typically driven by particularly engineered repulsive interactions, Pauli crystals rely
solely on the more fundamental quantum statistics of fermions. The competition between the
Pauli exclusion principle and the attractive trap potential leads to N-body correlations in the
relative positions of these fermions, and manifests itself in the specific self-ordering structures
of Pauli crystals.

The detection of Pauli crystals requires rigid conditions in experiments since the spatial
geometric structure of correlations that relies on quantum statistics can be easily destroyed by
perturbations such as trap imperfections. The first detection of Pauli crystals was not realized
until 2020 [18]. In this experiment, three or six 6Li atoms are trapped in their ground state in a
quasi-two-dimensional harmonic trap. The detection of the crystalline structure is performed
by the simultaneous measurement of all atom positions (single-shot imaging) via time-of-flight
(TOF) expansion techniques [19] and single atom detection fluorescence imaging schemes
[20]. After image processing of many (∼ 3000) single-shot images, the crystalline structures
can be observed.

Heating effects are particularly detrimental to the stability of Pauli crystals. When the
system heats up, the spatial extension of the particles increases. The contribution from the
N-body correlations in the excited states blends with the ones in the ground state and causes
deformations in the crystal structure, a phenomenon often termed melting [16]. In the exper-
iment, to investigate the effect of heating on Pauli crystals, the six-fermion system is subject
to a sinusoidal modulation of the trap frequency at twice the original trap frequency with
variable amplitudes. The measurements verified the melting phenomenon: with an increase
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in the system energy, the geometric structure becomes progressively more deformed until the
crystalline phase is lost completely.

The dynamical process of Pauli crystal melting raises some intriguing questions. First of all,
the precise role of the trap imperfections on the melting process is still unknown. Deviations
from a perfect harmonic trap can influence the quantum dynamics and will be amplified during
a long time modulation. They must be therefore taken into account to study the stability of
Pauli crystals. Furthermore, it is a priori not clear whether Pauli crystal deformations are
due purely to a generalized increase of the system energy or if driving induces more complex
many-body excitations.

In this work, we address both questions by unveiling how the geometric structures of Pauli
crystals change in different dynamical potentials: an isotropic harmonic trap Vh, an anisotropic
harmonic trap Vani, an isotropic anharmonic trap Vanh, and a Gaussian trap VGau that combines
both types of imperfections (anisotropy and anharmonicity). We discover that the occurrence
of melting depends heavily on the trap imperfections. For the isotropic harmonic trap, we ob-
serve a melting-resistant behavior, where the particular geometric structure is still visible even
when the system energy increases to ten times the energy measured in the experiment. For
the other traps with imperfections, the melting phenomenon can be reproduced with the same
modulation given in the experiment. To understand the absence of melting in the isotropic har-
monic trap, we compare the wave functions of the melting and non-melting systems via the
excitation spectra. We find that the superposition of different quasienergy states can lead to a
strong reduction of Pauli correlations in the time evolution. For the isotropic harmonic trap,
the wave function is significantly dominated by the ground state even when modulations are
present, and the system maintains the ground-state correlation in the dynamical process. For
the other traps, instead, the population of other Floquet modes progressively destroys the Pauli
crystal structure. Our work contextualizes Pauli crystal melting in terms of geometric and dy-
namical factors and should serve as a blueprint on how to better stabilize this exotic phase of
matter in future studies.

The rest of this paper is organized as follows. In Sec. 2, we present the system that we con-
sider and its Hamiltonian description with the four different trapping potentials. The definition
of the configuration density and of the recognition function used to quantify the deformation
extent is presented in Sec. 3.1 and Sec. 3.2, separately. Thereafter, we provide a review of
the numerical method that we employ for our simulations (MCTDH-X [21–23]) in Sec. 3.3
and the description of the autocorrelation function via Floquet theory in Sec. 3.4. The sim-
ulation results and melting mechanism analysis are discussed in Sec. 4. First, we distinguish
between melting and non-melting systems with the configuration density and the recognition
function. Then, the relationship between the system energy and the melting in the dynami-
cal process is analyzed. Finally, the melting mechanism is revealed by comparing the Fourier
transform of the autocorrelation function in the melting systems with the non-melting ones.
Sec. 5 summarizes our findings and presents an outlook on possible future studies.

2 System

We consider N = 6 fermions in an optical trap, described by the Hamiltonian

H =
N
∑

i=1

�

−
1
2
∇2

i + V (r⃗ i , t)
�

, (1)

where r⃗ i = (x i , yi) is the coordinate of particle i. Throughout this paper we use dimensionless
units, for which energy and distance are measured in units of ħhω0 and

p

ħh/(mω0), respec-
tively. The initial radial frequency ω0 is set to 2π× 983(5) Hz, as in the experiment [18].
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The simplest generic trap that we consider is an isotropic harmonic potential with fre-
quency ωx =ωy =ωr ,

Vh(r⃗, t) =
1
2
ω2

r (t)r⃗
2 , (2)

which is the idealized model for the experiment. The n-th energy level of a fermion making up
the n-th energy shell in the two-dimensional isotropic harmonic trap is (n+1)-fold degenerate.

The fermionic system is initially prepared in the ground state, where the geometric struc-
ture of Pauli crystals can be observed distinctly. In order to melt the Pauli crystal, much like
in the experiment [18], we then introduce a time-periodic modulation of the confining trap
frequency in the radial direction

ωr(t) =ω0 + Asin(ωt t) , (3)

where A is the shaking amplitude, ω0 is the initial trap frequency, and ωt is the modulation
frequency. We set the modulation frequency ωt = 2ω0, since this is exactly the transition
frequency from any energy shell to two shells up.

In the experiment, there are both anisotropy and anharmonicity corrections to the trap
due to the small size of the optical tweezer and a finite coupling with angular momentum in
z-direction [18]. To study the effect of trap imperfections on the system dynamics, we first
study these corrections separately. The anisotropic trap is given by

Vani(r⃗, t) =
1
2
ω2

r (t)

�

γx2 +
y2

γ

�

, (4)

with the anisotropy parameter 0< γ < 1. The anharmonic trap is instead described by

Vanh(r⃗, t) =
1
2
ω2

r (t)r⃗
2 + Br⃗ 4 , (5)

with the anharmonicity parameter B > 0. All kinds of corrections to the trap split the de-
generate energy levels of the isotropic harmonic oscillator. As a result, the complexity of the
energy level structures in the imperfect traps will produce different system dynamics in the
modulation process.

Finally, we analyze a Gaussian trap that combines both types of corrections [24]:

VGau(r⃗, t) =
B′

2
ω′r(t)×
�

1− e
�

γ′x2+ y2

γ′

�

/B′
�

. (6)

For the simulation of the Gaussian trap, we use the parameter values measured in the experi-
ment: B′ = 20 and γ′ = 0.99.

As shown in Fig. 1, there is an evident discrepancy between the Gaussian potential and
the other potentials away from the bottom of the trap. This leads to a distinct difference
between the energy levels and the transition frequency of the Gaussian trap and those of the
isotropic harmonic trap. This is consistent with a trial computation that demonstrates that the
modulation of 2ω0 can not excite the fermionic system efficiently. Since the fermionic system
in the Gaussian trap is out of resonance with the modulation frequency of 2ω0, we adopt the
transition frequency from the lowest energy shell to two shells up as the modulation frequency,
which we calculated numerically to be ωt = (E3 − E0)/ħh= 1.843ω0 (cf. Table 1).

3 Methods

After introducing the system hosting the Pauli crystals, we present the analytical and numerical
methods used to study their dynamics and melting.
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Table 1: Energy levels for the lowest three shells in the Gaussian trap calculated
with MCTDH-X. Due to the anisotropy and anharmonicity of the Gaussian trap, the
degeneracy of the energy shells present in the isotropic harmonic trap is split.

Energy shell number Energy after splitting/ħhω0

1 E0 = 0.975
2 E1 = 1.919, E2 = 1.928
3 E3 = 2.818, E4 = 2.846, E5 = 2.852

Figure 1: Comparison of the trapping potentials investigated in this work. The dotted
red line indicates the Gaussian trap Eq. (6) with B′ = 20 and γ′ = 0.99. The contin-
uous green line corresponds to the isotropic harmonic trap Vh Eq. (2). The dashed
yellow line marks the isotropic anharmonic trap Vanh Eq. (5) with an anharmonicity
B = 0.001. The dash-dotted blue line represents the anisotropic harmonic trap Vani
Eq. (4) with anisotropy γ= 0.90.

3.1 Configuration density

Despite the system setup enabling the Pauli principle to cause the particles to form geomet-
ric structures, these are concealed when examining single-shot images. This is due to the
rotational symmetry of the problem, which randomizes the particle position and configura-
tion orientation in each single-shot image. To reveal the correlation effects of Pauli crystals
we then need to perform an additional image processing step as illustrated in Ref. [15]. We
record single-shot images in such a way that only the information of the relative positions
remains, while other details such as the position of the center of mass and the orientation of
the configuration in space are discarded. The ensemble of post-processed single-shot images
is called configuration density SNs

(see Appendix A).
To illustrate this procedure, Fig. 2 compares the one-body density to the configuration den-

sity for a six-boson and a six-fermion noninteracting system in the ground state of an isotropic
harmonic trap. In the one-body density of the six-boson system (Figs. 2(a,b)), since the par-
ticles are noninteracting, all the bosons are localized at the minimum of the potential trap.
In contrast, the Pauli exclusion principle leads to fermions effectively repelling each other.
Hence, the one-body density of the six-fermion system is more extended in space than its
bosonic counterpart. While the one-body density of the fermionic system can reveal the most
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probable position of a single particle, it does not reveal information about statistical corre-
lations between particles, which is contained in the N -body density. The N -body density is
a higher-dimensional quantity with obvious visualization constraints. However, as shown in
Figs. 2(c,d), its information is accessible in the configuration density. As the non-interacting
bosons behave as a single entity and lack correlations, the configuration density does not dis-
play any additional structure. The configuration density of the six-fermion system, on the
other hand, reveals the correlation effects. The fermions arrange themselves into a configura-
tion that minimizes the states’ overall energy within the interplay between Pauli repulsion and
trap confinement, where one particle is localized in the center and the others form a regular
pentagon in an outer shell. In other words, the configuration density offers a way of extracting
and visualizing the information contained in the N -body density in a practical way.

Figure 2: The one-body and configuration density of six fermions and bosons in the
ground state of an isotropic harmonic trap. The unit of the colorbar is 10−2. (a)
One-body density of the six-boson system. (b) One-body density of the six-fermion
system. (c) Configuration density of the six-boson system. (d) Configuration density
of the six-fermion system.

3.2 Recognition function

When a Pauli crystal melts, the particular geometric structure of a configuration density like
the one shown in Fig. 2(d) becomes blurred and can even vanish. The deformation of the
geometric structure indicates a breakdown of the correlation between fermions at different
positions. To quantify the blurring of the geometric structure and the amount of melting, in
this section we propose a recognition function R that can be derived from the one-body density
and the configuration density.

By comparing melting and non-melting systems, or alternatively the ground-state of
bosonic and fermionic noninteracting systems (see Fig. 2), we notice that the geometric struc-
ture of the configuration density is almost isotropic and close to the corresponding one-body
density when the effect of the Pauli exclusion principle is weak or absent.1 In contrast, the an-
gular distribution of the configuration density is highly non-uniform for the fermionic ground
state in the Pauli crystal phase. Hence, we can use the difference between the angular dis-

1Note that the slight fluctuations in the angular distribution are the result of the discretization error in the
coordinate grid.
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Figure 3: Pattern recognition for the six-particle systems. (a) For the ground-state
fermion system, the angular distribution of the configuration density is distinctly dif-
ferent from its one-body density. (b) For the ground-state boson system, the angular
distribution of the configuration and one-body densities is almost the same.

tributions of the configuration density ρs(θ ) =
∫ rmax

0 SNs
(r⃗)rdr and of the one-body density

ρd(θ ) =
∫ rmax

0 ρ(r⃗)rdr to distinguish the two systems (see Fig. 3). This difference can be de-

scribed by the variance of each angular distribution Var(ρs/d) =
∫ 2π

0 (θ − θ̄s/d)2ρs/ddθ , where

θ̄s/d =
∫ 2π

0 ρs/d dθ . We then define the recognition function R as the ratio of the variances
between the two types of densities:

R=
Var(ρs)
Var(ρd)

. (7)

Table 2 illustrates the variances and the recognition functions for both the six-fermion and
six-boson system. The recognition function of the uncorrelated six-boson system is close to 1.
In contrast, the recognition function for the six-fermion system is much larger, revealing the
underlying correlation structure of the Pauli crystal.

We can use the recognition function to define a precise melting criterion: when the recog-
nition function of a given fermionic system reduces to a value comparable to the one for a
corresponding bosonic system, the crystal has melted and the correlation of the fermionic
system is completely destroyed.

Table 2: The recognition functions R for the six-particle systems.

System Var(ρd) Var(ρs) R
Six-fermion 5.12× 10−6 1.04× 10−4 20.24
Six-boson 2.01× 10−5 2.66× 10−5 1.32
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3.3 MCTDH-X method

To study the many-body ground state |Ψ〉 and its time evolution in the noninteracting fermionic
system in different traps, we solve the many-body time-dependent Schrödinger equation,

Ĥ |Ψ〉= i∂t |Ψ〉 , (8)

using the MultiConfiguration Time-Dependent Hartree approach for indistinguishable parti-
cles (MCTDH-X method), implemented in the software MCTDH-X [21–23]. In MCTDH-X, the
many-body wave function is expanded as a linear combination of many-body states,

|Ψ〉=
∑

n⃗

Cn⃗(t) |n⃗; t〉 , (9)

|n⃗; t〉=
1
p

N !

M
∏

i=1

[b̂†
i (t)]

ni |vac〉 , (10)

where both the coefficients Cn⃗(t) and the many-body states |n⃗; t〉 are time dependent.
The many-body basis is composed of a total number of M single-particle orbitals,
Φi(r⃗, t) = 〈r⃗| b̂†

i (t) |vac〉. MCTDH-X employs the time-dependent variational principle [25]
to optimize both the coefficients {Cn⃗(t)} and the orbitals {Φi(r⃗, t)} and obtain the numerically
accurate solution for the many-body wave function of the time-dependent system. In our com-
putations, we employ M = 7 orbitals for the many-body basis of the N = 6 fermionic system,
which allows us to separately describe each fermionic single-particle state.

For the wave function at each time t, we generate 3’000 single-shot images [26, 27]. A
single-shot image is a simultaneous imaging measurement of the positions of all particles in
a quantum state. In MCTDH-X simulations, the many-body wave function |Ψ(r⃗1, · · · , r⃗N ); t〉 is
computed at every time step. The single-shot images are produced by drawing random samples
from the N -body probability density P(r⃗1, · · · , r⃗N ; t) = |Ψ(r⃗1, · · · , r⃗N ; t)|2. We then use the
single-shot images to produce the configuration densities in the current quantum state and
calculate derived quantities such as the recognition function. Note that the one-body density
and the autocorrelation function (see next section) are instead calculated directly from the
many-body wave function (e.g. by Eq. (18)).

3.4 Autocorrelation function and Floquet theory

Floquet theory [28–32] is now a staple in the study of system dynamics driven by periodi-
cally time-dependent fields. By means of Floquet theory, we can expand the wave function
of the dynamical system as a superposition of simpler quasienergy states. By analyzing the
quasienergy state compositions of the many-body wave functions, we can better investigate
the reason for the different dynamical behaviors in different contexts.

A very useful quantity that can be expanded by means of Floquet theory and that gives
insights into the nature of the many-body state is the autocorrelation function. The autocor-
relation function measures the overlap between the time-evolved wave function |Ψ(t)〉 and its
initial wave function |Ψ(0)〉:

a(t) = 〈Ψ(0)|Ψ(t)〉 . (11)

From the Fourier transform of the autocorrelation function we can extract the energies and
the relative population of the states involved in the system dynamics.

Generally, calculating the autocorrelation function of a time-dependent system
is analytically intractable. However, for a system with a time-periodic Hamiltonian
Ĥτ(r⃗, t) = Ĥ0(r⃗) + V̂τ(r⃗, t) with V̂τ(r⃗, t + τ) = V̂τ(r⃗, t) and period τ (ω = 2π/τ), we can
obtain some analytical results by employing Floquet theory [28–32].
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With the expression of the wave function derived from the Floquet theorem (see Eq. (33)
in the Appendix), the autocorrelation function can be written as

a(t) =
∑

j′, j

∑

n′,n

Wj j′nn′e
−i(εα( j)+nω)t , (12)

where

Wj j′nn′ = A∗j′A j

∫

dr⃗ ϕn′ ∗
α( j′)(r⃗)ϕ

n
α( j)(r⃗) . (13)

The Fourier transform of a(t), the so-called excitation spectrum, correspondingly reads

ã(Ω) =
∑

j′, j

∑

n′,n

Wj j′nn′δ(Ω− (εα( j) + nω)) . (14)

The excitation spectrum is a sum of Dirac delta functions centered at the quasienergies εα j
.

Hence, the system dynamics under the influence of a time-periodic Hamiltonian Ĥ(t) can be
regarded as the evolution of a superposition of quasienergy states that represent peaks in the
Fourier transform of the autocorrelation function. We can thus understand the origins of the
melting mechanism by analyzing the composition of the wave function through the excitation
spectrum.

4 Results

We now address the dynamics of Pauli crystal melting with the methods presented in the
previous sections.

4.1 Melting and non-melting system

Table 3: Melting and non-melting systems with six non-interacting fermions.

Trap Anisotropy Anharmonicity Melting
Vh No No No

Vanh No Yes Yes
Vani Yes No Yes
VGau Yes Yes Yes

The overall computation process with MCTDH-X can be divided into three steps. Firstly,
we relax the system in the trap to the ground state. Secondly, we propagate the wave function
in the driven trap from t = 0 to t = 309, which corresponds to a 50ms modulation time
in the experiment. Thirdly, we calculate from the many-body wave function at every time
step the desired observables, such as system energy, one-body density, single-shot images and
autocorrelation function.

We simulate the modulation process in the four different traps for different sets of pa-
rameters (see Appendix B). By calculating the configuration density and recognition function,
we can categorize the different setups as melting or non-melting, as summarized in Table 3.
Within the time scales given, we observe melting in all the traps except for the isotropic har-
monic trap, which implies that trap imperfections are a key reason for the melting process.

For each trap, Fig. 4 presents a comparison of the configuration density of the six-fermion
system at the initial time t = 0 (ground state), t = 100, t = 200 and the end of the modulation
t = 309. For the isotropic harmonic trap Vh shown in Figs. 4(a.1)-(d.1), we notice that the
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geometric structure of the pattern persists until the end of the modulation. Although the
pattern is sometimes diluted as the configuration density expands and contracts, the pentagon
structure can be identified distinctly. Therefore, modulation in the isotropic harmonic trap
does not lead to appreciable Pauli crystal melting.

In contrast, for the systems with imperfect traps, the configuration density behaves very
differently. Both in the isotropic anharmonic trap shown in Figs. 4(a.2)-(d.2) and in the
anisotropic harmonic trap shown in Figs. 4(a.3)-(d.3), the initial ground state configuration
density becomes completely blurred or distorted by the end of the modulation process. For
the case of the Gaussian trap shown in Figs. 4(a.4)-(d.4), the particular geometric structure of
the configuration density also becomes completely destroyed, although the required shaking
amplitude is larger than the other two imperfect traps.

Figure 4: Configuration densities for the six-fermion system in the four traps. Panels
(a)-(d) display the configuration density at the initial time t = 0 (ground state),
t = 100, t = 200 and t = 309 (end of the modulation). The unit of the colorbar is
10−2. (a.1)-(d.1) Isotropic harmonic trap with shaking amplitude A= 0.01. (a.2)-
(d.2) Isotropic anharmonic trap with shaking amplitude A= 0.1 and anharmonicity
B = 0.001. (a.3)-(d.3) Anisotropic harmonic trap with shaking amplitude A= 0.09
and anisotropy γ= 0.90. (a.4)-(d.4) Gaussian trap with shaking amplitude A= 0.25.
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Figure 5: The time evolution of recognition functions R(t) for the six-fermion system
in the four traps. (a) Recognition function R(t) averaged over every third period
for the six-fermion system in each of the four traps considered in this work. The
shaking amplitude A for the six-fermion system in the isotropic harmonic trap Vh,
isotropic anharmonic trap Vanh, anisotropic harmonic trap Vani and Gaussian trap
VGau are 0.01,0.1, 0.09, and 0.25, respectively. (b) Recognition functions R(t) for
the six-fermion system in the Gaussian trap VGau with different shaking amplitudes
A.

The melting process becomes apparent also in the recognition function, depicted in
Fig. 5(a). Note that to show the trend of the recognition function with time and remove
some of the naturally occurring oscillations, we only plot its mean value averaged over three
consecutive time points in an oscillation period. Only for the isotropic harmonic trap, the
recognition function stays well above the melting criterion throughout the time evolution. In
the traps with imperfections, instead, the recognition functions eventually decrease, coming
close or even below the melting criterion, which indicates the complete deformation of the
Pauli crystal. We also compare the recognition function in the Gaussian trap with different
shaking amplitudes in Fig. 5(b). As the shaking amplitude increases, the recognition function
reduces to closer to the melting criterion. We remark that, compared to the other traps, the
modulation frequency ω′t in the Gaussian trap is less efficient at exciting system. This is illus-
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Figure 6: The time evolution of recognition functions R(t) and system energies E(t)
for the six-fermion system in the four traps. The shaking amplitude A for the six-
fermion system in the isotropic harmonic trap Vh, isotropic anharmonic trap Vanh,
anisotropic harmonic trap Vani and Gaussian trap VGau are 0.01, 0.1,0.09, and 0.25,
respectively.

trated also in Fig. 6, where this inefficient excitation results in a much lower system energy
E(t). Hence, a larger shaking amplitude is required for the Gaussian trap to involve more
excited states in the system dynamics and melt the Pauli crystal, which is in agreement with
experimental observations.

Figure 7: Melting of Pauli crystal in the Gaussian trap as evinced by the system energy
and the recognition function at the end of modulation t = 309 with different shaking
amplitudes. When the shaking amplitude becomes larger, the system energy also
increases, while the recognition function reduces.
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4.2 Energetics of the melting process

We now present results about the accumulated energy E = 〈Ψ| Ĥ |Ψ〉 in each type of system
and relate them to the dynamics of the Pauli crystal. Intuitively, Pauli crystals should always
melt when the system accumulates enough energy. The simulation of the Gaussian trap, which
by design is closest to the real experimental setup, reproduces the experimental observation
that the particular geometric structure of Pauli crystals becomes more deformed as the system
energy increases (compare Fig. 7). However, our simulation results show that the transient
behavior is more complex than this simplified picture.

Fig. 6 shows the system energies for the six-fermion system in the four traps. Firstly, we
can notice that the system energy E(t) in the non-melting system (isotropic harmonic trap Vh)
is larger than in any of the melting systems (the other traps) at the end of the modulation. This
indicates that the melting of Pauli crystals is more sensitive to the type of trap rather than to the
system energy. Another indication that the total energy is not a good indicator for the melting
comes from analyzing the system energy and the recognition function for the six fermions in
the isotropic anharmonic trap (blue lines in Fig. 5(a) and 6), where melting occurs. Initially,
the recognition function and the system energy both increase simultaneously, meaning that the
Pauli crystal becomes more stable with an increase of the energy. After reaching its maximum
value, the recognition function starts to drop off as the geometric structure of the Pauli crystal
becomes distorted. This melting process is however not accompanied by a further increase
in the system energy. Instead, we see that the energy remains bounded, displaying a beating
pattern around a value lower than its maximum. Therefore, there is no evident correlation
between the increase of the system energy and the melting of the Pauli crystal, at least at the
experimentally relevant time scales probed by our simulations.

4.3 Excitation spectrum

Since there seems to be no direct correlation between an increase in the system energy and
the Pauli crystal melting, we now present an alternative mechanism based on Floquet theory.

Fig. 8 shows the excitation spectrum for the six-fermion system in the four different traps.
The composition of the quasienergy states in the spectrum of the non-melting system (isotropic
harmonic trap Vh) and the melting systems (other traps) differs significantly. For the isotropic
harmonic trap, it is apparent that the largest contribution to the excitation spectrum comes
from the peak with quasienergy α( j) = E0, i.e. matching the ground-state energy. The next-
largest contribution comes from the two neighboring peaks at E0 ± 2ω0, which stem from
the periodic modulation. Higher harmonics at E0 ± 2nω0, n ∈ Z are barely visible. Hence,
the spectral density of the ground-state peak dominates the wave function in the isotropic
harmonic trap. The time-dependent system behaves very similarly to the time-independent
system and the geometric structure of the Pauli crystal is preserved.

In contrast, when the trap is anisotropic or anharmonic, the degenerate eigenstates of
the unperturbed Hamiltonian will be split. Due to the energy splitting, several quasienergies
with small energy differences participate in the excitation process. The single peaks in the
excitation spectrum for the six-fermion system in the isotropic harmonic trap are split into
multiple peaks. Therefore, the excitation spectrum of the melting systems is a composed of
many quasienergy states with different frequencies. The superposition of many quasienergy
states sharply diminishes the contribution from the ground-state peak to the wave function.
Thereupon, the particular geometric structure observed in the ground state is gradually blurred
and distorted in the modulation process.

We now examine the excitation spectrum for the system in the Gaussian trap VGau in more
detail. This is shown in Fig. 9 for different shaking amplitudes A. In the case with a small
shaking amplitude A = 0.05, the largest contribution to the excitation spectrum still comes

13

https://scipost.org
https://scipost.org/SciPostPhys.14.1.003


SciPost Phys. 14, 003 (2023)

Figure 8: Excitation spectra for the six-fermion system in the four traps. The shaking
amplitudes A for the six-fermion system in the isotropic harmonic trap Vh, isotropic
anharmonic trap Vanh, anisotropic harmonic trap Vani and Gaussian trap VGau are
0.01, 0.1,0.09, and 0.25, respectively.

Figure 9: Excitation spectra for the six-fermion system in the Gaussian trap VGau with
different shaking amplitudes A.

from the central E0-peak, while the other quasienergy states α( j) ̸= E0 and the side peaks at
E0 ± 2nω0, n ∈ Z are small. Hence, the wave function is dominated by the ground state and
the geometric structure of the Pauli correlations is still mostly visible throughout the whole
modulation process. When the shaking amplitude increases, the ground-state contribution
to the spectrum reduces while the contribution from other quasienergy states and the side
peaks becomes more pronounced. As a consequence, the wave function dynamically becomes
a superposition of different quasienergy states. The geometric structure of the Pauli crystal
is destroyed completely when the shaking amplitude A increases up to 0.25. The contribu-
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tion of many quasienergy states with different frequencies drastically undermines the N-body
correlation originated from the ground state.

In conclusion, the trap imperfections lead to a proliferation of multiple quasienergy states
and a gradual loss of coherence in the evolution of the wave function, which manifests as the
melting of Pauli crystals.

5 Conclusions

In this work, we have studied the mechanism behind the phenomenon of Pauli crystal melt-
ing observed in recent experiments with noninteracting few-fermion systems in shaken two-
dimensional optical traps. We have simulated with MCTDH-X the many-body system dynamics
in four different potentials to explore the influence of trap imperfections such as anisotropy
and anharmonicity on the system dynamics.

For each setup, we have calculated the configuration density and recognition function to
quantify the melting process. By observing how the configuration density and the recognition
function change with time, we classified the systems in different traps as melting or non-
melting. The melting of Pauli crystals was not observed in the perfect isotropic harmonic trap.
For the other traps with imperfections, the melting of Pauli crystals observed experimentally
was reproduced successfully.

To explore the reason for the melting, we have first investigated the relationship between
the system energy and the melting process. We have shown that the melting of Pauli crystals
is not a direct result of an increase in system energy. For instance, in a non-melting system
the total energy can be much larger than in a melting system. We have instead found the
mechanism for the melting process in the excitation spectrum calculated from the autocorre-
lation functions via Floquet theory. In the isotropic, non-melting system, the many-body wave
function is dominated by the ground state and the time-dependent configuration density still
maintains its correlations and geometric structure. In the melting systems, instead, the trap
imperfections cause energy splittings which facilitate the population of new quasienergy states
with small energy differences. These are the quasienergy states involved in the excitation pro-
cess and loss of coherence: the contribution of the ground state to the dynamics is diminished
and the wave function dynamically becomes a superposition of different quasienergy states.
Hence, the characteristic geometric structure of the Pauli crystal in the ground state does not
dominate in the configuration density anymore and melting occurs.

Our study sheds light into the geometric and dynamical mechanisms that lead to Pauli crys-
tal melting and should help devise experimental protocols that prolong the lifetime of Pauli
crystals. Reducing geometric distortions of the trap will substantially increase the stability
and duration of the Pauli crystal phase. We also remark that, since the MCTDH-X method is
completely general, the study of melting mechanism can be extended to interacting fermionic,
bosonic and multicomponent indistinguishable particles as well. As the correlation configura-
tion of Pauli crystals is caused by the Pauli exclusion principle, one natural question to ask is
how the structure of the Pauli crystal is modified when the Pauli exclusion competes with other
interactions between fermions. Another interesting future research question would be whether
structures similar to Pauli crystals could be reproduced in interacting bosonic systems, since
repulsive interactions between bosonic particles might lead to a dynamical behavior similar to
that of noninteracting fermionic systems. Therefore, our study about the effect of statistics on
correlation structures could give a new insight into the dynamical formation of structures such
as star patterns [33], Faraday waves [34], and fireworks [35]. In summary, our results show
that many-body correlations offer a very rich phenomenology to explore and that dynamical
excitations play a crucial role for the stability of crystalline phases of matter of quantum gases.
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A Image processing

To compare the distribution of different configurations, we can record single-shot images in
such a way that only the information of the relative positions remains while other details such
as the position of the center of mass and the orientation of the configuration in the space are
removed. The ensemble of processed single-shot images is defined as the configuration density
SNs
[15]. The most probable configuration, namely the geometric structure of the Pauli crystal,

can be observed from the configuration density directly.
Consider the k-th single-shot measurement S(k) which collapses N particles at positions

r⃗ (k)1 , r⃗ (k)2 , · · · , r⃗ (k)N . The positions of the N particles form a configuration D(k)s (r⃗),

D(k)s (r⃗) = S(k)(r⃗ (k)1 , r⃗ (k)2 , · · · , r⃗ (k)N ) . (15)

The function D(k)s (r⃗) is only non-zero at positions r⃗ (k)1 , r⃗ (k)2 , · · · , r⃗ (k)N in the measurement k. The
average of Ns repeated single-shot measurements forms a histogram DNs

of atomic positions
in a two-dimensional plane:

DNs
(r⃗) =

1
Ns

Ns
∑

k=1

D(k)s (r⃗) . (16)

It is intuitive that the direct summation of single-shot images yields the one-body density in
the limit of infinite repeated measurements,

lim
Ns→∞

DNs
(r⃗) = ρ(r⃗) , (17)

where ρ(r⃗) is the one-body density

ρ(r⃗) =
〈Ψ| Ψ̂†(r⃗)Ψ̂(r⃗) |Ψ〉

N
. (18)

This quantity cannot provide information about correlations between particles.
In order to reveal the correlation configuration, we do additional image processing. The

first step is to shift the center of mass of the configuration to the origin of the coordinate
system:

r⃗ ′(k)i = r⃗ (k)i − r⃗ (k)C M , (19)

where r⃗ (k)C M =
1
N

∑N
i=1 r⃗ (k)i . On the account of the randomness in the orientation, the single-

shot images require applying a rotation with specified angles depending on different config-
urations. Thus, we can set a fixed configuration {r⃗0}N as the reference configuration. The
reference configuration can be chosen arbitrarily but is the same for every single-shot image.
For convenience, we use polar coordinates instead of Cartesian ones, r⃗0,i → (r0,i ,φ0,i). The dis-
tance between the measured configuration {r⃗ ′}N and the given reference configuration {r⃗0}N
is defined as the angular difference

d({r⃗ ′}N , {r⃗0}N ) =
N
∑

i=1

(φ′i −φ0,i)
2 . (20)
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Then, we rotate the k-th measured configuration after the translation to {r⃗ ′}(k)N by a specified
angle αk to minimize the distance between it and the given reference configuration {r⃗0}N :

αk = argmin
N
∑

i=1

(φ′i −αk −φ0,i)
2 . (21)

By taking the derivative of the distance, it is straightforward to get the value of αk:

αk =
1
N

N
∑

i=1

(φ′i −φ0,i) . (22)

Since the angles φ0,i of the reference configuration {r⃗0}N are constant for all single-shot im-
ages, they only influence the orientation of the pattern of the configuration density and not its
geometric structure. Hence, we can set φ0,i = 0 and the rotation angle αk is the average of all
angles φ′k,i:

αk =
1
N

N
∑

i=1

φ′k,i . (23)

The maximal rotation angle αk must be limited to 2π/l when the system obeys a l-fold sym-
metry. And the new coordinates after the rotation in the k-th single-shot image are:

˜⃗rk,i = (r
′
k,i ,φ

′
k,i −αk) , αk ∈ [0, 2π/l] . (24)

The configuration density can finally be obtained by adding up all processed single-shot im-
ages:

SNs
(r⃗) =

1
Ns

Ns
∑

k=1

D(k)s (˜⃗r) . (25)

B Parameter setting

Table 4: Parameter space in the simulations. The parameter A is the shaking am-
plitude given in the Eq. (3). γ and B are parameters to quantify the anisotropy and
anharmonicity of the trap, respectively. In the Gaussian trap, the anisotropy γ′ and
anharmonicity parameter B′ are experimental values.

Trap Parameter Range Step size
Vh A From 0.001 to 0.01 0.001

Vani
A(γ= 0.9) From 0.01 to 0.09 0.01
γ(A= 0.01) From 0.90 to 0.99 0.01

Vanh
A(B = 0.001) From 0.01 to 0.1 0.01

B(A= 0.1) From 0.001 to 0.01 0.001
VGau A(B′ = 20,γ′ = 0.99) From 0.01 to 0.25 0.01

Table 4 shows the parameter space that we covered in our simulations. We simulated the
modulation process in four different traps with different sets of parameters. The energy input
into the system is governed by the magnitude of the shaking amplitude A. The value of A
ranges from 0.01 to 0.1 in the experiment. We strive to use the same shaking parameters as
the experiment in the simulation. However, simulations of the isotropic harmonic trap with
shaking amplitudes A> 0.01 are not feasible due to a spatial extent problem. For those values,
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since the system in the isotropic harmonic trap is in resonance with the modulation frequency,
the one-body density of the system spreads outwards rapidly and shoots out of the spatial
domain that we consider. To solve this problem, the value range of the shaking amplitude
in the isotropic harmonic trap is adjusted to the interval [0.001, 0.01] with step size 0.001.
Similarly, the simulation in the anisotropic harmonic trap with parameters γ= 0.9 and A= 0.1
can not be implemented as a consequence of the same issue.

In our computations we have adopted dimensionless units. An initial trap frequency of
ω0 = 1 in our computations corresponds toω0 = 2π×985(3)Hz in the experiment. The mod-
ulation time t = 309 in the computations corresponds to 50ms in the experiment. The overall
parameter settings in the computations and all simulation results can be accessed through the
online data repository.

C Floquet Theory

According to the Floquet theorem [36], the solution to the Schrödinger equation can be written
in the following form:

Ψα(r⃗, t) = e−iεα tϕα(r⃗, t) , (26)

whereϕα(r⃗, t+τ) = ϕα(r⃗, t). The wave function Ψα(r⃗, t) is called the quasienergy state (QES)
and εα is a real parameter called the Floquet characteristic exponent or the quasienergy. If we
insert the solution Ψα(r⃗, t) into the Schrödinger equation, we find:

Ĥ(r⃗, t)ϕα(r⃗, t) = εαϕα(r⃗, t) , (27)

where Ĥ ≡ Ĥτ(r⃗, t) − i∂ /∂t . On the account of the periodicity of ϕα(r⃗, t), the quasienergy
state (QES) function Ψα(r⃗, t) can be then expanded in a Fourier series [32],

Ψα(r⃗, t) = e−iεα t
∑

n∈Z
ϕn
α(r⃗)e

−inωt , (28)

where

ϕn
α(r⃗) =

∫

dtϕα(r⃗, t)einωt . (29)

For the generalized Hamiltonian Ĥ(r⃗, t), we can introduce the composite Hilbert space
L = R⊗ T [28, 30] which is spanned by any set of square-integrable functions in the spatial
space R and the complete orthonormal set of functions {exp(inωt)}, n ∈ Z in the temporal
space T . The notation |Ψ〉〉 represents a vector in the composite space L and the inner product
is defined as

〈〈Ψα(r⃗, t)|Ψα′(r⃗, t)〉〉=
1
τ

∫ τ

0

〈Ψα(r⃗, t)|Ψα′(r⃗, t)〉 . (30)

And the eigenvectors of H(r⃗, t) form a complete set in the composite space L:
∑

α

|Ψα〉〉〈〈Ψα|= I . (31)

Hence, the wave function of the time-dependent system with the time-periodic Hamiltonian
Ĥτ(r⃗, t) can be formally expanded as a superposition of QES:

Ψ(r⃗, t) =
∑

j

A jΨα( j)(r⃗, t) (32)

=
∑

j

∞
∑

n=−∞
A jϕ

n
α( j)(r⃗)e

−i(εα( j)+nω)t . (33)
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